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A SURVEY AND COMPARISON OF CONTEMPORARY ALGORITHMS FOR
COMPUTING THE MATRIX GEOMETRIC MEAN ∗

BEN JEURIS†, RAF VANDEBRIL†, AND BART VANDEREYCKEN‡

Abstract. In this paper we present a survey of various algorithms for computing matrix geometric means and de-
rive new second-order optimization algorithms to compute the Karcher mean. These new algorithms are constructed
using the standard definition of the Riemannian Hessian. The survey includes the ALM list of desired properties for
a geometric mean, the analytical expression for the mean of two matrices, algorithms based on the centroid compu-
tation in Euclidean (flat) space, and Riemannian optimizationtechniques to compute the Karcher mean (preceded by
a short introduction into differential geometry). A change of metric is considered in the optimization techniques to
reduce the complexity of the structures used in these algorithms. Numerical experiments are presented to compare
the existing and the newly developed algorithms. We concludethat currently first-order algorithms are best suited
for this optimization problem as the size and/or number of the matrices increase.
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1. Introduction. A mean is, in general, simply a type of average subject to certain
generic properties such as idempotency (the mean of(A, . . . , A) equalsA), invariance under
a permutation of the elements, and homogeneity (the mean of (λA1, . . . , λAK ) equalsλ times
the mean of(A1, . . . , AK)). However, these generic properties alone do not uniquely define
a mean, so there can be many different types of means. In this paper we discuss thegeometric
mean, which for positive real numbers (a1, . . . , aK ) is defined as

G(a1, . . . , aK) = (a1 · · · aK)
1
K .(1.1)

When conveying this definition to the set of symmetric positive definiten × n matricesSn
+,

we see that the formula above can not be readily extended to matrices due to their non-
commutativity. However, a list of desired properties for the general geometric mean can be
derived from this scalar expression.

These properties (listed in Section2) have proven to be useful in various applications,
e.g., radar technology [6], medical imaging [19], mechanics [30], and image processing [37].
All these areas display situations in which the informationabout the current system is being
represented in a collection of positive definite matrices. In order to perform calculations on
these matrices, such as averaging and interpolation, we need algorithms that preserve the
structure of the data, such as positive definiteness, which is one of the useful properties of the
geometric mean. Another property of this mean provides advantages in the area of elasticity
calculations of structures [30]. In these calculations, both a positive definite elasticity matrix
and its inverse, the compliance matrix, are used. Hence, given a collection of these elasticity
matrices and a collection consisting of the corresponding compliance matrices, the geometric
means of both matrix collections will again be each others inverses (as stated in property8 in
Section2).

Thanks to the wide range of practical and theoretical applications, matrix means have re-
ceived a lot of attention from present-day scientists. Monotonicity, for example, is a property
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only recently proven for the Karcher mean [8, 23], which is a specific instance of a geometric
mean for positive definite matrices. A consequence of the diversity of application areas is the
wide variety of approaches to define and compute the mean. Some constructions are based
on intuitive interpretations of the geometric mean (Section 3), while others prefer to think of
it as an optimization problem (Section4). In this last approach, Riemannian optimization,
which generalizes classical optimization techniques, is apopular concept.

The main contribution of this paper is to present a survey of algorithms for computing
the matrix geometric mean. We recall the theoretical foundation for the analytically known
mean of two matrices, the interpretations of the algorithmsbased on intuitive approaches, and
a basic framework needed to understand the methods based on Riemannian optimization. We
also introduce a new, explicit expression for the Riemannian Hessian and consider the use
of a different inner product on the manifold of positive definite matricesSn

+, which leads to
simpler optimization algorithms. Finally, a first-time application of the Riemannian BFGS
method to the optimization problem is presented. Numericalexperiments are performed to
compare all these techniques.

The organization of this paper is as follows: we start by listing the desired properties
of the geometric mean and the resulting unique definition in case of two matrices in Sec-
tion 2. Next, in Section3, we discuss some intuitively appealing algorithms based onplanar
approaches: the ALM, NBMP, and the CHEAP mean. However, these appealing interpreta-
tions will not lead to very efficient numerical algorithms. Finally, in Section4, we examine
Riemannian optimization algorithms for the Karcher mean, which is defined as the minimizer
over all positive definite matrices of the sum of squared (intrinsic) distances to all matrices
in the mean. The algorithms are adapted versions of the steepest descent, conjugate gradient,
trust region, and BFGS methods generalized towards manifolds. This last section is more
descriptive than the previous ones in order to properly introduce the Riemannian geometry
and the construction of the generalized algorithms. Throughout the paper, we compare the
performance of the algorithms discussed.

There have also been suggestions of other means, which do notsatisfy all properties
of the geometric mean, but which tend to give very close results. In [34], the mean of two
matrices is used to construct the general mean of any number of matrices. However, the result
of the algorithm depends on the ordering of the matrices, which causes the mean to be variable
under permutation. A different class of means was presentedin [28] satisfying a number of
interesting properties. The means in this class depend on a parametert ∈ [−1, 1]\{0}, and
it is shown that ast approaches zero, the corresponding mean approaches the Karcher mean.
Another class of means with results close to the geometric mean is discussed in [27], where
again the Karcher mean arises as a special case. These means are mentioned for completeness
of the survey, but will not be discussed further.

2. The geometric mean of two matrices.The scalar geometric mean (1.1) can not
be readily extended to positive definite matrices because the matrix product is not com-
mutative. Indeed,(A1 · · ·AK)

1
K is not invariant under permutation, which is one of the

most basic properties of means. Hence, a list of desired features has been composed in-
stead, often referred to as the ALM list [5, 11]. Because of the importance of these proper-
ties, we summarize them here using the partial ordering of symmetric matrices: a positive
semidefinite matrixA is denoted byA ≥ 0. Similarly, B ≥ C is a simplified notation
for B −C ≥ 0. The same approach is used for positive definiteness with thestrict inequality.
The ALM list, using positive definite matricesA1, . . . , AK , where we denote thegeometric
meanby G(A1, . . . , AK), is given by the following properties:

1. Consistency: ifA1, . . . , AK commute, thenG(A1, . . . , AK) = (A1 · · ·AK)
1
K .
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2. Joint homogeneity:

G(α1A1, . . . , αKAK) = (α1 · · ·αK)
1
K G(A1, . . . , AK), α1, . . . , αK > 0.

3. Invariance under permutation:G(Aπ(1), . . . , Aπ(K)) = G(A1, . . . , AK) with π a
permutation of (1, . . . ,K).

4. Monotonicity: ifAi ≥ Bi, for all i, thenG(A1, . . . , AK) ≥ G(B1, . . . , BK).

5. Continuity from above: if for all fixedi, A
(j)
i is a monotonically decreasing se-

quence of matrices converging toA∗
i for j → ∞, thenG(A

(j)
1 , . . . , A

(j)
K ) converges

to G(A∗
1, . . . , A

∗
K).

6. Congruence invariance: for all invertible matricesS ∈ R
n×n,

G(ST A1S, . . . , ST AKS) = ST G(A1, . . . , AK)S.

7. Joint concavity:

G(λA1 + (1 − λ)B1, . . . , λAK + (1 − λ)BK)

≥ λG(A1, . . . , AK) + (1 − λ)G(B1, . . . , BK), 0 < λ < 1.

8. Invariance under inversion:G(A1, . . . , AK) =
(
G(A−1

1 , . . . , A−1
K )

)−1
.

9. Determinant equality:det G(A1, . . . , AK) = (detA1 · · · det AK)
1
K .

10. Arithmetic-geometric-harmonic inequality:

1

K

K∑

i=1

Ai ≥ G(A1, . . . , AK) ≥

(
1

K

K∑

i=1

A−1
i

)−1

.

Unfortunately, these properties do not result in a unique definition for the geometric mean
of a general number of matrices. For the case of two matrices,however, the geometric mean
is uniquely defined by properties1 to 10 and given by the following expressions [7]

G(A,B) = A(A−1B)
1
2 = A

1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .(2.1)

Considering the manifold of symmetric positive definiten × n matricesS
n
+, we can find

another intuitively attractive interpretation of this result. We note that the intrinsic distance
betweenA,B ∈ S

n
+ (see Section4.1) is given by

δ(A,B) = || log(A− 1
2 BA− 1

2 )||F ,(2.2)

with || · ||F the Frobenius norm. Using this distance measure, we can determine the geodesic
betweenA andB [7], i. e., the curve of shortest distance on the manifold betweenA andB,
as

γ(t) = A(A−1B)t = A
1
2 (A− 1

2 BA− 1
2 )tA

1
2

=: A#tB, t ∈ [0, 1].(2.3)

This shows that the geometric mean is exactly the midpoint onthe geodesic (the notation in
the last term will be used further in the text):

G(A,B) = γ(1
2 ) = A# 1

2
B.

The subscript in the last term is often dropped whent = 1
2 .



ETNA
Kent State University 

http://etna.math.kent.edu

382 B. JEURIS, R. VANDEBRIL, AND B. VANDEREYCKEN

3. Geometric means based on planar approaches.While the properties in the ALM
list result in an explicit, unique definition for calculating the geometric mean of two matri-
ces, this is not the case when dealing with more matrices. Considering the simplified case
of a space with planar Euclidean geometry, the arithmetic mean of three matrices is the cen-
troid of the triangle they form. There are various intuitively appealing techniques to deter-
mine this centroid that have been generalized to the non-planar (non-Euclidean) geometry
of S

n
+ [5, 9, 11, 31, 35], where the arithmetic mean is naturally generalized to thegeometric

mean. This generalization causes the need for the exact formulas for the centroid (in case of
the NBMP and CHEAP mean) to be iterated. Throughout the different algorithms, we con-
sistently notice a trade-off between the speed of convergence and the number of properties in
the ALM list which the algorithms satisfy.

In this section, we discuss the geometric interpretation ofthe ALM [5], NBMP [11, 31],
and CHEAP [9] mean and end with a comparison of these algorithms. Although one can
obtain new geometric means by combining existing ones, in [35] it has been shown that there
is no improvement for more than four matrices. Hence, we omitthis approach in the survey.

All the numerical experiments were performed on an IntelR© CoreTM i5-2540M CPU
at 2.60 GHz with Matlab R2012a.

3.1. ALM mean. The ALM mean [5] is a geometric mean which, as the name implies,
satisfies the desired properties enumerated in the ALM list.When taking the ALM mean ofK

matrices, recursion is used to define the iterations in whichwe replace
(
A

(j)
1 , . . . , A

(j)
K

)
by

(
A

(j+1)
1 , . . . , A

(j+1)
K

)
=

(
GALM ((A

(j)
i )i6=1), . . . , GALM ((A

(j)
i )i6=K)

)
,

whereGALM denotes the recursively defined ALM mean ofK − 1 matrices with the known
geometric mean of two matrices (2.1) as its base. In [5], all terms in these iterations are
proven to converge towards the same limit and in Figure3.1a, a planar simplification of this
algorithm for three matrices is depicted.

3.2. NBMP mean. The NBMP mean [11, 31], just as the ALM mean, satisfies all prop-
erties in the ALM list. To compute the NBMP mean ofK matrices, we use recursion to define

the iterations in which we replace
(
A

(j)
1 , . . . , A

(j)
K

)
by

(
A

(j+1)
1 , . . . , A

(j+1)
K

)
, which equals

(
A

(j)
1 #K−1

K

GNBMP ((A
(j)
i )i6=1), . . . , A

(j)
K #K−1

K

GNBMP ((A
(j)
i )i6=K)

)
,

whereGNBMP denotes the recursively defined NBMP mean ofK−1 matrices with the geo-
metric mean of two matrices (2.1) as its base. The notation from (2.3) was used to denote the
point on the geodesic representing the weighted mean of the terms involved. In [11], all terms
in these iterations are again proven to converge towards thesame limit and in Figure3.1bwe
show a simplified representation of how the algorithm operates for three matrices.

3.3. General class.We have encountered two means, both satisfying all properties in
the ALM list but yielding different results as shown in the next example.

EXAMPLE 3.1. If we consider the matrices
[
25 4
4 1

]
,

[
20 1
1 1

]
,

[
1 1
1 20

]
,

the results for the ALM and NBMP algorithm are respectively
[
7.6943 0.9919
0.9919 2.0528

]
and

[
7.7139 0.9719
0.9719 2.0425

]
,
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(a) The ALM mean.
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(b) The NBMP mean.

FIGURE 3.1. Simplified representations of the algorithms for three matrices in a flat geometric space.

which clearly shows that the results differ.
In fact, in [11, 25] it is shown that the ALM and NBMP mean are two instances of an

entire class of means, all satisfying the required properties but with possibly different results.
ForK matrices, thisgeneral meanGs1,...,sK−1

depends onK−1 parameters(s1, . . . , sK−1)

and again recursion is used to define the iterations in which we replace
(
A

(j)
1 , . . . , A

(j)
K

)
by

(
A

(j+1)
1 , . . . , A

(j+1)
K

)
defined as

(
A

(j)
1 #s1

Gs2,...,sK−1
((A

(j)
i )i6=1), . . . , A

(j)
K #s1

Gs2,...,sK−1
((A

(j)
i )i6=K)

)
.

For the ALM and NBMP mean, these parameters become respectively (1, 1, . . . , 1, 1
2 )

and (K−1
K

, K−2
K−1 , . . . , 1

2 ). This class illustrates that for a general number of matrices the
geometric mean is not uniquely defined, not even starting from the ten desired properties. In
Section4, we investigate the Karcher mean, which also satisfies all properties but has a more
appealing analogy with the arithmetic mean.

Currently, research is being conducted which indicates that all the means satisfying the
properties in the ALM list have a close proximity to each other.

3.4. CHEAP mean. The CHEAP mean [9], unlike the previous algorithms, is no longer
defined recursively. It also no longer satisfies all properties present in the ALM list, but as
we will notice later, this will be compensated by its very cheap computational cost. The
underlying idea is again to compute the centroid of a triangle (with verticesA, B, andC, see
Figure3.2) by the formula

A +
1

3

(
(B − A) + (C − A)

)
.

The expression above can be interpreted as a step in an Euclidean space from vertexA into
the direction of13 ((B − A) + (C − A)), which is the arithmetic mean of the directions of
vertexA to the three verticesA, B, andC (where the directionA − A is trivially omitted).
Generalizing the notions of a path (and consequently the direction) between two points and
of taking a step into a certain direction to the manifold of positive definite matrices, we obtain
the expression (see [9])

A exp

(
1

3

(
log(A−1B) + log(A−1C)

))
.
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A

B

C

A + 1
3 ((B − A) + (C − A))

A + (B − A) + (C − A)

FIGURE 3.2. Simplified representations of the CHEAP mean for three matrices.

In the general case ofK matrices, we replace in each iteration the matrices (Aj
1, . . . , A

j
K) by

(Aj+1
1 , . . . , Aj+1

K ), where

Aj+1
i = Aj

i exp

(
1

K

K∑

ℓ=1,ℓ 6=i

log
((

Aj
i

)−1
Aj

ℓ

))
.

We iterate until convergence, although convergence is not always guaranteed for this algo-
rithm, i. e., when the matrices are not sufficiently close to each other; see [9, Theorem 2.1]
for an exact bound.

For the ALM and NBMP algorithms, the mean of two matrices is bydefinition known to
be the analytical geometric mean, since they are recursively defined starting with this analyt-
ical expression. For the CHEAP mean, this consistency is less obvious but it is nonetheless
still present. If we examine the CHEAP mean of two matrices byapplying one iteration of
the algorithm, we get

A
(0)
1 → A

(1)
1 = A

(0)
1 exp

(
1

2
log

(
(A

(0)
1 )−1A

(0)
2

))
= A

(0)
1

(
(A

(0)
1 )−1A

(0)
2

) 1
2

,

A
(0)
2 → A

(1)
2 = A

(0)
2 exp

(
1

2
log

(
(A

(0)
2 )−1A

(0)
1

))
= A

(0)
2

(
(A

(0)
2 )−1A

(0)
1

) 1
2

,

which are two equivalent expressions for the geometric meanof A
(0)
1 andA

(0)
2 .

3.5. Comparison. In Figure3.3awe show the required computational time of all the
above algorithms as the number of30 × 30 well-conditioned matrices in the mean increases.
The random matrices throughout the paper are constructed inMATLAB as follows, withn
being the size of the matrix,K the number of matrices, andf the order of magnitude of the
condition number.

for i=1:K
[Q,˜]=qr(rand(n)); D=diag([[rand(1,n-1)+1],10ˆ(-f)]) ;
A{i}=Q * D* Q’;

end
The stopping criterion for all three algorithms is satisfiedwhen the difference between two
consecutive iteration points becomes less than a specific tolerance.

While the ALM mean is proven to converge linearly [5] and the NBMP mean super-
linearly of order3 [11], both have rapidly increasing computational time as the number of
matrices increases. The number of operations for both algorithms equalsO(n3K!

∏K
i=3 pi),
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in which n denotes the size of the matrices,K the number of matrices, andpi the average
number of iterations required to compute the ALM and NBMP mean of i matrices. The ad-
vantage of the superlinear convergence of the NBMP algorithm over the linear convergence of
the ALM algorithm is found in thepi factors since they will be much smaller for the former.
The problem for both, however, lies in the significantK! factor, which grows tremendously
fast asK increases. Despite the worse performance, it is still interesting to examine these
means since they were the first algorithms devised to computethe matrix geometric mean of
a general number of matrices.

For the CHEAP mean, however, the number of operations equalsO(n3K2pK), in which
the factorK2 is a vast improvement overK!. Of course, this increased speed of the CHEAP
mean comes at a price. It no longer satisfies all properties inthe ALM list and can therefore
no longer be considered an actual geometric mean. We therefore compare the results of the
different algorithms by taking the means of three30 × 30 matrices, for which the condition
number of each matrix is varied. In Figure3.3b, the intrinsic distances (2.2) between the
results are shown, and it is clear that the ALM and NBMP mean are more similar to each
other than to the CHEAP mean, especially as the condition number of the matrices increases.
However, the CHEAP mean can still be found to be in the vicinity of the other means when
the condition number of the matrices is not too large.

A similar figure could be obtained by displaying the classical Euclidean distance between
the results, but the distances are consistently smaller than for the intrinsic distance (2.2).
This difference is explained by the fact that the intrinsic distance is measured on a curved
manifold, while the Euclidean one measures the distance on astraight line in the enveloping
vector spaceSn, the set of symmetricn × n matrices.

The accuracy of the methods is harder to verify since we need areference solution to
compare the results of the algorithms with. By constructingthe matrices in the mean as
described above with the same matrixQ, we obtain a set of simultaneously diagonalizable,
commuting matrices. Of these we know the exact geometric mean using the first property
in the ALM list, so we can use this as our reference solution. However, the CHEAP mean
is shown [9] to converge in one iteration to the exact solution when the matrices commute.
Hence, this test is only meaningful for the ALM and NBMP mean,of which we show the
results in Figure3.3c. The relative intrinsic distance

|| log(A− 1
2 GA− 1

2 )||F
||G||F

,(3.1)

with A being the result of one of the algorithms andG the exact solution, is used to display
their deviation for different condition numbers of the matrices. Recall that the numerator is
the intrinsic distance (2.2) betweenA andG. The accuracy of both algorithms is very similar
and deteriorates steadily as the condition number of the matrices increases. We note that
when using the classical Euclidean distance, the deviations are almost at machine precision
for all condition numbers, and this difference can again be explained by the curvature of the
manifold.

For matrices which are not simultaneously diagonalizable,the exact geometric mean
is not known, hence we need a different model solution to compare our results with. A
high precision version of each of the algorithms is designedusing thevpa functionality of
MATLAB with 32 digits of accuracy. The relative intrinsic distance (3.1) between results from
the original algorithms and the high precision versions is displayed in Figure3.3d(using three
random10 × 10 symmetric positive definite matrices). Again the steady deterioration of the
accuracy can be observed as the condition number of each of the matrices increases. However,
it is clear that the CHEAP algorithm is more sensitive to thiscondition number than the ALM
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FIGURE 3.3. Comparison of the different planar algorithms.

and NBMP algorithms.

4. The Karcher mean. As mentioned in the previous section, the properties in the ALM
list fail to specify a unique definition for the geometric mean. The ALM and NBMP are only
two examples of a general class of means satisfying all of them. Another mean that satisfies
all the necessary properties is the Karcher mean. It is defined as the minimizer

K(A1, . . . , AK) = argmin
X∈Sn

+

K∑

i=1

δ2(Ai,X),

whereS
n
+ represents the set of symmetric positive definiten × n matrices,δ(A,X) is the

intrinsic distance on this manifold as given in (2.2), andAi are the matrices of which we
want to find the Karcher mean. In terms of an optimization problem, this translates to a cost
functionf

f(X) =

K∑

i=1

|| log(A
− 1

2

i XA
− 1

2

i )||2F .(4.1)

For this mean to be well-defined, the minimizer of the cost function should be unique. When
the manifoldS

n
+ is endowed with its natural inner product (4.3) (see Section4.1.2), the cost

functionf is strictly geodesically convex, which is a generalizationof the classical convexity
as follows: letX,Y ∈ S

n
+, andt ∈ [0, 1]. Then

f(X#tY ) ≤ (1 − t)f(X) + tf(Y ).
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Combining this with the convexity of the setS
n
+ itself, the minimizer can be proven to be

unique [7, 12].
The uniqueness of this minimizer can also be verified in a different manner. It is known

from [15, 26] thatSn
+ with the natural inner product (4.3) forms a Cartan–Hadamard manifold,

which is a complete and simply connected Riemannian manifold with non-positive sectional
curvature everywhere. On this type of manifold, the so-called Riemannian center-of-mass,
which in this case is exactly the Karcher mean, is known to be unique [16, 22].

The Karcher mean satisfies all properties in the ALM list, of which the monotonicity has
only very recently been proven; see [8, 23, 30]. Moreover, this mean is found to be appealing
because of its analogy with the arithmetic mean, which can beseen as a similar minimizer by
using the standard Euclidean distance.

Since the Karcher mean will be computed iteratively as the solution of an optimization
problem, we need a good starting guess. We will use the CHEAP mean in all experiments,
since it shows good computational speed and reasonable accuracy as discussed before.

4.1. Differential geometry. Calculating the Karcher mean involves solving an opti-
mization problem on a manifold, which requires a more general approach than in the tra-
ditional case of vector spaces. We need to introduce some newconcepts to perform this
generalization, but we only briefly discuss these matters here; for a more thorough discus-
sion of the subject we refer to any introductory book on differential geometry [14, 24] and
to [1] for the optimization perspective. After the introduction, we will use these generalized
concepts to implement a number of optimization techniques,more specifically, the steepest
descent, conjugate gradient, trust region, and BFGS algorithms. The type of generalized opti-
mization used here is often referred to as retraction-basedoptimization [1, 2], indicating that
the concept of retractions (Section4.1.3) lies at the foundation of these techniques.

The general concepts discussed here are found in [1], and many of these structures have
already been derived forSn

+ endowed with its natural metric [18, 33, 38]. We add an explicit
expression for the Levi–Civita connection (Section4.1.4) on this manifold (and consequently
for the Riemannian Hessian) and a derivation of all these structures for the manifold endowed
with the inner product inherited fromSn (see Section4.1.2).

4.1.1. Manifold and tangent space.So far we have been calling the space of positive
definiten × n matricesSn

+ a manifold, without specifying what this means exactly. In order
not to get too caught up in details, we give a more intuitive definition: a manifold is a set
which can locally be mapped one-to-one toR

d (whered is the dimension of the manifold). In
order to get a smooth (C∞) manifold, we also require these mappings to transition smoothly
onto each other in case their domains overlap. The spaceS

n
+ is well-known to be a smooth

manifold [29, 40].
Another important concept is thetangent spaceto a manifold in a certain point, which is

basically a first-order (vector space) approximation of themanifold at this point. ForSn
+, the

tangent space at each pointX, denoted byTX S
n
+, can be identified with the vector space of

symmetric matricesSn

TX S
n
+ ≃ S

n .

Applying a tangent vectorξX ∈ TX S
n
+ at a pointX ∈ S

n
+ to a differentiable function

f : S
n
+ → R is defined to be

ξXf = Df(X)[ξX ],

whereξX on the right-hand side is simply a symmetric matrix andDf denotes the classical
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Fréchet derivative off . For the cost functionf in (4.1), this differential is given by [7]

Df(X)[ξX ] = 2

K∑

i=1

tr
(
X−1 log(XA−1

i )ξX

)
,(4.2)

with Ai being the matrices in the mean andtr(·) the matrix trace.
A vector fieldis a construction that associates with each point on the manifold a tangent

vector in its tangent space. Supposeξ is a vector field on a manifold andf is a real-valued
function on this manifold, thenξf is again a real-valued function on the manifold defined by

ξf : S
n
+ → R : X 7→ ξXf.

We also apply a more general version of differentiation in this paper, namely that of func-
tions between manifolds. Thisdifferentialgives the change of the tangent vectors throughout
the function.

4.1.2. Inner product and gradient. Gradient-based optimization requires the notions
of a gradient and an inner product, which will be introduced here forSn

+. In fact, we consider
two inner products. The first one is the inner product most frequently associated withSn

+:
for ξX , ηX ∈ TX S

n
+, we have

〈ξX , ηX〉pd
X = tr(ξXX−1ηXX−1),(4.3)

which leads to the intrinsic distance measure (2.2) and geodesics of the form (2.3). Another
benefit of this inner product is that the corresponding geodesics are complete, meaning that
any geodesic segment can be extended indefinitely. For the second inner product we take the
same as the enveloping spaceS

n: suppose againξX , ηX ∈ TX S
n
+, then

〈ξX , ηX〉sym
X = tr(ξXηX).(4.4)

As a consequence, the intrinsic distance and expression of the geodesics become the same as
in S

n:

δsym(A,B) = ||B − A||F ,

γsym(t) = A + t(B − A),(4.5)

with A,B ∈ S
n
+. These geodesics are no longer infinitely extendable since it is possible

for someA,B, t that the matrixγsym(t) in (4.5) is no longer positive definite and thus not
an element ofSn

+. However, for sufficiently smallt, γsym(t) is in S
n
+ and it appears to be

computationally more efficient than the more involved expressionγpd in (2.3).
Furthermore, the gradient of a cost function gives the direction of steepest ascent. It can

be defined at each pointX as the tangent vectorgrad f(X) ∈ TXM such that

〈grad f(X), ξX〉X = Df(X)[ξX ], ∀ξX ∈ TXM.

Using (4.2) we find for our current setting when using the inner product in (4.3)

gradpd f(X) = 2
K∑

i=1

X
1
2 log(X

1
2 A−1

i X
1
2 )X

1
2 = 2

K∑

i=1

X log(A−1
i X),(4.6)

and

gradsymf(X) = 2

K∑

i=1

X− 1
2 log(X

1
2 A−1

i X
1
2 )X− 1

2 = 2

K∑

i=1

log(A−1
i X)X−1,(4.7)
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when using (4.4). Note the slight difference between both expressions in the sign of the power
of the outerX-factors.

From the geodesic convexity off with the inner product (4.3), we know that the opti-
mization problem, or equivalentlygradpd f(X) = 0, always admits a unique solution. Since
(4.7) is obtained from (4.6) after a full-rank transformation, setting this gradient to zero results
in the same unique solution.

4.1.3. Retraction and vector transport. Our optimization algorithms also require a
map RX : TX S

n
+ → S

n
+ called retraction that locally mapsTX S

n
+ onto the manifoldSn

+

itself while preserving the first-order information of the tangent space in this point (see Fig-
ure4.1a). This means that a step of size zero stays at the same pointX and the differential of
the retraction at this origin is the identity mapping. An interpretation of these retractions is
that they take a unit step along a geodesic or an approximation thereof on the manifold into
the direction specified by the argument. We consider three retractions:

Rsym
X (ξ) = X + ξ,(4.8)

Rpd
X(ξ) = X

1
2 exp(X− 1

2 ξX− 1
2 )X

1
2 ,(4.9)

Rpd’
X (ξ) = X + ξ +

1

2
ξX−1ξ.(4.10)

Note that we omitted the subscript of the tangent vectorξ ∈ TX S
n
+ for clarity. The first of

these is a unit step along the geodesic (4.5) and can thus be considered to be a natural retrac-
tion with respect to the inner product (4.4). When the manifold is endowed with the inner
product (4.3), Rsym

X is a first-order retraction. As mentioned there, precautionhas to be taken
to assure that the result of the retraction is still positivedefinite. We do this by reducing our
step size when necessary. The second one is the retraction that naturally arises when the man-
ifold is endowed with the inner product (4.3). Recall that the geodesic betweenA,B ∈ S

n
+ is

given by

γ(t) = A
1
2 (A− 1

2 BA− 1
2 )tA

1
2

= A
1
2 exp

(
t log(A− 1

2 BA− 1
2 )

)
A

1
2 , t ∈ [0, 1].

We obtain (4.9) asγ(t) evaluated att = 1 with ξX = A
1
2 log(A− 1

2 BA− 1
2 )A

1
2 andA = X.

The last retraction is the second-order approximation to this second retraction, which can
easily be seen by using the relation

exp(X) = I + X +
1

2
X2 + O(X3), X → 0.

Next, in order to perform, among others, the conjugate gradient algorithm, we need to
somehow relate a tangent vector at some pointX ∈ S

n
+ to another pointY ∈ S

n
+. This leads

to the concept of avector transport[1] (Figure 4.1b). We consider two vector transports:
for X ∈ S

n
+, ξX , ηX ∈ TX S

n
+,

T sym
ηX

(ξX) = ξX ,(4.11)

T pd
ηX

(ξX) = X
1
2 exp

(
X− 1

2 ηXX− 1
2

2

)
X− 1

2 ξXX− 1
2 exp

(
X− 1

2 ηXX− 1
2

2

)
X

1
2 ,(4.12)

whereT (.)
ηX

(ξX) denotes the vector transport ofξX overηX . The definition of a vector trans-
port [1, Definition 8.1.1] states that it has to be linear inξX , and if ηX is the zero element,
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X ξX

RX(ξX)

TX S
n
+

S
n
+

(a) Retraction.

ξX

TηX
(ξX)

ηX

(b) Vector transport.

FIGURE 4.1. Simplified representations of a retraction and a vector transport.

the vector transport must be the identical mapping. Both conditions are easily checked for
the expressions above. The definition also states that a vector transport has an associated
retraction, meaning that the tangent vectorT

(.)
ηX

(ξX) should be an element of the tangent
space atRX(ηX), for some retractionR. The vector transport (4.11) is associated with the
retractionRsym

X in (4.8), since these structures naturally arise whenS
n
+ is endowed with the

inner product (4.4) of the enveloping vector spaceS
n. Such a natural vector transport is often

referred to as parallel transport. The structure of the vector transport (4.12) suggests that it
is associated withRpd

X in (4.9), which is stated in [18]. Note that it is also possible to find a
vector transport associated withRpd’

X in (4.10), but we decided to restrict our attention to the
two more interesting vector transports mentioned above.

4.1.4. The Levi–Civita connection and the Riemannian Hessian. Some of our opti-
mization methods require second-order information about the system, which is provided by
the Hessian operator. TheRiemannian Hessianof a real-valued functionf at a pointX on
the manifold is a linear, symmetric mapping from the tangentspace into itself given by

Hess f(X) : TX S
n
+ → TX S

n
+ : ξX 7→ Hess f(X)[ξX ] = ∇ξX

grad f,(4.13)

where∇ is the so-calledLevi-Civita connection, which depends on the inner product, hence
the Hessian will also depend on the inner product.

When endowed with the inner product (4.4), the manifold is a dense Riemannian sub-
manifold ofSn, which is a vector space. Hence, the Levi–Civita connectionis given by

∇sym
ζX

ξ = D(ξ)(X)[ζX ],

which is simply the derivative as in the vector space.
For the inner product (4.3), however, this connection is more complicated. It can be

shown that

∇pd
ζX

ξ = D(ξ)(X)[ζX ] −
1

2

(
ζXX−1ξX + ξXX−1ζX

)

satisfies all properties of the Levi–Civita connection. A straightforward way to do this is by
checking that it satisfies the Koszul formula [1], which at a pointX ∈ S

n
+ is given by

2〈∇ζX
η, ξX〉X =ζX〈η, ξ〉 + ηX〈ξ, ζ〉 − ξX〈ζ, η〉

− 〈ζX , [η, ξ]X〉X + 〈ηX , [ξ, ζ]X〉X + 〈ξX , [ζ, η]X〉X .

The actual computation of the Hessian will be discussed later for each second order method
separately.
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4.2. First-order implementations. We are ready to use all the building blocks of the
previous section to assemble a number of optimization methods. They will range from simple
first-order techniques such as steepest descent to more advanced second-order methods such
as trust region algorithms. In this section, we start with discussing the first-order algorithms,
while the second-order techniques are examined subsequently.

The methods in this section have already been derived in various papers [10, 18, 33, 38],
both in their standard form as well as in some approximated manner. As an example of these
approximated approaches, we found a Richardson-like iteration in [10], which is based on
the standard steepest descent method with the inner product(4.3), except that a linearization
of the natural retraction (4.9) is used. But this approximation is exactly the steepest descent
algorithm using the retraction (4.8), hence the technique discussed in the paper can still be
interpreted as a steepest descent technique on the manifold.

4.2.1. The steepest descent method.In a first attempt, we combine the elements of the
previous section into the steepest descent algorithm, which takes in each iteration a step into
the direction of− grad f(x), the direction of steepest descent. The step size is determined
using Armijo line search [1], which is a standard backtracking technique, starting from step
size1 and iteratively multiplying it with a factor12 until an acceptable decrease of the cost
function, relative to the step size, is obtained. Algorithm4.1 contains the steepest descent
method when setting the parameterβ = 0. The convergence conditions checked in this
algorithm are satisfied when the Armijo step size or the absolute or relative difference between
two consecutive iterations are smaller than their respective tolerances. We consider all three
retractions (4.8), (4.9), and (4.10).

4.2.2. The conjugate gradient method.In Figure4.2a, we show the typical zigzag-
pattern that arises for the steepest descent method. The pattern was activated by using
five 3 × 3 random matrices for which the smallest eigenvalue is roughly 103 times smaller
than the others. Algorithm4.1 shows the conjugate gradient algorithm which helps us to
deal with this problem, as can be seen in Figure4.2b. The amount of influence of the pre-
vious search direction in the conjugate gradient algorithmis determined by theβ factor, for
which we consider three different formulas given in [32] and denoted byβ(fr) (Fletcher–
Reeves),β(pr) (Polak–Ribìere), andβ(hs) (Hestenes–Stiefel). As mentioned, this previous
search direction is transported between different tangentspaces by vector transports. To get
the best affinity between the vector transports and the retractions, we work with the natural
retractionsRsym (with corresponding vector transportT sym) andRpd (with T pd) here.

4.2.3. Comparisons.When comparing the overall performance of the steepest descent
and conjugate gradient algorithms, we notice that the influence of choosing the inner prod-
ucts (4.3) or (4.4) is far greater than the impact of the chosen retraction or, in case of the con-
jugate gradient algorithm, theβ type. In fact, when only varying the retraction and theβ type,
the results are all very similar. The speed-up of the conjugate gradient technique over steep-
est descent is also hardly noticeable in general, which is explained by the presence of a
sufficiently good initial guess, the CHEAP mean. When this initial point is sufficiently close
to the solution of the problem, the cost function will behavenicely in this neighbourhood and
the zigzag-pattern mentioned before is less likely to occur.

To investigate the accuracy of these first order methods, theresults of the algorithms
are compared with a high precision computation of the Karcher mean (again using thevpa
functionality of MATLAB with 32 digits of accuracy). In Figure4.3a, the relative intrinsic
distance (3.1) between the results of the algorithms (for three10 × 10 matrices) and this
high precision solution is given as function of the condition number of the matrices. The
algorithms using the natural inner product (4.3) show in general better results than those
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Algorithm 4.1 The Karcher mean using the conjugate gradient method.
Input: matricesA1, . . . , AK , K > 2, initial guessX0, retraction and vector transport type

Ri andT i (Rsym andT sym or Rpd andT pd), β typeβj (β(fr) , β(pr) or β(hs) or 0)
Output: Karcher meanK(A1, . . . , AK)

k ← 0
gradk ← grad f(Xk) { f is our cost function}
ξk ← −grad {ξk is the search direction}
while not convergeddo

Xk+1 ← Ri
Xk

(tAξk) { with tA the Armijo step size [1]}
gradk+1 ← grad f(Xk+1)
ξold ← T i

tAξk
(ξk) {vector transport of the old search direction}

Determineβ according to the given type
ξk+1 ← −gradk+1 + βξold

if ξk+1 not a descent directionthen
ξk+1 ← −gradk+1

end if
k ← k + 1

end while
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(a) Using steepest descent.
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(b) Using conjugate gradient.

FIGURE 4.2. Evolution of the eigenvalues of the consecutive iteration points in calculating the Karcher mean
of five3 × 3 matrices for which the zigzag-pattern appears for steepestdescent.

using (4.4).
The speed of the algorithms is tested both for an increasing number of matrices (with the

size fixed to10 × 10 matrices) and for varying sizes of the matrices in the mean (with the
number of matrices fixed to five). Again we notice the advantage of the structures associated
with the inner product (4.3), as these result in the algorithms requiring less iterations. The
computational cost of these structures, however, is usually higher than those related to the
inner product (4.4), which causes the overall computational time to be very similar. In Fig-
ure4.3b, the number of iterations is displayed for the algorithms asa function of the size of
the matrices, which clearly shows the distinction between the two inner products.

We can conclude that structures associated with the inner product (4.3) are best suited
for our problem since the resulting algorithms require lessiterations. It therefore seems in-
teresting to consider the performance of a steepest descentalgorithm when the inner product

〈ξX , ηX〉
(α)
X = tr

(
ξXX−αηXX−α

)
(4.14)
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FIGURE 4.3.Comparison of the accuracy and computational speed of Algorithm4.1using the steepest descent
and conjugate gradient algorithm. In the legends, we first indicate whether the Steepest Descent (SD) or Conjugate
Gradient (CG) technique is used, next, which of the inner products(4.3) (SPD) or(4.4) (SYMM) is used, and finally
whether retractionRsym

X
(SYMM) orRpd

X
(SPD) was taken. In case of CG, we also indicate whichβ type is used.
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FIGURE 4.4. Number of iterations required for a steepest descent algorithm when using structures related to
the inner product(4.14) for different values ofα.

and its related structures are used, which reduces to the previous cases whenα = 0 or α = 1.
In Figure4.4, we display the number of iterations that such an algorithm requires for different
values ofα. The figure displayed has been constructed using the retraction Rpd

X , but a nearly
identical figure was obtained usingRsym

X , again indicating that the influence of the inner
product is far greater than that of the retraction. It is obvious from the figure that the inner
product (4.3) is still most natural to the manifold, since this is the one corresponding toα = 1.

4.3. Second-order implementations.The goal of second-order optimization techni-
ques is to use (an approximation of) the Hessian of the cost function to obtain a quadratically
(or at least superlinearly) convergent algorithm. In the following, we discuss a number of
attempts to accomplish this and compare their performance.This Hessian has, however, typi-
cally a higher computational complexity, which means it is yet to be determined whether these
algorithms are more efficient than the first-order techniques. In the discussions of the trust
region method, we focus on the computation of the Hessian while the actual implementation
of the method is performed using Algorithms 10 and 11 from [1].

In the existing literature, the Riemannian Hessian is computed as it is defined in Sec-
tion 4.3.2[17, 38]. We derive the Hessian according to the classical definition (4.13) (using
the Levi–Civita connection) in Section4.3.1 and an approximation in Section4.3.3. The
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Riemannian BFGS method in Section4.3.4is the application of the existing generalized al-
gorithm [36, 39] to S

n
+.

4.3.1. A trust region method: exact Hessian.In Section4.1.4, we derived all the
components needed to determine the Hessian of our cost function f and noticed that the
result again depends on the inner product. Hence using the definition of the Hessian for the
inner product (4.4) with ∇sym gives

Hesssymf(X)[ξX ] =D(gradsymf)(X)[ξX ].

Using (4.7) leads to

Hesssymf(X)[ξX ] =2

K∑

i=1

D(log)(A−1
i X)[A−1

i ξX ]X−1

− 2
K∑

i=1

log(A−1
i X)X−1ξXX−1,

where we used the product and chain rules of differentiationas well as the differential of the
matrix inverse function. We also recognize the differential of the matrix logarithm function
at the pointA−1

i X into the direction of the tangent vectorA−1
i ξX , which is computed using

the algorithm presented in [3, 4, 21].
When using the inner product (4.3) with ∇pd, the Hessian becomes

Hesspd f(X)[ξX ] =D(gradpd f)(X)[ξX ]

−
1

2

(
ξXX−1 gradpd f(X) + gradpd f(X)X−1ξX

)
.

(4.15)

In this case using (4.6) leads to

Hesspd f(X)[ξX ] =2

K∑

i=1

ξX log(A−1
i X) + 2

K∑

i=1

X D(log)(A−1
i X)[A−1

i ξX ]

−

(
K∑

i=1

ξX log(A−1
i X) +

K∑

i=1

log(XA−1
i )ξX

)

=

K∑

i=1

ξX log(A−1
i X) −

K∑

i=1

log(XA−1
i )ξX

+ 2

K∑

i=1

X D(log)(A−1
i X)[A−1

i ξX ],

(4.16)

where again we need the differential of the matrix logarithm. Note that the first two terms
in (4.16) are each others transpose (except for the minus sign), which can be exploited in the
computation. At first sight this seems somewhat peculiar since this subtraction produces a
skew-symmetric matrix while the result of the Hessian is supposed to be symmetric. How-
ever, looking at (4.15), we can see that the differential of the gradient is symmetric and
the second part, as the sum of a matrix and its transpose, is symmetric as well, proving
thatHesspd f(X)[ξX ] is an element ofSn.
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4.3.2. A trust region method: Hessian by decomposition.Another way to compute
the Hessian of our cost function is described in [17] and more explicitly for the current cost
function in [38]. The proposed procedure consists of determining the components of a decom-
position and then combining them to form the actual Hessian.A downside, however, is that
when determining the Karcher mean ofK n×n matrices, this sum consists ofKn(n + 1)/2
terms, which number grows rapidly asn increases (in [38] only 3 × 3 matrices were con-
sidered). Two other important remarks are that this technique is derived for the manifold
endowed with the inner product (4.3), and that the computation of the terms as in [38] is
only valid when we take the Hessian at the identity matrixX = I. This causes the need
to translate the problem in each iteration step to ensure this position for the current iteration

point, which is done by applying the mappingY 7→ X
− 1

2

k Y X
− 1

2

k , in whichXk is the newly
found iteration point, to all matrices in the mean and toXk itself. After convergence, we
apply the inverse mapping to translate the identity matrix to the actual Karcher mean of the
original matrices. Theoretically, this need for a translation is not a downside, in fact, it can
even simplify notations and required structures. Computationally, however, it could cause
problems when working, e. g., with ill-conditioned matrices.

The expression for the Hessian is given by

Hesspd f(X)[ξX ] =2

m∑

l=1

〈ξX , El〉Xwl(1)El

=2

m∑

l=1

tr(ξXX−1ElX
−1)wl(1)El,

wherem = Kn(n + 1)/2, El, andwl are defined as in [38]. Remember that the decomposi-
tion is only valid atX = I, hence the expression can be further simplified to

Hesspd f(X)[ξX ] = 2

m∑

l=1

tr(ξXEl)wl(1)El.(4.17)

When computing the Hessian, the rank-1 structure ofEl can be exploited to limit the re-
quired amount of operations. However, if we compare the costto compute the Hessians (4.16)
and (4.17), which are theoretically equal, we still find the number of operations for the first
one to beO(n3) and that of the secondO(n4).

4.3.3. A trust region method: Hessian by approximation.In the calculations of the
exact Hessian, determining the differential of the matrix logarithm function appears to be a
serious computational cost. A perhaps less elegant but sometimes advantageous solution is to
replace the matrix logarithm by (a truncation of) its Taylorseries atX = I given by

∞∑

m=1

(−1)m+1

m
(X − I)m,

which converges tolog(X) for all ρ(X−I) < 1,X 6= 0, whereρ denotes the spectral radius.
Truncating this series after the second term and entering the result into the expressions for the
gradient (4.6) and (4.7) corresponding to inner products (4.3) and (4.4), we obtain

gradpd
2 f(X) = 2

K∑

i=1

(2XA−1
i X −

3

2
X −

1

2
XA−1

i XA−1
i X) and

gradsym
2 f(X) = 2

K∑

i=1

(2A−1
i −

3

2
X−1 −

1

2
A−1

i XA−1
i ),
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respectively, as an approximation to the gradient. Note that we only use this approximation to
derive the approximated Hessian, while the actual gradientwill be used in the final algorithm.
Applying the definition of the Hessian to these expressions results in

Hesspd
2 f(X)[ξX ] = D(gradspd,2 f)(X)[ξX ]

−
1

2

(
ξXX−1 gradpd

2 f(X) + gradpd
2 f(X)X−1ξX

)

=

K∑

i=1

(
2XA−1

i ξX + 2ξXA−1
i X −

1

2
ξXA−1

i XA−1
i X

−XA−1
i ξXA−1

i X −
1

2
XA−1

i XA−1
i ξX

)
,

Hesssym
2 f(X)[ξX ] = D(gradsym

2 f)(X)[ξX ]

=

K∑

i=1

(
3X−1ξXX−1 − A−1

i ξXA−1
i

)
.

The finite spectral radius of the Taylor series indicates that when the matrices in the mean
lie close to each other (and to the current estimate), a trustregion method using one of these
Hessians is expected to work well. However, since these are only approximations to the
Hessian, quadratic convergence of the algorithm is no longer guaranteed as will be shown in
Section4.3.5.

4.3.4. A Riemannian BFGS method.Finally, we test a Riemannian generalization of
the classical BFGS method [36, 39], which updates an estimation of the Hessian throughout
the algorithm instead of solving systems with the Hessians exactly. The main point of interest
is how this update is done. Suppose we know the estimateBk in iteration stepk, which is
assumed to be a linear operator fromTXk

S
n
+ onto itself and can thus be represented by

an(n(n+1)/2)×(n(n+1)/2) matrixBk. The linear operatorBk+1 : TXk+1
S

n
+ → TXk+1

S
n
+

is then defined by

Bk+1p = B̃kp −
〈sk, B̃kp〉Xk+1

〈sk, B̃ksk〉Xk+1

B̃ksk +
〈yk, p〉Xk+1

〈yk, sk〉Xk+1

yk, ∀p ∈ TXk+1
S

n
+(4.18)

B̃k = TtAηk
◦ Bk ◦

(
TtAηk

)−1
,(4.19)

in whichηk is the current search direction,tA is the Armijo step size,sk is the vector transport
of the search direction to the new iteration point,yk is a measure for the change of the gradient
over the iteration step (formal expressions can be found in Algorithm4.2), andT is the vector
transport. Since an inner product and a vector transport arepresent in these expressions, there
are again different situations to investigate. We will testthe algorithm for each of the two
inner products combined with their natural retraction and vector transport. Note that in order
to evaluateBk+1p using the matrix representationBk+1, we need ann(n + 1)/2 vector
representation ofp. This is done by the half-vectorization operatorvech, which stacks the
elements of the upper triangular part ofp columnwise. Using this representation, the matrix-
vector productBk+1 vech(p) returns an(n(n + 1)/2) vector which is the half-vectorization
of the matrixBk+1p.



ETNA
Kent State University 

http://etna.math.kent.edu

COMPUTING THE MATRIX GEOMETRIC MEAN 397

In the simpler case of the inner product (4.4), expressions (4.18) and (4.19) become

Bk+1 vech(p) =B̃k vech(p) − B̃k vech(sk)
tr(skB̃kp)

tr(skB̃ksk)

+ vech(yk)
tr(ykp)

tr(yksk)
, ∀p ∈ TXk+1

S
n
+,

B̃k =Bk.

To removep from this expression, the matrix traces have to be split up byusing the pro-
perty tr(AB) = vec(A)T vec(B) with A andB being symmetric matrices. For the expres-
sion above, however, the second matrix should be half-vectorized, which needs to be com-
pensated for in the first vectorization. To this end, we also change the vectorization of the first
matrix to half-vectorization, but with the adaptation thateach off-diagonal element is doubled
and this operation is denoted byvech2. This yieldstr(AB) = vech2(A)T vech(B) and our
update formula becomes

Bk+1 =Bk −
1

tr(skBksk)
Bk vech(sk) vech2(sk)T Bk(4.20)

+
1

tr(yksk)
vech(yk) vech2(yk)T .

Note that this update differs in only two rank-1 terms from the previous estimation of the
Hessian, which can be exploited in the implementation.

For the inner product (4.3), the calculation of̃Bk is no longer so straightforward. Entering
the vector transportT pd (4.12) into equation (4.19), we obtain

B̃kp =QBk(Q−1pQ−T )QT , Q = X
1
2

k exp

(
X

− 1
2

k tAηkX
− 1

2

k

2

)
X

− 1
2

k .

To extractp from this expression, we want to use the propertyvec(ABC) = (CT⊗A) vec(B)
for general matricesA, B, andC, with ⊗ the Kronecker product, but this property cannot
be used when half-vectorization is applied. Therefore, letus pretend for a moment thatBk

andB̃k are represented byn2 × n2 matrices and apply this rule to the above expression:

B̃k vec(p) =vec(QBk(Q−1pQ−T )QT )

=(Q ⊗ Q)Bk vec(Q−1pQ−T )

=(Q ⊗ Q)Bk(Q−1 ⊗ Q−1) vec(p).

Changing back to half-vectorization can be accomplished byusing the so-called duplication
and elimination matricesDn andEn, which are simple matrices for transforming respectively
a half-vectorization into a normal vectorization and vice versa. Equation (4.18) can be tackled
in the same fashion as before, where we only need to pay attention to the extra factors in the
current inner product. The total update procedure now becomes

B̃k =En(Q ⊗ Q)DnBkEn(Q−1 ⊗ Q−1)Dn,

Bk+1 =B̃k −
1

tr(X−1
k+1skX−1

k+1B̃ksk)
B̃k vech(sk) vech2(X

−1
k+1skX−1

k+1)
T B̃k

+
1

tr(X−1
k+1ykX−1

k+1sk)
vech(yk) vech2(X

−1
k+1ykX−1

k+1)
T .

(4.21)
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Note that there are again two rank-1 terms present in the update. However, the update fromBk

to B̃k is no longer the identity and can in this case be seen as an update of the rank-1 terms
which originated in the previous iterations.

Now that the techniques to update the estimate of the Hessianare specified, we display
the entire Riemannian BFGS method in Algorithm4.2. The convergence criteria are specified
as before by testing whether the Armijo step size or the absolute or relative difference between
two consecutive iterates are smaller than their respectivetolerances.

Algorithm 4.2 The Karcher mean using the Riemannian BFGS method.
Input: matricesA1, . . . , AK , K > 2, initial guessX0, initial Hessian approximationB0,

retraction and vector transport typeRi andT i (Rsym andT sym or Rpd andT pd)
Output: Karcher meanK(A1, . . . , AK)

k ← 0
gradk ← grad f(Xk) {f is our cost function}
while not convergeddo

Obtainηk: Solve the system:Bk vech(ηk) = − vech(grad) {The search direction}
if ηk not a descent directionthen

ηk ← −gradk

end if
Xk+1 ← Ri

Xk
(tAηk) {with tA the Armijo step size [1]}

gradk+1 ← grad f(Xk+1)
sk ← T i

tAηk
(tAηk)

yk ← gradk+1 − T i
tAηk

(gradk)
UpdateBk to Bk+1 using (4.20) or (4.21), depending on the inner product
k ← k + 1

end while

4.3.5. Comparison.We start by applying the second-order techniques to three10 × 10
matrices and compare the results to a high precision computation of the Karcher mean, which
is displayed in Figure4.5a. The trust region methods from Sections4.3.1and4.3.2show in
general better accuracy results than the previous first-order techniques, even though there are
occasional outliers that shift the mean values in Figure4.5a. The Riemannian BFGS method
on the other hand displays an accuracy similar to the first-order methods. The trust region
method using the approximated Hessian from Section4.3.3shows very bad accuracy, which
is why we will not discuss this method any further. Overall, we again noticed slightly better
results for the techniques corresponding to the inner product (4.3).

To test the speed of the algorithms, the size of the matrices in the mean is again varied
(when taking5 matrices) as well as the number of matrices (where we fix the size to10 × 10
matrices). We notice once more the smaller number of iterations required by techniques
based on the inner product (4.3), although the corresponding structures will in general be
more expensive to compute. In Figure4.5b, the number of iterations are shown for some
of the methods as the number of matrices in the mean varies, where the difference in the
iterations for the Riemannian BFGS methods confirms our statement. The advantage of the
smaller number of iterations when using the inner product (4.3) can be seen when comparing
the computational time of the two resulting trust region methods (see Figure4.6a: TR-SPD
and TR-SYMM). In fact, the trust region method using the exact Hessian corresponding to the
inner product (4.3) (TR-SPD) gives very good results, approaching even the computational
time of the first-order methods.

Another remarkable result in Figure4.6ais the performance of the Riemannian BFGS
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FIGURE 4.5.Comparison of the accuracy and computational speed of the Karcher mean using the various trust
region methods and the Riemannian BFGS algorithm. In the legends, we first indicate whether the trust region (TR)
or Riemannian BFGS (RBFGS) technique is used, next, which ofthe inner products(4.3) (SPD) or(4.4) (SYMM) is
used and if a non-standard method was used (DECOMP for the technique in Section4.3.2and APPROX for those in
Section4.3.3). The mean of the samples is in both figures indicated by the connecting lines.

method, which shows a lower computational time than the steepest descent algorithm. We
do note that this test is performed for a varying number of10 × 10 matrices, and as the
size of the matrices starts to increase, the Riemannian BFGSmethod as well as the other
second-order techniques are outperformed by the steepest descent and conjugate gradient
algorithm (see Figure4.6b). Figure4.6aalso shows that the Riemannian BFGS method based
on the inner product (4.3) is faster than the one using the inner product (4.4), even though
the corresponding structures are more expensive. As Figure4.5b indicates, the number of
iterations is significantly lower for the first, which makes up for this extra computational cost.
However, we note again that as the size of the matrices increases, the method using the inner
product (4.4) becomes faster due to its less expensive update formula.

Furthermore, we mention that while the technique in Section4.3.2theoretically works
with the same Hessian as the classical method using the standard definition of the Hes-
sian (4.15) (for the inner product (4.3)), the number of iterations required for this first tech-
nique is generally larger than for the second, indicating a lower stability and causing a longer
computational time.

Figure 4.6c shows the evolution of the gradient for all algorithms basedon the inner
product (4.3). The quadratic convergence of the trust region algorithm is clearly visible as
well as a superlinear convergence for the Riemannian BFGS method. The steepest descent
and conjugate gradient algorithm show a very similar (linear) convergence since the problem
is well-behaved, eliminating the need for the conjugate gradient technique to be activated.
Finally, the trust region algorithm using the approximatedHessian (Section4.3.3) has lost
all quadratic convergence and displays an even slower convergence than the steepest descent
method. We note that the techniques that use the Armijo line search technique to determine
the next iteration point stop when the norm of the gradient isabout the square root of the
machine precision. This is caused by the use of the squared norm of the gradient in the
Armijo condition.

5. Conclusions. This paper has demonstrated various techniques to compute amatrix
geometric mean. The lack of uniqueness of the definition was mostly overcome by the ap-
pealing analogy of the Karcher mean with the arithmetic mean. The convergence of the
first-order optimization techniques for computing this Karcher mean can easily be verified
using Corollary 4.3.2 and Theorems 4.4.1 and 4.4.2 in [1] and exploiting the convexity of the
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FIGURE 4.6. Comparison of all the discussed algorithms. In the legends,the abbreviations SD (Steepest
Descent), CG (Conjugate Gradient), TR (Trust Region), and RBFGS (Riemannian BFGS) are used to denote the
applied technique and when necessary, the used inner product is indicated with SPD(4.3) or SYMM(4.4). For TR
the suffix DECOMP or APPROX is added to indicate the techniques in Section4.3.2and4.3.3, respectively. In the
first figure, the influence of the inner products is compared. In the second, we compare the algorithms which use
the inner product(4.3). In the last figure, the evolution of the gradient is depictedfor all techniques using the inner
product(4.3).

problem. The convergence of the second-order optimizationmethods, although predicted by
the experiments, is theoretically not so easily guaranteedand will be treated as future work
(indications are present in [1, 20]).

We noticed that while the second-order techniques requiredless iterations, the compu-
tational cost associated with each of these iterations was higher than that of the first-order
algorithms, nullifying the advantage of a quadratic convergence. This effect was most visible
when the size of the matrices increased. Hence, we conclude that for the current algorithms
on the manifoldSn

+, it is more advantageous to work with first-order optimization techniques
when the size of the matrices increases (already atn = 10). It is possible to produce more
efficient second-order optimization algorithms if we were able to reduce our search space,
the manifold of interest, to a certain subset which structure can be further exploited. For ex-
ample, the geometry of the manifold of larger matrices of fixed, low rank has already been
extensively researched [13, 41] and can be used to apply the optimization techniques in this
paper. This will also be a topic of future research.

The MATLAB code used to produce the experiments in this paper is available at
http://people.cs.kuleuven.be/ ˜ raf.vandebril/ .
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