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A SURVEY AND COMPARISON OF CONTEMPORARY ALGORITHMS FOR
COMPUTING THE MATRIX GEOMETRIC MEAN  *

BEN JEURIS, RAF VANDEBRIL!, AND BART VANDEREYCKEN#

Abstract. In this paper we present a survey of various algorithms for agimg matrix geometric means and de-
rive new second-order optimization algorithms to compute taeeKer mean. These new algorithms are constructed
using the standard definition of the Riemannian Hessian. Tiheg includes the ALM list of desired properties for
a geometric mean, the analytical expression for the mean of tvitoces, algorithms based on the centroid compu-
tation in Euclidean (flat) space, and Riemannian optimizatchniques to compute the Karcher mean (preceded by
a short introduction into differential geometry). A chanderetric is considered in the optimization techniques to
reduce the complexity of the structures used in these ahgosit Numerical experiments are presented to compare
the existing and the newly developed algorithms. We concthdecurrently first-order algorithms are best suited
for this optimization problem as the size and/or number of theio®s increase.
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1. Introduction. A mean is, in general, simply a type of average subject tcacert
generic properties such as idempotency (the medr of. ., A) equalsA), invariance under
a permutation of the elements, and homogeneity (the meamaf (.., \Ax) equals) times
the mean of 4,,..., Ax)). However, these generic properties alone do not uniquefinel
a mean, so there can be many different types of means. Inaperpve discuss thgeometric
mean which for positive real numbersa{, ..., ar) is defined as

A=

(ll) G(al,...,aK)z(a1-~-aK)

When conveying this definition to the set of symmetric positiefiniten x n matricesS’, ,
we see that the formula above can not be readily extended tacemdue to their non-
commutativity. However, a list of desired properties fog tieneral geometric mean can be
derived from this scalar expression.

These properties (listed in Secti@h have proven to be useful in various applications,
e.g., radar technology], medical imaging 19], mechanics30], and image processingT].
All these areas display situations in which the informatdsout the current system is being
represented in a collection of positive definite matricesorder to perform calculations on
these matrices, such as averaging and interpolation, we algerithms that preserve the
structure of the data, such as positive definiteness, whiche of the useful properties of the
geometric mean. Another property of this mean providesatdges in the area of elasticity
calculations of structure8()]. In these calculations, both a positive definite elastioiatrix
and its inverse, the compliance matrix, are used. Hencengiwollection of these elasticity
matrices and a collection consisting of the correspondamgpiiance matrices, the geometric
means of both matrix collections will again be each othersrises (as stated in propeftyn
Section2).

Thanks to the wide range of practical and theoretical apptios, matrix means have re-
ceived a lot of attention from present-day scientists. Monizity, for example, is a property
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only recently proven for the Karcher mea) 23], which is a specific instance of a geometric
mean for positive definite matrices. A consequence of therglity of application areas is the

wide variety of approaches to define and compute the meane Sonstructions are based
on intuitive interpretations of the geometric mean (Sec# while others prefer to think of

it as an optimization problem (Sectiah). In this last approach, Riemannian optimization,
which generalizes classical optimization techniques gegular concept.

The main contribution of this paper is to present a surveyigdrithms for computing
the matrix geometric mean. We recall the theoretical fotindgor the analytically known
mean of two matrices, the interpretations of the algoritbased on intuitive approaches, and
a basic framework needed to understand the methods basddmarian optimization. We
also introduce a new, explicit expression for the Riemamiiassian and consider the use
of a different inner product on the manifold of positive déérmatricesS” , which leads to
simpler optimization algorithms. Finally, a first-time digption of the Riemannian BFGS
method to the optimization problem is presented. Numesgggkriments are performed to
compare all these techniques.

The organization of this paper is as follows: we start byifgstthe desired properties
of the geometric mean and the resulting unique definitionaisecof two matrices in Sec-
tion 2. Next, in Sectior, we discuss some intuitively appealing algorithms baseglanar
approaches: the ALM, NBMP, and the CHEAP mean. Howevergthppealing interpreta-
tions will not lead to very efficient numerical algorithmsin&lly, in Section4, we examine
Riemannian optimization algorithms for the Karcher meanicWis defined as the minimizer
over all positive definite matrices of the sum of squaredifisic) distances to all matrices
in the mean. The algorithms are adapted versions of theesedpscent, conjugate gradient,
trust region, and BFGS methods generalized towards masiforhis last section is more
descriptive than the previous ones in order to properlyihice the Riemannian geometry
and the construction of the generalized algorithms. Thnougthe paper, we compare the
performance of the algorithms discussed.

There have also been suggestions of other means, which deatisty all properties
of the geometric mean, but which tend to give very close tesuih [34], the mean of two
matrices is used to construct the general mean of any nurhbstdces. However, the result
of the algorithm depends on the ordering of the matricesgiwbauses the mean to be variable
under permutation. A different class of means was presentgth] satisfying a number of
interesting properties. The means in this class depend anaaneter < [—1,1]\{0}, and
it is shown that ag approaches zero, the corresponding mean approaches ttigeKarean.
Another class of means with results close to the geometrannsediscussed ir2[/], where
again the Karcher mean arises as a special case. These mearesitioned for completeness
of the survey, but will not be discussed further.

2. The geometric mean of two matrices.The scalar geometric meaf.{) can not
be readily extended to positive definite matrices becausentatrix product is not com-
mutative. Indeed(A; - ~AK)% is not invariant under permutation, which is one of the
most basic properties of means. Hence, a list of desiredifesthas been composed in-
stead, often referred to as the ALM lig, [11]. Because of the importance of these proper-
ties, we summarize them here using the partial ordering winsgtric matrices: a positive
semidefinite matrixA is denoted byA > 0. Similarly, B > C' is a simplified notation
for B—C > 0. The same approach is used for positive definiteness witbtiioe inequality.
The ALM list, using positive definite matrice4,, ..., Ax, where we denote thgeometric
meanby G(Aq, ..., Ak), is given by the following properties:

1. Consistency: ifdy, ..., Ax commute, theiG(Ay,..., Ax) = (4; - -~AK)%.
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2. Joint homogeneity:
Gla1Ay,...,agAr) = (a1 ag)KG(Ay,..., Ak), at,...,ag > 0.

3. Invariance under permutatio® (A, 1y, ..., Axx)) = G(A1,..., Ax) with 7 a
permutation of (, .. ., K).

4. Monotonicity: if A; > B;, for all 7, thenG(A4, ..., Ax) > G(By,...,Bk).

5. Continuity from above: if for all fixed, AZ(.j) is a monotonically decreasing se-

quence of matrices converging #j for j — oo, thenG(Agj), e ,A%)) converges
to G(AT, ..., A%).
6. Congruence invariance: for all invertible matrices R™*",

G(STA,S,...,8TAkS) = STG(A,,..., Ak)S.
7. Joint concavity:
G(A\A1 + (1 =XN)Byq,...,\Ax + (1 = \)Bk)
> ANG(Ay,...,Ax)+ (1 = NG(By,...,Bk), 0< A<l

8. Invariance under inversio®(A;,..., Ax) = (G(AT', ..., AY)

9. Determinant equalitydet G(A1, ..., Ax) = (det A; - - - det AK)% .
10. Arithmetic-geometric-harmonic inequality:

1 & 1 & B
—1
Ve ;:1 A; > G(Ay,..., Ag) > (K ;:1 A; > :

Unfortunately, these properties do not result in a uniqiiaidien for the geometric mean
of a general number of matrices. For the case of two matriegever, the geometric mean
is uniquely defined by propertidsto 10 and given by the following expressiong [

(2.1) G(A,B) = A(A™'B)? = A2(A"2BA 3)7 A%,

Considering the manifold of symmetric positive definitex n matricesS’;, we can find
another intuitively attractive interpretation of this ués We note that the intrinsic distance
betweend, B € S’} (see Sectiow.]) is given by

(2.2) 5(A, B) = ||log(A"2 BA™3)||,

with || - || » the Frobenius norm. Using this distance measure, we camtietethe geodesic
betweenA and B [7], i. e., the curve of shortest distance on the manifold betw& and B,
as

Y(t) = A(A7'B)! = AZ(A"EBA%)' A%
(2.3) = A#,B, tel0,1].

This shows that the geometric mean is exactly the midpointhergeodesic (the notation in
the last term will be used further in the text):

G4, B) = 7(3) = A#, B.

The subscript in the last term is often dropped wheﬂ%.



ETNA
Kent State University
http://etna.math.kent.edu

382 B. JEURIS, R. VANDEBRIL, AND B. VANDEREYCKEN

3. Geometric means based on planar approache&Vhile the properties in the ALM
list result in an explicit, unique definition for calculatinthe geometric mean of two matri-
ces, this is not the case when dealing with more matrices.si@ering the simplified case
of a space with planar Euclidean geometry, the arithmetiamud three matrices is the cen-
troid of the triangle they form. There are various intuitiwappealing techniques to deter-
mine this centroid that have been generalized to the namaplénon-Euclidean) geometry
of ST [5, 9, 11, 31, 35], where the arithmetic mean is naturally generalized togia@metric
mean. This generalization causes the need for the exactifasnfor the centroid (in case of
the NBMP and CHEAP mean) to be iterated. Throughout therdiffealgorithms, we con-
sistently notice a trade-off between the speed of convesgand the number of properties in
the ALM list which the algorithms satisfy.

In this section, we discuss the geometric interpretatiothefALM [5], NBMP [11, 31],
and CHEAP 9] mean and end with a comparison of these algorithms. Althoouge can
obtain new geometric means by combining existing ones5hi{ has been shown that there
is no improvement for more than four matrices. Hence, we tmstapproach in the survey.

All the numerical experiments were performed on an f#teore’™i5-2540M CPU
at 2.60 GHz with Matlab R2012a.

3.1. ALM mean. The ALM mean p] is a geometric mean which, as the name implies,
satisfies the desired properties enumerated in the ALMW4ten taking the ALM mean ok’

matrices, recursion is used to define the iterations in vaemepIace(Agj), . ,A%)) by

(Agjﬂ)a . -aA%H)) = (GALM((AE”)#Q, . -aGALM((Az(‘j))i#K)) :

whereG 41, denotes the recursively defined ALM meanfof— 1 matrices with the known
geometric mean of two matrice2.() as its base. Ing], all terms in these iterations are
proven to converge towards the same limit and in Fidlifiey a planar simplification of this
algorithm for three matrices is depicted.

3.2. NBMP mean. The NBMP mean{1, 31], just as the ALM mean, satisfies all prop-
erties in the ALM list. To compute the NBMP meani@fmatrices, we use recursion to define

the iterations in which we replac(eélgj), o Ag)) by (Agj“), . ,Ag“)) , which equals

(AY)#% GNBMP((Agj))i;él)y e A%)#% GNBMP((AEj))iyéK)) ,

whereG y g p denotes the recursively defined NBMP mearkof 1 matrices with the geo-
metric mean of two matrice£ (1) as its base. The notation frora.8) was used to denote the
point on the geodesic representing the weighted mean oéthestinvolved. In11], all terms
in these iterations are again proven to converge towardsame limit and in Figur8.1bwe
show a simplified representation of how the algorithm opesrédr three matrices.

3.3. General class.We have encountered two means, both satisfying all praseiri
the ALM list but yielding different results as shown in thexnexample.
ExampLE 3.1. If we consider the matrices

25 4| |20 1] (1 1
4 1|’|1 1|71 20|’
the results for the ALM and NBMP algorithm are respectively

7.6943 0.9919 and 7.7139 0.9719
0.9919 2.0528 0.9719 2.0425|°
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(a) The ALM mean. (b) The NBMP mean.

FIGURE 3.1. Simplified representations of the algorithms for three cas in a flat geometric space.

which clearly shows that the results differ.

In fact, in [L1, 25] it is shown that the ALM and NBMP mean are two instances of an
entire class of means, all satisfying the required progetiut with possibly different results.

For K matrices, thigeneral meart?,, ., , depends ods — 1 parameters$s,...,sx_1)
and again recursion is used to define the iterations in wh'e;lneplace(Agj), e ,A%)) by

(Agj“), o Aﬁﬁ*”) defined as

(A0, G (AP i) AP H G (AP)i) )

For the ALM and NBMP mean, these parameters become resglgctiv 1, ..., 1, %)
and (521, B=2 1) This class illustrates that for a general number of madrite
geometric mean is not uniquely defined, not even starting fitee ten desired properties. In
Sectiond, we investigate the Karcher mean, which also satisfies afigaties but has a more
appealing analogy with the arithmetic mean.

Currently, research is being conducted which indicatesdlahe means satisfying the
properties in the ALM list have a close proximity to each othe

3.4. CHEAP mean. The CHEAP meand], unlike the previous algorithms, is no longer
defined recursively. It also no longer satisfies all propsrpresent in the ALM list, but as
we will notice later, this will be compensated by its very apecomputational cost. The
underlying idea is again to compute the centroid of a triaifgiith verticesA, B, andC, see
Figure3.2) by the formula

A+é((B—A)+(C—A)).

The expression above can be interpreted as a step in an &arclghace from vertex into
the direction of} ((B — A) + (C — A)), which is the arithmetic mean of the directions of
vertex A to the three verticed, B, andC (where the directiomd — A is trivially omitted).
Generalizing the notions of a path (and consequently trextiim) between two points and
of taking a step into a certain direction to the manifold ofitive definite matrices, we obtain
the expression (seé])

Aexp (; (log(A™'B) + log(AlC’))> .
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B
A
C A+ (B—-A)+(C—-4)

A+3((B-A)+(C—4))

FIGURE 3.2. Simplified representations of the CHEAP mean for three et

In the general case df matrices, we replace in each iteration the matrieﬂs (.. 7A}{) by
(A A, where

K
AITE = AT exp (Il{ Z log ((Ag)—lAJé)).
£=1,04i
We iterate until convergence, although convergence is Im@ys guaranteed for this algo-
rithm, i. e., when the matrices are not sufficiently closeaoleother; seed] Theorem 2.1]
for an exact bound.

For the ALM and NBMP algorithms, the mean of two matrices iglbfinition known to
be the analytical geometric mean, since they are recuysilefined starting with this analyt-
ical expression. For the CHEAP mean, this consistency ssdésious but it is nonetheless
still present. If we examine the CHEAP mean of two matricegpplying one iteration of
the algorithm, we get

AL = ) A exp 105 (A0) 1AL ) = A (14 af")

=

AL — A AP exp  10s (A9) 1 A) ) = AL (14 al”)

which are two equivalent expressions for the geometric m:éaétio) andA(QO).

3.5. Comparison. In Figure 3.3awe show the required computational time of all the
above algorithms as the number3of x 30 well-conditioned matrices in the mean increases.
The random matrices throughout the paper are constructdthinAs as follows, withn
being the size of the matri¥{ the number of matrices, anfithe order of magnitude of the
condition number.

for i=1:K

[Q"]=ar(rand(n)); D=diag([[rand(1,n-1)+1],10°(-)]) ;
Ali}=Q *Dx Q7

end
The stopping criterion for all three algorithms is satisfielden the difference between two
consecutive iteration points becomes less than a sped#i@atwe.

While the ALM mean is proven to converge linearly] and the NBMP mean super-
linearly of order3 [11], both have rapidly increasing computational time as thealmer of
matrices increases. The number of operations for both ittges equals) (n? K'! Hfig Di)s
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in which n denotes the size of the matricds,the number of matrices, and the average
number of iterations required to compute the ALM and NBMP me&; matrices. The ad-
vantage of the superlinear convergence of the NBMP alguriter the linear convergence of
the ALM algorithm is found in the,; factors since they will be much smaller for the former.
The problem for both, however, lies in the significdtt factor, which grows tremendously
fast asK increases. Despite the worse performance, it is still @séng to examine these
means since they were the first algorithms devised to contpatmatrix geometric mean of
a general number of matrices.

For the CHEAP mean, however, the number of operations eqUal$K %py ), in which
the factorK? is a vast improvement oveét!. Of course, this increased speed of the CHEAP
mean comes at a price. It no longer satisfies all propertidsei\LM list and can therefore
no longer be considered an actual geometric mean. We theredonpare the results of the
different algorithms by taking the means of thi#ex 30 matrices, for which the condition
number of each matrix is varied. In FiguBe3h the intrinsic distances2(2) between the
results are shown, and it is clear that the ALM and NBMP mea&nnaore similar to each
other than to the CHEAP mean, especially as the conditiorbeuof the matrices increases.
However, the CHEAP mean can still be found to be in the viginitthe other means when
the condition number of the matrices is not too large.

A similar figure could be obtained by displaying the clasdiaaclidean distance between
the results, but the distances are consistently smaller fillathe intrinsic distance2(2).
This difference is explained by the fact that the intrinsistahce is measured on a curved
manifold, while the Euclidean one measures the distancesbraight line in the enveloping
vector spac€”, the set of symmetrie x n matrices.

The accuracy of the methods is harder to verify since we nemfieaence solution to
compare the results of the algorithms with. By constructimg matrices in the mean as
described above with the same matf)x we obtain a set of simultaneously diagonalizable,
commuting matrices. Of these we know the exact geometrimmeang the first property
in the ALM list, so we can use this as our reference solutiooweler, the CHEAP mean
is shown P] to converge in one iteration to the exact solution when tlarices commute.
Hence, this test is only meaningful for the ALM and NBMP meahwhich we show the
results in Figure.3c The relative intrinsic distance

| log(A3GA~3)||r

3.1
(31) TEir—

with A being the result of one of the algorithms afidhe exact solution, is used to display
their deviation for different condition numbers of the niggs. Recall that the numerator is
the intrinsic distanceX(2) betweenA andG. The accuracy of both algorithms is very similar
and deteriorates steadily as the condition number of theiceatincreases. We note that
when using the classical Euclidean distance, the devea@na almost at machine precision
for all condition numbers, and this difference can againxy@atned by the curvature of the
manifold.

For matrices which are not simultaneously diagonalizathle, exact geometric mean
is not known, hence we need a different model solution to @mpur results with. A
high precision version of each of the algorithms is desigm&dg thevpa functionality of
MATLAB with 32 digits of accuracy. The relative intrinsic distan@elj between results from
the original algorithms and the high precision versionsspldyed in Figure3.3d(using three
random10 x 10 symmetric positive definite matrices). Again the steadydetation of the
accuracy can be observed as the condition number of each ofatrices increases. However,
itis clear that the CHEAP algorithm is more sensitive to tuadition number than the ALM



ETNA
Kent State University
http://etna.math.kent.edu

386 B. JEURIS, R. VANDEBRIL, AND B. VANDEREYCKEN

—%— alm vs nbmp
— + — nbmp vs cheap

L| O cheapvsalm $/$4 i, /$V/ 1
Fog-EE
=i %/ B ®

—F—alm

Difference between the means
>

3 4 5 6 10 10° 10
Number of matrices Condition number of the matrices
(a) Required time for different number of matrices. (b) Distance between the different means for the intrin-
sic measured.2). The mean of the samples is indicated
by the connecting lines.

c 10° : c 10° —
o [ -
k= * alm . 2 —*— ALM 8
F] +  nbmp % c —+— NBMP - ¥
I % S |l CHEAP
g 10_5 r i + 8 10
A :
-g § <
©
g , t 2
(9] _ < -10
g ol $ E £ 10
8 * 8
c § + e
[
2 et e £ o
E 10_15 0 5 ‘10 15 5 0 ‘5 10
10 10 10 10 10 10 10
Condition number of the matrices Condition number of the matrices

(c) Accuracy for different condition numbers of the(d) Accuracy for different condition numbers of the
three simultaneously diagonalizable matrices. three random matrices. The mean of the samples is in-
dicated by the connecting lines.

FIGURE 3.3. Comparison of the different planar algorithms.

and NBMP algorithms.

4. The Karcher mean. As mentioned in the previous section, the properties in thigl A
list fail to specify a unique definition for the geometric medhe ALM and NBMP are only
two examples of a general class of means satisfying all ehth&nother mean that satisfies
all the necessary properties is the Karcher mean. It is dbfisghe minimizer

K(Ay,..., Ag) = argmin Y 6°(4;, X),

whereS'} represents the set of symmetric positive definite n matrices,é(A, X) is the
intrinsic distance on this manifold as given i&.2), and A; are the matrices of which we
want to find the Karcher mean. In terms of an optimization [@ol this translates to a cost
function f

W=
Nl

K
(4.1) FOX) = llog(A; 2 XA 2)[ 3

i=1
For this mean to be well-defined, the minimizer of the costfiom should be unique. When
the manifoldS’ is endowed with its natural inner produét ) (see Sectiod.1.2), the cost
function f is strictly geodesically convex, which is a generalizatidthe classical convexity

as follows: letX, Y € S", andt € [0, 1]. Then
F(X3#Y) < (1 =) f(X) + (V).
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Combining this with the convexity of the sBt itself, the minimizer can be proven to be
unique [7, 12].

The uniqueness of this minimizer can also be verified in @dsfit manner. It is known
from[15, 26] thatS'} with the natural inner produc#(3) forms a Cartan—Hadamard manifold,
which is a complete and simply connected Riemannian mahifith non-positive sectional
curvature everywhere. On this type of manifold, the soechRiemannian center-of-mass,
which in this case is exactly the Karcher mean, is known torbigue [16, 22].

The Karcher mean satisfies all properties in the ALM list, bfeh the monotonicity has
only very recently been proven; sex 23, 30]. Moreover, this mean is found to be appealing
because of its analogy with the arithmetic mean, which caseka as a similar minimizer by
using the standard Euclidean distance.

Since the Karcher mean will be computed iteratively as thetism of an optimization
problem, we need a good starting guess. We will use the CHEA&rn all experiments,
since it shows good computational speed and reasonableaag@s discussed before.

4.1. Differential geometry. Calculating the Karcher mean involves solving an opti-
mization problem on a manifold, which requires a more gdregpproach than in the tra-
ditional case of vector spaces. We need to introduce somecnagepts to perform this
generalization, but we only briefly discuss these matters;Her a more thorough discus-
sion of the subject we refer to any introductory book on défgial geometry 14, 24] and
to [1] for the optimization perspective. After the introductjome will use these generalized
concepts to implement a number of optimization techniqoese specifically, the steepest
descent, conjugate gradient, trust region, and BFGS #hgosi The type of generalized opti-
mization used here is often referred to as retraction-bapgrhization [L, 2], indicating that
the concept of retractions (Sectidri.3 lies at the foundation of these techniques.

The general concepts discussed here are fount],iafid many of these structures have
already been derived f&}; endowed with its natural metrid g, 33, 38]. We add an explicit
expression for the Levi—Civita connection (Sectibfi.4 on this manifold (and consequently
for the Riemannian Hessian) and a derivation of all thesestres for the manifold endowed
with the inner product inherited fro" (see Sectiod.1.2).

4.1.1. Manifold and tangent space.So far we have been calling the space of positive
definiten x n matricesS’; a manifold, without specifying what this means exactly. tdey
not to get too caught up in details, we give a more intuitivénition: a manifoldis a set
which can locally be mapped one-to-oneRth (whered is the dimension of the manifold). In
order to get a smooth((*°) manifold, we also require these mappings to transitionathip
onto each other in case their domains overlap. The spade well-known to be a smooth
manifold [29, 40].

Another important concept is thangent spacéo a manifold in a certain point, which is
basically a first-order (vector space) approximation ofrtramifold at this point. Fof’,, the
tangent space at each poikit denoted byl'y S™', can be identified with the vector space of
symmetric matrice§™

TxS? ~S".

Applying a tangent vectofx € Tx S} at a pointX € S to a differentiable function
f: S} — Ris defined to be

Exf=Df(X)[Ex],

whereéx on the right-hand side is simply a symmetric matrix dnfl denotes the classical
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Fréchet derivative of . For the cost functiorf in (4.1), this differential is given byT]

(4.2) X)[ex] _QZtr “log(XA; 1)éx),

with A4, being the matrices in the mean and-) the matrix trace.

A vector fieldis a construction that associates with each point on thefoldra tangent
vector in its tangent space. Suppd@sis a vector field on a manifold anflis a real-valued
function on this manifold, thegf is again a real-valued function on the manifold defined by

Ef ST = R: X — &xf.

We also apply a more general version of differentiation is gfaper, namely that of func-
tions between manifolds. Thdfferentialgives the change of the tangent vectors throughout
the function.

4.1.2. Inner product and gradient. Gradient-based optimization requires the notions
of a gradient and an inner product, which will be introducedetforS’; . In fact, we consider
two inner products. The first one is the inner product mosjuently associated with'} :
for {x,mx € Tx STy, we have

(4.3) (Ex, )% = tr(Ex X I X7,

which leads to the intrinsic distance measw&) and geodesics of the forn2.3). Another
benefit of this inner product is that the corresponding gsiodeare complete, meaning that
any geodesic segment can be extended indefinitely. For domdénner product we take the
same as the enveloping sp&e suppose agaifix,nx € T'x S}, then

(4.4) (Exinx)Y" = tr(€xnx)-
As a consequence, the intrinsic distance and expressidre gfdodesics become the same as
inS":

0¥™(A,B) = ||B — Al|F,
(4.5) YYM(t) = A+ t(B — A),
with A, B € S'}. These geodesics are no longer infinitely extendable sinisepossible
for someA, B, ¢ that the matrixy®™(¢) in (4.5 is no longer positive definite and thus not
an element of’. However, for sufficiently smalt, v*Y™(¢) is in S, and it appears to be
computationally more efficient than the more involved espieny?? in (2.3).

Furthermore, the gradient of a cost function gives the timawf steepest ascent. It can
be defined at each poitif as the tangent vectgrad f(X) € Tx M such that

(grad f(X),&x)x = Df(X)[Ex], Véx € Tx M.

Using @.2) we find for our current setting when using the inner prodogti3)

K

(46)  grad™f(X) =2 X%log(X*A;'X7)X? = QZXlog
=1

and
K

(47)  grad¥™f(X) =2 X Flog(X3ATIX?)X "5 = QZlog -1

i=1
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when using4.4). Note the slight difference between both expressionsdrsitin of the power
of the outerX -factors.

From the geodesic convexity gf with the inner product4.3), we know that the opti-
mization problem, or equivalent@radpdf(X) = 0, always admits a unique solution. Since
(4.7) is obtained from4.6) after a full-rank transformation, setting this gradientéro results
in the same unique solution.

4.1.3. Retraction and vector transport. Our optimization algorithms also require a
map Rx : Tx S'} — S’} calledretraction that locally mapsI'x S’/ onto the manifoldS’}
itself while preserving the first-order information of ttegent space in this point (see Fig-
ure4.19. This means that a step of size zero stays at the sameand the differential of
the retraction at this origin is the identity mapping. Aneirgretation of these retractions is
that they take a unit step along a geodesic or an approxim#t&reof on the manifold into
the direction specified by the argument. We consider threaations:

(4.8) RY(¢) =X +¢,
(4.9) R¥(€) = X% exp(X 26X 2)X 3,
(4.10) R (&) =X +¢+ %gX*lg‘

Note that we omitted the subscript of the tangent vegter T’y S'; for clarity. The first of
these is a unit step along the geodedi&)and can thus be considered to be a natural retrac-
tion with respect to the inner product.f). When the manifold is endowed with the inner
product ¢.3), Ri?m is a first-order retraction. As mentioned there, precatt@sto be taken

to assure that the result of the retraction is still positleéinite. We do this by reducing our
step size when necessary. The second one is the retradiametiarally arises when the man-
ifold is endowed with the inner product Q). Recall that the geodesic betwednB < S is
given by

1

v(t) = A2(A 2 BA2)! Az
— A% exp (t log(A’%BA’%)) A3 teo,1].
We obtain ¢.9) as~(t) evaluated at = 1 with £x = Az log(A"2BA~2)A2 andA = X.

The last retraction is the second-order approximation i® gbcond retraction, which can
easily be seen by using the relation

1
exp(X) =1+ X+ 5X2 +0(X3), X —0.

Next, in order to perform, among others, the conjugate gradilgorithm, we need to
somehow relate a tangent vector at some paint S’} to another point” € S'}. This leads
to the concept of aector transport1] (Figure 4.15. We consider two vector transports:
for X € ST,&x,nx € Tx ST,

(4.11) T3"(Ex) = &x,

X iy X2 X iny X2
(4.12) ’Z;]p)g(fx) = X2 exp (2772)(2> X_%fo_% exp <277;2 X,

whereT,,()'() (£x) denotes the vector transport©f overnx. The definition of a vector trans-
port [1, Definition 8.1.1] states that it has to be lineartin, and if nx is the zero element,
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Ty S

N BT

n
Sy
(a) Retraction. (b) Vector transport.

FIGURE 4.1. Simplified representations of a retraction and a vector $ort.

the vector transport must be the identical mapping. Bothditimms are easily checked for
the expressions above. The definition also states that arvieansport has an associated
retraction, meaning that the tangent vecm(g() (£x) should be an element of the tangent
space afRx (nx ), for some retractiorkR. The vector transport4(11) is associated with the
retractionRY" in (4.8), since these structures naturally arise wE&nis endowed with the
inner product4.4) of the enveloping vector spa€. Such a natural vector transport is often
referred to as parallel transport. The structure of theoreicansport 4.12) suggests that it
is associated WitbRgéj in (4.9), which is stated in18]. Note that it is also possible to find a
vector transport associated Wiﬂtgf in (4.10, but we decided to restrict our attention to the
two more interesting vector transports mentioned above.

4.1.4. The Levi—Civita connection and the Riemannian Hesan. Some of our opti-
mization methods require second-order information aboeitsyystem, which is provided by
the Hessian operator. TH&iemannian Hessiaaf a real-valued functiorf at a pointX on
the manifold is a linear, symmetric mapping from the tanggaice into itself given by

(4.13) Hess f(X) : Tx S} — Tx SY : {x — Hess f(X)[{x] = Ve, grad f,
whereV is the so-called.evi-Civita connectionwhich depends on the inner product, hence
the Hessian will also depend on the inner product.
When endowed with the inner produet.4), the manifold is a dense Riemannian sub-
manifold ofS™, which is a vector space. Hence, the Levi—Civita connedt@iven by
VI = D(E) (X)[¢x ],
which is simply the derivative as in the vector space.

For the inner product4(3), however, this connection is more complicated. It can be
shown that

vgif = D(&(X)[Cx] - % (Cfole +€XX71CX)

satisfies all properties of the Levi—Clivita connection. fagthtforward way to do this is by
checking that it satisfies the Koszul formuld,[which at a pointX € S’/ is given by

2(Veen, Ex)x =Cx (n,€) +1x (&, ¢) — Ex(C,m)
—(Cx, [, €lx ) x + (x5 (6, Cx ) x + (Ex, G mlx) x-

The actual computation of the Hessian will be discussed fateesach second order method
separately.
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4.2. First-order implementations. We are ready to use all the building blocks of the
previous section to assemble a number of optimization nasthibhey will range from simple
first-order techniques such as steepest descent to morecadlvaecond-order methods such
as trust region algorithms. In this section, we start wigtdssing the first-order algorithms,
while the second-order techniques are examined subséguent

The methods in this section have already been derived inwapaperslo, 18, 33, 38,
both in their standard form as well as in some approximatechmia As an example of these
approximated approaches, we found a Richardson-liketiberan [10], which is based on
the standard steepest descent method with the inner pr@ti@gtexcept that a linearization
of the natural retractiord(9) is used. But this approximation is exactly the steepesteates
algorithm using the retractiort(8), hence the technique discussed in the paper can still be
interpreted as a steepest descent technique on the manifold

4.2.1. The steepest descent methoth a first attempt, we combine the elements of the
previous section into the steepest descent algorithm,hnthiees in each iteration a step into
the direction of— grad f(x), the direction of steepest descent. The step size is detedmi
using Armijo line search1]], which is a standard backtracking technique, startingfstep
size1 and iteratively multiplying it with a factod until an acceptable decrease of the cost
function, relative to the step size, is obtained. Algorithrh contains the steepest descent
method when setting the parameter= 0. The convergence conditions checked in this
algorithm are satisfied when the Armijo step size or the altear relative difference between
two consecutive iterations are smaller than their respedttiierances. We consider all three
retractions 4.8), (4.9), and @.10).

4.2.2. The conjugate gradient method.In Figure4.23 we show the typical zigzag-
pattern that arises for the steepest descent method. Thermpatas activated by using
five 3 x 3 random matrices for which the smallest eigenvalue is rougbt times smaller
than the others. Algorithrd.1 shows the conjugate gradient algorithm which helps us to
deal with this problem, as can be seen in Figuza The amount of influence of the pre-
vious search direction in the conjugate gradient algorithighetermined by thé factor, for
which we consider three different formulas given B2] and denoted by3™ (Fletcher—
Reeves) 3P (Polak—Ribere), ands®s) (Hestenes—Stiefel). As mentioned, this previous
search direction is transported between different tanggates by vector transports. To get
the best affinity between the vector transports and theatédres, we work with the natural
retractionskRY™ (with corresponding vector transpdaf®Y™) and RPY (with 7P9) here.

4.2.3. Comparisons.When comparing the overall performance of the steepest desce
and conjugate gradient algorithms, we notice that the inftaeof choosing the inner prod-
ucts @.3) or (4.4) is far greater than the impact of the chosen retractiomarase of the con-
jugate gradient algorithm, thetype. In fact, when only varying the retraction and thigpe,
the results are all very similar. The speed-up of the coripugeadient technique over steep-
est descent is also hardly noticeable in general, which [daged by the presence of a
sufficiently good initial guess, the CHEAP mean. When thigahpoint is sufficiently close
to the solution of the problem, the cost function will behaieely in this neighbourhood and
the zigzag-pattern mentioned before is less likely to accur

To investigate the accuracy of these first order methodsrebalts of the algorithms
are compared with a high precision computation of the Karalean (again using thepa
functionality of MATLAB with 32 digits of accuracy). In Figurd.3a the relative intrinsic
distance 8.1) between the results of the algorithms (for thigex 10 matrices) and this
high precision solution is given as function of the conditimumber of the matrices. The
algorithms using the natural inner produdt3) show in general better results than those
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Algorithm 4.1 The Karcher mean using the conjugate gradient method.

Input: matricesAy, ..., Ag, K > 2, initial guessXy, retraction and vector transport type
R and7? (RY™and7™ or RPY and7PY), 5 type 37 (5™, 3P or g09) or 0)

Output: Karcher meark (Ay, ..., Ak)

k0
grady, «— grad f(Xy) { f is our cost functior}
& — —grad {& is the search directign
while not convergedio
Xjp1 < R (%) { with ¢* the Armijo step sizeq]}
gradi1 — grad f(Xj11)
§ota — T)a £ (&) {vector transport of the old search directjon

Determines according to the given type
Ehr1 — —gradiy1 + Boa
if {111 not a descent directiaihen
&1 — —gradp4
end if
k—k+1
end while

e

01 0.037 0.1 0.037

(a) Using steepest descent. (b) Using conjugate gradient.

FIGURE 4.2. Evolution of the eigenvalues of the consecutive iteratioints in calculating the Karcher mean
of five3 x 3 matrices for which the zigzag-pattern appears for steegplestent.

using @.4).

The speed of the algorithms is tested both for an increasingper of matrices (with the
size fixed to10 x 10 matrices) and for varying sizes of the matrices in the meath (the
number of matrices fixed to five). Again we notice the advamtaighe structures associated
with the inner product4.3), as these result in the algorithms requiring less itenatiol he
computational cost of these structures, however, is ushajher than those related to the
inner product 4.4), which causes the overall computational time to be verylarmin Fig-
ure4.3h the number of iterations is displayed for the algorithms &snction of the size of
the matrices, which clearly shows the distinction betwéentivo inner products.

We can conclude that structures associated with the inmelupt @.3) are best suited
for our problem since the resulting algorithms require lesstions. It therefore seems in-
teresting to consider the performance of a steepest desigemithm when the inner product

(4.14) (Ex,mx) 5 = tr (Ex X Onx X )
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Condition number of the matrices Size of the matrices
(a) Accuracy for different condition numbers. (b) Required iterations for different sizes. The mean

of the samples is indicated by the connecting lines.

FIGURE 4.3. Comparison of the accuracy and computational speed of Algort.1using the steepest descent
and conjugate gradient algorithm. In the legends, we firdidate whether the Steepest Descent (SD) or Conjugate
Gradient (CG) technique is used, next, which of the innedpats(4.3) (SPD) or(4.4) (SYMM) is used, and finally

whether retractionRS}('m(SYM M) orRﬂéj (SPD) was taken. In case of CG, we also indicate whidjpe is used.

Number of iterations

3 -2 -1 1 2 3

0
alpha

FIGURE 4.4. Number of iterations required for a steepest descent allgoriwhen using structures related to
the inner product4.14) for different values ofv.

and its related structures are used, which reduces to thimpsecases when = 0 or o = 1.

In Figure4.4, we display the number of iterations that such an algorithquires for different
values ofa. The figure displayed has been constructed using the n'eimalegg, but a nearly
identical figure was obtained usin@iﬁm, again indicating that the influence of the inner
product is far greater than that of the retraction. It is obgifrom the figure that the inner

product &.3) is still most natural to the manifold, since this is the ongesponding te = 1.

4.3. Second-order implementations.The goal of second-order optimization techni-
ques is to use (an approximation of) the Hessian of the castifun to obtain a quadratically
(or at least superlinearly) convergent algorithm. In thikofeing, we discuss a number of
attempts to accomplish this and compare their performartts.Hessian has, however, typi-
cally a higher computational complexity, which means itéstp be determined whether these
algorithms are more efficient than the first-order techrégua the discussions of the trust
region method, we focus on the computation of the Hessialewln actual implementation
of the method is performed using Algorithms 10 and 11 frdjn [

In the existing literature, the Riemannian Hessian is caegbas it is defined in Sec-
tion 4.3.2[17, 38]. We derive the Hessian according to the classical defmi@iol3 (using
the Levi—Civita connection) in Sectioh3.1and an approximation in Sectigh3.3 The
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Riemannian BFGS method in Sectidr8.4is the application of the existing generalized al-
gorithm [36, 39 to S} .

4.3.1. A trust region method: exact Hessian.In Section4.1.4 we derived all the
components needed to determine the Hessian of our costidongtand noticed that the
result again depends on the inner product. Hence using firétida of the Hessian for the
inner product 4.4) with VY™ gives

Hess™™ f(X)[€x] = D(grad™™ f)(X)[£x].

Using @.7) leads to
K
Hess™™ f(X)[6x] =2 ) Dllog)(A; ' X)[A; " éx]X
=1

K
—2 log(A; ' X)X 1ex X,
=1

where we used the product and chain rules of differentisi®well as the differential of the
matrix inverse function. We also recognize the differdridfathe matrix logarithm function
at the pointA;lX into the direction of the tangent vectdr; ' ¢, which is computed using
the algorithm presented i34, 21].

When using the inner product.Q) with VP9, the Hessian becomes

Hess™ f(X)[€x] = D(grad™ f)(X)[¢x]

— 5 (6 X arad® F(X) + grad® F(X)X )

(4.15)

In this case using/(6) leads to

K K
Hess™ f(X)[€x] =2 &xlog(A;7'X) +2) X Dlog)(4; ' X)[A; " ¢x]
i=1

i=1

K K
- (Z Ex log(A;71X) + Zlog(XAil)fx)

i=1

K K
=) exlog(A71X) = Y log(X AT )ex
(4.16) = -

K
+2) X D(log)(4; ' X)[A; " ¢x],

i=1

where again we need the differential of the matrix logaritidote that the first two terms
in (4.16) are each others transpose (except for the minus sign)hveiic be exploited in the
computation. At first sight this seems somewhat peculiagesthis subtraction produces a
skew-symmetric matrix while the result of the Hessian ispaiged to be symmetric. How-
ever, looking at 4.15, we can see that the differential of the gradient is symimeind
the second part, as the sum of a matrix and its transposerimsiric as well, proving
thatHessP™ f(X)[¢x] is an element 0B".
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4.3.2. A trust region method: Hessian by decompositionAnother way to compute
the Hessian of our cost function is describedi][and more explicitly for the current cost
functionin [38]. The proposed procedure consists of determining the coes of a decom-
position and then combining them to form the actual Hessfadownside, however, is that
when determining the Karcher meanfgfn x n matrices, this sum consists &fn(n + 1)/2
terms, which number grows rapidly asincreases (in38] only 3 x 3 matrices were con-
sidered). Two other important remarks are that this tecknig derived for the manifold
endowed with the inner product.@), and that the computation of the terms as 38][is
only valid when we take the Hessian at the identity maix= I. This causes the need
to translate the problem in each iteration step to ensusepttsition for the current iteration
point, which is done by applying the mappifg— X,:%YX;%, in which X, is the newly
found iteration point, to all matrices in the mean andXp itself. After convergence, we
apply the inverse mapping to translate the identity matrithe actual Karcher mean of the
original matrices. Theoretically, this need for a transkais not a downside, in fact, it can
even simplify notations and required structures. Compmrtatly, however, it could cause
problems when working, e. g., with ill-conditioned matsce

The expression for the Hessian is given by

m

HessP f(X)[¢x] =2 Z(ﬁx, Ep)xwi(1)E
=1

m

=2 Z tr(Ex X B X " YHw (1)Ey,
=1
wherem = Kn(n + 1)/2, E;, andw; are defined as ir3g]. Remember that the decomposi-
tion is only valid atX = I, hence the expression can be further simplified to

(4.17) Hess™ £(X)[éx] =2 tr(éx E)wi(1) B
=1
When computing the Hessian, the rank-1 structur&,ofan be exploited to limit the re-
quired amount of operations. However, if we compare thetoastmpute the Hessiané.(6)
and @.17), which are theoretically equal, we still find the number pémtions for the first
one to be0(n?) and that of the secon@(n?).

4.3.3. A trust region method: Hessian by approximation.In the calculations of the
exact Hessian, determining the differential of the matoigdrithm function appears to be a
serious computational cost. A perhaps less elegant buttsoegadvantageous solution is to
replace the matrix logarithm by (a truncation of) its Tayderies atX = I given by

St -1 m-+1
> E o,
m

m=1
which converges tiog(X) forall p(X —I) < 1, X # 0, wherep denotes the spectral radius.
Truncating this series after the second term and entergngesult into the expressions for the
gradient ¢.6) and @.7) corresponding to inner product.8) and ¢@.4), we obtain

K

23 (2XA7'X -

1

3

gradf’ f(X) 5

X - %XAfXA;lX) and

-
Il

1
(2471 — §X‘1 — §A;1XA;1),

grady™ f(X) = 2 )

-

i=1
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respectively, as an approximation to the gradient. Notewleanly use this approximation to

derive the approximated Hessian, while the actual gradi@hibe used in the final algorithm.
Applying the definition of the Hessian to these expressiessits in

Hess) f(X)[¢x] =Dgrad, g 5 £)(X)[€x]
- % (§XX*1 grad®® f(X) + grad®® f(X)X*1§X>

K
=3 <2XA1.1§X +26x AT X — %éxAleA,;lX
i=1

XA ATIX — ;XAilXAi%X) ,

Hessy™ f(X)[6x] = Digrad3™ f)(X)[¢x]

s

«
Il
-

(BXlex X - ATTex AT

The finite spectral radius of the Taylor series indicates Wigen the matrices in the mean
lie close to each other (and to the current estimate), ateggdn method using one of these
Hessians is expected to work well. However, since these mlse approximations to the
Hessian, quadratic convergence of the algorithm is no loggaranteed as will be shown in
Section4.3.5

4.3.4. A Riemannian BFGS method.Finally, we test a Riemannian generalization of
the classical BFGS metho@§, 39|, which updates an estimation of the Hessian throughout
the algorithm instead of solving systems with the Hessiaastyy. The main point of interest
is how this update is done. Suppose we know the estifiate iteration stepk, which is
assumed to be a linear operator frdig, S’} onto itself and can thus be represented by
an(n(n+1)/2)x(n(n+1)/2) matrix By.. The linear operatdB; . : T'x,., S} — Tx,,, S}
is then defined by

%gksk 4 Yk D)X
(S, Brsk) X1 (Yk» Sk) X i1

o By 0 (Tt“nk)_l )

(4.18) Bypp = Brp — yr,  VpeTx,,, St

(4.19) By, = Toa

M

in which, is the current search directiort, is the Armijo step sizey;, is the vector transport
of the search direction to the new iteration poijtis a measure for the change of the gradient
over the iteration step (formal expressions can be foundgoithm4.2), and7 is the vector
transport. Since an inner product and a vector transpoprasent in these expressions, there
are again different situations to investigate. We will ti&t algorithm for each of the two
inner products combined with their natural retraction aacter transport. Note that in order
to evaluateB;1p using the matrix representatiaBy;, we need am(n + 1)/2 vector
representation of. This is done by the half-vectorization operaterh, which stacks the
elements of the upper triangular partgofolumnwise. Using this representation, the matrix-
vector productBy, 1 vech(p) returns ann(n + 1),/2) vector which is the half-vectorization
of the matrixBx1p.
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In the simpler case of the inner produét4), expressions4.18 and @.19 become

. - t R
By, 11 vech(p) =By, vech(p) — By, vech(sk)r(sk’i?kp)
tI‘(SkBkSk)
h — T
+ vec (yk)tr(yksk)’ Vp € Xi41 S-{-’
By, =B

To removep from this expression, the matrix traces have to be split updipg the pro-
perty tr(AB) = vec(A)T vec(B) with A and B being symmetric matrices. For the expres-
sion above, however, the second matrix should be half-vieet), which needs to be com-
pensated for in the first vectorization. To this end, we alamge the vectorization of the first
matrix to half-vectorization, but with the adaptation teath off-diagonal element is doubled
and this operation is denoted bych,. This yieldstr(AB) = vechs(A)? vech(B) and our
update formula becomes

1

4.20 B =B, — ———
(4.20) e N

By, vech(sy) vechy (s1,) " By

————vech ho (yx)T.
+ tr(yksk) vec (yk)vec Q(yk)
Note that this update differs in only two rank-1 terms frore firevious estimation of the
Hessian, which can be exploited in the implementation.

For the inner product(3), the calculation o5, is no longer so straightforward. Entering
the vector transpoff ® (4.12) into equation 4.19, we obtain

X X 7\ o
k 2' k Xk2'

Bup =QB(Q 'pQ T)QT, Q=X exp (

To extracty from this expression, we want to use the propeey( ABC) = (CT®A) vec(B)
for general matrices!, B, andC, with ® the Kronecker product, but this property cannot
be used when half-vectorization is applied. Thereforeyusepretend for a moment thaj,
andB, are represented by’ x n? matrices and apply this rule to the above expression:

By, vee(p) = vee(QBL(Q ' pQ~T)Q™)
=(Q ® Q)By, vec(Q™'pQ~T)
=(Q®Q)Br(Q ' ® Q") vec(p).

Changing back to half-vectorization can be accomplisheddiyg the so-called duplication
and elimination matrice®,, andE,,, which are simple matrices for transforming respectively
a half-vectorization into a normal vectorization and vieesa. Equation4;18 can be tackled

in the same fashion as before, where we only need to pay iattentthe extra factors in the
current inner product. The total update procedure now besom

Ek :En(Q & Q)Dan'En(Q71 & Qil)Dn;
~ 1 ~ ~
Byi1 =B — — By, vech(sy,) vecho (X L s X 1) T By
(4.21) +1 tl"(Xk_Jilst;;ElBkSk) ( ) 2( k+1 k+1)
1

+ — —
tr(Xk—&lyk?Xk-‘:lSk)

vech(yy ) vechs (X,;Lllka,;_&l)T.
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Note that there are again two rank-1 terms present in thetepdawever, the update frofs),
to By, is no longer the identity and can in this case be seen as arteupfithe rank-1 terms
which originated in the previous iterations.

Now that the techniques to update the estimate of the Heaséaspecified, we display
the entire Riemannian BFGS method in Algoritdr2. The convergence criteria are specified
as before by testing whether the Armijo step size or the alsor relative difference between
two consecutive iterates are smaller than their respetieeances.

Algorithm 4.2 The Karcher mean using the Riemannian BFGS method.
Input: matricesAy, ..., Ax, K > 2, initial guessX, initial Hessian approximatioi,
retraction and vector transport typg and7* (RSY™and 7™ or RPY and7P%)
Output: Karcher meark (Ay, ..., Ak)
k0
grady, «— grad f(Xy) {f is our cost functioh
while not convergedio
Obtainny: Solve the systemBy, vech(n,) = —vech(grad)  {The search directign
if m;, not a descent directicen
Ny —grady,
end if
Xpq1 — R, (t%) {with ¢t the Armijo step sizeT]}
gradi1 — grad f(Xp11)
Sp — 7?,;7% (tAnk)
Yr < gradir — T, (grady)
UpdateB;, to By, using @.20 or (4.21), depending on the inner product
kE—k+1
end while

4.3.5. Comparison.We start by applying the second-order techniques to thbee 10
matrices and compare the results to a high precision cortiquoitaf the Karcher mean, which
is displayed in Figureé.5a The trust region methods from Sectioh8.1and4.3.2show in
general better accuracy results than the previous firgrdethniques, even though there are
occasional outliers that shift the mean values in FiguBa The Riemannian BFGS method
on the other hand displays an accuracy similar to the fid&omethods. The trust region
method using the approximated Hessian from Secti@mshows very bad accuracy, which
is why we will not discuss this method any further. Overak again noticed slightly better
results for the techniques corresponding to the inner pro@u3d).

To test the speed of the algorithms, the size of the matricéisel mean is again varied
(when takings matrices) as well as the number of matrices (where we fix #heetsil0 x 10
matrices). We notice once more the smaller number of itamatrequired by techniques
based on the inner product.g), although the corresponding structures will in general be
more expensive to compute. In Figutesh the number of iterations are shown for some
of the methods as the number of matrices in the mean variesiewthe difference in the
iterations for the Riemannian BFGS methods confirms ouestaht. The advantage of the
smaller number of iterations when using the inner proddd) can be seen when comparing
the computational time of the two resulting trust region moels (see Figuré.6a TR-SPD
and TR-SYMM). In fact, the trust region method using the ¢kéessian corresponding to the
inner product 4.3) (TR-SPD) gives very good results, approaching even thepatational
time of the first-order methods.

Another remarkable result in Figure6ais the performance of the Riemannian BFGS
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(a) Accuracy for different condition numbers of the ma¢b) Required iterations for a different number of ma-
trices. trices.

FIGURE 4.5. Comparison of the accuracy and computational speed of theh€amean using the various trust
region methods and the Riemannian BFGS algorithm. In theniég, we first indicate whether the trust region (TR)
or Riemannian BFGS (RBFGS) technique is used, next, whitteafiner product§4.3) (SPD) or(4.4) (SYMM) is
used and if a non-standard method was used (DECOMP for tiaigaee in Sectiod.3.2and APPROX for those in
Sectiord.3.3. The mean of the samples is in both figures indicated by theemting lines.

method, which shows a lower computational time than thepstgtedescent algorithm. We
do note that this test is performed for a varying numbed®fx 10 matrices, and as the
size of the matrices starts to increase, the Riemannian BiRé&Sod as well as the other
second-order techniques are outperformed by the steepsstmt and conjugate gradient
algorithm (see Figuré.6b). Figure4.6aalso shows that the Riemannian BFGS method based
on the inner product4(3) is faster than the one using the inner productl, even though

the corresponding structures are more expensive. As Figbieindicates, the number of
iterations is significantly lower for the first, which makgsfor this extra computational cost.
However, we note again that as the size of the matrices isesethe method using the inner
product @.4) becomes faster due to its less expensive update formula.

Furthermore, we mention that while the technique in Secti@a2theoretically works
with the same Hessian as the classical method using theasthéfinition of the Hes-
sian @.15 (for the inner product4.3)), the number of iterations required for this first tech-
nigue is generally larger than for the second, indicatingagel stability and causing a longer
computational time.

Figure 4.6¢c shows the evolution of the gradient for all algorithms basadhe inner
product @.3). The quadratic convergence of the trust region algorithrdléarly visible as
well as a superlinear convergence for the Riemannian BFGBade The steepest descent
and conjugate gradient algorithm show a very similar (Iineanvergence since the problem
is well-behaved, eliminating the need for the conjugataligra technique to be activated.
Finally, the trust region algorithm using the approximakéessian (Sectiod.3.3 has lost
all quadratic convergence and displays an even slower ogenee than the steepest descent
method. We note that the techniques that use the Armijo Baech technique to determine
the next iteration point stop when the norm of the gradieratbisut the square root of the
machine precision. This is caused by the use of the squaned abthe gradient in the
Armijo condition.

5. Conclusions. This paper has demonstrated various techniques to compugeri
geometric mean. The lack of uniqueness of the definition wastljnovercome by the ap-
pealing analogy of the Karcher mean with the arithmetic me@he convergence of the
first-order optimization techniques for computing this &sar mean can easily be verified
using Corollary 4.3.2 and Theorems 4.4.1 and 4.4.2]iafid exploiting the convexity of the
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FIGURE 4.6. Comparison of all the discussed algorithms. In the legetius,abbreviations SD (Steepest
Descent), CG (Conjugate Gradient), TR (Trust Region), aB&#®S (Riemannian BFGS) are used to denote the
applied technique and when necessary, the used inner praglimdicated with SP¥4.3) or SYMM(4.4). For TR
the suffix DECOMP or APPROX is added to indicate the techsiqu&ectiort.3.2and4.3.3 respectively. In the
first figure, the influence of the inner products is comparedthe second, we compare the algorithms which use
the inner product4.3). In the last figure, the evolution of the gradient is depidiadall techniques using the inner
product(4.3).

problem. The convergence of the second-order optimizatiethods, although predicted by
the experiments, is theoretically not so easily guaransgetwill be treated as future work
(indications are present ii[20)).

We noticed that while the second-order techniques requéssliterations, the compu-
tational cost associated with each of these iterations wgsehthan that of the first-order
algorithms, nullifying the advantage of a quadratic cogearce. This effect was most visible
when the size of the matrices increased. Hence, we condhadiéar the current algorithms
on the manifoldS’}, itis more advantageous to work with first-order optimiaatiechniques
when the size of the matrices increases (already at 10). It is possible to produce more
efficient second-order optimization algorithms if we weldeato reduce our search space,
the manifold of interest, to a certain subset which struectan be further exploited. For ex-
ample, the geometry of the manifold of larger matrices ofdjdew rank has already been
extensively researched3, 41] and can be used to apply the optimization techniques in this
paper. This will also be a topic of future research.

The MATLAB code used to produce the experiments in this paper is al@aéab
http://people.cs.kuleuven.be/ ~ raf.vandebril/
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