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Abstract

This work presents a method to obtain inner and outer approximations of the region
of attraction of a given target set as well as an admissible controller generating the
inner approximation. The method is applicable to constrained polynomial dynamical
systems and extends to trigonometric and rational systems. The method consists
of three steps: compute outer approximations, extract a polynomial controller while
guaranteeing the satisfaction of the input constraints, compute inner approximations
with respect to the closed-loop system with this controller. Each step of the method is a
convex optimization problem, in fact a semidefinite program consisting of minimizing
a linear function subject to linear matrix inequality (LMI) constraints. The inner
approximations are positively invariant provided that the target set is included in the
inner approximation and/or is itself invariant.

Keywords: Region of attraction, polynomial control systems, occupation measures, linear
matrix inequalities (LMIs), convex optimization, viability theory, reachable set, capture basin.

1 Introduction

In this paper, the region of attraction (ROA) of a given target set is defined as the set of
all states that can be steered to the target set at any time while satisfying state and control
input constraints. The problem of ROA characterization and computation with its many
variations have a long tradition in both control and viability theory (where the ROA is
typically called the capture basin [1]). Computational methods start with the seminal work
of Zubov [21] and are surveyed in, e.g., [7, 11, 3] and the book [2].

This work proposes a computationally tractable method for obtaining both inner and outer
approximations of the ROA and, importantly, an approximate polynomial controller. The
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Czech Republic.

1



approach consists of three steps: compute outer approximations, extract a polynomial con-
troller satisfying the input constraints, compute inner approximations of the closed-loop
system with the extracted controller. Thus, the approach can also be viewed as a design tool
providing a polynomial controller with an analytically known inner and outer approximations
of its ROA.

Computing both inner and outer approximations, compared to just one or the other, enables
assessing the tightness of the approximations obtained and provides a valuable insight into
achievable performance and/or safety of a given constrained control system. For instance,
a natural application for outer approximations is in collision avoidance, whereas a typical
application of a (positively invariant) inner approximation is as a terminal constraint of
a model predictive controller ensuring recursive feasibility of the underlying optimization
problem [17].

The approach builds on and extends the ideas of [7] and [11] and the controller extraction
procedure of [16] which was also sketched earlier in [6] in the context of switching sequence
design. The main contributions with respect these works are:

• Contrary to [7], we treat the infinite time version of the ROA computation problem.
The approach uses discounting similarly to our previous work [11] but here we treat
the problem of computing the ROA, not maximum controlled invariant set as in [11].

• Contrary to [10] we compute inner approximations for controlled systems. This signif-
icantly extends the applicability of the approach but brings additional practical and
theoretical challenges. In addition, under mild conditions, the inner approximations
obtained are controlled invariant.

• Contrary to [16] the extracted controller is guaranteed to satisfy the input constraints
and comes with an explicit estimate of its ROA, both from inside and outside.

• The formulation providing outer approximations of the ROA is based on a different
idea than that of [7, 11, 16] and provides tighter estimates on the numerical examples
investigated.

As in previous works [7, 10, 11], the method presented in this paper studies how whole ensem-
bles of trajectories evolve through time using the concept of occupation measures. To obtain
the outer approximations, we first characterize the ROA as a value function of a certain non-
linear optimal control problem which we then relax using measures in the spirit of [14]. This
leads to a primal infinite-dimensional linear program (LP) which is then relaxed using a hier-
archy of finite-dimensional semidefinite programming problems (SDPs) whose solutions can
be used to extract approximate polynomial controllers. Finite-dimensional approximations
of the dual infinite-dimensional LP in the space of continuous functions are sum-of-squares
(SOS) problems and provide outer approximations to the ROA. To obtain the inner approx-
imations, we characterize directly using measures the complement of the ROA associated
with the closed-loop system with the extracted polynomial controller. This leads to an
infinite-dimensional primal LP in the space of measures. Finite-dimensional approximations
of the dual LP on continuous functions are SOS problems and provide outer approximations
to the complement of the ROA and hence inner approximations to the ROA itself.
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Note in passing that the use of occupation measures has a long tradition both in deterministic
and stochastic control; see, e.g., [11] for a historical account with the emphasis on applications
to ROA and MCI set computation.

The paper is organized as follows. Section 2 defines the problem to be solved; Section 3
introduces the occupation measures; Section 4 presents the outer approximation formula-
tion; Section 5 describes the controller extraction procedure; Section 6 presents the inner
approximations; and Section 7 demonstrates the whole procedure on numerical examples.

1.1 Notation

Throughout the paper we work with standard Euclidean spaces; all subsets of these spaces
we refer to are automatically assumed Borel measurable. The spaces of continuous and
once continuously differentiable functions on a set X are denoted by C(X) and C1(X),
respectively. By a measure we understand a countably-additive mapping from sets to real
numbers. Integration of a function v(·) with respect to a measure µ over a set X is denoted
by
∫
X
v(x) dµ(x); often we omit the integration variable or the domain of integration and

write
∫
X
v dµ or

∫
v dµ. The support of a measure µ (i.e., the smallest closed set whose

complement has a zero measure) is denoted by sptµ. A moment sequence {yα}α∈Nn of a
measure µ on Rn is defined by yα =

∫
Rn x

α dµ(x) =
∫
Rn x

α1
1 · . . . · xαnn dµ(x). The indicator

function of a set A, i.e., the function equal to one on the set and zero elsewhere, is denoted
by IA(·).

2 Problem description

Consider the polynomial input-affine dynamical system

ẋ(t) = f(x(t)) +G(x(t))u(t), (1)

where the vector- and matrix-valued functions f : Rn → Rn and G : Rn → Rn×m have
polynomial entries. The system is subject to a basic semialgebraic state constraint1

x(t) ∈ X := {x ∈ Rn : gX(x) > 0}, (2)

where gX is a polynomial, and box input constraints

u(t) ∈ U := [0, ū]m, ū ≥ 0. (3)

The assumption that the input constraint is of the form (3) is made without loss of generality
since any box in Rm can be affinely transformed2 to [0, ū]m. It is also worth mentioning that

1The assumption that X is given by a super-level set of single polynomial is made for ease of exposition;
all results extend immediately to arbitrary basic semialgebraic sets. This extension is briefly described in
Appendix A.

2Any box in Rm can, of course, be also affinely transformed to [0, 1]m. However, we decided to consider
the more general form [0, ū]m so that it is immediately apparent where the upper bound ū comes into play
in the optimization problems providing the region of attraction estimates.
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arbitrary polynomial dynamical systems of the form ẋ = f(x, u) can also be handled by
considering the dynamic extension [

ẋ
u̇

]
=

[
f(x, u)
v

]
where the real control input u is treated as a state and v is a new, unconstrained, control
input. Some of our convergence results hinge on the compactness of the input constraint
set and therefore one may want to impose additional bounds on the new control input v,
which correspond to slew-rate constraints on the true control input u, a requirement often
encountered in practice.

In the remainder of the text we make the following standing assumption:

Assumption 1 The set X̄ := {x ∈ Rn : gX(x) ≥ 0} is compact.

This assumption is of a technical nature, required for the convergence results of Section 6.

Given a target set
XT := {x ∈ Rn : gT (x) > 0} ⊂ X,

where the function gT is a polynomial, the goal of the paper is to compute inner approxima-
tions of the region of attraction (ROA)

X0 =
{
x0 ∈ Rn : ∃u(·), x(·), τ ∈ [0,∞) s.t. ẋ(t) = f(x(t)) +G(x(t))u(t) a.e.,

x(t) ∈ X, u(t) ∈ U, ∀ t ∈ [0, τ ], x(0) = x0, x(τ) ∈ XT

}
,

where a.e. means “almost everywhere” with respect to the Lebesgue measure on [0, τ ], x(·)
is absolutely continuous and u(·) is measurable.

In words, the region of attraction X0 is the set of all initial states that can be steered to the
target set XT at any time τ ∈ [0,∞) in an admissible way, i.e., without violating the state
or input constraints.

Our approach to compute the inner and outer approximations to the ROA consists of three
steps:

1. Compute an outer approximation to the ROA,

2. Extract a polynomial controller out of this outer approximation,

3. Compute an inner approximation for the closed-loop system with this controller.

These steps are detailed in the rest of the paper.

3 Occupation measures

The key ingredient of our approach is the use of measures to capture the evolution of a
family of the trajectories of a dynamical system starting from a given initial distribution.
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Assume therefore that the initial state is not a single point but that its spatial distribution
is given by an initial measure µ0 and that to each initial condition a stopping time τ(x0) ∈
[0,∞] is assigned. Assume that the support of µ0 and the stopping time τ(·) are chosen such
that there exists a controller u(x) such that all closed-loop trajectories x(· |x0) starting from
initial conditions x0 ∈ sptµ0 remain in X for all t ∈ [0, τ(x0)).

Then we can define the (average) discounted occupation measure as

µ(A) =

∫
X

∫ τ(x0)

0

e−βtIA(x(t | x0)) dt dµ0(x0), A ⊂ X, (4)

where β > 0 is a discount factor. This measure measures the average (where the averaging is
over the distribution of the initial state) discounted time spent in subsets of the state-space
in the time interval [0, τ(x0)).

The discounted final measure µT is defined by

µT (A) =

∫
X

e−βτ(x0)IA(x(τ(x0) | x0)) dµ0(x0), A ⊂ X, (5)

where we define e−βτ(x0) := 0 whenever τ(x0) = +∞. The discounted final measure captures
the time-discounted spatial distribution of the state at the stopping time τ(x0).

The equation linking the three measures is a variant of the discounted Liouville equation∫
X

v(x)dµT (x)+β

∫
X

v(x) dµ(x) =

∫
X

v(x) dµ0(x)+

∫
X

∇ v(x)·[f(x)+G(x)u(x)] dµ(x), (6)

which holds for all v ∈ C1(X). This equation will replace the system dynamics (16) when
studying the evolution of trajectories starting from the initial distribution µ0 over the pos-
sibly infinite time intervals [0, τ(x0)). The equation is derived in Appendix B.

4 Outer approximations

In this section we formulate an infinite-dimensional linear program (LP) in the space of
measures characterizing the ROA (or more precisely a set closely related to it) and whose
finite-dimensional relaxations allow for the extraction of an approximate controller. Finite-
dimensional relaxations of the dual to this LP then provide outer approximations to the
ROA.

Here we take an approach different3 from [7, 11, 16] and formulate the ROA computation
problem as an optimal control problem whose value function characterizes the ROA; this
problem is then relaxed using measures. The optimal control problem reads:

3The works [7, 11, 16] do not use the value function of an optimal control problem and argue directly in
the space of trajectories modelled by measures. This approach can also be used to characterize the infinite-
time ROA sought here; however, on our class of numerical examples, the tightness of the finite-dimensional
relaxations and the quality of the extracted controllers seem to be inferior to those of the approach presented
here. Note that this is something peculiar to the infinite-time ROA problem and has not been observed for
the finite-time ROA problem of [7, 16] and the maximum controlled invariant set problem of [11].
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V (x0) := sup
τ∈[0,∞],u(·)

e−βτ
[
IXT (x(τ))− IX\XT (x(τ))

]
s.t. ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0

x(t) ∈ X, u(t) ∈ U ∀ t ∈ [0, τ ],

(7)

where the objective function is zero if τ = +∞. Clearly, the initial conditions that can
be steered to XT achieve a strictly positive objective; the initial conditions that necessarily
leave X a strictly negative objective; and the initial conditions that can be kept within X
forever but do not enter XT achieve a zero objective. Therefore X0 = {x | V (x) > 0}.
Now we formulate an infinite-dimensional LP relaxation of the problem (7) in the space of
measures. First, and this the key insight due to [16] ensuring that an approximate controller
can be extracted, we view each component ui(x) of the controller u(x) in (6) as a density of
a control measure4 σi defined by

σi(A) =

∫
A

ui(x) dµ(x), i = 1, 2, . . . ,m, A ⊂ X. (8)

Defining the linear differential operators Lf : C1(X) → C(X) and LGi : C1(X) → C(X),
i = 1, . . . ,m, by

Lfv := ∇v · f, LGiv := ∇v ·Gi,

where Gi denotes the ith column of G, the Liouville equation (6) can be rewritten as∫
X

v dµT + β

∫
X

v dµ =

∫
X

v dµ0 +

∫
X

Lfv dµ+
m∑
i=1

∫
X

(LGiv) dσi, (9)

where we used the fact that dσi(x) = ui(x)dµ(x) in view of (8).

The input constraints ui(x) ∈ [0, ū] are then enforced by requiring that 0 ≤ σi ≤ ūµ, which
is equivalent to saying that σi is a nonnegative measure absolutely continuous with respect
to µ with density (i.e., Radon-Nikodým derivative) taking values in [0, ū]. The constraint
0 ≤ σi ≤ ūµ can be written equivalently as σi ≥ 0, σi + σ̂i = ūµ for some non-negative
slack measure σ̂i ≥ 0. The state constraint x(t) ∈ X is handled by requiring that sptµ ⊂ X.
Further we decompose the final measure as µT = µ1

T +µ2
T with5 sptµ1

T ⊂ XT and sptµ2
T ⊂ X.

Finally we set the initial measure equal to the Lebesgue measure (i.e., dµ0(x) = dx).

4In [16] the authors use signed measures which they then decompose using the Jordan decomposition –
this step is avoided here since our control input is, without loss of generality, non-negative; this reduces the
number of control measures by half and therefore makes the subsequent SDP relaxations more tractable.

5We could have constrained the support of µ2
T to X \XT instead of X; however, this is unnecessary by

virtue of optimality in (10) and avoids using the difference of two basic semialgebraic sets which may not be
basic semialgebraic.
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This leads to the following infinite-dimensional primal LP on measures:

p∗o = sup
∫

1 dµ1
T −

∫
1 dµ2

T

s.t. β
∫
X
v dµ+

∫
XT

v dµ1
T +

∫
X
v dµ2

T =
∫
X
v dx+

∫
X
Lfv dµ+

∑m
i=1

∫
X

(LGiv) dσi ∀ v ∈ C1(X)∫
pi dσi +

∫
pi dσ̂i − ū

∫
pi dµ = 0 ∀ i ∈ {1, . . . ,m} ∀ pi ∈ C(X)

spt µ ⊂ X, spt µ1
T ⊂ XT , spt µ2

T ⊂ X,

spt σi ⊂ X, spt σ̂i ⊂ X, ∀ i ∈ {1, . . . ,m}
µ ≥ 0, µ1

T ≥ 0, µ2
T ≥ 0,

σi ≥ 0, σ̂i ≥ 0, ∀ i ∈ {1, . . . ,m},
(10)

where the supremum is over

(µ, µ1
T , µ

2
T , σ1, . . . , σm, σ̂1, . . . , σ̂m) ∈M(X)×M(XT )×M(X)×M(X)m ×M(X)m.

The dual LP on continuous functions provides approximations from above to the value
function and therefore outer approximations of the ROA. The dual LP reads

d∗o = inf
∫
X
v(x) dx

s.t. Lfv(x) + ū
∑m

i=1 pi(x) ≤ βv(x), ∀x ∈ X
pi(x) ≥ LGiv(x), ∀x ∈ X, i ∈ {1, . . . ,m}
pi(x) ≥ 0, ∀x ∈ X, i ∈ {1, . . . ,m}
v(x) ≥ 1, ∀x ∈ XT

v(x) ≥ −1, ∀x ∈ X

(11)

where the infimum is over (v, p1, . . . , pm) ∈ C1(X)× C(X)m.

The following Lemma shows that the zero super-level set of any function v ∈ C1 feasible
in (11) is an outer approximation to the ROA.

Lemma 1 If v ∈ C1(X) is feasible in (11), then X0 ⊂ {x : v(x) > 0}.

Proof: Fix an x0 ∈ X0. Then by definition there exists m control functions ui(· |x0) ∈ [0, ū]
and a time τ ∈ [0,∞) such that x(τ |x0) ∈ XT . Therefore x(t |x0) ∈ X for all t ∈ [0, τ ] and
consequently, using the constraints of (11),

d

dt
v(x(t |x0)) = Lfv(x(t |x0)) +

m∑
i=1

LGiv(x(t |x0))ui(x(t |x0)) ≤ Lfv +
m∑
i=1

piui

≤ Lfv + ū

m∑
i=1

pi ≤ βv(x(t |x0))

for all t ∈ [0, τ). Using the Gronwall’s inequality we have v(x(τ | x0)) ≤ eβτv(x0) and
therefore

v(x0) ≥ e−βτv(x(τ |x0)) > 0

as desired. Here the last inequality follows from the fact that v(x) ≥ 1 on XT . �
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4.1 Finite dimensional relaxations

The infinite dimensional LPs (10) and (11) can be solved only approximately; a system-
atic way of approximating them is the so-called Lasserre hierarchy of semidefinite program-
ming (SDP) relaxations [13], originally introduced for static polynomial optimization and
later extended to the dynamic case [14].

Instead of optimizing over measures, this hierarchy takes only finitely many moments of
the measures for the primal problem (10) while imposing conditions necessary for these
truncated moment sequences to be feasible in the primal LP via the so-called moment and
localizing matrices. On the dual side, the function space is restricted to polynomials of a
given degree while imposing sufficient conditions for the non-negativity via sum-of-squares
conditions. One then refers to the relaxation of order k when the first 2k moments of the
measures are taken on the primal side and polynomials of total degree up to 2k on the dual
side. Please refer to [7] or [16] for more details on how to construct the relaxations for this
particular problem or to [13] for a general treatment.

Let vk(·) be a polynomial of degree 2k solving the kth order relaxation of the dual SDP (11).
Then this polynomial is feasible in (11) and therefore, in view of Lemma 1, we can define
the kth order outer approximation of X0 by

XO0k := {x ∈ X : vk(x) > 0}. (12)

The following theorem states that the running intersection ∩ki=1X
O
0i converges monotonically

to the set no smaller than {x | V (x) ≥ 0}, which is the union of the ROA X0 and the set of
all states which can be kept within X forever.

Theorem 1 The following statements are true: ∩ki=1X
O
0i ⊃ X0 for all k ≥ 1 and

lim
k→∞

vol
(
∩ki=1 X

O
0i \ {x | V (x) ≥ 0}

)
= 0.

Proof: The proof follows the convergence of vk(·) to V (·) in L1 norm which can be established
using similar reasoning as in [11, Theorem 6]; details are omitted for brevity. �

Note that in the case where the volume of the set of states which can be kept in X forever but
cannot be steered to XT is positive, the set to which the running intersection of XO0k converges
can be strictly larger than X0 (in the sense of positive volume difference); nevertheless by
virtue of optimality in (10) the controller attaining the infimum in (10) generates X0 (i.e.,
admissibly steers any state in X0 to XT ).

5 Controller extraction

In this section we describe how a polynomial controller approximately feasible in the pri-
mal LP (10) can be extracted from the solution to the finite-dimensional relaxations of (10).
Given a truncated moment sequence solving the kth primal relaxation, the idea is to find,
component-by-component, polynomial controllers uki (x), i = 1, . . . ,m, of a predefined total
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degree deg(uki ) ≤ k that approximately satisfy the relation (8). Details of this procedure are
described below.

First, note that satisfying relation (8) is equivalent to satisfying∫
X

v(x)uki (x)dµ(x) =

∫
X

v(x)dσi(x)

for all polynomials6 v(·) and therefore, by linearity, it is equivalent to the linear equation∫
X

xαuki (x) dµ(x) =

∫
X

xα dσi(x), (13)

where the multindex α = (α1, . . . , αn) ∈ Nn runs over all nonnegative integer n-tuples. The
data available to us after solving the kth order primal relaxation are the first 2k moments7

of the measures µ and σi. The approach for controller extraction of [16] consists of setting
deg(uki ) := k and satisfying the equation (13) exactly for all moments up to degree k, i.e.,
for all α ∈ Nn such that

∑n
i=1 αi ≤ k. For this choice of deg(uki ), the linear equation (13)

takes a particularly simple form
Mk(y

2k)uki = σki , (14)

where Mk(y
2k) is the

(
n+k
n

)
×
(
n+k
n

)
moment matrix (see [13] for definition) associated to

y2k, the vector of the first 2k moments of µ, σki is the vector of the first k moments of σi,
and uki is the vector of the coefficients of the polynomial uki (·).
However, this extraction procedure does not ensure the satisfaction of the input constraints
and indeed typically leads to controllers violating the input constraints. One remedy is to
pose input constraints on the polynomial uki (x) as sum-of-squares (SOS) constraints and min-
imize over uki the moment mismatch ‖Mk(y

2k)uki −σki ‖2 subject to these input constraints;
this immediately translates to an SDP problem, as proposed originally in [9]. Denoting by ûki
the “true” controller, coefficients of which satisfy the equation (14), this approach is equiva-
lent to minimizing the L2(µ) error8

∫
X

(uki (x)− ûki (x))2 dµ(x). The problem of this extraction
procedure is now apparent – the L2(µ) criterion weights subsets of X according to the occu-
pation measure µ and therefore will penalize more those subsets of X where the trajectories
spend a large amount of time and penalize less those subsets where the trajectories spend
little time. This is clearly undesirable and is likely to lead to a poor closed-loop performance
of the extracted controller. What we would like to have is a uniform penalization over the
constraint set X or even better over the region of attraction X0 (since any control is futile
outside X0 anyway). This leads to the following two-step procedure that we propose:

1. Extract the controller polynomial ûki satisfying exactly (14) but violating the input
constraints.

6This follows from the compactness of the constraint set X and the fact that the polynomials are dense
in C(X) w.r.t. the supremum norm on compact sets.

7The first 2k moments belong to a measure feasible in (10) only asymptotically, i.e. when k → ∞;
at a finite relaxation order k the first 2k moments may not belong to a measure feasible in (10) (or any
nonnegative measure at all).

8The integral
∫
X

(uki (x) − ûki (x))2 dµ(x) should be understood symbolically, replacing moments of the

“true” occupation measure µ by y2k.
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2. Minimize the L2(ν) error
∫
X

(uki (x)− ûki (x))2 dν(x) subject to the input constraints,

where ν is a reference measure, ideally equal to the uniform measure on the ROA X0. The
second step can be carried out only approximately since the ROA, let alone the uniform
distribution on it, are not known in advance. Here we use the first 2k moments of the
uniform measure on X as a rough proxy for the uniform measure on X0. This leads to the
following SOS optimization problem for controller extraction:

min
uki ,s

i
1,s

i
2

ukiM1u
k
i − 2ukiM2û

k
i

s.t. uki − gXsi1 = SOS
ū− uki − gXsi2 = SOS
si1 = SOS, si2 = SOS,

(15)

where M1 and M2 are respectively the
(
n+deg(uki )

n

)
×
(
n+deg(uki )

n

)
and

(
n+deg(uki )

n

)
×
(
n+k
n

)
top-

left sub-blocks of Mk(y
2k
ν ), the moment matrix associated to the first 2k moments of the

reference measure ν. The optimization is over the coefficients uki of the controller polynomial
uki (x) and the coefficients of the SOS polynomial multipliers si1(x) and si2(x).

It is worth noting that if a low-complexity controller is desired one can enforce sparsity on
the coefficient vector of the polynomial uki by adding an l1-regularization term γ||uki ||1 for
some γ > 0 to the objective of (15) and/or fix an a priori sparsity pattern of uki .

To state a convergence result for the extracted controllers, we abuse notation and set∫
v(x)dµk :=

∑
α vαy

2k(α) for a polynomial v(x) =
∑

α vαx
α of total degree less than 2k.

The following convergence result for the controllers ûki was established in [16]:

Lemma 2 There exists a subsequence {kj}∞j=1 such that

lim
j→∞

∫
X

v(x)û
kj
i (x) dµkj(x) =

∫
X

v(x)û∗i (x) dµ∗(x),

for all polynomials v(x), where u∗i (x)dµ∗(x) = dσ∗i (x) and (µ∗, σ∗i ) is a part of an optimal
solution to the primal LP (10).

Establishing a stronger notion of convergence and extending the convergence result to the
controllers uki (x) satisfying the input constraints obtained from (15) is currently investigated
by the authors.

Remark 1 The method of controller extraction ensuring the satisfaction of input constraints
using sum-of-squares programming is not the only one possible but is particularly convenient
for subsequent inner approximation computation since the extracted controller is polyno-
mial. For instance, other viable approach is to simply clip the controller ûki (x) on the input
constraint set; in this case the closed-loop dynamics is piecewise polynomial defined over a
semi-algebraic partition and it is still possible to compute inner approximations by a straight-
forward modification of the approach of Section 6.
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6 Inner approximations

Given a controller u(x) satisfying input constraints extracted from the outer approximations,
all we need to do to obtain inner approximations to the ROA X0 is to compute inner
approximations of the ROA for the closed-loop system

ẋ = f̄(x) := f(x) +G(x)u(x). (16)

Remark 2 All results of this section apply to uncontrolled systems ẋ = f̄(x) with an arbi-
trary polynomial vector field f̄ , not only those of the special form (16).

In order to compute the inner approximations we combine ideas of our two previous works [10]
and [11] for computation of inner approximations to the ROA in a finite-time setting and
outer approximations to the maximum controlled invariant set, respectively. This combina-
tion of the two approaches retains strong theoretical guarantees of both and seems to exhibit
faster convergence of the finite-dimensional SDP relaxations.

The key idea of [10] that we adopt here is to characterize the complement of the ROA

Xc
0 := X \X0.

By continuity of solutions to (16), this set is equal to

Xc
0 =

{
x0 ∈ X : ∃x(·) s.t. ẋ(t) = f̄(x(t)) and

∃ τ ∈ [0,∞) s.t. x(τ) ∈ X∂ and/or x(t) ∈ Xc
T ∀ t ∈ [0,∞)

}
,

where
Xc
T := {x ∈ Rn : gX(x) ≥ 0, gT (x) ≤ 0}

is the complement of XT in X and

X∂ := {x ∈ Rn : gX(x) = 0}.

In order to compute outer approximations of the complement ROA Xc
0 we study families of

trajectories starting from an initial distribution µ0. The time evolution is captured by the
discounted occupation measure (6) and the distribution at the stopping time τ(·) ∈ [0,∞] by
the final measure µT (5). The three measures are again linked by the discounted Liouville’s
equation (6).

The complement ROA Xc
0 (and hence also the ROA X0) is then obtained by maximizing

the mass of the initial measure subject to the discounted Liouville equation (6), support
constraints sptµ ⊂ Xc

T , sptµ0 ⊂ Xc
T , µT ⊂ X∂, and subject to the constraint that the

initial measure is dominated by the Lebesgue measure (which is equivalent to saying that
the density of the initial measure is below one). The last constraint is equivalent to the
existence of a nonnegative slack measure µ̂0 such that

∫
X
w dµ0 +

∫
X
w dµ̂0 =

∫
X
w dx for

all w ∈ C(X). This optimization procedure yields an optimal initial measure with density
(w.r.t. the Lebesgue measure) equal to one on Xc

0 and zero otherwise.

11



Writing the above formally leads to the following primal infinite-dimensional LP on measures

p∗I = sup
∫

1 dµ0

s.t.
∫
X
vdµT + β

∫
X
v dµ =

∫
X
v dµ0 +

∫
X
∇ v · f̄ dµ, ∀ v ∈ C1(X),∫

X
w dµ0 +

∫
X
w dµ̂0 =

∫
X
w dx, ∀w ∈ C(X),

spt µ ⊂ Xc
T , spt µ0 ⊂ Xc

T , spt µT ⊂ X∂, spt µ̂0 ⊂ Xc
T ,

µ0 ≥ 0, µ ≥ 0, µT ≥ 0, µ̂0 ≥ 0,

(17)

where the supremum is over the vector of nonnegative measures

(µ0, µ, µT , µ̂0) ∈M(Xc
T )×M(Xc

T )×M(X∂)×M(Xc
T ).

The dual infinite-dimensional linear program on continuous functions reads

d∗I = inf

∫
X

w(x) dx

s.t. ∇v(x) · f̄(x) ≤ βv(x), ∀x ∈ Xc
T ,

w(x) ≥ v(x) + 1, ∀x ∈ Xc
T ,

w(x) ≥ 0, ∀x ∈ Xc
T ,

v(x) ≥ 0, ∀x ∈ X∂,

(18)

where the infimum is over the pair of functions (v, w) ∈ C1(X)× C(X).

The following lemma establishes that the set {x ∈ X : v(x) < 0} for any function v ∈ C1(X)
feasible in (18) provides an inner approximation to the ROA X0.

Lemma 3 If v ∈ C1(X) is feasible in (18), then {x ∈ X : v(x) < 0} ⊂ X0.

Proof: We will prove the contrapositive, i.e., that whenever x0 ∈ Xc
0, then v(x) ≥ 0. For

that we distinguish two cases.

First, assume that x0 ∈ Xc
0 and that x(t) ∈ X for all t ∈ [0,∞). In that case necessarily also

x(t) ∈ Xc
T for all t ∈ [0,∞) and the first constraint of (18) implies that d

dt
v(x(t)) ≤ βv(x(t))

for all t ∈ [0,∞). Using Gronwall’s inequality, this implies that v(x(t)) ≤ v(x0)e
βt or

v(x0) ≥ e−βtv(x(t)) for all t ∈ [0,∞). Since Xc
T is compact and v continuous this implies

that v(x(t)) is bounded and therefore necessarily v(x0) ≥ 0.

Second, assume that there exists a time τ ∈ [0,∞) such that x(τ) ∈ X∂. Then the second
constraint of (18) implies that v(x(τ)) ≥ 0, and therefore, using again the first constraint
of (18) and Gronwall’s inequality, we get 0 ≤ v(x(τ)) ≤ eβτv(x0) and therefore v(x0) ≥
e−βτv(x(τ)) ≥ 0 as desired. �

6.1 Choice of the discount factor β

The LPs (17) and (18) depend on the discount factor β > 0 which is a free parameter.
Theoretical results pertaining to the infinite-dimensional LPs (17) and (18) and convergence
guarantees of their finite-dimensional relaxations do not depend on the value of β as long as

12



it is strictly positive. However, the speed of convergence and the quality (i.e., the tightness)
of the ROA estimates coming out of the finite-dimensional relaxations does depend on β.

This dependence can be exploited to speed-up the convergence of the finite-dimensional
relaxations by observing that if a vector of measures (µ0, µ, µT , µ̂0) is feasible in the primal
LP (17) with a given value of the discount factor β > 0, then for any other value of β′ > 0

there must exist discounted occupation and terminal measures µβ
′

and µβ
′

T such that the

vector of measures (µ0, µ
β′
, µβ

′

T , µ̂0) is also feasible in (17). Therefore, instead of considering
a single value of β we can define a vector β = (β1, . . . , βnβ), βi > 0, and optimize over vectors

of discounted occupation and terminal measures µ = (µ1, . . . , µnβ) and µT = (µ1
T , . . . , µ

nβ
T ),

components of which have to satisfy the discounted Liouville equation with one common
initial measure µ0. This leads to the following modified primal LP

p∗I = sup
∫

1 dµ0

s.t.
∫
X
vdµiT + βi

∫
X
v dµi =

∫
X
v dµ0 +

∫
X
∇ v · f̄ dµi, i ∈ {1, . . . , nβ}, ∀ v ∈ C1(X),∫

X
w dµ0 +

∫
X
w dµ̂0 =

∫
X
w dx, ∀w ∈ C(X),

spt µ0 ⊂ Xc
T , spt µ̂0 ⊂ Xc

T ,

spt µi ⊂ Xc
T , spt µiT ⊂ X∂, i ∈ {1, . . . , nβ},

µ0 ≥ 0, µ̂0 ≥ 0

µi ≥ 0, µiT ≥ 0, i ∈ {1, . . . , nβ}
(19)

where the supremum is over the vector of nonnegative measures

(µ0,µ,µT , µ̂0) ∈M(Xc
T )×M(Xc

T )nβ ×M(X∂)
nβ ×M(Xc

T ).

As already remarked the optimal values of the infinite-dimensional primal LPs (17) and (19)
are the same; however, the finite-dimensional SDP relaxations of (19) are likely to converge
faster than those of (17) (and will never converge slower provided that the β used in (17) is
among the components of the vector β used in (19)).

For completeness we also state the dual infinite-dimensional LP on continuous functions
where the function v from (18) is replaced by a vector of functions v = (v1, . . . , vnβ):

d∗I = inf

∫
X

w(x) dx

s.t. ∇vi(x) · f̄(x) ≤ βivi(x), ∀x ∈ Xc
T , i ∈ {1, . . . , nβ},

w(x) ≥ 1 +
∑nβ

i=1 vi(x), ∀x ∈ Xc
T ,

w(x) ≥ 0, ∀x ∈ Xc
T ,

vi(x) ≥ 0, ∀x ∈ X∂, i ∈ {1, . . . , nβ},

(20)

where the infimum is over the vector of functions (v, w) ∈ C1(X)nβ × C(X).

Remark 3 For any functions v1, . . . , vnβ feasible in (20) the results of Lemmata 3 and 4

and Corollaries 1 and 2 hold with the function v replaced by
∑nβ

i=1 vi.
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6.2 Finite-dimensional relaxations

The infinite dimensional primal and dual LPs (17) and (18) give rise to finite-dimensional
SDP relaxations in exactly the same fashion as outlined in Section 4.1 or described in more
detail in, for instance, [7, Section VI]. Further details are omitted for brevity.

Let vki , i = 1, . . . , nβ, and wk denote the polynomials of degree 2k solving the kth order SDP
relaxation of the dual LP (20) and let

XI0k := {x ∈ X :

nβ∑
i=1

vi(x) < 0} (21)

denote the kth order inner approximation (since XI0k ⊂ X0 by Lemma 3 and Remark 3).

The following theorem summarizes convergence properties of the finite-dimensional relax-
ations. Let Xcl

0 ⊂ X0 be the closed-loop ROA associated to the closed-loop system (16)
(defined analogously as ROA X0).

Theorem 2 The following convergence properties hold:

• The optimal values of the primal and dual SDP relaxations converge to the volume of
X \Xcl

0 as the relaxation order k tends to infinity.

• The functions wk converge in L1 to the indicator function of the set X \Xcl
0 .

• The sets XI0k converge from inside to Xcl
0 in the sense that the volume of Xcl

0 \ XI0k
tends to zero as the relaxation order k tends to infinity.

Proof: The proof follows by the same arguments as Theorem 6, Corollary 7 and Theorem 8
of [10] using Theorems 2 and 4 of [11] in place of Theorems 1 and 5 of [10]. �

6.3 Invariance of the inner approximations

In this section we investigate under what conditions the inner approximations XI0k are con-
trolled invariant for the system (1) and positively invariant for the system (16). Recall that
a subset of Rn is called positively invariant for an uncontrolled ODE if trajectories starting
in the set remain in the set forever. Similarly a subset of Rn is called controlled invariant
for a controlled ODE if there exists an admissible control input such that the trajectories
starting in the set remain in the set forever.

The following Lemma leads almost immediately to the characterization of the invariance of
XI0k; it says that trajectories starting in XI0k stay there until they reach the target set XT

for the closed-loop system (16).

Lemma 4 If x(0) ∈ XI0k, then x(t) ∈ XI0k for all t ∈ [0, τ ], where τ = inf{s ∈ [0,∞) |
x(s) ∈ XT} <∞ is the first time that x(t) reaches XT , and x(t) is the solution to (16).
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Proof: If x(0) ∈ XT then there is nothing to prove. Assume therefore x(0) ∈ X \XT ⊂ Xc
T .

By Lemma 3 (and its analogy for the problem (20)) if x(0) ∈ XI0k, then, by the definition
of the ROA X0, τ = inf{s ∈ [0,∞) | x(s) ∈ XT} is finite and x(t) ∈ X for all t ∈ [0, τ ].
This implies that x(t) ∈ Xc

T for all t ∈ [0, τ) and therefore
∑nβ

i=1 vi(x(t)) <
∑nβ

i=1 vi(x(0)) <
0, where the first inequality follows from the first constraint of (20) and the Gronwall’s
inequality and the second one from the definition of XI0k (21). This proves the claim. �

The following two immediate Corollaries give conditions under which XI0k is invariant.

Corollary 1 If the target set XT is controlled / positively invariant for the system (1) / (16),
then so is the set XI0k ∪XT .

Corollary 2 If closure(XT ) ⊂ XI0k, then XI0k is controlled / positively invariant for the
system (1) / (16).

7 Numerical examples

In this section we present numerical examples illustrating the approach. As a modeling tool
we used Gloptipoly [8] which allows to model directly the primal problems on measures.
The outer and inner approximations are then extracted from the dual variables provided by
a primal-dual SDP solver (in our case MOSEK). Equivalently one can model the dual SOS
problems (in our case using YALMIP [15] or SOSOPT [19]) and extract the primal moment
vector (which is needed to obtain the approximate control law) as a part of the dual variables
associated with the constraints of the dual SDP.

7.1 Nonlinear double integrator

As our first example we consider the nonlinear double integrator

ẋ1 = x2 + 0.1x31
ẋ2 = 0.3u

subject to the constraints u ∈ [−1, 1] and x ∈ X := {x : ‖x‖2 < 1.2}. As a terminal set
we take a small neighbourhood of the origin XT := {x : ||x||2 < 0.1}. First we obtain
two approximate polynomial controllers of degree four by solving the fourth order (i.e.,
considering moments up to total degree eight) SDP relaxation of the two primal LPs (10).
Then we obtain inner approximations from the eighth order (corresponding to degrees of w
and vi, i = 1, . . . , 5, equal to 16) SDP relaxation of the dual LP (20) where we choose the
vector β = (10, 1, 0.1, 0.01, 0.001); the inner approximations given by (21) are compared in
Figure 1 with an outer approximation (12) obtained from solving an SDP relaxation of the
dual LP (11) with degrees of w and v equal to 16. We can see that, for this example, both
the inner and outer estimates are almost tight. Computation times of the SDP relaxations
are reported in Table 1.
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Table 1: Nonlinear double integrator – Computation time comparison for different degrees d = 2k of the
polynomials in the SDP relaxations of the outer dual LP (11) and the inner dual LP (20). Reported is pure
solver time of the MOSEK SDP solver (excluding Gloptipoly and Yalmip parsing time). Larger solve time
for the inner approximations is because of the larger number of decision variables and constraints in (20)
since in (20) there is one polynomial vi associated to each of the five values of the discount factor βi.

d 6 8 10 12 16

Inner 0.42 s 0.67 s 1.03 s 1.61 s 4.41 s

Outer 0.17 s 0.23 s 0.37 s 0.66 s 1.02 s
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Figure 1: Nonlinear double integrator – light: inner approximation (21) with vi of 16; darker:
outer approximations (12) with v of degree 16; dark, small: target set; thick line: constraint set
boundary; dashed thin lines: closed-loop trajectories.

7.2 Controlled 3D Van der Pol oscillator

As our second example we consider a controlled Van der Pol oscillator in three dimensions
given by

ẋ1 = −2x2

ẋ2 = 0.8x1 − 2.1x2 + x3 + 10x21x2

ẋ3 = −x3 + x33 + 0.5u

subject to the constraints u ∈ [−1, 1] and x ∈ X = {x : ‖x‖2 < 1}. As a terminal set we take
a small neighbourhood of the origin XT = {x : ‖x‖2 < 0.1}. First we extract an approximate
controller u(x) of degree four by solving an SDP relaxation of fourth order (i.e., considering
moments up to total degree eight) of the primal LP (10). After that we compute an inner
approximation by solving an SDP relaxation of the dual LP (20) with β = (1, 0.1, 0.01, 0.001)
and polynomials w and vi, i = 1, . . . , 4, of degree 10. To assess the tightness of the inner
approximation we compute an outer approximation by solving an SDP relaxation of the
dual LP (11) with w and v polynomials of degree 16. Figure 2 shows the comparison and
also several trajectories of the closed-loop system which, as expected, converge to the target
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Figure 2: Controlled 3D Van der Pol oscillator – inner approximation of degree 10 (dark, smaller);
outer approximation of degree 16 (light, larger); closed-loop trajectories (black). The degree of the
polynomial controller generating the inner approximation is four.

set (not shown) whenever starting in the inner approximation. We observe a relatively good
tightness of the inner approximation. Computation times are reported in Table 2.

Table 2: Controlled 3D Van der Pol oscillator – Computation time comparison for different degrees d = 2k
of the polynomials in the SDP relaxations of the outer dual LP (11) and the inner dual LP (20). The same
comments as for Table 1 apply.

d 6 8 10 12 16

Inner 1.16 s 3.6 s 12.3 s 32.7 s 213 s

Outer 0.48 s 0.88 s 2.8 s 7.4 s 54.4 s

8 Conclusion

We have presented a method for computing inner and outer approximations of the region
of attraction for input-affine polynomial dynamical systems subject to box input and semi-
algebraic state constraints. The method combines and extends the ideas of our previous
works [7, 10, 11] and the controller extraction idea of [16]. The inner approximations are
controlled invariant provided that the target set is included in the inner approximation
and/or itself controlled invariant.

The approach is based purely on convex optimization, in fact semidefinite programming
(SDP), and is tractable for systems of moderate state-space dimension (say up to n equal
to 6 or 8) using interior point solvers, in our case MOSEK; the number of control inputs
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m plays a secondary role in the computation complexity since the number of variables and
constraints in the SDP relaxations grows only linearly with m. The linear growth is due to
the fact that one measure on Rn is associated to each control input, where n is the state
dimension. The total number of variables therefore grows as O(mnd) when the polynomial
degree is held fixed and as O(mdn) when m and n are held fixed; this is a significantly more
favourable growth rate than O((m+n)d) or O(dn+m) of [7, 10, 11]. Larger systems could be
tackled using first-order methods; for instance SDPNAL [20] shows promising results on our
problem class (after suitable preconditioning of problem data).

The approach can be readily extended to trigonometric, rational or rational-trigonometric
dynamics with the same theoretical guarantees since a variant of the Putinar Positivstellen-
satz [18] (which Theorem 2 hinges on) holds for trigonometric polynomials as well [5].

At present no proof of convergence of the inner approximations XI0k to the ROA X0 is
available. This is since Lemma 2 provides only very weak convergence guarantees of the
extracted controller to a controller generating the ROA X0. Strengthening Lemma 2 or
the possibility of proving the convergence by other means is currently investigated by the
authors.

Appendix A

Here we describe how the presented approach can be extended to handle the situation where
the state constraint set X and/or the target set XT are given by multiple polynomial in-
equalities. Assume therefore for this section that

X = {x : giX > 0, i = 1, . . . , nX}, XT = {x : giT > 0, i = 1, . . . , nT} ⊂ X,

and that the set
X̄ = {x : giX ≥ 0, i = 1, . . . , nX}

is compact. The primal and dual LPs (10) and (11) providing the outer approximations stay
the same since the set X̄ is compact basic semialgebraic. A slight modification is needed
for the primal and dual LPs (17) and (18) providing the inner approximations. There, with
multiple constraints, we define the sets X∂ and Xc

T as

X∂ =

nX⋃
i=1

X i
∂ :=

nX⋃
i=1

{
x : giX = 0, gjX ≥ 0, j ∈ {1, . . . , nX} \ {i}

}
,

Xc
T =

nT⋃
i=1

Xci

T :=

nT⋃
i=1

{
x : giT ≤ 0, gjX ≥ 0, j ∈ {1, . . . , nX}

}
.

Since X̄ is compact, so are X i
∂ and Xci

T . The sets X∂ and Xc
T are therefore unions of compact

basic semialgebraic sets. In the primal LP the measures µ0, µ̂0 and µ with the supports in Xc
T

are decomposed as the sum of nT measures each with the support in Xci

T and analogously
the terminal measure with the support in X∂ is decomposed as the sum of nX measures with
the supports in X i

∂. In the dual LP (18) this translates to imposing the inequalities for each
Xci

T and X i
∂; for instance, the first inequality of (18) now translates to the nT inequalities

∇v · f̄(x) ≤ βv(x) ∀ x ∈ Xci

T , i = 1, . . . , nT .
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Appendix B

This Appendix derives the discounted Liouville equation (6). For any test function v ∈
C1(X) we have∫

X

∇v(x) · f̄(x) dµ(x) =

∫
X

∫ τ(x0)

0

e−βt∇v(t |x0) · f̄(x(t |x0)) dt dµ0(x0)

=

∫
X

∫ τ(x0)

0

e−βt
d

dt
v(x(t |x0)) dt dµ0(x0)

= β

∫
X

∫ τ(x0)

0

e−βtv(x(t |x0)) dt dµ0(x0) +

∫
X

e−βτv(x(τ(x0) |x0))µ0(x0)−
∫
X

v(x0)µ0(x0)

= β

∫
X

v(x) dµ(x) +

∫
X

v(x) dµT (x)−
∫
X

v(x) dµ0(x),

which is exactly (6). Here we have used integration by parts in the third equality, and the
definition of the initial, discounted occupation and terminal measures in the fourth.
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