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ABSTRACT 

Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and 
non-sticking adhesion properties. One application is glass molding that allows to realize high resolution diffractive 
optical elements on large areas and at affordable price appropriate for mass production. We study glassy carbon micro-
structuring for future precision compression molding of low and high glass-transition temperature. For applications in 
optics the uniformity, surface roughness, edge definition and lateral resolution are very important parameters for a stamp 
and the final product. We study different methods of microstructuring of glassy carbon by etching and milling. Reactive 
ion etching with different protection layers such as photoresists, aluminium and titanium hard masks have been 
performed and will be compare with Ion beam etching. We comment on the quality of the structure definition and give 
process details as well as drawbacks for the different methods. In our fabrications we were able to realize optically flat 
diffractive structures with slope angles of 80° at typical feature sizes of 5 micron and 700 nm depth qualified for high 
precision glass molding. 
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1. INTRODUCTION 
Diffractive optics is making its way into industry through a large panel of applications, ranging from bio-technology via 
printing, material processing, sensing and optical metrology [1, 2]. Diffractive optical elements (DOEs) become key 
components for laser-based systems by controlling the shape of the beam [3]. Compared to their refractive counterparts 
such as lenses, prisms or aspheres, diffractive optics can realize almost the same optical functions, while being much 
thinner and lighter [4]. 

Glass micro optical elements are currently mainly fabricated either by using direct precision machining process or by 
cleanroom micromachining technologies such as photolithography and etching [5-11]. For the economical manufacturing 
of high-precision glass optical elements, especially when it comes to mass production and high power applications, 
large-area replication-based technologies such as precision compression glass molding are promising alternatives [12-
15]. Glass compression molding technology requires pressing a structured substrate into a glass substrate at a 
temperature close to the glass-transition temperature (Tg), which is higher than 400°C for low Tg glasses and becomes 
more than 1400°C for fused silica. The glass part then becomes the negative replica (reverse topography) of the mold. 

Komori et al. and Yasui et al. have reviewed the characteristics of different mold materials for glass imprinting [16, 17]. 
Mold materials such as nickel, silicon or silicon dioxide, which are used for polymers injection molding, are not suitable 
for high Tg glass compression molding because of their poor heat stability and strong adhesion when releasing the glass 
part from the mold. However carbide-based hard alloys, such as tungsten carbide or silicon carbide, are commonly used 
to mold metals and glasses [14, 18-20]. 

Nanostructuring the mentioned alloys is quite difficult and leads to wasting expensive fabrication material. There are 
other interesting candidates, as for example graphene-coated silicon, copper-nickel alloy, nickel-phosphorus and 
chemical vapor-deposited diamond [16, 21-23].  
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Glassy carbon (glass-like carbon, vitreous carbon, GC) is especially interesting for compression glass molding of high Tg 
glasses, such as fused silica. The successful use of glassy carbon as a mold has been reported a couple of times during 
the last decade [24, 25]. Glassy carbon has interesting properties that are related to its fullerene-related structure and 
allows extreme operating temperature (up to 2000°C) [26]. It is chemically inert and stable, and has a high hardness and 
a gas impermeability that leads to a low cohesion between glassy carbon and molding glasses [24, 27-29]. Glassy carbon 
can be polished and allows fabricating wafers of different sizes with high surface quality of λ/20 (over one inch length). 
The major drawback is that GC cannot easily be microstructured with conventional machines. But etching techniques 
and milling techniques known from microfabrication have been proven to be effective for depths in the order of 
micrometers. Different techniques for glassy carbon micro-structuration have already been tested. Kuhnke et al. have 
made a comparison between direct laser micromachining and reactive ion etching (RIE) [28], and Youn et al. and 
Takahashi et al. have investigated focused ion beam, nano/femtosecond-pulsed laser, excimer laser and dicing 
techniques [24, 30-32]. Dry etching of glassy carbon which results in a smooth surface quality has been highlighted by 
combining SF6/O2 during the RIE process [33, 34]. 

For the high-throughput application of glass molding to diffractive optics, despite the mentioned advances, it is necessary 
to investigate large-area-compatible process flows for microstructured GC with a high optical surface quality. Such an 
investigation is our main target in this manuscript. We describe different process flows based on photolithography and 
dry etching technologies. We first show the characterization results of the plasma etching of GC through a micro-
structured photoresist (PR) layer at the surface of the substrate. We then compare these results with the etching of glassy 
carbon using either aluminium (Al) or titanium (Ti) hard masks and we describe the etching of GC using a broad-beam 
ion etcher (IBE). 

2. EXPERIMENTAL PROCEDURE 
For this study a set of diffractive optical elements have been designed. It includes two-levels phase gratings which act as 
beam splitters and various test structures. We defined lateral feature sizes between 5 and 10 μm wide, with critical 
dimensions of about 2 μm. The active areas are between 5 and 18 mm in diameter. A picture of the quartz chrome (Cr) 
5” photolithography mask used to pattern 4” glassy carbon wafers is given in Figure 1. 

Different anisotropic etching techniques for glassy carbon structuring are investigated. The process flows are 
summarized in Figure 2. These processes are based on the use of 4” diameter double-side polished glassy carbon wafers 
with a thickness of 1 mm (substrates are AC-140 Glass Like Carbon Plate provided from Nisshinbo). The blank glassy 
carbon wafers delivered show a high surface quality with an average roughness RMSa < 5 nm. 

 
Figure 1: 5” Quartz/Cr photolithography mask with the different diffractive structures 
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Figure 2: Overview of the four different investigated process flows (A to D). The processes are described in section 2. In 
section 3 a comparison between these processes with respect to their etching performance and resulting structure quality is 
made. 
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2.1 Glassy carbon reactive ion etching using a photoresist mask 

The described process flow is based on the deposition and structuring of a single photoresist film which is to be used as a 
mask for reactive ion etching of glassy carbon (Figure 2: A). To enhance adhesion of photoresist on glassy carbon, 
hexamethyldislazane (HMDS) is used as a primer agent. A 2.8 μm positive photoresist film (MicroChemicals AZ 1518) 
is then deposited on the glassy carbon surface by spin coating (Convac), followed by a baking step on a hotplate for 1 
min at 90°C. The photolithography process is done by illuminating the substrate during 2 sec with an intensity of 13 
mW/cm2 through the photolithography mask in the mask aligner system (Süss Microtec MA8 GEN3). The substrate and 
the mask are in vacuum-contact mode during exposure to assure highest spatial resolution. The development is done 
during 45 sec with the remover AZ351B (MicroChemicals) in deionized water (DI). The concentration ratio between the 
remover and DI water is 1:4. The substrates are then rinsed and dried at 2400 rpm for 60 sec. 

For the GC etching we used an inductively coupled plasma reactive ion etching (ICP-RIE) system (SPTS Advanced 
Plasma System). The glassy carbon wafers are conductive enough to be held on the electrostatic chuck without requiring 
a backside layer deposition; the measured helium-cooling leaks are about 50 mTorr/min when the substrate lies on the 
chuck. The electrodes frequency (RF) are 13.56 MHz, with a coil power of 950 W, a platen power of 100 W, a platen 
chiller at 20°C and a chamber pressure down to 37.5 mTorr. In order to avoid micro-masking effect, the used chemistry 
is O2/SF6. The gas flow rate was 40 and 10 sccm for O2 and SF6 respectively. The remaining photoresist at the substrate 
surface was then stripped by wet etching with Remover 1165 (Shipley Microposit) warmed at 70°C for 10 min, prior of 
rinsing and drying. 

 

2.2 Glassy carbon plasma etching using an aluminium or a titanium hard mask 

Aluminum and titanium were used as hard mask for reactive ion etching of glassy carbon (Figure 2: B and C). The 
fabrication steps are similar for both processes. Two thin titanium layers are sputtered before and after aluminium 
deposition to increase the adhesion between the aluminium hard mask and both substrate and photoresist. The metallic 
layer thickness is then 5nm Ti / 300nm Al / 5nm Ti for process flow B, and 500 nm Ti for process flow C. The 
deposition is made on the GC wafers using a sputtering system (Alliance-Concept DP 650). This step is followed by 
140°C thermal dehydration for 10 min in an oven (Bita Yes III). A positive-type resist, AZ 1512 HS (MicroChemicals), 
was then spin-coated on the TiO2 surface layer (automatic coater and developer system EVG 150). This step was 
followed by 112°C baking for 1 min 30 sec on a hot plate, resulting in a film thickness of 1 μm. The resist film was then 
exposed through the photolithography mask in hard-contact mode with an intensity of 10 mW/cm2 for 1.5 sec (Süss 
MicroTec MA6/BA6). The wafers were developed to remove the exposed photoresist, and rinsed into DI water. 

The metallic layers were etched in an ICP-RIE system (STS Multiplex). The etching parameters used for both Al and Ti 
etching processes were the same. The radio frequency power on the ICP electrodes was 13.56 MHz. The coil power 
inducing the plasma was at 800 W, and the platen power located below the substrate was at 150 W, for a chamber 
pressure of 3 mTorr and a platen chiller at 20°C. The used chemistry is Cl2/BCl3, with a gas flow rate of 10 sccm for both 
species. After hard mask layers etching, the substrates were rinsed into deionized water. This will avoid the hard mask 
corrosion through the creation of HCl that is obtained with the reaction between water vapor (coming from the 
cleanroom air when there is 45% or more humidity) and chlorine residues (that are remaining at the Al or Ti surface). 
The remaining PR film on the samples were then stripped on a wet bench containing two baths of Remover 1165 
(Shipley Microposit) heated at 70°C, before being rinsed and dried. 

For the GC etching we used another ICP-RIE system (SPTS Advanced Plasma System). The electrodes frequency was 
13.56 MHz, with a coil power of 950 W and a platen power of 100 W. The chamber pressure is 37.5 mTorr. The 
substrate is cooled down with a platen chiller at 20°C. The used chemistry is O2/SF6, with a gas flow rate of 40 sccm, 
respectively 10 sccm. The substrates were then stripped by wet etching, prior of being rinsed and dried in a mixture of 
phosphoric, acetic and nitric acids warmed at 35°C for 10 min to remove Al, and hydrofluoric acid at room temperature 
for 5 min to remove Ti and TiO2 layers. To achieve a better Al stripping during wet etching after the RIE, it is advised to 
do an oxidization step using O2 plasma, which creates Al2O3. However as the use of O2 plasma without adding SF6 
creates a rough surface for glassy carbon; this step has been put aside. 
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2.3 Glassy carbon ion beam etching using a photoresist mask 

The process described here is based on the use of a microstructured photoresist mask deposited on a glassy carbon 
substrate that is etched by ion beam etching (Figure 2: D). The resist deposition and photolithography processes are 
nearly the same as previously described in subsection 2.1; however the photoresist film is 1060 nm thick here. 

The etching process includes the use of an ion beam etcher system (Veeco NEXUS IBE-350) based on the ions 
bombardment of the glassy carbon substrate. To do so, the ions are extracted by current oscillations between parallel 
electrodes using a RF generator from argon gas located inside the discharged chamber. The Ar+ ions are then accelerated 
by a three-grid system (molybdenum apertures separated by a distance of a few millimeters), forming a collimated and 
invariant energy beam that is designed to etch large surface such as 4” wafer. The glassy carbon surface was etched with 
a tilt angle of 5° regarding the normal incidence of the ion beam while the substrate was rotating. The beam voltage was 
500 V and its current 0.8 A. The electric current density was 1.2 mA/cm2. 

3. RESULTS AND DISCUSSIONS 
3.1 Glassy carbon reactive ion etching using a photoresist mask 

The O2/SF6 process step to etch glassy carbon also etches the photoresist mask at the same time. The obtained GC 
etching rate is 110 nm/min, while the photoresist etching rate is 540 nm/min. The selectivity between GC and the PR 
mask is therefore only 1:5. This makes it very difficult to etch depth of a 1 micron into glassy carbon at very high 
resolution because the photoresist needs to be at least 5 micron high. Figure 3 shows the scanning electron microscopy 
(SEM) and white light interferometry picture (Veeco Wyko NT1100) of etching test results. Regarding the surface 
quality, we can see that there is no micro-masking effect with the used chemistry and etching parameters, and the 
structuring process provides high uniformity. The measured surface is smooth with a quite low roughness of RMSa < 20 
nm. The surface is well stripped, although we have not used a PR ashing-step in an O2 plasma. However the edge quality 
is not satisfactory which is visible by the large bright lines. Such lines indicates that the edges are not sharp. The slope 
angle α is a parameter that measures the wall verticality. This angle α is defined as the tangent of the etching depth 
divided by the projected distance between the top and the bottom of the wall. For this process flow, the slope angle is α = 
37°. 

         
                                         a)                                                                                                    b) 

Figure 3: SEM image and white light interferometer image (VSI-mode) of photoresist micro-patterned glassy carbon. The 
structure height is 523 nm. 

 

3.2 Glassy carbon plasma etching using an aluminum hard mask 

The reactive ion etching process etched the 5nm Ti / 300nm Al / 5nm Ti layers from process flow B in about 80 sec. 
When the non-cover metallic layers are open, a strong contrasted color change of the dedicated wafer areas can be 
observed. This effect is due to the glassy carbon that is much less reflective than the aluminum layer. The etching stop-
instant is determined by being 20 sec after the end of this color transition, in order to assure an uniform opening of the 
hard mask all over the substrate. The Al etching rate was 280 nm/min. The selectivity ratio between Al and the PR for 
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surface (micro-masking effect). Piranha etching (sulfuric acid mixed with hydrogen peroxide, ratio: 4:1, for 10min at 
40°C) has been performed and allowed us to remove part of the photoresist residues. 

On the SEM pictures, we can see another drawback. The edges show sawtooth shapes instead of straight lines, and 
rounded corner instead of perpendicular corners. This kind of “wave effect” might be linked to the really low etching rate 
obtained. We were able to increase the beam intensity till a maximum etching rate of 24.3 and 48 nm/min for GC and PR 
respectively (at 700 V and 1.1 A). The selectivity between GC and PR is then about 1 : 2. Regarding the edges quality, 
the results are similar to the one observed in Figure 10. By comparison, using same etching beam parameters, hard 
materials such as TiW or AlTiC show low but in the same range etching rate, with 48 and 26 nm/min respectively, and a 
wave effect may also appears after etching such material. That effect could be avoid by modifying the design on the 
photolithography mask and then being able to compensate such unwanted shape. However that it a demanding work, 
especially for high-resolution diffractive optical gratings design. 

 

The Table I provides a summary of the results related to the four investigated process flows (A to D), including etching 
rate, selectivity and structure quality. 

 

       
                                               a)                                       b) 

Figure 10. SEM pictures of the GC structures after IBE and stripping. The structure shape shows an undesirable “wave 
effect”, especially in the angles. GC stripping after IBE is hard to perform, then a few PR remains at the surface. GC depth 
is 331 nm. 

  

Table I. Results summary for the four investigated process flows (A to D). 

Process flow A B C D 

Description PR mask, GC RIE Al mask, GC RIE Ti mask, GC RIE PR mask, GC IBE 

Mask thickness [nm] 2800 5(Ti)+300(Al)+5(Ti) 500 1060 

Etching rates [nm/min] 
PR: 540 

GC: 110 

Al: 100 

GC: 230 

Ti: 123-265 

GC: 520 

PR: 12 (max 24) 

GC: 30 (max 48) 

Selectivity (GC : mask) 1 : 5 1 : 0.4 1 : 0.2-0.5 1 : 2.5 

Related GC depth [nm] 523 460 506-738 331 

Wall verticality [°] 37 67 79 61 

GC roughness RMSa [nm] < 20 < 20 < 5 < 15 

Surface quality High Low (residues exist) High Low (residues exist) 

 

5µm 5µm 
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4. CONCLUSIONS 
We etched glassy carbon by reactive ion etching (process flow A, B and C) and by ion beam milling (process flow D) in 
section 2. Table 1 summarizes the results from section 3 related to etching rate, selectivity and structure quality. The 
photoresist-based processes (A and D) show an unfavorable etching ratio and lead to low edge definition. Aluminium 
hard masks cannot be used because of re-deposition of residues during the etching process of unknown constitution. 
Investigations are being done to clarify the cause of this problem. The third candidate to perform as a hard mask is 
titanium. Promising results could be obtained with this approach, as for example sharp edges or smooth surface. 
However titanium is not the preferred hard mask material because of its oxidation when exposed to air. Further 
characterizations are going to be done to understand this in more detail. Both aluminium and titanium have a smaller 
etching rate than glassy carbon which is preferential for high resolution and aspect ratio. The selectivity is 1:0.4 and 
1:0.2-0.5 for Al and Ti respectively. This is much better than the 1:5 and 1:2.5 selectivity obtained between GC and 
photoresist using RIE and IBE. However an etching depth of 680 nm of GC still requires hard mask layers of over 300 
nm Al or 500 nm Ti. The hard mask layer thicknesses are too large to use lift-off processes for hard mask structuring; 
etching is needed instead. This makes the process flow complicated and more expensive. 
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