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Abstract. This paper proposes a Model Predictive Control (MPC) scheme
to solve the target estimation and tracking problem. The objective is to
derive a feedback law that drives a follower vehicle to a target vehicle
using an on-line estimate of the target’s state. In this scenario, when the
target is observed through a nonlinear observation model, e.g., bearing
only or range only sensors, it is possible to show that solving the track-
ing problem independently from the estimation problem can lead to an
unsatisfactory result where the follower-target system is driven by the
controller through unobservable or weakly observable trajectories and,
as result, the state of the target vehicle cannot be recovered or cannot
be recovered with high accuracy leading to the failure of the control
strategy. In this paper, we propose an optimization based scheme that
embeds, in a seamless way, an index of observability in the design of the
target tracking controller resulting in a closed loop behavior that bal-
ances the objective of target tracking with the competing objective of
maintaining a good estimate of the state of the target. Numerical results
are presented that illustrate this type of behavior.

Keywords: Target tracking, target estimation, model predictive con-
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1 Introduction

This paper addresses the design of a continuous time output feedback sample-
data MPC controller for target estimation and tracking.

One of the main challenges in the design of a target tracking algorithm steams
from the unavailability of the state of the target vehicle which has to be estimated
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on-line using measurements from the sensors with often highly nonlinear models.
Such nonlinearities often define a set of unobservable state and input trajectories
that should be avoided in order to maintain a good estimate of the state of the
target vehicle, which is crucial for the success of the target tracking algorithm.

To face this problem, [4,9] propose solutions based on suitable maneuvers
designed to keep the state of the target vehicle observable are performed. Al-
though, with this type of strategies, it may be difficult to asses the quality of the
overall estimate obtained during the all vehicle trajectory, moreover the resulting
system may result in artificial closed loop position trajectories.

In this work we exploit the potentiality of optimization based control (see,
e.g., [5,8,7] and, more recently, [10,6] for an overview) to design a control law
that jointly minimizes the distance target-follower and an index of observability
specifically designed to penalize weakly observable trajectories.

Related works are [2] and [3] where an economic index is embedded in a
MPC controller to influence the transient and asymptotic closed loop behavior,
respectively.

The organization of the paper is as follows. Section 2 contains the main result
of the paper. In Section 3, we illustrate the potentials of the proposed method by
solving the target estimation and tracking problem first in a decoupled manner,
i.e., without introducing the observably index, and then using the proposed
scheme. Section 4 closes the paper with some conclusions.

2 Follower-target MPC design

In this section a solution of the target estimation and tracking problem dis-
cussed above is proposed. We start with the problem statement description of
the follower-target system. Then, a generic MPC control law for target tracking
is presented in combination with an observability index to obtain the proposed
control law strategy.

2.1 Follower-target system description

Let the follower and target vehicles be described by

Lp(t) = frwp(t), up(t), we(t)), uyp(t) € Uy, t>0
xt(t) = ft(mt(t),ut(t),wt(t)), Ut(t) S Z/{t7 t>0

where (z7(t), us(t), wr(t)) € R™ x RY x RPS and (z4(t), w(t), we(t)) € R™ X
R4 xRPt denote the triples of state, input, and disturbance vectors of the follower
vehicle and target vehicle, respectively, evaluated at time ¢. For sake of simplicity,
the dependence on time and parameters is dropped whenever clear from the
context. We consider the follower and target input vectors to be constrained in
the sets Uy and U, respectively. The follower-target system is defined by

&= f(z,up,u, wp,wy) := <ff($f,uf,wf)) , b <3:f> n

ft(xhutywt) Tt



The state of the follower vehicle is measured through the observation model

yr = hg(zg,vp),

and, moreover the follower vehicle takes measurements of the target vehicle
through the observation model described by

Yt :ht(xf,fﬂtavt)

where (yr,vr) € R™ x R% and (y;,v) € R™ x Rb are the pairs of mea-
surement and measurement noise of the follower and target observation models,
respectively. Thus, the observation model of the follower-target system is defined

by
_ — (hs@s,vp) _ (vr — (Vs
y = h(z,v) = (ht(l‘t,vt) ) , Y= (Z/t) vi= (W) . (2

The function h;(-) is related to the sensors on-board of the follower vehicle,
e.g., Global Positioning System (GPS), Inertial Measurement Unit (IMU), and
magnetic compass, and the function h;(-) with the sensor used to observe the
target vehicle, e.g., a bearing only sensor, like a camera, or a range only sensor,
like a sonar.

In order to perform target tracking it is convenient to estimate the future
control input signal of the target vehicle, and thus its future position. Toward
this goal, we choose a finite dimensional smooth parameterization p,, € R"» of
such signal, with the associated time derivative p, = f,(p.). The parameter p,
is then estimated, together with the state of the follower-target system, by the
observer defined by

i‘o:fo(-rmuf;y)a (3&)

(”0) — o) (3b)

u

where z, € R denotes the internal state vector of the observer and & € R™s+7
and p, € R"™ denote the estimates of the state vector x and parameter p,,
respectively. We denote with u.(+;p,) the predicted input signal of the target
associated with the parameter p,.

As an example, a possible choice of nonlinear observer could be the well
known Extended Kalman Filter (EKF) and a possible parameterization of the
input of the target vehicle could be p, = uy and p, = fu(p,) = 0, which
captures the set of constant (and in practice slowly varying) target inputs, i.e.,
Wt (T; pu) = pu, for all 7 > 0.

2.2 MPC for Target tracking

Using the notation introduced above, in this section we describe a generic MPC
controller for target tracking that uses as input the estimate provided by the



observer (3). For a generic trajectory z(-), x([t1, t2]) denotes the trajectory con-
sidered in the time interval [t1, t3] and we use the notation z(+; z1,...) whenever
we would like to make explicit the dependence of the trajectory z(-) on the
generic optimization problem parameters 21, ....

The MPC optimization problem P(z, p), with (z,p) € R 7 x R"» is defined
as follows:

Definition 1. (MPC problem) Given the pair of vectors (z,p) € R™ 7t x R™»
with the associated parametric target input signal u:(-;p), and a horizon length
T € Rsq, the open loop MPC optimization problem P(z,p) consists of finding
the optimal control signal w;([0,T1]) that solves

T
Tr(zp) = min /O Lo (2(7), ug (1), we (73 p))dr +mur(2(T))  (4a)

s.t. &= f(&,1ys,u(1;p),0,0)
uy €Uy, 2(0) =z, 2(T) € Xy

O

The finite horizon cost is composed of the stage cost Iy : R™ T x RI x R —
R> and the terminal cost my : R™T™ x R™ — R, which is defined over
the terminal set Xy C R™ ™ The subscript ¢t is used to emphasize that the
stage and terminal costs are designed for target tracking.

In a sample-data receding horizon strategy, the control input is computed
at discrete sample times 7 := {tp = 0,¢1,...}, and the MPC control law is
defined as

up(t) == u*(t = [t];2([t]), pu([t])), ()

where |t] is the maximum sampling time ¢; € 7 smaller or equal than ¢, i.e.,
|t] = max;en.,{t; € T : t; < t}. Since the system is not time varying, the space
of trajectories over which we optimize are considered, without loss of generality,
in the interval [0,7T] and to is chosen to be the time zero. Note that (4)-(5) is
an output dynamic feedback control law since it uses the estimates of the state
and target control parameter provided by the observer.

2.3 Observability index

In this work we propose a strategy to modify the MPC optimization problem of
the previous section in order to avoid weakly observable/non observable closed
loop trajectory resulting in an effective target estimation and tracking controller.
In this section we propose an index of observability.

Consider the observability matrix of the system (1) associated to the output
y defined in (2), both considered in the nominal case (i.e., vy =0, v; = 0, wy = 0,
we = 0), i.e.,



o l
O(I,Uf,ut) _ o (y/ T y{r}/)

where y{"} denotes the rth derivative of the output y with respect of time.
From the properties of the observability matrix, given r € Ns( the state of
system (1) is locally observable at a given state and input pair (Z,ay) if the
matrix O(Z, Gy, G;), for a given estimated target input vector %, is full rank. For
general nonlinear systems the number of derivatives r to be considered is not
known a priori. An intuitive procedure to select r consists in increasing it until
the observability matrix becomes full rank for some values of the state and input
vectors. Then, driving the system through those values is enough to guarantee
observability.

Let oymin(A) and 0,4, (A) denote the minimum and maximum singular value
of a generic matrix A. To obtain a measure of the degree of observability, one
possibility is to use the index 1/, (0), which increases as O gets close to
singularity and becomes infinity when O loses rank. Another index of interest
is the condition number of O, i.e., K(O) := 01maz(0)/min(O), which broadly
speaking, provides a measure of the difference of the “quality” of observability
of the state components, where k(Q) = 1 if all the state components have the
same “quality” of observability. Prompted by these observations, we select the
following observability index:

1
lo(x,up,ur) = k arctan (k: <

aq

)
©)

for some positive constants a; > 0 and as > 0, where the positive constant
k > 0 defines the width of the region where the nonlinearity arctan(-), used as
smooth saturation-like function, behaves almost linearly.

Note that the observability matrix is not the only method to define the index
of observability and other mathematical tools, e.g., the determinant or the trace
of the Fisher Information Matrix (FIM), can be exploited in a similar fashion.

Umino(x7 urf, ut)

2.4 Proposed controller

Using the observability index suggested in the previous section, the proposed
controller is obtained from the controller of Section 2.2 but redefining the stage
cost as

W, up,ug) = Ly (w,up,ue) + lo(2,uyp, up) (7)

Note that from (6) the value of the function I,(-), responsible to keep the closed
loop trajectories observable, is saturated to ensure that it does not constantly
dominate the costs l;;(-) and my(-), which are in charge of driving the follower
toward the target.

Varying the value of k in (6) is possible to regulate the importance of the
observability of the closed loop trajectories with the conflicting goal of perfect
target tracking.



3 Simulation results

In this section we consider the target estimation and tracking problems for both
the target and the follower unicycle-like vehicles.

Let {I} be an inertial coordinate frame and {B;} a body coordinate frame
attached to the follower vehicle. The pair (ps(t), R(64(t))) € SE(2) denotes the
configuration of the follower vehicle, position and orientation, where R(64(t)) is
the rotation matrix, from body to inertial coordinates, associated with the angle
04(t). For a unicycle-type vehicle, the kinematic model of a vehicle satisfies

it = rios0) (7). 0y (t) = ws 1),

where wy(t) denotes the angular velocity express in the body frame. For this
example we consider the case where the control input of the follower vehicle

ug () = (vr(t) wi(t))" € Uy,

is constrained in the set

Uf={<:)f>:—2§v§2,—ﬂ§w§7r}.
f

We assume that the target vehicle is of the same kind of the follower vehicle, but
with unconstrained input. Thus, the follower-target system is defined as follows:

vy (t)
o [(REso) () y
P Oy _ wy(t) " - 0
Dt Ve (T ’ .
| ren () b
wt(t)

The input signal of the target vehicle, which is unknown to the follower, is
defined as v:(t) = 0.5 and w;(t) = (7/200) cos(0.05¢).

The position and heading of the follower vehicle is continuously measured,
ie,

yr(t) = hy(zpvp) = (’9’}{8)

and we consider that the position of the target vehicle is continuously observed
by an omnidirectional camera centered at the position of the follower vehicle. In
this case, the observation model can be described as

B _pe(t) —p(t)
ye(t) = he(wp, 4, v0) = llpe(t) = O]



where y;(t) € R? is a bearing only observation, which provides information
about the relative direction of the vehicle but not about the distance (in fact,
lye ()] = 1).

The future input of the follower is parameterized by the parameter p, = uq,
with associated time derivative p,, = 0, and an Extended Kalman Filter is used
to jointly estimate the state of the follower-target system and of the parameter-
ization p, using z, = (¢/,p))" and h,(x,) = Zo.

The target-tracking controller is designed using the MPC for trajectory-
tracking proposed in [1]. In this last work, the trajectory to be followed is defined
by specifying a desired position, its derivative, and a bound on the value of the
derivative. In our case we wish to track the position of the target vehicle, thus
we can use the target position, the target velocity, which are components of our
state vector, and a bound on the target velocity, which is considered to be 0.5.

8.2 ’
K = 011549, O = 0.115x2, and @ = 10I5x2, where I5x5 denotes an identity
matrix of size 2 x 2. The resulting terminal set is &7 = {€’e < 26.4%}.

For simulation purposes the system is discretized with discretization step of
0.1, the set of sampling times is 7 = {t; = 0.1i, i € N>¢}, and the horizon
length is chosen to be T'= 0.3 s.

Using the same notation of [1], the MPC controller parameters are e =
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Fig. 1. The closed loop system trajectories associated with the decoupled (left) and
coupled scheme (right) for different initial conditions. The ticker lines are associated
to the same initial condition. The figure on the top displays the follower and target
position trajectories, with solid blue and green lines, and the associated estimates, with
dashed lines of the same color. The input signals of the target tracking controller is
plotted in the bottom figures.



As expected using a decoupled design, i.e., using the target tracking con-
troller in closed loop with the observer without embedding the observability
index, the system is driven through unobservable/weakly observable trajectory
and, as consequence, we have an increase of the estimation error along time and
eventually a failure of the target tracking algorithm. Fig.1 displays the trajec-
tories of the position of the follower and target together with the associated
estimates provided by the Kalman filter (top) and the associated input signal
(bottom) for the case of decoupled (left) and coupled (right) design. Fig.(2)(top)
displays the observability index evaluated along the closed loop trajectories. It
can be seen that for the decoupled design (left) the system is driven through un-
observable/weakly observable state-input trajectories resulting in a bad estimate
of the state of the follower-target system.

In order to avoid this problem, we use the proposed method adding in the
stage cost of the MPC control the observability index (6) with k = 10°, a7 =
103, ay = 102. To reduce the computational complexity, the observability matrix,
with » = 3, was computed considering the vehicles to be single integrators and
using the real linear velocity to evaluate it. In this case we notice from Fig. 1 that
the follower do not reach the vehicle but approaches it and start orbiting around
it, so reducing the observability index. After an initial transient behavior, along
the closed loop state and input trajectories the system is always observable,
i.e., the observability index never saturates and, as effect, the estimation error
converges to zero, Fig. 2 (right column). Note that, for one initial condition,
the estimation error does not converge to zero, although it converges to an
indistinguishable configuration (coherent with the observation) where the target
moves backward (negative velocity).

4 Conclusion

A systematic procedure to design an optimization based target estimation and
tracking controller was presented. The main idea consist in embedding in the
stage cost of the MPC controller an observability index that reward highly ob-
servable trajectories resulting in this way a good estimate of the state of the
follower-target system and, thus, to a successful and accurate tracking of the
target.
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