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Abstract

This paper considers linear discrete-time systems with additive, bounded, dis-
turbances subject to hard control input bounds and a stochastic constraint on the
amount of state-constraint violation averaged over time. The amount of violations is
quantified by a loss function and the averaging can be weighted, corresponding to
exponential forgetting of past violations. The freedom in the choice of the loss func-
tion makes this formulation highly flexible – for instance, probabilistic constraints or
integrated chance constraints can be enforced by an appropriate choice of the loss
function. For the type of constraint considered, we develop a recursively feasible re-
ceding horizon control scheme exploiting the averaged-over-time nature by explicitly
taking into account the amount of past constraint violations when determining the
current control input. This leads to a significant reduction in conservatism. As a sim-
ple extension of the proposed approach we show how time-varying state-constraints
can be handled within our framework. The computational complexity (online as
well as offline) is comparable to existing model predictive control schemes. The
effectiveness of the proposed methodology is demonstrated by means of a numerical
example.

1 Introduction

There is a significant gap between the theory of model predictive control (MPC) and
its practical usage. Indeed, theoretical results on stability and recursive feasibility of
MPC are available in nominal as well as robust settings [21, 28]. These results are,
however, rarely used in practice: In most applications the problem of recursive feasibility
is circumvented by employing soft constraints, and (robust) stability is not enforced by
design but evaluated a posteriori. The main reason for this discrepancy is the excessive
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conservatism of theoretically sound approaches compared to empirical methods, especially
in a robust setting [26].

A possible remedy is for the constraint specification to be stochastic rather than robust,
or, more generally, for occasional constraint violation to be allowed in a well-defined, but
not necessarily probabilistic, manner. An MPC controller can then exploit the freedom
to occasionally violate the constraint in order to achieve a lower objective cost, thereby
reducing the conservatism.

The main theoretical challenge when we allow occasional constraint violation is recursive
feasibility. Previous approaches [6, 7, 8, 9, 18, 20] considered constraints on the marginal
distribution of the state, typically point-wise in time probabilistic constraints. In those
works the constraints were enforced by controlling the conditional probability of constraint
violations between two consecutive time instances without taking into account the past
behavior of the state process. Although convenient for a receding horizon controller imple-
mentation, this necessarily limits the achievable benefits of the probabilistic specification.
Indeed, even the least-restrictive1 formulation of [18] is conservative in certain situations.

In contrast, the proposed method exploits the information on the past behavior of the state
process – namely the cumulative amount of past constraint violations – when determining
the current control input, and thereby is capable of enforcing stochastic properties on
the closed-loop state-process as a whole. The quantity constrained in this paper is the
amount of constraint violations averaged over time, where the amount is quantified by a
loss function and the averaging can be weighted, allowing for exponential forgetting of past
constraint violations. Since our specification is stochastic, the average amount of violations
is allowed to occasionally exceed the prescribed level; we prove that under the control
policy proposed this quantity converges back to the prescribed level with probability one
and derive bounds on the expected return time. A simple modification of our approach
allows us to handle a time-varying state-constraint, where the variation is generated by
the output of a linear system driven by a fictitious bounded disturbance. The freedom
in the choice of the loss function makes our approach fairly general and flexible. Indeed,
probabilistic constraints (see, e.g., [18, 20]) or integrated chance constraints (see, e.g., [25])
can be readily implemented with a particular choice of the loss function.

The averaged-over-time constraints considered are as expressive and practically relevant as
their traditional counterparts. For instance, this type of constraint is natural in building
climate control, where comfort specifications for the room temperature prescribe the
allowed amount of excursion from a given temperature band (in Kelvin hours per year) [10].
Other examples include energy-efficient datacenter cooling subject to the constraints on
the number of delayed queries per unit of time (see, e.g., [17]), or performance (e.g., power
output) maximization of a machine subject to fatigue constraints (see [9] for a concrete
example of wind-turbine control).

Importantly, the loss function considered can also have an economic character in which case
the approach presented allows imposing stochastic constraints on the running (weighted)
average cost incurred. This quantity (or more precisely its asymptotic behaviour) has been
recently studied extensively in a deterministic setting in the economic MPC literature; see,

1Least-restrictive in terms of the size of the feasible domain.
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e.g., [1, 14].

The presented methodology is a generalization of the authors’ previous work [19], where
only probabilistic constraints and simple averaging were considered. The approach builds
on the first-step stochastic invariance introduced in [18] and originally developed for
nominal MPC in [12].

One of the virtues of the approach is its complete independence of the MPC problem
cost function and prediction policy parametrization. In addition, the averaged-over-time
constraints are enforced via affine constraints only. This flexibility is facilitated by the use
of controlled invariant sets [2, 3], which can be parametrized either explicitly or implicitly.
In either case, the computational requirements are comparable to their respective nominal
and robust counterparts – in the case of explicit parametrization to the first-step nominal
MPC of [11, 12]; in the case of implicit parametrization to any of the traditional robust /
stochastic MPC schemes such as affine disturbance feedback [13, 18], prestabilization [20] or
tubes [22] (assuming the presented approach is used with the same policy parametrization
as the traditional one).

The paper is organized as follows. The problem to be solved is formulated in Section 2;
a general set-based solution is described in Section 3. Section 3.2 studies in detail
the convergence speed of the average amount of violations towards the prescribed level.
Section 4 shows how the presented methodology can be incorporated into an MPC
framework, discusses the explicit and implicit policy parametrizations (Section 4.1), and
computational complexity (Section 4.2). Section 5 describes several extensions of the
approach, including the time-varying constrains (Section 5.3). A numerical example is
presented in Section 6.

1.1 Notation

Throughout the article R denotes the set of reals, N>0 the set of positive integers and N≥0

the set of nonnegative integers. Let also xji := (xi, xi+1, . . . , xj) denote a finite sequence
of consecutive vectors, and {xj ∈ M}∞j=i an infinite sequence of vectors (xi, xi+1, . . .)
with xj ∈ M for all j ≥ i. All random variables are defined on a common probability
space with an associated probability measure P (·). The expectation with respect to this
probability measure is denoted by E{·}; the conditional probability and expectation based
on information available up to time t are denoted by Pt(·) and Et{·}, respectively. For
a set M and N ∈ N>0, let MN be the Cartesian product of the set N -times with itself.
The indicator function of a set or a random event is denoted by I[·].

2 Problem statement

We consider the linear time-invariant stochastic dynamic system

xt+1 = Axt +But + wt, t ∈ N≥0 (1)

with the state xt ∈ Rn, the control ut ∈ Rm, and the i.i.d. disturbance sequence wt ∈ Rn.
We assume that the state xt is known at time t for all t ∈ N≥0, and that the pair (A,B) is
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stabilizable. The control inputs are subject to hard bounds of the form

ut ∈ U ⊆ Rm, t ∈ N≥0 , (2)

for some polyhedral input constraint set U . The disturbance takes values in a compact
polyhedron W , i.e.,

wt ∈ W ⊂ Rn, ∀ t ∈ N≥0 .

We let w denote a random variable having the common distribution of wt, t ∈ N≥0, that
is, P (w ∈ C) = P (wt ∈ C) for all C ⊂ Rn and t ∈ N≥0.

2.1 Chance constraint formulations

The essence of the paper is the handling of a single (extensions to multiple constraints
are described in Section 5.1) state constraint

gTxt ≤ h , (3)

g ∈ Rn, h ∈ R, in a stochastic manner – loosely speaking, the goal is to not violate (3) very
much and/or very often. The amount of violation at time t is measured by l(gTxt−h), where

l : R→ R (4)

is a loss function. The only assumption we make on l(·) is the following:

Assumption 1. The loss function l(·) is nondecreasing and lower semicontinuous.

Note in particular that the function l(·) is not required to be convex, continuous or non-
negative – negative values can be interpreted as a reward for not violating the constraint.
The assumption that l(·) is nondecreasing underpins the entire proposal, as it provides
a measure of distance from a state to the constraint. In contrast, the assumption of
lower-semicontinuity is merely of a technical nature.

Robust constraint Apart from a stochastic specification (described in detail below) we
impose an auxiliary robust deterministic bound on the maximum loss at each time instant:

l(gTxt − h) ≤ ξ̄ ∀ t ∈ N≥0 , (5)

where the maximum allowed loss ξ̄ > 0 is typically prescribed by or derived from the
problem specification.

Stochastic constraint Previous works on stochastic MPC focused predominantly on
point-wise in time constraints of the form

E{l(gTxt − h)} ≤ ξ ∀t ∈ N>0 (6)

for some ξ ≤ ξ̄. For instance, the probabilistic constraint (see, e.g., [7, 8, 18, 19])

P (gTxt > h) ≤ ξ ∀t ∈ N>0
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can be encoded by taking l(·) equal to the indicator function of the positive real line.
Similarly, the integrated chance constraint (see, e.g., [25])

E{max{gTxt − h, 0}} ≤ ξ ∀t ∈ N>0

is obtained by taking l(·) = max{·, 0}.
The main difficulty when applying MPC in a stochastic setting is in guaranteeing feasibility
while fully exploiting the stochastic nature of the constraint (6). In most cases, the
constraint (6) is enforced via a sufficient one-step conditional constraint

E{l(gTxt+1 − h) | xt} ≤ ξ . (7)

Since the left-hand side of this constraint is a function of xt only and the disturbance
sequence is i.i.d., the decision of the controller can be based only on the current state
and on the knowledge of the distribution of the disturbance wt, irrespective of the past
behavior of the state and/or disturbance process. That is why this constraint is amenable
to invariant-set based techniques commonly used in MPC. However, the constraint (7) is
far more conservative than the constraint (6) because in (7) we require the satisfaction
conditionally on xt (i.e., for all xt that can be reached at time t by the disturbance sequence
under a given control policy), whereas in (6) we require the satisfaction on average over
all realizations of the entire disturbance process up to time t.

In this work, rather than imposing constraints point-wise in time, such as (6) or (7),
we impose constraints on the closed-loop state process as a whole. In particular, we
constrain the cumulative loss averaged over time where the averaging can be weighted,
corresponding to exponential forgetting of the past constraint violation. To this end, define
the cumulative loss up to time t by

vt :=
t∑

k=0

γt−kl(gTxk − h) , t ∈ N≥0 , (8)

where the decay rate, or forgetting factor, γ ∈ [0, 1] is a design parameter. Define also the
running weighted sum (that will serve as a normalization factor)

st :=
t∑

k=0

γt−k =


1− γt+1

1− γ
, γ ∈ [0, 1)

t+ 1 γ = 1 .
(9)

The ratio vt/st is then the weighted average amount of violation accumulated up to time t
and is the main quantity of interest in this paper. In order to state the constraint imposed
on the stochastic process vt/st, define the first return time of this process to below a given
level ξ ≥ 0 as

τt := inf{i ≥ t | vi/si ≤ ξ} ∈ {t, t+ 1, . . .} ∪ {+∞} , (10)

where we define the infimum of an empty set as infinity. The first return time τt is an
integer random variable whose distribution depends on the stochastic properties of vt/st
which in turn depend on the control policy applied to the system (1).
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With these ingredients the stochastic requirement we impose reads
Et

{
vt+1

st+1

}
≤ ξ if

vt
st
≤ ξ (11a)

lim
k→∞

vmin{t+k,τt}

smin{t+k,τt}
≤ ξ if

vt
st
> ξ , (11b)

where the convergence in (11b) is required to be with probability one (or “almost surely”).

In words, rather than controlling the amount of constraint violation at each time separately,
at each time instant t we control the running (weighted) average amount of constraint
violation, where the average is taken over the entire history of the state trajectory up to
time t. The average amount of violation is controlled in such a manner that whenever
it is below the prescribed level ξ (Eq. (11a)), then it remains below ξ in expectation at
the next time instant; if the average amount of violation happens to exceed the level of ξ
(Eq. (11b)), we require that it converges back towards ξ with probability one (either in
a finite time or asymptotically depending on whether τt is finite or not). See Figure 1 for
illustration and Section 3.2 for a detailed analysis of the convergence in (11b), for example
for conditions under which the convergence occurs in a finite time.

The constraint (11), as opposed to (6), makes the dependence on the past behavior of the
state process explicit, thereby allowing us to leverage the information on the past behavior
when determining the current control input.

Remark 1. Note that constraining the expected average loss at time t+ 1 in (11a) is just
one possible choice among others. Section 5.2 describes a straightforward extension of the
approach where we instead constrain the probability of exceeding the prescribed level ξ, i.e.,
impose Pt(vt+1/st+1 > ξ) ≤ 1− δ for some δ ∈ [0, 1].

Remark 2. The freedom in the choice of the loss function l(·) in (8) and the discount
factor γ makes the requirement (11) highly flexible. For instance by choosing l(·) equal
to the indicator function of the positive real line and γ = 1 the quantity vt/st becomes
the (simple) average number of constraint violations up to time t; this specification was
considered in [19]. Note also that the loss function l(·) can have an economic interpretation
in which case the specification (11) imposes a stochastic requirement on the (weighted)
average cost incurred. This type of cost function has been recently extensively studied in
the economic MPC literature; see, e.g., [1, 14].

Remark 3. (Parameters) The decay rate γ ∈ [0, 1] controls the speed with which the past
constraint violation is forgotten – with γ < 1 we obtain exponentially decaying weights
from current time t to zero, whereas with γ = 1 violation is weighted equally at all time
instances and therefore no forgetting occurs. If γ = 0 the constraint violation history is
disregarded and the constraint (11) becomes Et{l(gTxt+1 − h)} ≤ ξ.

The allowed level of constraint violation ξ ≥ 0 is typically derived from application require-
ments, but it can also be viewed as a tuning parameter for adjusting the conservativeness
of the controller.
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tt1 τt1

vt/st

vmin{t,τt1}

smin{t,τt1}
ξ

τt1 <∞

tt1

vt
st

=
vmin{t,τt1}

smin{t,τt1}

ξ

τt1 =∞

Figure 1: Illustration of the return time concept: At time t1 the average violation process vt/st (solid
black line) crosses the level ξ; the integer random variable τt1 is then the first return time of this process
back to below t1. The second line of specification (11) requires that the “stopped” average violation
process vmin{t,τt1}/smin{t,τt1} (dashed red line) converges back to below ξ, either in finite time (left panel),
corresponding to τt1 <∞, or asymptotically (right panel), corresponding to τt1 =∞.

Remark 4. (Convergence speed) There is a large degree of freedom in (11b) since the
speed of convergence of vt to ξ is not prescribed. However, the convergence speed can
be influenced by the parameters of our approach (e.g., γ) and is analyzed in detail in
Section 3.2.

3 Main results

In this section we present a recursively feasible receding horizon control policy under
which the closed-loop state process satisfies the constraints (11) and (5). The main idea
is simple: Keep track of the amount of loss accumulated in the past; if the loss is “large”
(i.e., vt/st > ξ), enforce the constraint

Et{l(gTxt+1 − h)} ≤ α , (12)

where α ≤ ξ; if it is “small” (i.e., vt/st < ξ), loosen the constraint (12) appropriately;
and at all times enforce such invariance constraints that the constraint (12) is feasible
at the next time instant. The approach therefore adaptively loosens / tightens the state
constraint based on the size of the loss accumulated in the past.

One can then extend the idea by also allowing loosening of the invariance constraint itself
by building a family of nested one-step reachability sets around an innermost invariant set
in which the existence of a control law satisfying (12) is ensured. First, we describe the
simple (single-layer) version, and afterwards, in Section 3.1, we present the multi-layer one.

Remark 5. The right-hand side of the constraint (12), α, controls the speed of convergence
of vt/st to below the prescribed violation level ξ; the smaller the α, the faster the convergence
(but the more conservative the controller). See Section 3.2 for details on convergence speed.

Now we give a precise mathematical formulation of the above discussion. We start by
stating the following simple Lemma whose proof is omitted for brevity:

Lemma 1. Let ν : R → R be a non-decreasing lower-semicontinuous function and ω a
bounded scalar random variable. Then
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• The function µ 7→ E{ν(µ+ ω)} is non-decreasing lower-semicontinuous

• sup{µ ∈ R | E{ν(µ+ ω)} ≤ a} is attained or infinite for all a ∈ R.

This Lemma is instrumental in enforcing both the robust constraint (5) and the stochastic
specification (11). In particular, it follows immediately from this Lemma (applied with
ν(·) = l(·) and ω = 0) and Assumption 1 that the feasible set of the constraint (5) is a
half-space given by

X̄ := {x | l(gTx− h) ≤ ξ̄} =
{
x | gTx ≤ h+ l−1(ξ̄)

}
,

where
l−1(a) := sup{y ∈ R | l(y) ≤ a} ∈ [−∞,+∞], a ∈ R. (13)

Note that in the extreme cases l−1(ξ̄) = −∞ or l−1(ξ̄) = +∞ the set X̄ is empty (and
hence (5) is infeasible) or equal to Rn (and hence (5) is redundant), respectively.

Next we analyze the one-step conditional constraint (12). Given x = xt, this constraint is
equivalent to the existence of u ∈ U such that

E{l(gT (Ax+Bu+ w)− h)} ≤ α , (14)

where the expectation is over the distribution of w (which coincides with the distribution
of wt for all t ∈ N≥0). The constraint (14) gives rise to the first key ingredient of the
proposed approach, the stochastic feasibility set.

Definition 1. The stochastic feasibility set of the constraint (14) is

Xs :=
{
x ∈ Rn | ∃u ∈ U s.t. E{l(gT (Ax+Bu+ w)− h)} ≤ α

}
.

In plain words, Xs is the set of states for which there exists an admissible input such that
the conditional constraint (14) is satisfied. The subscript s signifies “stochastic”.

In what follows we show that Xs is in fact a polyhedron. To this end observe that

E{l(gT(Ax+Bu+ w)− h)}=E{l(gT(Ax+Bu)− h+ gTw)}≤α

and consider the function
f(µ) := E{l(µ+ gTw)} . (15)

Note that if the random variable gTw has a probability density function pdfgTw (·), then
(15) is simply

f(µ) =

∫ ∞
−∞

l(µ+ y) pdfgTw (y) dy .

According to the first part of Lemma 1, the function f(·) is non-decreasing and lower-
semicontinuous. Using the second part of the same Lemma leads to the following key
observation:
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Lemma 2. The inequality (14) is satisfied if and only if

gT (Ax+Bu) ≤ h+ q(α) , (16)

where the function q : R→ R is defined by

q(α) := sup{µ ∈ R | f(µ) ≤ α} . (17)

Proof. Use Lemma 1 with ν(·) = l(·) and ω = gTw .

Note that the function q(·) is nondecreasing in the right-hand side of the constraint (14),
α, and, depending on the value of α, it can be either negative or positive corresponding to
either tightening or loosening of the constraint gT (Ax+Bu) ≤ h.

The function q(·) depends only on the distribution of the disturbance w , loss function
l(·) and on the normal vector g, all known in advance. Therefore, the function q(·) (or
equivalently f(·)) can be precomputed to virtually arbitrary precision offline, depending
on the loss function l(·) and the distribution of w either analytically or, e.g., by Monte
Carlo techniques.

Lemma 2 implies that the stochastic feasibility set Xs is a polyhedron.

Corollary 1. If the function l : R → R is nondecreasing, then the stochastic feasibility
set Xs is the polyhedron

Xs = {x ∈ R | ∃u ∈ U s.t. gT (Ax+Bu) ≤ h+ q(α)} . (18)

Proof. In view of Lemma 2, the representation (18) clearly holds. Consequently, Xs is a
projection of a polyhedron and therefore also a polyhedron.

As a result, the stochastic feasibility set Xs can be readily obtained from problem data via
a single polyhedral projection. Note, however, that explicit computation of the set is not
necessary; indeed, all sets associated with our approach can be described implicitly using
a terminal constraint and suitable constraints on the predicted state trajectory, without
requiring the explicit computation of polyhedral projections (see Section 4.1 for details).

The second key ingredient is a stochastic robust controlled invariant set (SRCI set) S.

Definition 2. A set S ⊆ Xs∩X̄ is a stochastic robust controlled invariant set if it satisfies
the following condition:

∀x ∈ S ∃u ∈ U s.t. Ax+Bu+ w ∈ S ∀w ∈ W , (19)

E
{
l(gT (Ax+Bu+ w)− h)

}
≤ α . (20)

In words, an SRCI set S is a robust controlled invariant subset of Xs ∩ X̄ such that
the constraint (14) is satisfied under the invariance-inducing control input; by requiring
that S ⊂ X̄ we ensure that constraint (5) is also satisfied. Note that in general neither
Xs ⊆ {x | gTx ≤ h} nor S ⊆ {x | gTx ≤ h}. In view of Lemma 2, constraint (20)
translates to the affine constraint

gT (Ax+Bu) ≤ h+ q(α).

We need the following assumption on S:
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Assumption 2. A nonempty polyhedral SRCI set S exists and has been characterized
(either explicitly or implicitly).

The requirement of S being polyhedral has been imposed for the sake of computational
tractability (see Section 4); all theoretical results presented in this paper hold for any
nonempty SRCI set S.

Now we proceed to define a quantity called constraint leeway that will control loosening
of the one-step conditional constraint (12) (or equivalently (14)), enabling us to define
a control law enforcing satisfaction of (11) in closed-loop. First, observe that (11a) is
equivalent to

Et{vt+1} ≤ ξst+1 .

Therefore, (11a) is satisfied if

ξst+1 − Et{vt+1} = ξst+1 − γvt − Et{l(gTxt+1 − h)}
= (γst + 1)ξ − γvt − Et{l(gTxt+1 − h)}
= γ(ξst − vt) + ξ − Et{l(gTxt+1 − h)}

is nonnegative, or equivalently

Et{l(gTxt+1 − h)} ≤ γ(ξst − vt) + ξ .

We therefore define the constraint leeway βt at time t ∈ N≥0 as

βt := max
{
γ(ξst − vt) + ξ, α

}
∈ [α,∞) . (21)

Whenever γ(ξst − vt) + ξ ≥ α (which is implied by vt/st ≤ ξ), enforcing

E{l(gTxt+1 − h) | xt} ≤ βt (22)

guarantees Et{vt+1/st+1} ≤ ξ, which is (11a). If, however, γ(ξst − vt) + ξ < α, then
enforcing (22) does not guarantee the satisfaction of Et{vt+1/st+1} ≤ ξ. Nevertheless,
enforcing (22) at each time step does guarantee the convergence vt/st → ξ with probability
one (since α ≤ ξ) as required by (11b). We elaborate on this conclusion now in an
instructional single-layer setting and prove it formally in a more general multi-layer setting
in Theorem 1. To derive a single-layer controller satisfying (11), define an auxiliary state

χt := ξst − vt ∀ t ∈ N≥0 , (23)

and the admissible control-input set

Ũ(xt, χt) :=
{
u ∈ U s.t.

Axt +But + w ∈ S ∀w ∈ W (24a)

E{l(gT (Axt +But + w)− h)} ≤ βt
}
, (24b)

where βt depends on the auxiliary state χt through (21). Note that according to Lemma 2,
the constraint (24b) translates to an affine constraint.
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A basic single-layer set-valued control policy under which the satisfaction of (11) is satisfied
can now be defined by

κ̃(xt, χt) ∈ Ũ(xt, χt), t ∈ N≥0 . (25)

In other words, at time t we enforce the invariance constraint (24a), which ensures that
the one-step constraint (24b) is feasible at all times whenever it is feasible at time zero
(since βt ≥ α); the constraint (24b) is merely an appropriately loosened version of the
constraint (12), or equivalently (14).

Remark 6. In (24b) it is not necessary to evaluate the function q(·) defined in (17) for
all βt ≥ α. First, since xt ∈ X̄ for all t, it suffices to consider βt ∈ [α, ξ̄]. Further, one
can choose fixed values ξ =: β̂1 < β̂2 < . . . < β̂nβ̂ ≤ ξ̄ for which the function q(β̂i) is

pre-computed and then, online, round βt < 1 to the nearest lower value of β̂i.

A formal proof of the fact that, given Ũ(x0, χ0) 6= ∅, the closed-loop state process under
the control law ut = κ̃(xt, χt) is well-defined at all times and satisfies the constraint (11)
is given in a more general, multi-layer, setting in Theorem 1.

3.1 Multi-layer approach

Under the control policy (25), the invariance constraint (24a) is independent of the
accumulated loss, no matter how small it is. As a consequence, this constraint can be a
major, if not sole, source of conservatism for small vt (i.e., for βt � α).

The multi-layer approach presented in this section alleviates this by loosening the invariance
constraints as the amount of past violation decreases. The idea is to construct a family
of nested one-step reachability sets around the SRCI set S. The state is then allowed to
climb up if the accumulated loss is “small” and is forced to climb down if the loss gets
“large”; the (possibly loosened) one-step constraint (12) is active only at the lowermost
level. The approach therefore adaptively loosens or tightens not only the constraint (12)
but also the invariance constraint (24b).

To this end, define the robust reachability operator of a set M⊆ Rn as

Reach(M) (26)

:= {x ∈ Rn | ∃u ∈ U s.t. Ax+Bu+ w ∈M ∀w ∈ W} .

The family of nested reach sets of length ns is then given by

S1 := S, (27a)

Sk+1 := Reach(Sk) ∩ X̄ , k ∈ {1, . . . , ns − 1} . (27b)

Remark 7. The nested property Sk ⊆ Sk+1 follows from the fact that M ⊆ Reach(M)
whenever the set M is robust controlled invariant and the fact that the Reach(·) operator
preserves the invariance.

Remark 8. When the sets M and U are polyhedral, the computation of Reach(M)
amounts to a single polyhedral projection; consequently, Reach(M) is also polyhedral.
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Now we proceed to the definition of an integer random variable that will play the role of a
layer index that controls to which layer (i.e., to which set Sk) the state is permitted to
move. To this end we analyze the difference st+kξ − vt+k. If xt+1 ∈ X̄ we have

st+1ξ − vt+1 = γ(stξ − vt) + ξ − l(gTxt+1 − h)

≥ γ(stξ − vt) + ξ − ξ̄ .

Continuing, we obtain

st+2ξ − vt+2 = γ(st+1ξ − vt+1) + ξ − l(gTxt+2 − h)

≥ γ2(stξ − vt)− γ(ξ̄ − ξ)− (ξ̄ − ξ) ,

and, by induction,

st+kξ − vt+k ≥ γk(stξ − vt)− (ξ̄ − ξ)
k−1∑
i=0

γi .

Consequently, as long as xt+i ∈ X̄ for i ∈ {1, . . . , k}, the requirement st+kξ − vt+k ≥ 0 is
satisfied if

stξ − vt ≥ (ξ̄ − ξ)ψ(k),

where

ψ(k) :=


1

γk

k−1∑
i=0

γi =


1

γk
1− γk

1− γ
, γ ∈ (0, 1)

k , γ = 1

+∞ , γ = 0

for all k ≥ 1. Note that the function ψ(·) is nondecreasing and tends to infinity for all
γ ∈ [0, 1].

Define r̃t as
r̃t := max{k ≥ 1 | stξ − vt ≥ (ξ̄ − ξ)ψ(k)} , (28)

with the standard convention that the maximum of an empty set is equal to −∞. The
layer index rt ∈ {1, . . . , ns} is then defined by

rt := max{min{r̃t, ns}, 1}, t ∈ N≥0 . (29)

In words, when rt = i for i ≥ 2, we are guaranteed that vt+k ≤ st+kξ for all k ∈ {1, . . . , i}
without any constraints imposed apart from xt+k ∈ X̄ . For rt = 1 (i.e., at the lowermost
layer of the layered structure) two situations can occur depending on the specific value
of vt: Either vt+1 ≤ st+1ξ for all wt ∈ W provided that xt+1 ∈ X̄ , or there may exist a
disturbance realization wt ∈ W such that vt+1 > st+1ξ. This motivates us to define a
multi-layer control law which at a time t imposes a robust inclusion of the state xt+1 in
the layer Srt and, in addition, at the lowermost level (i.e., for rt = 1) imposes the same
one-step expectation constraint (with tightness controlled by βt) as in the single-layer
approach.
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Now we can define a set-valued multi-layer control policy. To this end define for all t ∈ N≥0

the sets

U(xt, χt) := {u ∈ U s.t.

Axt +But + w ∈ Srt ∀w ∈ W , (30a)

E{l(gT (Axt +But + w)− h)} ≤ βt} , (30b)

and
Π := {(xt, χt) | U(xt, χt) 6= ∅} , (31)

where βt and rt depend on the auxiliary state χt = ξst − vt through (21) and (29). The
multi-layer control policy is then defined by

κ(xt, χt) ∈ U(xt, χt), t ∈ N≥0 . (32)

The Remark 6 about the single-layer policy (25) applies also to this control policy. Note
also that, since S1 = S, we recover the single-layer control policy for ns = 1. Finally,
observe that the constraint (30b) is redundant for βt ≥ ξ̄ since then (30b) is implied
by (30a) since Srt ⊆ X̄ ; in particular (30b) is redundant whenever rt ≥ 2.

Now we can state and prove our main result:

Theorem 1. Under the control law ut = κ(xt, χt) the following holds:

I. If x0 ∈ S, then (x0, χ0) ∈ Π (initial feasibility).

II. If (xt, χt) ∈ Π, then (xt+1, χt+1) ∈ Π (recursive feasibility).

III. If (x0, χ0) ∈ Π, then xt satisfies the constraint (11) (closed-loop constraint satisfac-
tion).

Proof. I. At time zero we have rt = 1, and feasibility of (30a) and (30b) then follows from
the definition of S = S1.

II. Consider first rt = 1. Given feasibility at time t, we know that the state at time t+ 1
will be in S1 = S. Therefore, by definition of S, the invariance constraint (30a) as well
as the one-step conditional constraint (30b) will be feasible at time t+ 1.

Next, consider rt ≥ 2. Then, by definition of rt we have (st − vt) ≥ (ξ̄ − ξ)(1 + γ)/γ2,
which implies that γ(st−vt)+ ξ ≥ ξ̄+(ξ̄− ξ)/γ ≥ ξ̄, and hence βt ≥ ξ̄ (by definition of βt).
Therefore in this case the constraint (30b) is satisfied whenever the invariance constraint
(30a) is (since Si ⊂ X̄ for all i ∈ {1, . . . , ns}). Next, for rt ≥ 2 we know that the state at
time t+ 1 will be in Srt = Reach(Srt−1) ∩ X̄ . Feasibility of the invariance constraint (30a)
at time t+ 1 follows since rt can only, by construction, decrease by at most one between
two consecutive time instants (i.e., rt+1 ≥ rt − 1) since the maximal violation is ξ̄.

III. Consider first t ∈ N>0 such that vt/st ≤ ξ. In that case we have, by definition of βt, that

Et{vt+1} = γvt + Et{l(gTxt+1 − h)} ≤ γvt + βt

= γvt + γ(ξst − vt) + ξ = ξ(γst + 1) = ξst+1

13



as desired by (11a).

Consider now a time instant t ∈ N>0 such that vt/st > ξ and let τt defined in (10) be the
first return time of vt/st below ξ. Define further the process

ηk := −χt+k = vt+k − st+kξ, k ∈ N≥0, (33)

and the stopped process ητk := ηmin{k,τ}, where τ := τt− t = inf{k ≥ 0 | vt+k/st+k ≤ ξ} is a
stopping time. Now we show that ητk is a supermartingale (i.e., the conditional expectation
of its increments is non-positive). Indeed,

Et+k{ητk+1 − ητk} =

= Et+k{(γηk + l(gTxt+k+1 − h)− ξ − ηk)I[τ>k]}
+ Et+k{(ητ − ητ )I[τ≤k]}

= Et+k{(γ − 1)ηk + l(gTxt+k+1 − h)− ξ}I[τ>k]

= Et+k{l(gTxt+k+1 − h)− ξ}I[τ>k] + (γ − 1)ηkI[τ>k]

≤ 0 ,

where I[·] is the indicator function. Here the equalities follow from basic properties of
the conditional expectation operator, and the inequality follows from the fact that τ > k
implies Et+k{l(gTxt+k+1 − h)} = βt+k = α ≤ ξ and ηk ≥ 0. Therefore ητk is a supermartin-
gale bounded in expectation, and so by Doob’s martingale convergence theorem (e.g., [29,
Theorem 11.5]) it converges with probability one to some finite random variable ητ∞.

For those events on which τt <∞, (11b) is clearly satisfied. Therefore we only need to
show that whenever τt =∞ (or τ =∞) we have vt+k/st+k → ξ. In the remainder of the
proof we distinguish two cases.

First, assume γ = 1. Then st+k →∞ as k →∞ for γ = 1, and we have

lim
k→∞

vt+k
st+k

− ξ = lim
k→∞

vt+k − ξst+k
st+k

= lim
k→∞

ηk
st+k

= lim
k→∞

ητk
st+k

= lim
k→∞

ητ∞
st+k

= 0

with probability one as desired. Here we used the fact that ηk = ητk on the event {τ =∞}.
Second, assume γ ∈ [0, 1). Notice that for vt+k/st+k → ξ to hold it is sufficient to have ηk →
0. Noting that ητk = ηk on the event {τ =∞} and that ητk converges, we only need to show

P
(
{τ =∞} ∩

∞⋃
i=1

{inf
k≥0

(ητk) > 1/i}
)

= 0 .

In words, this equation requires that whenever τ = ∞, the process ητk (which is equal
to ηk on the event {τ =∞}) crosses from above any positive level with probability one.
Using Boole’s inequality, a sufficient condition for this to hold is

P (τ(i) =∞) = 0 ∀ i ∈ N>0 ,
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where τ(i) := inf{k ≥ 0 | ητk ≤ 1/i} is the first return time of ητk below the level 1/i. To
show that P (τ(i) =∞) = 0 we over-bound the trajectories of ητk by a random walk with
a drift. By Assumption 1, the function l(·) is nondecreasing; thus

l(gTxt+k+1 − h) = l(gT (Axt+k +But+k)− h+ gTwt+k)

≤ l(µ̄+ gTwt+k) ,

where
µ̄ := max{µ ∈ R | Et+k{l(µ+ gTwt+k)} ≤ α} = q(α) ,

where the quantile function q(·) is defined in (17) and the equality follows by the i.i.d.
assumption on {wt}. Consequently, on the event {τ =∞}, we have

ητk+1 = γητk + l(gTxt+k+1 − h)− ξ ≤ γητk + l(µ̄+ gTwt+k)− ξ .

Therefore, on {τ =∞}, the trajectories of ητk are bounded from above by the trajectories
of the AR(1) process

Xk+1 = γXk + zk, X0 = η0 > 0 ,

where zk := l(µ̄+ gTwt+k)− ξ is an i.i.d. innovation with nonpositive mean. Furthermore,
on {τ(i) =∞} we have ητk > 1/i and therefore the trajectories of Xk (and hence ητk) are
over-bounded by the random walk with a drift

Yk+1 = Yk + zk − (1− γ)/i, Y0 = X0 = η0 > 0 .

The drift of this random walk, E{zk} − (1− γ)/i, is strictly negative and bounded away
from zero since E{zk} ≤ 0 and (1− γ)/i > 0; this implies that the expected return time
below 1/i is finite and as a result also Et{τ(i)} < ∞ which implies P (τ(i) = ∞) = 0.
This finishes the proof.

3.2 Convergence speed

In this section we discuss the speed of convergence of the average amount of violation vt/st
below the prescribed level ξ as required by (11b). In particular we explore its dependence
on α, the right-hand side of the conditional constraint (12), or equivalently (14), which is
enforced whenever vt/st > ξ.

Assuming vt/st > ξ, the object of interest is the return time

τt = inf{i ≥ t | vi/si ≤ ξ} ,

and in particular its expected value Et{τt}. In order to study this object define consider
the process ηk defined in (33). Clearly, studying the return time of vt/st to below ξ is
equivalent to studying the return time of ηk to below zero. Following the arguments laid
out in part III of the proof of Theorem 1, as long as vt+k/st+k > ξ, the trajectories of ηk
are bounded from above by the trajectories of the AR(1) process

Xk+1 = γXk + zk, X0 = η0 > 0 , (34)
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where zk = l(µ̄+ gTwt+k)− ξ is an i.i.d. innovation with nonpositive mean and µ̄ = q(α),
where the quantile function q(·) is defined in (17) and α is the right hand side of the
constraint (12). Therefore

τt ≤ τ + t ,

where
τ := inf{k ≥ 0 | Xk ≤ 0} .

Summarizing, the analysis of τt boils down to the analysis of τ , the return (or first passage)
time of the AR(1) process Xk below zero. The distribution of τ is typically studied using
Monte Carlo simulation. Simulating this system is straightforward and accurate estimates
of the expected return time or its whole distribution can be obtained at low computation
cost. Nevertheless, here we provide a flavor of existing analytic results.

The most recent result is due to Novikov and Kordzakhia [24] and applies to the case of
γ ∈ [0, 1).

Lemma 3 (Novikov & Kordzakhia). Let γ ∈ [0, 1) and2 P (z0 < 0) > 0. Then

E{τ} =
1

log(1/γ)

∫ ∞
0

(Ee−uXτ − e−uη0)e−φ(u) 1

u
du <∞ , (35)

where φ(u) =
∑∞

k=0 log Ee−λ
kuz0.

Proof. This is a restatement of the [23, Eq. (6)] originally proved in [24, Theorem 3] under
slightly stronger assumptions. The results of [23] apply to the problem of the first passage
of a given barrier from below, but our problem is that of passing the barrier from above.
However, since our barrier is equal to zero, the results of [23] apply to the symmetrical
version of our problem with Xk replaced by −Xk and zk by −zk. This leads to (35) after
verifying technical assumptions: Since z0 = l(µ̄+ gTw)− ξ is bounded (by Assumption 1
and compactness of W) we have

E{(−z0)−} <∞ and log Ee−uz0 <∞ ∀u ∈ [0,∞) .

Under these technical assumptions and P (z0 < 0) > 0, the results of [23] ensure that
E{τ} <∞ and (35) holds.

This Lemma provides easy-to-evaluate upper and lower bounds on the expected return
time.

Corollary 2. Let γ ∈ [0, 1) and P (z0 < 0) > 0. Then

1

log(1/γ)

∫ ∞
0

(1− e−uη0)e−φ(u) 1

u
du ≤ E{τ}, (36a)

E{τ} ≤ 1

log(1/γ)

∫ ∞
0

(euz̄ − e−uη0)e−φ(u) 1

u
du , (36b)

where φ(u) =
∑∞

k=0 log Ee−λ
kuz0 and z̄ = ξ −minw∈W l(q(α) + gTw)

2Due to the i.i.d. assumption the distribution of zk is equal to that of z0 for all k ∈ N≥0. In view of
E{z0} ≤ 0, the assumption P (z0 < 0) > 0 is equivalent to z0 not being identically zero with probability
one in which case the AR(1) process (34) becomes deterministic and the convergence to zero occurs only
asymptotically.
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Proof. Follows from (35) by noticing that z̄ ≥ −Xτ ≥ 0.

Remark 9. Note that since E{τ} only upper bounds E{τt} − t, the upper bound (36b) is
a valid upper bound on E{τt} − t, whereas the lower bound (36a) may not be.

Now we turn to the somewhat simpler case of γ = 1, where the AR(1) process (34) becomes
a random walk. It is well known that when E{zk} ≥ 0, then the expected return time to
zero starting from a positive value is infinite. Assume therefore that α < ξ, where α is the
right-hand side of the constraint (12); since E{zk} ≤ α− ξ this ensures that E{zk} < 0.
Then we have the following characterization of the return time:

Lemma 4. Let γ = 1 and α < ξ. Then

E{τ} =
η0 − E{Xτ}

ẑ
, (37)

where ẑ = −E{l(q(α) + gTw)}+ ξ.

Proof. By one of the assumptions of the Lemma and since zk are i.i.d. we have −ẑ =
E{zk} ≤ α− ξ < 0. Therefore Xk is random walk with a strictly negative drift and since
X0 = η0 > 0, we have E{τ} < ∞. We will show that the process Mk := Xk + ẑk is a
martingale. Indeed, using the i.i.d. property of zk we have

Ek{Xk+1 + ẑ(k + 1)} = Xk + E{zk}+ ẑ(k + 1) = Xk + ẑk ,

verifying the claim. Next, we have

|Mk+1 −Mk| = |zk + (ξ − α)| = sup
w∈W
|l(µ̄+ gTw)− α| <∞

by Assumption 1 and compactness of W. This verifies the assumptions of the optional
stopping theorem (e.g., [29, Theorem 10.10. (iii)]), which then applied to Mk yields

η0 = E{M0} = E{Mτ} = E{Xτ + ẑτ} ,

which gives (37).

This leads to the following upper and lower bounds on the expected return time E{τ}:

Corollary 3. Assume γ = 1 and α < ξ, then

η0

ẑ
≤ E{τ} ≤ η0 + z̄

ξ − α
, (38)

where ẑ = −E{l(q(α) + gTw)}+ ξ and z̄ = ξ −minw∈W l(q(α) + gTw).

Proof. Follows from (35) by noticing that −z̄ ≤ Xτ ≤ 0 and ẑ ≥ ξ − α.

Remark 9 applies also to the bounds (38).
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Remark 10. The bounds (36) and (38) quantify the effect of the parameter α on the speed
of convergence of the violation process vt/st back to below ξ. As already pointed out in
Remark 5, lower values of α ensure faster converge but, on the other hand, lead to a tighter
constraint set of the problem (1) and are therefore likely to result in a worse closed-loop
cost performance. In contrast, higher values of α allow for a slower convergence of vt/st
to below ξ (i.e., allow for more constraint violation) and therefore are likely to lead to a
better closed-loop cost performance.

Remark 11. Once again we stress that the bounds (36) and (38) provide easy-to-obtain
information on the expected value of the return time τt of vt/st to below ξ. Information
on the entire distribution can be obtained (at a slightly higher but still entirely tractable)
computational cost using Monte Carlo simulation of the AR(1) process Xk whose return
time to below zero provides an upper bound on τt.

4 Implementation

In this section we discuss how the general theory developed in previous sections can be
employed within an MPC framework. The set valued control policy (32) gives rise to a
generic MPC problem

Problem 1.

minimize {J | ut ∈ Ut(xt, χt)} ,

where the cost function J is completely free to choose (as far as constraint satisfaction
is concerned), as well as is the prediction horizon and the policy parametrization with
respect to which the cost function J is minimized.

By Lemma 2, the one-step expectation constraint translates to an affine constraint, and
therefore for each value of t, the constraint set of Problem 1 is a polyhedron (by Assump-
tion 2), and hence if J is convex in the decision variables of the problem (i.e., the policy
parametrization), then Problem 1 is convex. Computational aspects of this problem are
discussed in the remainder of this section.

4.1 Parametrization of SRCI sets

A crucial step for the application of Problem 1 is the parametrization of a family of SRCI
sets Sk (27).

4.1.1 Explicit parametrization

One way of parametrizing the family of SRCI sets is an explicit construction of an SRCI
set S (Definition 2) and a subsequent application of the Reach(·) operator (Eq. (26) and
Remark 8). It is desirable that the set S (and hence all Sk) be large, preferably maximal.
However, the computation of maximum (stochastic) (robust) controlled invariant sets is

18



known to be difficult in larger dimensions, as polyhedral projections are required, and
the maximal set may not be polyhedral [2, 3]. Nevertheless, there are effective algorithms
for the computation of polyhedral controlled invariant under-approximations of these sets
which do not require polyhedral projections; see, e.g., [4, 5, 27].

With a family of polyhedral SRCI sets Srt = {x | gTrt,jx ≤ hrt,j, j = 1, . . . , nrt}, the
inclusion ut ∈ U(xt, χt) is enforced direcly as

gTrt,,j(Axt +But) + max
w∈W

gTrt,jw ≤ hrt,j, j = 1, . . . , nrt

gT (Axt +But) ≤ h+ q(βt),

where the two constraints are equivalent to (30a) and (30b), respectively. The maximum
on the left-hand side of the first constraint can be precomputed offline; for simple W (e.g.,
box or ellipsoid) analytically, for a polytopic W by solving a linear program.

4.1.2 Implicit parametrization

The computation of maximum controlled invariant sets (or large under-approximations
thereof) can be avoided if a family of SRCI sets Sk is parametrized implicitly. The implicit
inclusion to a family of SRCI sets can be achieved via the traditional MPC with a terminal
invariant set [21, 28]; this procedure is now briefly described.

For the traditional MPC scheme, at a time t and on a prediction horizon N , the control
input predictions ut+k are given by an explicit policy parametrization (the decision variable)
for k ∈ {0, . . . , N − 1}, and by a fixed terminal controller for k ≥ N . Let the explicit
policy (in general a causal state-sequence feedback or, equivalently, causal disturbance
feedback) be π := (π0, . . . , πN−1), that is,

ut+k = πk(x
t+k
t ), k ∈ {0, . . . , N − 1} ,

and let the terminal state-feedback controller be κf , that is,

ut+k = κf (xt+k), k ≥ N .

The constraint satisfaction is enforced explicitly along the prediction horizon through
constraints on the policy parametrization π and implicitly beyond the prediction horizon by
constraining the terminal state xt+N to a positively invariant set associated with the termi-
nal controller κf . Specifically, the terminal set Xκf employed is a subset of Xs∩X̄ such that

Ax+Bκf (x) + w ∈ Xκf ∀w ∈ W , (39a)

gT (Ax+Bκf (x)) ≤ h+ q(α), (39b)

κf (x) ∈ U (39c)

is satisfied for all x ∈ Xκf .
At a time t, given xt and vt (and hence rt and βt), we wish to ensure that ut ∈ Ut(xt, χt). The
one-step expectation constraint (30b) remains unchanged. The invariance constraint (30a)
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is enforced implicitly as follows. By definition of Sk and S, the inclusion xt+1 ∈ Srt for all
w ∈ W is ensured if, first,

E{l(gTxt+rt+i − h) | xt+rt+i−1, xt, vt} ≤ α (40)

is satisfied for a given (xt, vt), all i ∈ N>0 and all possible xt+rt+i−1 generated by all
possible wt+rt+i−2

t ∈ Wrt+i−1 under the given policy π and the terminal controller κf , and,
second, if

xt+i ∈ X̄ ∀ i ∈ N>0 . (41)

The constraint (40) is enforced explicitly for i ∈ {1, . . . , N − rt} by constraints on
π and implicitly for i > N − rt by requiring that xt+N ∈ Xκf for all wt+N−1

t under
π. The constraint (41) is a standard robust constraint and is enforced explicitly for
i ∈ {1, . . . , N − 1} and implicitly for i ≥ N by requiring that xt+N ∈ Xκf for all wt+N−1

t .

In principle there are no restrictions on the policy parametrization π and the terminal
controller κf as long as they are “compatible” in the sense that the shifted solution is
feasible at the next time instant. In fact, most of the widely used robust and stochastic
MPC parametrizations such as affine disturbance feedback [13, 18], pre-stabilization [20]
or tubes [22] can be used and give rise to affine constraints only.

As a concrete instance we detail the implicit parametrization for the most general of the
these policies, the affine disturbance feedback. For this control policy the predicted input
sequence ut+k for k ∈ {0, . . . , N − 1} can be written in a compact form

u =


θ0

θ1
...

θN−1


︸ ︷︷ ︸
θ

+


0 0 . . . 0

Θ1,1 0 . . . 0
...

. . . . . .

ΘN−1,1 . . . ΘN−1,N−1 0


︸ ︷︷ ︸

Θ

w , (42)

where
u = [uTt , . . . , u

T
t+N−1]T, w = [wTt , . . . , w

T
t+N−1]T

are the predicted control and disturbance sequences, respectively. The terminal controller
is an affine state feedback

ut+k = Ksxt+k + ds, k ≥ N,

such that all eigenvalues of A+BKs are strictly less than one in magnitude.

The constraint (30b) translates (in view of Lemma 2) to

gT (Axt +Bθ0) ≤ h+ q(βt) , (43)

where q(·) is defined in (17). The constraint (43) is an affine constraint on θ0, the first
component of θ.

For i ∈ {1, . . . , N − rt} the constraint (40) reads

gT (Art+ixt + Brt+iθ) + max
w∈WN

gT (Brt+iΘ + ACrt+i−1)w

≤ h+ q(α) ∀ i ∈ {1, . . . , N − rt} , (44)
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where the expression on the left-hand side is the prediction of gTxt+rt+i under the affine
disturbance feedback policy starting from xt, and

Bk = [Ak−1B, . . . , B, 0, . . . , 0], Ck = [Ak−1, . . . , I, 0, . . . , 0].

Note that the structure of the matrices Brt+i, Crt+i−1 and Θ ensures that only the
disturbances wt+rt+i−2

t contribute to the second term on the first line of (44). Consequently,
the maximum on the left-hand side can be taken only over wt+rt+i−2

t ∈ Wrt+i−1. When
the matrix Θ is fixed in advance (which encompasses prestabilization and tubes), the
maximum can be evaluated offline, in which case the constraint (44) becomes affine in
the decision variable θ. For many cases of practical interest (e.g., W ellipsoid or a box)
the maximum has an analytical expression; for a polytopic W the computation of the
maximum boils down to solving a linear program (LP). When Θ is left free online as
a decision variable, the constraint translates to a second order cone constraint for an
ellipsoidal W; for a polytopic W it translates (using LP duality theory, introducing a
vector of Lagrange multipliers λ) to the following affine constraints in the decision variables
(θ,Θ,λ):

gT (Art+ixt + Brt+iθ) + hTwλ ≤ h+ q(α) ,

GT
wλ = (Brt+iΘ + ACrt+i−1)Tg ,

λ ≥ 0, ∀ i ∈ {1, . . . , N − rt} ,

where Gw and hw are such that WN = {w | Gww ≤ hw}.
For i > N−rt the constraint (40) is enforced by requiring that xt+N ∈ Xκf for all w ∈ WN .
Given Xκf = {x | gf,jx ≤ hf,j, j = 1, . . . , nf}, this is equivalent to

gTf,j(A
Nxt + BNθ) + max

w∈WN
gTf,j(BNΘ + ACN)w ≤ hf,j , (45)

for all j ∈ {1, . . . , nf}. This constraint is then handled in exactly the same fashion as (44).

Finally, the constraint (41) is enforced (by construction of Xκf ) via (45) for i ≥ N , and
for i ∈ {1, . . . , N − 1}, given X̄ = {x | ḡjx ≤ h̄j, j = 1, . . . , n̄}, by

ḡTj (Aixt + Biθ) + max
w∈WN

ḡTj (BiΘ + ACi)w ≤ h̄j , (46)

for all j ∈ {1, . . . , n̄}. This constraint is again handled in the same fashion as (44).

To summarize, an MPC problem with affine disturbance feedback policy parametrization
minimizes the cost function J subject to the constraints (43), (44), (45) and (46). Imposing
these constraints enforces the inclusion ut ∈ U(xt, χt) and therefore Theorem 1, and all
subsequent results, hold.

At this point it should be stressed that exactly the same steps (e.g., evaluation or dualization
of the maximum of an affine function over the disturbance set) need to be taken when
setting up a standard robust MPC problem with affine disturbance feedback as policy
parametrization, and the same holds for other policy parametrizations; see, e.g., [13].
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4.2 Computational complexity discussion

This section briefly compares the computational complexity of the presented approaches
with existing MPC formulations.

If the SRCI sets are parametrized explicitly, then the offline complexity is governed by the
computation of maximum controlled invariant sets (or under-approximations thereof) and
as such is comparable to the nominal first-step MPC of [11, 12]. The online computational
requirements are then governed by the type of the cost function J , policy parametrization
and by the complexity of the SRCI sets employed.

If the SRCI sets are parametrized implicitly, then the offline computational complexity is
determined by the policy parametrization π and the terminal controller κf , the former being
also the main determinant of the online complexity along with the type of the cost function
J . Most importantly, online as well as offline computational requirements are analogous to
those of the traditional robust and stochastic MPC schemes with the same parametrization,
be it affine disturbance feedback [13, 18], prestabilization [20], or tubes [22].

It should be stressed that with explicitly parametrized SRCI sets as well as with implicit
parametrization (as long as W is polytopic) using polyhedral terminal set and any of the
above-mentioned policies, the constraint set of Problem 1 is polyhedral and hence the
class of the problem (e.g., quadratic / linear program) is not altered by introducing the
constraint (11). It is also very common to consider an ellipsoidal terminal set; in that
case quadratic constraints are introduced, analogously to nominal MPC. Similarly, for an
ellipsoidal disturbance setW and the affine disturbance feedback policy, the constraint (44)
becomes a second-order cone constraint analogously to the robust MPC of [13].

5 Extensions

5.1 Multiple constraints

This section describes how multiple constraints can be handled.

5.1.1 Individual constraints

First we treat the case of multiple individual constraints of the form

gTi x ≤ hi, i ∈ {1, . . . , ng} , (47)

to each of which we associate a loss function li : R→ R satisfying Assumption 1. Then
we define individual cumulative violations vit as in (8) with l, g and h replaced by li, gi
and hi, respectively; and the normalization factors sit as in (9) with γ replaced by γi. The
constraint (11) is then imposed for each i ∈ {1, . . . , ng} individually, possibly with the
right-hand side ξ replaced by ξi. This constraint is then enforced in a completely analogous
fashion. The stochastic feasibility set is defined as the intersection of the individual
stochastic feasibility sets associated to each constraint; similarly the SRCI set is defined
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as in Definition 2 but now the second line is required to hold for all i ∈ {1, . . . , ng}. The
individual constraint leeways βi are defined as in (21) with γ, ξ and α replaced by γi, ξi
and αi. The nested family of sets (27) is defined in exactly the same way. As a layer
index rt we use the minimum of individual layer indices defined in (29) with r̃t replaced
by r̃it (where all quantities defining r̃t in (28) are now indexed by i). Therefore the layered
structure is shared by all the constraints, allowing the state to move to an upper layer
only if all layer indices allow to do so. The multilayer control law is then defined by

κ(xt, χ1, . . . , χng) ∈ U(xt, χ1, . . . , χng) ,

where χi = ξis
i
t − vit and U(xt, χ1, . . . , χng) is defined as in (30) with (30b) enforced for

each constraint with g, h, l and βt replaced by gi, hi, li and βit . All theoretical results hold
for each constraint individually with proofs being almost verbatim copies.

5.1.2 Joint constraint

Second, we describe how to handle a joint constraint

‖Gxt + h‖∞ ≤ 1,

violation of which is given by l(‖Gxt+h‖∞−1), where the loss function l : R→ R satisfies
Assumption 1. In order to apply the previously developed techniques all we need to show is
that Et{l(‖Gxt+1 + h‖∞ − 1)} ≤ α translates to an affine constraint on ut (while possibly
introducing some conservatism). To this end write

E
{
l(‖G(Ax+Bu+ w) + h‖∞ − 1)

}
≤ E

{
l(‖Gw‖∞ + ‖G(Ax+Bu) + h‖∞ − 1)

}
= f̂(‖G(Ax+Bu) + h‖∞ − 1) ,

where the function f̂(µ) := E{l(‖Gw‖∞+µ)} is known in advance given the distribution of
w . Here the inequality in the above computation follows from the triangle inequality, which
is in general strict, introducing a degree of conservatism. Satisfaction of Et{l(‖Gxt+1 +
h‖∞ − 1)} ≤ α is then implied by

‖G(Axt +But) + h‖∞ − 1 ≤ q̂(α) , (48)

where q̂(α) := {µ ∈ R | f̂(µ) ≤ α}.
Constraint (48) translates to a finite number of affine constraints and therefore all the
previously developed techniques can be readily applied, replacing the constraint (16) with
(48).

Remark 12. In [19] the authors investigated the special case of a joint chance constraint
specification with l(·) being the indicator function of the positive real line and no discounting,
in which case vt captures the total number of excursions outside a given polytopic constraint
set up to a time t. In this special case it is possible to use a confidence region of the
disturbance to enforce that the expected loss incurred by the successor state falls below a
given level, avoiding the use of the triangle inequality; see [19] for details.
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Remark 13. Instead of the infinity norm specifying the joint chance constraint we could
use any function satisfying the triangle inequality (e.g., any norm) without changing the
theoretical results. However, not all such functions allow for a computationally tractable
characterization of the invariant sets associated to (48).

5.2 Other constraint specifications

This section discusses another possible stochastic specification that our framework can
be readily extended to. The motivation for this is to demonstrate the flexibility of the
approach provided by the freedom in the choice of the function ν(·) in Lemma 1. In
particular we show how to enforce the probabilistic constraint

Pt

{
vt+1

st+1

> ξ

}
≤ 1− δ if

vt
st
≤ ξ , (49)

where δ ∈ [0, 1] is a parameter. For vt/st > ξ the approach remains unchanged. All we
need to do is to show that, given xt and vt, this constraint translates to an affine constraint
on ut. To this end write

Pt

{
vt+1

st+1

> ξ

}
=

= Pt
(
γvt + l(gT (Axt +But + wt)− h) > st+1ξ

)
= Pt

(
gTwt + gT (Axt +But)− h > l−1(st+1ξ − γvt)

)
= Et

{
I++[gT (Axt +But + wt)− h− l−1(st+1ξ − γvt)]

}
,

where the first equality follows from Lemma 1 with ν(·) = l(·) and ω = 0, l−1(·) is
defined in (13) and I++[·] is the indicator function of the positive real line. Since I++[·] is
non-decreasing and lower-semicontinuous, invoking Lemma 1 again with ν(·) = I++[·] and
ω = gTwt implies that

Pt

{
vt+1

st+1

> ξ

}
≤ 1− δ

is equivalent to
gT (Axt +But)− h ≤ q̄(l−1(st+1ξ − γvt)) , (50)

where the function q̄(a) := sup{µ | P (gTw + µ > a) ≤ 1 − δ} is known in advance
given the knowledge of w . Therefore the constraint (49) indeed translates to an affine
constraint, as before with a time-varying right-hand side; thus the previously developed
techniques can be readily applied with only minor modifications. In particular note that
vt/st ≤ ξ implies that st+1ξ − γvt = γ(ξst − vt) + ξ ≥ ξ. Therefore the tightest right-hand
side of (50) that we can encounter if vt/st ≤ ξ is q̄(l−1(ξ)). Consequently the stochastic
feasibility set Xs and the lowest-level SRCI set S are designed with respect to the constraint
gT (Axt +But)−h ≤ q̄(l−1(ξ)) in addition to the constraint (20). The nested family of sets
Si (27) and the layer index rt (29) are defined in exactly the same way as before. Finally,
the control law is defined by the inclusion κ(xt, χt) ∈ Ū(xt, χt), where χt = ξst − vt (as
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in (23)) and

Ū(xt, χt) :=
{
u ∈ U s.t. Axt +But + w ∈ Srt ∀w ∈ W ,

E{l(gT (Axt +But + w)− h)} ≤ α if vt/st > ξ,

gT (Axt +But)− h ≤ q̄(l−1(γχt + ξ)) if vt/st ≤ ξ
}
.

All theoretical results established for the control law (30) hold for this control law as well
(after changing (11a) for (49)).

5.3 Time-varying constraints

In this section we outline how the presented approach can be extended to handle a
time-varying right-hand side of the constraint (3). We assume that the right-hand side of
the constraint gTx ≤ h suffers an unmeasurable disturbance modelled as the output of
an auxiliary dynamical system driven by a fictitious disturbance. This simple extension
provides the presented approach with another degree of modelling flexibility. For instance,
in building climate control the time-variation of the constraint may come from allowing the
occupants to change the room thermostat set-point within a pre-specified band around a
given temperature (e.g., around 21◦C). In general, it is impossible to track an abrupt (e.g.,
a step-wise) change of the constraint; therefore, the set-point change request is pre-filtered
by a pre-specified (i.e., known to the MPC controller) linear system, the dynamics of which
are a design parameter influencing the transient behavior (e.g, the speed of the response
to the request). See Section 6 for a concrete example from building climate control.

Define the auxiliary single output system

x̃t+1 = Ãx̃t + B̃w̃t, ỹt = C̃x̃t , (51)

where the fictitious disturbance w̃ is constrained to lie in a compact polyhedron W̃ . The
dimensions of x̃ and w̃ and the matrices Ã, B̃ and C̃ are free modeling parameters with
the only requirement that C̃ has only one row. Then, the constraint

1

st
E
{ t∑
k=0

γt−kl(gTxk − h− ỹk)
}
≤ ξ, ∀ t ∈ N≥0, {w̃t ∈ W̃}∞t=0 (52)

can be enforced by applying the previously developed theory to the augmented system
with the state given by x̂t := [xTt , x̃

T
t ]T and the constraint vector ĝ := [gT ,−C̃]T . Note

that we do not assume any distribution over the fictitious disturbance w̃t but rather treat
it robustly; as a result, provided the setup is feasible (i.e., the set S nonempty and x̂0 ∈ S),
we can track any variation of the right-hand side that can be generated by the auxiliary
system (51) with the input w̃t ∈ W̃ .
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6 Numerical example

As a numerical example we consider a simple building climate control problem adapted
from [15]. The discrete-time system matrices are

A =

0.7534 0.2009 0.0358
0.0633 0.9349 0.0014
0.0500 0.0063 0.8671

 , B =

1.7
0.1
0.1

 ,

where the control input is the input power (in MW) and the states are respectively the
room air temperature, interior-wall surface temperature and exterior-wall core temperature,
all in degrees Celsius. This system was obtained by discretization with the sampling period
30 min. The control input is constrained to U = [0, 0.2]. The i.i.d. disturbance sequence
wt is given by wt = Dωt, where

D =

0.0497 0.0434 0.0502
0.0018 0.0162 0.0019
0.3833 0.0013 0.0016


and ωt is a vector of independent zero-mean normal random variables with standard
deviations equal to 1/3 truncated to the interval [−1, 1]. The support of the disturbance
wt is therefore equal to W = {Dω | ||ω||∞ ≤ 1}. The components of the disturbance zt
correspond to (scaled versions of) outside air temperature, solar radiation and internal
heat sources, respectively. We consider a single comfort constraint x1 ≥ Tmin, where Tmin is
allowed to vary between [20, 22] degrees Celsius in a manner compliant with the dynamics
of the auxiliary system (51) given by

Ã =

[
0 1
0 0.76

]
, B̃ =

[
0

0.3

]
, C̃ =

[
1 0
]
, W̃ = [−0.8, 0.8] .

This constraint variation may be considered as a degree of freedom given to the occupants
of the building allowing them to adjust the room temperature according to their needs
although not permitting gross deviations for the 21 ◦C standard set-point.

We consider three constraint specifications summarized in Table 1 featuring a probabilistic
constraint as well as an integrated chance constraint. The proposed policies were
compared to the robust MPC of [13], modified to handle the time-varying constraint as
outlined in Section 5.3. As a prediction policy we used the affine disturbance feedback
with the prediction horizon N = 8 for all specifications compared. The cost function
minimized was the sum of the (nonnegative) control inputs over the prediction horizon
which corresponds to the minimization of the energy expenditure. We consider the multi-
layer policy with six layers; the SRCI sets Si, i = 1, . . . , 6 were computed explicitly with
S1 = S being the maximum SRCI set. To compare the policies we carried out 100 Monte
Carlo simulations, each 50 h (100 time steps) long. At time step 20, we assume a jump of
the constraint from 21 ◦C to 22 ◦C. Table 3 and Figure 2 summarize the results, showing
that our formulation fully exploits the freedom given by the constraint specification and
brings about a significant cost improvement compared to the standard robust MPC.

In addition we investigated the return time distribution for the “Integ0.95” specification
using the AR(1) process (34). Figure 3 shows kernel estimates (see, e.g., [16]) of the
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probability density function of the return time and Table 2 compares the Monte Carlo
estimates with the analytic bounds of Corollary 3. We can see that the lower bound
provided by the Corollary is relatively tight, whereas the upper bound is rather loose. Closer
investigation revealed that this is because the distribution of −Xτ is tightly concentrated
around zero with a light but relatively long positive tail resulting in a high discrepancy
between the expected value of −Xτ and its maximum value used in the bound.

7 Conclusion

This paper presented a framework to handle the constraints on the amount of state-
constraint violations averaged over time, where the average amount of violations can be
bounded either in expected value or robustly. The key ingredient of the proposed approach
is the explicit incorporation of the information on the past behavior of the state process
into the decision on the current control input. The approach significantly reduces the
conservatism of previous stochastic MPC formulations, which is confirmed by a numerical
example. The computational requirements (both online and offline) are comparable to
those of the recursively feasible nominal MPC with a first-step constraint of [11, 12] in
the case of explicit parametrization of controlled invariant sets, or comparable to those of
popular, existing, robust MPC schemes in the case of implicit parametrization (assuming
the same parametrization for the presented and for the robust approach).
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[25] A. Prékopa. Stochastic Programming. Springer, first edition, 1995.

[26] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control
technology. Control Engineering Practice, 11:733–764, 2003.
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