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Not everything that can be counted counts,

not everything that counts can be counted.

— William Bruce Cameron, 1963
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Abstract

By the end of 2013, the number of internet-connected mobile devices is expected

to exceed that of humans. Omnipresent and context-aware, mobile devices enable

people to communicate and exchange data anytime and almost anywhere. The

myriad of ”digital footprints” that mobile devices leave can be used to infer a large

amount of personal information about their owners. For instance, the IP address

can be used to infer a coarse-grained location of the device, the temporary identi-

fiers used in cellular networks can be used to track people’s whereabouts and infer

numerous personal details. Similarly, online social networks often force members

to share some personal information with all other users or service providers, de

facto exposing users to unwanted profiling by advertisement companies and other

private and state agencies. At each layer of the network stack, there is some in-

formation that can be used to track and profile mobile users; it is therefore crucial

to investigate the privacy challenges present at different layers and design privacy

protection mechanisms that work across these layers.

In this thesis, we take a top-down approach on privacy in mobile networks by

(i) studying the issues present in different network layers – the application, IP

and link layers – and (ii) by proposing protection mechanisms and quantifying

the extent of private information leakage. First, we look at the application layer,

where we design protocols to protect users’ personal data from third-party entities

and other unauthorized users. In particular, we focus on two relevant problems:

meeting scheduling and optimal meeting location determination. For these two

problems, we propose and evaluate privacy-preserving protocols that are both

practical and more efficient than the existing approaches. Second, we study

the privacy challenges that arise in the network and link layers, by quantifying

the exposure of social community information in a large on-campus experiment.

In addition, we evaluate the effect of the reconstructed community information

on the inference of social ties among the participants to the experiment. For

the first time in the same experiment, we compare the reconstruction accuracy

of a realistic eavesdropper, who has only access to packet headers exchanged

among the mobile devices, with that of a malicious application or entity that has
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access to the on-device data. Third, by taking a cross-layer approach, we design

and evaluate a mobile social-networking application that enables users to share

different kinds of personal information in a privacy-aware and inobtrusive way.

In particular, we show how existing information-sharing policies are ineffective in

correctly predicting users actual sharing behavior; then, based on a probabilistic

decision-making framework, we demonstrate how machine learning can be used to

automatically decide whether and how much to share – based on the users’ context

and past behavior. Our results indicate that the proposed machine-learning-based

approach is more comprehensive and practical than existing automated solutions

and, at the same time, it is more effective than fixed policy-based rules – all while

requiring a minimal effort from the users.

Keywords: Mobile networks, privacy, meeting scheduling, encryption, social com-

munities, decision-making, user-study, machine learning



Riassunto

Entro la fine del 2013, si prevede che il numero di dispositivi mobili connessi

ad Internet sorpasserà il numero di persone. Onnipresenti e sensibili al contesto

dell’utente, i dispositivi mobili permettono alle persone di comunicare e scambiare

dati in qualsiasi momento ed in quasi ogni luogo. La miriade di “impronte digi-

tali” che questi dispositivi lasciano possono essere usati per inferire una grande

quantità di informazioni personali sui loro proprietari. Ad esempio, l’indirizzo

IP può essere utilizzato per dedurre la posizione approssimativa del dispositivo,

l’identificativo temporaneao impiegato nelle reti di telefonia cellulare può venir

sfruttato per tener traccia degli spostamenti delle persone and per inferire nu-

merosi dettagli personali. Analogamente, gli online social networks obbligano

spesso i loro iscritti a condividere alcune informazioni personali con tutti gli altri

membri, esponendo di fatto gli utenti ad analisi comportamentali condotte da

compagnie pubblicitarie ed altre agenzie, sia private che pubbliche. Su ogni layer

dello stack di rete, vi sono delle informazioni che possono venir utilizzate per

tener traccia e fare profiling di persone; diventa quindi cruciale l’investigazione

delle sfide nell’ambito della privacy su differenti layers, cos̀ı come lo sviluppo di

meccanismi di protezione della privacy che lavorino trasversalmente fra diversi

layers.

Nella presente tesi, viene preso un’approccio top-down rispetto alla privacy

nelle reti mobili. In primo luogo, viene presentato lo studio delle sfide presenti su

diversi layers dello stack di rete – link, IP e applicativo. In secondo luogo, vengono

proposti meccanismi di protezione e quantificata l’estensione della fuga di dati pri-

vati. In primo luogo, ci focalizziamo sul layer applicativo, dove sviluppiamo pro-

tocolli per proteggere i dati personali degli utenti da parti terze e utenti non autor-

izzati. In particolare, ci concentriamo su due problemi rilevanti: pianificazione di

attività e determinazione di una località ottimale. Per questi due problemi, pro-

poniamo e esaminiamo protocolli che preservano la privacy e sono sia pratici che

più efficienti di soluzioni esistenti. In secondo luogo, proponiamo uno studio sulle

sfide della privacy che si manifestano sui layers network e link, dove quantifichi-

amo l’estensione dell’esposizione di informazioni private riguardanti le communità
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sociali delle persone in un’ampio esperimento condotto sul campus universitario.

In aggiunta, esaminamo l’effetto della ricostruzione delle comunità sulla capacit di

inferenza del tipo di relazioni sociali fra i partecipanti. Vengono comparati, per la

prima volta nello stesso esperimento, l’accuratezza dell’inferenza effettuata da un

origliatore esterno (il quale non ha accesso ai dati contenuti sul terminale mobile)

con quella di un’applicazione maligna o entità che ha accesso ai dati presenti sul

terminale. In terzo luogo, basandoci su un’approccio trasversale attraverso diversi

layers, sviluppiamo ed esaminiamo un’applicazione sociale per terminali mobili

che permette agli utenti di condividere informazioni personali in modo rispettoso

della privacy e non intrusivo. In particolare, mostriamo come le regole di con-

divisione esistenti sono inefficienti nel predire correttamente il comportamento

dell’utente quando condivide l’informazione; in seguito, basandoci su una strut-

tura probabilistica decisionale, dimostriamo come il machine-learning può essere

utilizzato per decidere in modo automatico se e a che dettaglio l’informazione

verrà condivisa con altri – a seconda del contesto attuale e del comportamento

nel passato. I nostri risultati indicano che il sistema proposto é più completo e

pratico rispetto a sistemi esistenti ed é, allo stesso tempo, più efficace di sistemi

basati su policies fisse – il tutto richiedendo uno sforzo minimale all’utente.

Parole chiave: Reti mobili, privacy, pianificazione di attività, crittografia, comu-

nità sociali, presa di decisione, studi con persone, machine learning
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Chapter 1

Introduction

The way we connect to the Internet has significantly changed in the course of

the last decade. Traditional, desktop-based operating systems such as Microsoft

Windows represented more than 93% of all Internet-connected devices back in

2000, whereas today, they only represent a small fraction (29%)[66]. Mobile ter-

minals, including smartphones and tablets, represent nowadays 66% of the total

number of Internet-connected devices, marking a clear shift from desktop-based

to mobile Internet access with multiple co-existing hardware/software vendors

and ecosystems.

Mobile devices have evolved from simple “wireless telephones” to powerful

computing devices. In addition to basic call and messaging functionality, they

enable users to obtain contextualized services and to share information at an

unprecedented scale; from location-based queries to services based on shared

interests and physical co-presence, mobile devices are now both enablers and

gatekeepers of our digital lives.

The amount and diversity of data stored on mobile devices is rapidly increas-

ing, coming from embedded sensors (such as GPSs, gyroscopes, accelerometers,

barometers, hygrometers, magnetometers and thermometers [137]), wireless inter-

faces (cellular, WiFi, Bluetooth, NFC) and from the users themselves (contacts,

agenda, media). Mobile applications, developed by both device manufacturers

and third-party companies, process large amounts of data in order to present

relevant and timely information to the user [73]. For example, mobile social net-

works may use location data and wireless interfaces in order to infer the type

of place and presence of physically co-located neighbors; similarly, banks and

cashiers may require access to the NFC sensor in order to authorize a transaction

and to verify the identity of the owner.

Although third-party applications need access to certain data, it is extremely

important to limit it to only the information that is strictly necessary for each

1



2 CHAPTER 1. INTRODUCTION

application to serve its purpose. Moreover, information needs to be protected

from not only unauthorized access but from abusive (but authorized) access and

proliferation as well. The former being concerned with information security, the

latter point represents a more recent and equally important aspect of personal

life: information privacy. We refer to “abusive” access as any kind of access to

personal information that is authorized but with a different purpose or extent

than the one for which it is intended. This definition is compliant with the

European Data Protection Directive1, where it is stated that (article 6, par. 1,

al. (b) and (c)):

... personal data must be:

b) collected for specified, explicit and legitimate purposes2 and not

further processed...

c) adequate, relevant and not excessive3 in relation to the purposes

for which they are collected ...

This is in contrast with an “unauthorized” access, which is an access to any

information about the individual for which the entity is not entitled. For example,

an application that provides local weather forecast could be authorized to access

location data at a city-level granularity, only once every two hours but if such an

application accesses continuous location updates – once per minute at street-level

granularity – it may constitute a case of abuse of access to personal information, as

the accessed data is excessive with respect to the purpose. Therefore, it represents

a threat to the privacy and it should not be allowed such an unrestricted access

to personal information.

The combination of multiple types of information with a diverse set of appli-

cations and services makes the mobile device an extremely palatable target for

unscrupulous monitoring, interception, tracking and social analysis [75, 81, 107,

120, 38, 105, 22, 16]. In order to protect the mobile users from attacks on their

privacy, the research community, as well as private companies including Google,

Apple and Microsoft, have been studying approaches and mechanisms that would

limit the access to personal information on mobile devices. The reality, however,

is that most of these mechanisms are either insufficient or lack appropriate fine-

grained functionalities. For instance, the Wall Street Journal [151] found out

that, back in 2010, 55% of the 101 scrutinized applications for Android and iOS

sent out unique phone IDs without the users’ awareness or consent, whereas 47%

sent the users’ locations as well. A year later, Android was again under scrutiny

1Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995
on the protection of individuals with regard to the processing of personal data and on the free
movement of such data. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
31995L0046:en:NOT

2Emphasis added by the author.
3Emphasis added by the author.
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because of alleged violations of users’ privacy due to the usage statistics-collection

software developed by Carrier IQ [150]: The application, transparent and impos-

sible to remove for the users, was recording the keystrokes of the users at all

times, including when they sent messages and typed passwords. A similar dis-

covery on iOS put Apple under close examination for collecting, without users’

knowledge, their whereabouts as a time-stamped record containing the mobile

device’s location coordinates, as well as all the received signal strengths of the

nearby base stations and WiFi access points [7]. These discoveries point out that

attacks on mobile users’ privacy are real and they concern a significant fraction

of the available mobile applications. Therefore, it is crucial to enable users to

control and limit, in a more effective way, the information that their devices

are leaking. However, the privacy protection mechanisms should not hinder the

adoption of novel applications and services, as privacy does not constitute a goal

per se but rather a necessity. Hence, these mechanisms should be as transparent

and unobtrusive as possible for the mobile users.

From a broad perspective, studies and mechanisms concerned with privacy

on mobile devices can be described in terms of the following three dimensions:

1. Evaluation of privacy leaks and protection mechanisms: This category en-

compasses studies that either (i) quantify the extent of the exposure of

personal information of mobile users (without taking any action to control

it) or (ii) develop mechanisms that protect the users’ privacy by actively

policing access to information and thus limiting the exposure. An example

of the latter is visible in Android, iOS and Windows Phone, where access to

private information has to be granted by the user, either at the installation

time of the application or when requested for the first time.

2. Centralized and distributed mechanisms: This category includes architec-

tural aspects of the privacy mechanisms that involve either a direct, peer-

to-peer communication among mobile devices or a client-server approach

where the devices are coordinated by a central entity that oversees all com-

munications among the devices. For instance, most of the current mobile

social networks and micro-blogging services such as Facebook, Google+ and

Twitter opted for a centralized approach, where the service provider stores

all personal information and allows users to specify criteria-based access

policies.

3. Network layers at which the mechanisms operate: This category comprises

functional aspects of the protection mechanisms that work at either of the

ISO/OSI network layers, in particular the link and network (IP) layers,
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as they are lowest layers that contain personal4 or personally identifiable5

information, such as a name, a biometric sample or an IP or MAC address.

The three above-mentioned dimensions cover a large realm of possible research

directions in the field of privacy and mobile computing. The aim of this thesis

is, on the one hand, to explore the breadth of the privacy challenge in mobile

networks in different yet correlated dimensions. On the other hand, we propose

novel mechanisms that would go in the depth of some specific problems in order

to minimize the leakage of personal information for the users.

Our studies span the three dimensions described above, including the eval-

uation, the definition of novel protection mechanisms and the design of system

and network architectures to support them. In addition to the findings and re-

sults of this thesis, we also consider the experimental validation of the proposed

mechanisms and the real-world evaluation of information leakage as a fundamen-

tal asset. That is why all our results are based on either real deployment and

user-studies of the proposed mechanisms – implemented as prototypes – or make

use of real data from official state agencies and repositories.

Contributions

In this thesis, we address both the practical and theoretical aspects of privacy in

mobile networks across the application and network layers of the ISO/OSI stack.

First, we study, develop and evaluate novel, efficient privacy-preserving protocols

for specific applications present on current mobile devices. Second, we quantify

the leakage of hidden behavioral patterns from co-location information that can

be inferred from the network layer data, such as the membership of individuals

to specific social communities and the types of relationships among them. Third,

we design and evaluate a novel cross-layer system that assists users while sharing

personal information on mobile devices, by mimicking their own behavior and

minimizing undesired information leakage.

Our main contributions are as follows.

1. On the application layer, we identify two significant and recurring chal-

lenges in mobile computing: meeting scheduling and optimal meeting loca-

tion determination. For these two problems, we propose privacy-preserving

protocols that provide strong privacy guarantees while retaining a good

performance in terms of computation time and memory efficiency – two

4Article 2, al. a), of Directive 95/46/EC of the European Parliament and of the Council of
24 October 1995 on the protection of individuals with regard to the processing of personal data
and on the free movement of such data. http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:31995L0046:en:NOT

5Memorandum M-07-16 of the Executive Office of The President, Office of Management
and Budget, May 2007, http://www.whitehouse.gov/sites/default/files/omb/memoranda/
fy2007/m07-16.pdf
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aspects that are extremely important for resource-constrained mobile de-

vices. In particular, for the meeting scheduling problem, we design three

novel meeting scheduling algorithms that take advantage of the homomor-

phic properties of well-known cryptosystems, in order to privately and ef-

ficiently compute common user availabilities. We also formally outline the

privacy requirements in such scheduling applications, and we implement our

solutions on real mobile devices. The experimental measurements and an-

alytic results show that the proposed solutions not only satisfy the privacy

properties but also fare better, in regard to computation and communica-

tion efficiency, compared to other well-known solutions. With respect to

the optimal meeting location problem, we propose privacy-preserving algo-

rithms for determining such a location for a group of users. We perform a

thorough privacy evaluation of the proposed approaches, under both pas-

sive and active adversarial models, by formally quantifying privacy-loss in

this setting. Like for the meeting scheduling evaluation, we implement and

experimentally evaluate the proposed protocols. We show that they are

efficient and can be executed with ease by current mobile devices in just

a few seconds. Moreover, the protocols are scalable on the server-side for

multiple concurrent executions.

2. On the network layer, we evaluate the exposure of mobile users to social

community inference attacks, and we quantify the extent of such exposure

by means of a large network deployment on the EPFL campus. During

a four-month trial, 80 participants carried mobile devices and were eaves-

dropped on by an adversarial wireless mesh network on a university campus.

We experimentally evaluate the accuracy of reconstructing the communities

of mobile users by an adversary that owns a set of wireless sniffing stations.

In addition to studying the users’ behavior at the community level, we in-

vestigate the susceptibility of their pairwise social relationships to inference

attacks as well. In particular, we show that an external adversary control-

ling a wireless mesh network can reconstruct the social communities better

than an experimenter who has access to co-location data stored on the

mobile devices. Our findings shed light on the potential threat of mobile

users to unwarranted or unwanted profiling from mobile cellular network

operators.

3. Combining both network and application layers, we design and evaluate

a ”smart“ information-sharing system for mobile social networks. In par-

ticular, our machine-learning-based system designed in (i), called SPISM ,

decides in a (semi-)automatic fashion whether to share information (and

the level of detail of the information to be shared) with other users or ser-

vices, based on contextual features and past behavior. The decision-making



6 CHAPTER 1. INTRODUCTION

Application Layer

Network Layer

Privacy Protection Privacy Evaluation

Ch. 2 Ch. 3
Ch. 6

Ch. 6

Ch. 4
Ch. 5Ch. 6

Ch. 6

Figure 1.1: Structure of the thesis in terms of the main domains of its chapters.
The black-colored chapters are positioned according to their main contribution,
whereas the grey-colored chapters are placed according to the domains that they
involve.

core is supported by an active learning method that enables SPISM to ei-

ther decide automatically – whenever the confidence in the decision is high

enough – or to rely on the user’s input otherwise. SPISM can work with

any existing (mobile) online social network and can be used transparently

by users, because it can operate at the operating system level, filtering

all requests for personal information and replying according to the user’s

behavior. We show that SPISM significantly outperforms both individual

and general user-defined sharing policies, achieving up to 90% of correct

sharing decisions, with only a limited cost for the user in terms of initial

setup, thanks to active learning. Moreover, we provide insight onto the

main reasons behind the sharing decisions, and we show that the type of

the requested information, in addition to the social ties of the requester, is

an influential feature in the decision process.

Thesis Outline

The structure of the thesis follows the three main contribution areas described

above. Figure 1.1 represents the positioning of the different chapters with re-

spect to the dimensions to which they contribute. We introduce the application-

layer protection mechanisms in Part I; in particular, we devote Chapter 2 to the

meeting-scheduling problem and solutions, whereas in Chapter 3 we define and

present our solutions to the optimal meeting-location problem. In Part II we
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discuss the network-layer aspects of privacy in mobile networks, starting with

the privacy of social communities in Chapter 4 and following with the privacy

of social relationships in Chapter 5. In Part III, we present the cross-layer ap-

proaches for privacy and, in particular, in Chapter 6 we present our adaptive

information-sharing system for mobile social networks.

Publications

Chapter 2 is based on the results presented in [21, 18], whereas Chapter 3 rests

on the results contained in [20, 19]. Chapter 4 and Chapter 5 contain the findings

presented in [22, 17]. Finally, Chapter 6 is based on the results contained in [16].





Part I

Application-Layer Privacy

Protection

9





Chapter 2

Privacy-Preserving Meeting

Scheduling

Mobile devices are used increasingly to store and manage users’ personal infor-

mation, as well as to access popular third-party context-based services. Very

often, these applications need to determine common time availabilities among a

set of users, in order to enable colleagues, business partners and people to meet.

As personal and professional time constraints are often considered as private

information, it is crucial to enable users to preserve the privacy of their sched-

ules while they use such applications. In this chapter, we propose practical and

privacy-preserving solutions to the server-based scheduling problem for mobile

devices. In order to privately and efficiently compute common user availabilities,

our three novel algorithms take advantage of the homomorphic properties of well-

known cryptosystems. We also formally outline the privacy requirements in such

scheduling applications and we implement our solutions on real mobile devices.

The experimental measurements and analytical results show that the proposed

solutions not only satisfy the privacy properties but also fare better, in regard to

computation and communication efficiency, compared to other well-known solu-

tions. Finally, we assess the utility and expectations of the proposed solutions,

in terms of privacy and usability, by means of a targeted survey and user-study

of mobile-phone users.

Chapter Outline In Section 2.1, we introduce the activity scheduling problem and

contrast our approach to existing ones. We then present the system architecture

and problem definition in Section 2.2. We formalize the privacy requirements

for the scheduling problem in Section 2.3 and outline our algorithms in Section

2.4. We present a comparative analysis and implementation results in Section

11
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2.5, and we summarize the results of our user-study in Section 2.6. We discuss

the extensions of our schemes in Section 2.7, and we present the related work in

Section 2.8. We summarize this chapter in Section 2.9.

2.1 Introduction

Users rely increasingly on mobile devices such as smartphones, netbooks and

lightweight internet tablets to access information while on the move [39], and

very often they use the same equipment to store personal information about

their daily schedules and activities [34]. Although many context and data shar-

ing applications such as Google Maps, Facebook and Twitter are popular, activity

management and synchronization applications are also gaining more and more

attention [74]. Applications such as Microsoft Outlook [110], Apple iCal [5] and

Nokia Ovi [118] are available on mobile devices, and they all offer time and ac-

tivity management services. One desirable feature in such applications is activity

scheduling : Colleagues can schedule meetings at common available time slots;

groups of friends can organize parties on weekends, and people unbeknownst to

each other can engage in dating based on their common free/busy hours.

One concern in such scheduling applications is that often users prefer not to

share all personal information with everyone. For example, they may only want

to share common availabilities, but not details about other records. They may

also have reservations about sharing personal information with third-party service

providers. Therefore, privacy of personal information, vis-à-vis service providers

and peers, is paramount to the success of such scheduling applications. For

instance, a well-known service that allows users to find all common availabilities

is Doodle [45]. However, Doodle does not provide privacy: Each user and the

doodle server see the free/busy state of all the users, and the private information

that is leaked to all users and the central server is well beyond just the common

available slots. Cultural, religious and many other private information can be

easily inferred from availability patterns. Even if pseudonyms are used instead

of real names, the server and all peers still know what time slots are available for

everyone and how many users are free or busy.

Privacy-preserving scheduling problems have been extensively studied in the

past by researchers from the theoretical perspective, for instance, by modelling

them as set-intersection problems [93, 41], distributed constraint-satisfaction prob-

lems [155, 158, 143, 142], secure multi-party computation problems [79, 46] and

by framing them in the e-voting context [92]. Traditionally, there are two possi-

ble approaches to scheduling problems: distributed and centralized. Distributed

solutions do not rely on a third-party provider (thus they prevent information

from being revealed to the provider), but have several limitations. For instance,

due to the frequent and intensive message exchanges among peers, scalability
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and computational complexity is an issue when dealing with a large number of

(resource-limited) mobile devices; moreover, the need for sequencing among peers

and the unpredictability of scheduling results (if a user interrupts the protocol)

are two additional drawbacks. The centralized approaches, such as cloud-based

computing, are better in terms of scalability, communication cost, complexity,

synchronization and resilience but usually do not provide privacy, because users

are required to transmit their personal information to the provider.

We provide simple, practical and feasible solutions to the scheduling problem

which, in addition to ensuring reasonable privacy guarantees, are easily inte-

grated with existing operational models and mobile service providers. In this

chapter, we follow a centralized approach for addressing the problem of efficient

and privacy-preserving scheduling. In the proposed schemes, users are able to de-

termine common time slots, without revealing any other information to either the

other participants or to the central scheduling server. By building on other works

in related domains, we formally define the basic privacy requirements for users in

a scheduling scenario. We then propose three novel privacy-preserving schedul-

ing algorithms that take advantage of the homomorphic properties of asymmetric

cryptosystems. We implement the proposed algorithms on a test-bed of Nokia

mobile devices and perform extensive experiments in order to verify their com-

putation and communication overhead. Moreover, we explain how the system

can be further made resilient to collusion and other well-known active attacks.

Finally, we present the modalities and results of a targeted user-study on mobile-

phone users, focused on both privacy and usability aspects of our applications.

To the best of our knowledge, we believe this is the first implementation and

extensive testing of privacy-preserving scheduling schemes on commercial mobile

devices.

2.2 System Architecture

In this section, we outline the network and adversary model and formally define

the scheduling problem.

2.2.1 Network Model

We assume that there is a total of N users ui, i ∈ {1 . . . N}, that want to schedule

an activity (meeting, party) at a common available time slot. Each user has a

private schedule xi represented by a string of bits xi = [bi,1, bi,2, . . . , bi,m], where

each bit bi,j ∈ {0, 1} expresses the availability of user ui in a particular time slot

j; bi,j = 1 means that user ui is available at time slot j, whereas bi,j = 0 means

that the user is not available.1 We assume that the length m of xi, i.e. the time

1In general, however, users may assign not only a binary value (available or busy) for each
time slot, but they could express preferences [50, 59]. For example, bi,j ∈ 0, . . . , 10 where bi,j = 0
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horizon of the individual schedules, is constant for all users. The value of m can

either be pre-decided by the participants or fixed by the application.

Moreover, we assume that each user’s device is able to perform public key

cryptographic operations and that there is a semi-honest [67] (as detailed in Sec-

tion 2.2.2) third-party performing the scheduling computations. The latter must

be able to communicate with the users and run public key cryptographic functions

as well. For instance, a common public-key infrastructure using the RSA [134]

cryptosystem could be employed. All communications between a user and the

third-party server will be encrypted with the latter’s public key for the purposes

of confidentiality of the schedules with respect to other users, for authentication

and integrity protection. Thus, all users know the public key of the server but

nobody, except the server, knows the corresponding private key. For simplic-

ity of exposition, in our algorithms we do not explicitly show the cryptographic

operations involving the server’s public/private key.

We assume that the N users share a common secret, which is used to derive

(i) a fresh common key pair (KP ,Ks), where Kp is the public key and Ks is

the private key, and (ii) a fresh bit permutation function σ = [σ1, . . . , σm] before

initiating the scheduling operation. This could be achieved, for example, through

a secure credential establishment protocol [29, 32, 101]. Thus, these keys and

permutations are derived and known to each member of the group but not to the

server. We refer to the encryption of a message M with the group public key as

EKP ,r(M) = C, where r is a random integer that is eventually needed, and to

the decryption of the encrypted message C as DKs(C) = M . The permutation

σ, although not strictly required, is used in order to randomize the order of bits

sent to the server. This prevents the server from gaining any knowledge about

which time slot is being evaluated in each computation.

2.2.2 Adversarial Model

Server The third-party server is assumed to execute the scheduling protocols

correctly, but it tries to learn any information it can from the input it gets by the

users and the computations it performs. The server can accumulate the knowl-

edge about users in each computation it performs. We refer to this adversarial

behavior as semi-honest. In most practical settings, where service providers have

a commercial interest in providing a faithful service to their customers, the as-

sumption of a semi-honest server is generally sufficient. More details about the

semi-honest model can be found in [67].

means that user ui is busy in the time slot j, whereas its preference would increase if bi,j ≥ 1.
For simplicity of exposition, we assume a binary value here. We later discuss a more general
case with non-binary costs in Section 2.7.
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Each user i

Individual schedule 
availabilities xi
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Location Determination Server

PPAS algorithm A

f(xi)

f(Y) = A(f(x1),...,f(xN))

Inverse 
function f--1

Common 
schedule 

availabilities Y

A(f(x1),..f(xN))

Figure 2.1: Functional diagram of the privacy-preserving activity scheduling
(PPAS) protocol, where each user sends his own transformed schedule availabili-
ties to the scheduling server and obtains the aggregate availabilities. The schedul-
ing server obliviously performs the aggregated availabilities, without knowing the
individual user schedules.

Users Users also want to learn private information about other users’ schedules

and, in addition to the passive eavesdropping attacks, users could act maliciously

by generating fake users, manipulating their own schedules or by colluding with

other users or the scheduling server. Initially, we assume that users are honest but

curious (or semi-honest), and afterwards we present more active (or malicious)

types of user adversaries in Section 2.7.2.

Although, as mentioned, the semi-honest adversarial model is sufficient in

most practical settings, considering the commercial interest of service providers

and the mutual trust among participants, it does not include possible malicious

behavior by the server or users. For instance, the server could collude with the

participants or generate fake participants in order to obtain private information

of the participants. Similarly, users might collude with other users or try to mali-

ciously modify their schedules in order to disrupt the execution of the protocol or

to gain information about other users’ schedules. We address such active attacks

by both users and server in Section 2.7.2, and we describe how such attacks can

be thwarted by using existing cryptographic mechanisms.

2.2.3 Centralized Scheduling Algorithm

Given a group of N users ui, i ∈ {1 . . . N}, each with private schedules xi =

[bi,1, . . . , bi,m], the scheduling problem is to find time slots j such that ∀i = 1 . . . N ,

bi,j = 1, i.e. all users are available in the same time slot j. We refer to an

algorithm that solves the scheduling problem as a scheduling algorithm. Figure 2.1

shows a functional diagram of a generic privacy-preserving scheduling protocol,

where the scheduling algorithm A is executed by a server. Formally, a scheduling



16 CHAPTER 2. PRIVACY-PRESERVING MEETING SCHEDULING

Users Server

,1 ,

1

,., ], the group-shar
Each user , {1,..., },  knows: his schedule 

[ ermued bit p

,  transformation an

tation 

d output functions  funct ando  i n 
i i i m

iu i N
x b b

f g
,1 ,

{1,..., }
( ,..., )i i i m

i N
f b bf

1

Server computes
( ,.) . , )( . Nf Y A ff

( )f Y
,1    if 1,., :  s.t. 1

( ( ))
   other

Each user , {1,..., },

wise

 computes:i

i jYES i N j b
f Y

u i

NO

N

Y f

Figure 2.2: A generic scheduling protocol. Users first send their transformed
schedules fi to the server, which then performs the scheduling algorithm A on
the received data and sends the encrypted output f(Y ) back to each user.

algorithm A accepts the following inputs and produces the respective outputs:

• Input: a transformation of individual schedules

f(bi,1, . . . , bi,m), ∀i = 1 . . . N.

where f is a one-way public transformation function (based on secret key)

such that it is hard (success with only a negligible probability) to determine

the input of the function without knowing the secret key, just by observing

the output.

• Output: a function f(Y ), Y = y1, . . . , yj , . . . , ym where:

yj =

{
Y ES if bi,j = 1, ∀i = 1 . . . N

NO otherwise

such that each user is able to compute Y = f−1(f(Y )) using its local data. As

we will see later on, we use the well-known cryptosytems ElGamal [49], Paillier

[124] and Goldwasser-Micali [69] as our transformation and output functions f .

A centralized scheduling process works as follows. Each user ui, i ∈ {1 . . . N}
computes fi = f(bi,1, . . . , bi,m) and sends it to the third-party server, which then

executes the scheduling algorithm A on the received inputs fi, ∀i, and produces

f(Y ) = A(f1, . . . , fN ). Finally, the server sends f(Y ) to each user who then

obtains Y = f−1(f(Y )). Figure 2.2 shows one execution of such a generic cen-

tralized scheduling process.

2.3 Privacy Definitions

As mentioned earlier, in this chapter we follow a centralized approach to solve

the privacy-preserving scheduling problem. In other words, we assume that a
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Table 2.1: Table of symbols.

SYMBOL DEFINITION 
( )LNKAdv A  Linkability advantage 

( )IDTAdv A  Identifiability advantage 
D (C) Decryption of a ciphertext C 

EK,r (m) Encryption of a message m using the key K and 
a random number r 

KP Shared public key of the N users 
KS Shared private key of the N users 
m Number of slots of each individual schedule 
N Number of users 

xi=[bi,1,..,bi,m] Schedule of user ui, where bi,j is the availability 
at time slot j 

1[ ,.. ], m  Schedule permutation function 

third-party, given users’ individual private schedules, computes their common

availabilities (time slots). The privacy provided by a centralized scheduling algo-

rithm can be defined in terms of the following two components: a) User-privacy

and b) Server-privacy. Hereafter, we formally define each of these components.

The symbols used throughout the chapter are summarized in Table 2.1.

User-privacy

The user-privacy of any centralized scheduling algorithm A measures the proba-

bilistic advantage that any user ui, i ∈ {1 . . . N} gains towards learning the private
schedules of at least one other user uj , j �= i, except their common availabilities,

after all users have participated in the execution of the algorithm A. In order to

accurately measure users’ privacy, we need to compute the following two advan-

tages. First, we measure the Identifiability Advantage, which is the probabilistic

advantage of an adversary in correctly guessing a schedule bit (which is not a

common availability) of any other user. We denote it as AdvIDT
ui

(A). Second,

we measure the Linkability Advantage, which is the probabilistic advantage of an

adversary in correctly guessing that any two or more other users have exactly the

same corresponding schedule bit (not a common availability bit) without neces-

sarily knowing the values of those bits. We denote this advantage as AdvLNK
ui

(A).

We make the following straightforward observation.

Observation 1. If an adversary has identifiability advantage over two corre-

sponding schedule bits of two different users, this implies that it has linkability

advantage over those two bits as well. However, the inverse is not necessarily

true.

We semantically define the identifiability and linkability advantages using

a challenge-response methodology. Challenge-response games have been widely
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used in cryptography to prove the security of cryptographic protocols. We now de-

scribe such a challenge-response game for the identifiability advantage AdvIDT
ui

(A)

of any user ui participating in the algorithm A as follows.

1. Initialization: Challenger privately collects xi = [bi,1, . . . , bi,m] and fi =

f(bi,1, . . . , bi,m) from all users ui, i ∈ {1 . . . N}.

2. Scheduling: Challenger computes f(Y ) = A(f1, f2, . . . , fN ) with the users

and sends f(Y ) to all users u1, u2, . . . , uN .

3. Challenger randomly picks a user ui, i ∈ {1 . . . N}, as the adversary.

4. ui picks j ∈ {1 . . . N}, s.t. j �= i and sends it to the challenger.

5. Challenge: the challenger picks a random time slot p ∈ {1 . . .m}, s.t., ∃bk,p =
0 for at least one k ∈ 1, . . . , N . Challenger then sends (j, p) to the user ui.

This is the challenge.

6. Guess: User ui sends b′j,p ∈ {0, 1} to the challenger as a response to his

challenge. If b′j,p = bj,p, the user ui (adversary) wins; otherwise, he loses.

The identifiability advantage AdvIDT
ui

(A) can be defined as

AdvIDT
ui

(A) =

∣∣∣∣Prui [b
′
j,p = bj,p]− 1

2

∣∣∣∣ (2.1)

where Prui [b
′
j,p = bj,p] is the probability of user ui winning the game (correctly

answering the challenge in the challenge-response game), computed over the coin

flips of the challenger, b′j,p is ui’s guess about the schedule of user uj in the time

slot p and bj,p is uj ’s true availability. We note that Eq. 2.1 defines the probabilis-

tic advantage of ua in a single execution of the challenger-adversary game, and

therefore it does not capture the additional knowledge that could be gained by

repeated executions of the same game with different subsets of the participants.

This assumption is formalized in Definition 2.4. An external attacker, having no

access to the output of the algorithm, has obviously no advantage at all. Thus,

we focus on the non-trivial case with participating users only.

Similarly, we describe the challenge-response game for the linkability advan-

tage AdvLNK
ui

(A) of any user ui as follows.

1. Initialization: Challenger privately collects xi = [bi,1, . . . , bi,m] and fi =

f(bi,1, . . . , bi,m) from all users ui, i ∈ {1 . . . N}.

2. Scheduling: Challenger computes f(Y ) = A(f1, f2, . . . , fN ) with the users

and sends f(Y ) to all users u1, u2, . . . , uN .

3. Challenger randomly picks a user ui, i ∈ {1 . . . N}, as the adversary.
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4. ui picks h, j ∈ {1 . . . N}, s.t. j �= h, j �= i, h �= i and sends (h, j) to the

challenger.

5. Challenge: Challenger randomly picks a time slot p ∈ {1 . . .m}, s.t., ∃bk,p =
0 for at least one k ∈ 1, . . . , N . Challenger then sends (j, p) and (h, p) to

the user ui. This is the challenge.

6. Guess: User ui decides if bj,p = bh,p or not. User ui sets b
′ = 1 if he decides

bj,p = bh,p and b′ = 0 if he decides bj,p �= bh,p. User ui sends b′ to the

challenger as a response to his challenge. If bj,p = bh,p and b′ = 1 or if

bj,p �= bh,p and b′ = 0, the user ui (adversary) wins; otherwise, he loses.

The linkability advantage AdvLNK
ui

(A) can be defined as

AdvLNK
ui

(A) =

∣∣∣∣Prui [((bj,p = bh,p) ∧ b′ = 1) ∨ ((bj,p �= bh,p) ∧ b′ = 0)]− 1

2

∣∣∣∣
where Prui [.] is the probability of user ui winning the game, computed over

the coin flips of the challenger. As for the identifiability advantage, an external

attacker has no linkability advantage at all.

We now define the user-privacy of the scheduling algorithm A on a per-

execution basis as follows:

Definition 2.1. An execution of the centralized scheduling algorithm A is user-

private if both the identifiability advantage AdvIDT
ui

(A) and the linkability advan-

tage AdvLNK
ui

(A) of each participating user ui, i ∈ {1, . . . , N} is negligible.

A function f(x) is called negligible if, for any positive polynomial p(x), there

is an integer B such that for any integer x > B, f(x) < 1/p(x) [67].

Definition 2.1 says that a particular execution of the scheduling algorithm is

user-private if and only if users do not gain any (actually, negligible) additional

knowledge about the schedule bits of any other user, except the schedule bits

that have a value 1 for all users (common availabilities).

Server-privacy

The server-privacy of any (centralized) scheduling algorithm A measures the

probabilistic advantage that the server (which executes the scheduling algorithm

A and observes the inputs from the users) gains towards learning the private

schedules of at least one user ui, i ∈ {1 . . . N}. As in the case of user-privacy, we

need to compute the following two advantages. First, the advantage of the server

in guessing correctly any schedule bit of any user participating in the scheduling

algorithm, called as Identifiability Advantage and denoted as AdvIDT
S (A). Sec-

ond, the advantage of the server in guessing correctly that any two (or more)

participating users have exactly the same corresponding schedule bits without
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necessarily knowing the values of those bits, called the Linkability Advantage and

denoted as AdvLNK
S (A).

The server identifiability and linkability advantages are defined in a similar

fashion as the user advantages. The challenge-response game for the server iden-

tifiability advantage AdvIDT
S (A) is defined as follows.

1. Initialization: Challenger privately collects xi = [bi,1, . . . , bi,m] and the

server privately collects fi = f(bi,1, . . . , bi,m) from all users ui, i ∈ {1 . . . N}.

2. Scheduling: Server computes f(Y ) = A(f1, f2, . . . , fN ) with the users and

sends f(Y ) to all users u1, u2, . . . , uN .

3. Server picks i ∈ {1 . . . N} and sends it to the challenger.

4. Challenge: Challenger randomly picks a time slot p ∈ {1 . . .m}. Challenger
then sends (i, p) to the server. This is the challenge.

5. Guess: server sends b′i,p ∈ {0, 1} to the challenger as a response to his

challenge. If b′i,p = bi,p, the server (adversary) wins; otherwise, he loses.

The identifiability advantage AdvIDT
S (A) is defined as

AdvIDT
S (A) =

∣∣∣∣PrS [b
′
j,p = bj,p]− 1

2

∣∣∣∣ (2.2)

where PrS [b
′
j,p = bj,p] is the probability of the server winning the game, computed

over the coin flips of the challenger.

The challenge-response game for the server linkability advantage AdvLNK
S (A)

is defined as follows.

1. Initialization: Challenger privately collects xi = [bi,1, . . . , bi,m] and the

server privately collects fi = f(bi,1, . . . , bi,m) from all users ui, i ∈ {1 . . . N}.

2. Scheduling: Server computes f(Y ) = A(f1, f2, . . . , fN ) with the users and

sends f(Y ) to all users u1, u2, . . . , uN .

3. Server picks h, j ∈ {1 . . . N}, s.t. j �= h and sends (h, j) to the challenger.

4. Challenge: Challenger randomly picks p ∈ {1 . . .m} and then sends (j, p)

and (h, p) to the server. This is the challenge.

5. Guess: Server decides if bj,p = bh,p or not. Server sets b′ = 1 if he decides

bj,p = bh,p and b′ = 0 if he decides bj,p �= bh,p. Server sends b′ to the

challenger as a response to his challenge. If bj,p = bh,p and b′ = 1 or if

bj,p �= bh,p and b′ = 0, the server (adversary) wins; otherwise, he loses.
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The linkability advantage AdvLNK
S (A) is defined as

AdvLNK
S (A) =

∣∣∣∣PrS [(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p �= bh,p) ∧ b′ = 0)]− 1

2

∣∣∣∣
where PrS [.] is the probability of the server winning the game, computed over

the coin flips of the challenger.

The server-privacy of the scheduling algorithm A on a per-execution basis can

then be defined as follows:

Definition 2.2. An execution of the centralized scheduling algorithm A is server-

private if both the identifiability advantage AdvIDT
S (A) and the linkability advan-

tage AdvLNK
S (A) of the server is negligible.

Now, it is reasonable to assume that in practice users will be able to perform

multiple executions of the scheduling algorithm with possibly different partici-

pating sets of users. This is especially true if such an algorithm is offered, for

example, as a service by mobile service providers to their subscribers. Thus,

privacy of the scheduling algorithm should be defined over multiple executions.

First, we define a private execution as follows:

Definition 2.3. A private execution is an execution which does not reveal more

information than what can be derived from its result and the prior knowledge.

Based on how memory is retained over sequential executions, we define two

types of algorithm executions, namely, independent and dependent:

Definition 2.4. An independent (respectively, dependent) execution is a single

private execution of the scheduling algorithm defined in Section 2.2.3 in which no

(respectively, some) information of an earlier and current execution is retained

and passed to a future execution.

The information retained can include past inputs to the algorithm, interme-

diate results (on the server) and the outputs of the algorithm. Based on the type

of executions, we define a privacy-preserving scheduling algorithm as follows:

Definition 2.5. A scheduling algorithm A is execution (respectively fully) privacy-

preserving if and only if for every independent (respectively all) execution(s):

1. A is correct; All users are correctly able to compute yj = 1, ∀j = 1 . . .m if

and only if bi,j = 1, ∀i = 1 . . . N .

2. A is user-private in every execution.

3. A is server-private in every execution.
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A fully privacy-preserving algorithm is a much stronger (and difficult to

achieve) privacy requirement. In this work, similar to earlier efforts, we focus

on achieving execution privacy. The following observation gives the relationship

between fully privacy-preserving and execution privacy-preserving scheduling al-

gorithms.

Observation 2. Any scheduling algorithm A, as defined in Section 2.2.3, is

execution privacy-preserving if it is fully privacy-preserving. However, the inverse

is not true.

Next, we outline our centralized scheduling algorithms.
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Figure 2.3: SchedElg protocol.

2.4 Privacy-Preserving Scheduling Algorithms

In this section, we present our three privacy-preserving scheduling algorithms.

For each algorithm, we first outline the basic cryptographic properties that are

used, and then we describe and show their operational mechanisms in detail. We

finally state the privacy guarantees provided by each of the algorithms.

2.4.1 SchedElG

Our first privacy-preserving centralized scheduling scheme is based on the El-

Gamal [49] cryptosystem. The security of the ElGamal encryption relies on the

intractability of the discrete logarithm problem (DLP), which assumes that it

is computationally infeasible to obtain the private key Ks given the public key

(g, h), where g is a generator of a multiplicative cyclic group G of prime order q

and h = gKs mod q.

Our protocol SchedElG uses the homomorphic property of the ElGamal cryp-

tosystem in order to allow the scheduling server to compute the aggregated avail-

abilities by working only on the encrypted individual schedules. For instance, it

can be verified that the ElGamal scheme satisfies:

D(EKP ,r1(m1) · EKP ,r2(m2)) = D((gr1 ,m1h
r1) · (gr2 ,m2h

r2)) = D(gr, (m1 ·m2)h
r)

= m1 ·m2
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where r = r1 + r2 ∈ Zq is a random integer. Moreover, being a probabilistic

encryption scheme, it follows that if r1 �= r2, EKP ,r1(m) �= EKP ,r2(m).

For the SchedElG algorithm, we assume that the meeting participants rep-

resent their availabilities in the following way: b∗i,j = 1 if bi,j = 1, but b∗i,j = R

(where R ∈ Zq, R > 1 is a random integer) if bi,j = 0.

Scheme

The privacy-preserving scheduling protocol SchedElG is shown in Figure 2.3.

All users first select the sequence of time slots according to the permutation σ,

i.e., σj , ∀j = 1..m, and then encrypt individually the corresponding schedule

availabilities, i.e., Ei = [Ei,σ1 , . . . , Ei,σm ] where Ei,σj = EKP ,ri,j (b
∗
i,σj

). Then,

each user sends its Ei privately to the scheduling server that performs the mul-

tiplication
∏N

i=1Ei,σj of all users’ encrypted schedules Ei,σj , for j = 1, . . . ,m.

The results of such operation are the (encrypted) aggregated availabilities of

all users for each time slot j. Next, the server replies with the aggregated en-

crypted result Esched back to each user. Each slot in Esched contains a product

of the individual time-slot bits encrypted with the users’ common session key.

Finally, each user decrypts the result and obtains the aggregated availabilities

[y1 = B∗σ1
, . . . , ym = B∗σm

] of all users ui for each time slot σj . If B∗σj
= 1, it

means that all users are available at time slot σj ; if B
∗
σj

> 1, then at least one

user is not available and therefore σj is not a suitable time slot. The following

result shows the correctness and privacy properties of SchedElG.

Lemma 2.1. The protocol SchedElG is correct and execution privacy-preserving.

Proof. Correctness From Section 2.2.3, we know that any scheduling algo-

rithm should output f(Y ), on inputs f1, f2, . . . , fN , where fi = f(b1,1, . . . , bi,m),

such that each user is able to privately compute Y = f−1(f(Y )), where Y =

y1, . . . , yj , . . . , ym. The output bit yj , ∀j should be such that it should take some

value v if and only if all users are available. Otherwise, the output bit yj never

takes value v and should take some other value, indicating that at least one user

is not available. From Figure 2.3, we can see that, provided the homomorphic

properties of the ElGamal cryptosystem are correct, we have that (with over-

whelming probability) yj = 1 if and only if bi,j = 1, ∀i, i.e., all users are available.
Otherwise we have yj = R, where R > 1 is some random number. Thus, SchedElg

is correct.
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Privacy

In order to be user-private, the identifiability and linkability advantages defined

in Section 2.2 must be a negligible function. Formally, we need that

AdvIDT
ui

(SchedElG) =

∣∣∣∣Prui [b
′
j,p = bj,p]− 1

2

∣∣∣∣ < 1

p(N)

AdvLNK
ui

(SchedElG) =

∣∣∣∣Prui [(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p �= bh,p) ∧ b′ = 0)]− 1

2

∣∣∣∣
<

1

p(N)

where Prui [b
′
j,p = bj,p] and Prui [(bj,p = bh,p)∧ b′ = 1)∨ (bj,p �= bh,p)∧ b′ = 0)] are

the probabilities of a user ui winning the challenge-response games, and p(N) is

any positive polynomial function of N . Without loss of generality, we assume that

the Challenger chooses user u1 as the Adversary. Moreover, as the computation

of the availabilities for all time slots are identical, we provide the proof for one

time slot p only.

Hereafter we provide the privacy proofs for both client- and server-privacy,

by computing the respective identifiability and linkability advantages.

• User identifiability advantage

After Step 4 of the challenger-response game, u1 knows (i) its own schedule

bit b1,p and (ii) the non-trivial result of the algorithm B∗p = b∗1,p · . . . · b∗N,p >

1, i.e. there is at least one user that is not available in the time slot p.

Therefore, the identifiability advantage becomes

AdvIDT
ui

(SchedElG) =

∣∣∣∣Prui [b
′
j,p = bj,p|B∗p > 1, b1,p]− 1

2

∣∣∣∣
where

Prui [b
′
j,p = bj,p|B∗p > 1, b1,p]

=

1∑
k=0

Pr(b′j,p = bj,p|B∗p > 1, b1,p = k) · Pr(b1,p = k|B∗p > 1)

=

1∑
k=0

1∑
z=0

Pr(b′j,p = z ∧ bj,p = z|B∗p > 1, b1,p = k) · Pr(b1,p = k|B∗p > 1)

=

1∑
k=0

1∑
z=0

Pr(b′j,p = z|B∗p > 1, b1,p = k) · Pr(bj,p = z|B∗p > 1, b1,p = k) · Pr(b1,p = k|B∗p > 1)

Given that the Challenger chooses a time slot p where ∃bq,p = 0, q ∈
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{1, . . . , N}, we have

Pr(b′j,p = 0|B∗p > 1, b1,p = 0) = Pr(b′j,p = 1|B∗p > 1, b1,p = 0) = 1/2

Pr(bj,p = 0|B∗p > 1, b1,p = 0) = Pr(bj,p = 1|B∗p > 1, b1,p = 0) = 1/2

Pr(b′j,p = 0|B∗p > 1, b1,p = 1) = Pr(bj,p = 0|B∗p > 1, b1,p = 1)

=

∑N−1
m=1 C

N−1
m ·m

(2N−1 − 1) · (N − 1)
=

2N−2

2N−1 − 1

Pr(b′j,p = 1|B∗p > 1, b1,p = 1) = Pr(bj,p = 1|B∗p > 1, b1,p = 1)

=

∑N−2
m=1 C

N−1
m ·m

(2N−1 − 1) · (N − 1)
=

2N−2 − 1

2N−1 − 1

which implies

Prui [b
′
j,p = bj,p|B∗p > 1, b1,j ] =

a

2
+ (1− a) · 2

2(N−2) + (2N−2 − 1)2

(2N−1 − 1)2

where a = Pr(b1,p = 0|B∗p > 1). By including this result, we have that

AdvIDT
ui

(SchedElG,N) =

∣∣∣∣∣∣∣∣∣
a

2
+ (1− a) · 2

2(N−2) + (2N−2 − 1)2

(2N−1 − 1)2︸ ︷︷ ︸
γ

−1

2

∣∣∣∣∣∣∣∣∣
where

γ =
22N−4 + 22N−4 − 2 · 2N−2 + 1

2N−2 − 2 · 2N−1 + 1
=

22N−3 − 2N−1 + 1

22N−2 − 2N + 1

=
(22N−2 − 2N + 1) + 1

2 · (22N−2 − 2N + 1)
=

1

2
+

1

2(22N−2 − 2N + 1)

By combining the previous expressions, we obtain

AdvIDT
ui

(SchedElG,N) =

∣∣∣∣a2 + (1− a) · γ − 1

2

∣∣∣∣ =
∣∣∣∣ 1− a

22N−1 − 2N+1 + 2

∣∣∣∣
=

∣∣∣∣ 1− a

2N+1(2N−2 − 1) + 2

∣∣∣∣ ∀N>2
<

1

2N

which holds ∀0 ≤ a ≤ 1. Therefore AdvIDT
ui

(SchedElG,N) is a negligible

function of the number of participants N , as it approaches zero faster than

the reciprocal of any polynomial, for large enough N [11].

• User linkability advantage

By definition we have

AdvLNK
ui

(SchedElG)

=

∣∣∣∣Prui [(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p �= bh,p) ∧ b′ = 0)|B∗p > 1, b1,p]− 1

2

∣∣∣∣
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From the above, we obtain

Prui [(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p �= bh,p) ∧ b′ = 0)|B∗p > 1, b1,p] =

1∑
k=0

Pr[(bj,p = bh,p) ∧ b′ = 1|B∗p > 1, b1,p = k)] · Pr(b1,p = k|B∗p > 1)+

1∑
k=0

Pr[(bj,p �= bh,p) ∧ b′ = 0|B∗p > 1, b1,p = k)] · Pr(b1,p = k|B∗p > 1)

which implies

Prui [(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p �= bh,p) ∧ b′ = 0)|B∗p > 1, b1,p] =

a

2
+ (1− a) ·

⎧⎨
⎩
[(

2N−2

2N−1 − 1

)2

+
2N−3 − 1

2N−2
· 2

N−2 − 1

2N−1 − 1

]2

+

[
1

4
+

1

2

2N−2 − 1

2N−1 − 1

]2⎫⎬
⎭

where a = Pr(b1,p = 0|B∗p > 1). Similarly to the identifiability advantage,

it can be shown that AdvLNK
ui

(SchedElG,N) is a negligible function of the

number of participantsN . As both identifiability and linkability advantages

are negligible functions (in the number of participantsN), SchedElG is user-

private.

• Server advantages

The server that is performing the computations on the encrypted sched-

ules does not know any user’s schedule bit, as all schedules have been en-

crypted by the users prior to being sent to the server with the users’ shared

public key, and only they know the corresponding private key. Therefore,

AdvIDT
S (SchedElG) = AdvLNK

S (SchedElG) = 0, i.e. SchedElG is server-

private. �

For illustration purposes, in Figure 2.4 we plotted the identifiability and link-

ability advantages of an adversary for SchedElg, compared with polynomially

(in terms of the number of participants N) decreasing functions 1/p(N). As

confirmed by our analysis, the plot shows that both identifiability and linkabil-

ity advantages are lower than the considered polynomials 1/p(N), for the given

values of N .

2.4.2 SchedPa Algorithm

In this section, we define our second privacy-preserving scheduling scheme, which

is based on the Paillier cryptosystem [124]. The security of the Paillier encryption

scheme is based on the intractability of determining whether an integer r is an

n-residue mod n2, where n is a composite number. In our protocol, we use the
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Figure 2.4: Identifiability and linkability advantages of an adversary.

homomorphic properties of the Paillier cryptosystem to compute in a privacy-

preserving fashion the availability of all users involved in the scheduling process.

In particular, one can verify that the Paillier scheme satisfies the following:

D[EKP ,r1(m1) · EKP ,r1(m2) mod n2] = m1 +m2 mod n

D[EKP ,r(m1)
m2 mod n2] = m1 ·m2 mod n

where ri, r ∈ Z∗n are random numbers chosen by the encrypters, m ∈ Zn is the

message to encrypt and n = pq where p, q are two large primes. The randomness

in the encryption ensures that if r1 �= r2, EKP ,r1(m) �= EKP ,r2(m).

To adapt our scheme to the addition property of Paillier’s homomorphism,

we take the bit value bi,j in the computation instead of the original bit value bi,j
as follows: bi,j = 0 if bi,j = 1, and bi,j = r (where r ∈ Z∗n, r > 1 is a random

integer) if bi,j = 0.

Scheme

The corresponding privacy-preserving scheduling protocol is shown in Figure 2.5.

First, all users select the sequence of time slots according to the permutation σ,

i.e., σj , ∀j = 1, . . . ,m, and then encrypt individually the corresponding avail-

abilities, i.e. Ei = [Ei,σ1 , . . . , Ei,σm ] where Ei,σj = EKP ,ri,j (bi,σj ). Then, each

user sends its Ei privately to the scheduling server that performs the multiplica-

tion and exponentiation (
∏N

i=1Ei,σj )
R of all users’ encrypted schedules Ei,σj , for

j = 1, . . . ,m, in order to obtain the encryption of the value Vσj that is needed by

the users. Afterwards, the server sends the aggregated encrypted result Esched

back to each user. Each slot in Esched contains a randomly scaled sum of the
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Figure 2.5: SchedPa protocol.

individual time-slot bits bi,σj encrypted with the users’ common session key. Fi-

nally, each user decrypts the result and knows that if Vσj = 0, the time slot σj
is available for everybody. If Vσj > 1, then at least one user is not available.

Note that even if the server chooses R = 1, the privacy of the users is preserved

with bi,j . The following result shows the correctness and privacy properties of

SchedPa.

Lemma 2.2. The protocol SchedPa is correct and execution privacy-preserving.

Proof. Correctness From Section 2.2.3, we know that any scheduling algo-

rithm should output f(Y ), on inputs f1, f2, . . . , fN , where fi = f(b1,1, . . . , bi,m),

such that each user is able to privately compute Y = f−1(f(Y )), where Y =

y1, . . . , yj , . . . , ym. The output bit yj , ∀j should be such that it should take some

value v if and only if all users are available. Otherwise, the output bit yj never

takes value v and should take some other value, indicating that at least one user

is not available. From Figure 2.3, we can see that, provided the homomorphic

properties of the Paillier cryptosystem are correct, we have that (with overwhelm-

ing probability) yj = 0 if and only if bi,j = 1, ∀i, i.e., all users are available. The

value of yj = R, where R > 1 is some random number, otherwise. Thus, SchedPa

is correct.

Privacy

Hereafter we present the privacy proofs, both for user- and server-privacy.

• User advantages

The knowledge that any user ui has in the SchedPa game is the same as

in SchedElG. In particular, ui knows that Vp = R · ∑N
k=1 bk,p > 0 and

therefore it knows that there is at least one user uk, k ∈ {1, . . . , N} that

is not available in the time slot p. Moreover, each user ui knows its own

schedule bi,p. As a consequence, AdvIDT
ui

(SchedPa) = AdvIDT
ui

(SchedElG)
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and AdvLNK
ui

(SchedPa) = AdvLNK
ui

(SchedElG) and therefore SchedPa is

user-private.

• Server advantages

As in the SchedElG algorithm, the server performing the SchedPa algorithm

does not have access to any schedule bit and therefore SchedPa is server-

private. �

2.4.3 SchedGM Algorithm

In this section, we present our third privacy-preserving scheduling algorithm,

which is based on the Goldwasser-Micali (GM) cryptographic scheme [69]. The

security of the GM encryption relies on the intractability of the quadratic resid-

uosity problem, i.e. on the infeasibility of determining whether or not an integer

r is a quadratic residue mod n when the Jacobi symbol for r is 1, given n = pq

where p, q are large primes. SchedGM makes use of the following homomorphic

property of the GM cryptosystem:

D[EKP ,r1(m1) · EKP ,r2(m2)] = m1 � m2

The intuition behind the protocol is based on the work by Herlea et al. [79], in

which users privately establish a global bit mask (unknown to any user) and then

compare all the masked availabilities without knowing the true bit value bi,σj of

the other users. If all users have the same masked bit value for a given time slot

σj , then each user knows that everybody else has the same availability, which can

be inferred by looking at the private unmasked bit value bi,σj . Although initially

used in a distributed scenario, we extend the general idea to the centralized

scheme as well.

Assumption

Each user ui generates a private random bit mask si = [ci,1, ci,2, . . . , ci,m], ci,j ∈
{0, 1}, of the same length of the schedule xi.

Scheme

The privacy-preserving scheduling algorithm is shown in Figure 2.6. Each user

first selects the sequence of time slots according to the permutation σ, i.e., σj ,

∀j = 1, . . . ,m, and then masks the corresponding schedule bits, i.e. b�

i,σj
=

bi,σj � ci,j . Then, each user encrypts individually both its bit mask, i.e. Ec
i =

[EKP ,ri,1(ci,1), . . . , EKP ,ri,m(ci,m), and the masked availabilities, i.e. Ei = [Ei,σ1 , . . . , Ei,σm ],

where Ei,σj = EKP ,ri,j (b
�

i,σj
). Afterwards, each user ui sends its Ei and Ec

i to the

server, which computes the multiplication of the received Ei,σj with the encrypted
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Figure 2.6: SchedGM protocol.

masks of all other users uk, ∀k �= i, obtaining E�

i,σj
= Ei,σj · ∏k �=iEKP

(ck,j),

∀i ∈ 1, . . . , N and ∀j = 1, . . . ,m. Afterwards, the server sends all individual

schedules, masked by a global mask c1,j � . . . � cN,j , to each user in a random

order. As a result, a user will not know his own schedule (masked with the global

mask), otherwise he would be able to determine the global mask. Finally, each

user decrypts the received messages and compares all masked individual sched-

ules. If for a given time slot σj they all have the same value, then each user ui
can infer whether the time slot σj is available by looking at its own schedule bi,σj .

The following result shows the correctness and privacy properties of SchedGM.

Lemma 2.3. The protocol SchedGM is correct and server-private.

Proof. Correctness From Section 2.2.3, we know that any scheduling algo-

rithm should output f(Y ), on inputs f1, f2, . . . , fN , where fi = f(b1,1, . . . , bi,m),

such that each user is able to privately compute Y = f−1(f(Y )), where Y =

y1, . . . , yj , . . . , ym. The output bit yj , ∀j should be such that it should take (with

overwhelming probability) some value v if and only if all users are available. Oth-

erwise, the output bit yj never takes value v and should take some other value,

indicating that at least one user is not available. In the case of SchedGM, each

f(yj) (output by the server) consists of N different bits, one for each user, where

each bit is the corresponding bi,j (schedule bit j of user ui) masked by a global

mask. From Figure 2.6, we can see that yj = ”Y ES”, for a particular user ui,

if and only if all of the N bits in f(yj) are equal and bi,j = 1 (user ui is avail-

able), and yj = ”NO” otherwise. It is straightforward to see that all N bits in

f(yj) will be equal only in two cases: 1) bi,j = 1, ∀i (all users are available) or 2)

bi,j = 0, ∀i (all users are not available). Thus, yj = ”Y ES” if and only if all users

are available and yj = ”NO” for any other case. Thus, SchedGM is correct.

Privacy

Hereafter we present the privacy proofs, both for user- and server-privacy.
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• User identifiability advantage

As for the previous two algorithms, the identifiability advantage of any user

ui for the SchedGM protocol is defined as

AdvIDT
ui

(SchedGM) =

∣∣∣∣Prui [b
′
j,p = bj,p|r > 1, bi,p]− 1

2

∣∣∣∣
where 1 ≤ r ≤ 	N/2
 is the number of output elements that have the same

value. Note that in SchedGM each user gets N masked output values b�

i,p,

∀i ∈ {1, . . . , N}, for each time slot p ∈ {1, . . . ,m}, but it cannot unmask

them as it does not possess the global mask. Therefore, any user knows

that there are r masked bit values of one kind and N − r of the other kind,

without knowing whether one or the other kind corresponds to bi,p = 1.

Without loss of generality, we assume that the Challenger chooses user u1
as the Adversary and we focus on the non-trivial case N > 2. By expanding

the first term, we have

Pru1 [b
′
j,p = bj,p|r > 1, b1,p] =

1∑
k=0

Pr(b′j,p = bj,p|r > 1, b1,p = k) · Pr(b1,p = k|r > 1)

=

1∑
k=0

1∑
z=0

Pr(b′j,p = z|r > 1, b1,p = k) · Pr(bj,p = z|r > 1, b1,p = k) · Pr(b1,p = k|r > 1)

From the above, we obtain

Pr(b′j,p = 0|r > 1, b1,p = 0) =
1

2
· CN

r · r
CN
r ·N +

1

2
· C

N
N−r · (N − r)

CN
r ·N =

1

2

Pr(b′j,p = 1|r > 1, b1,p = 0) =
1

2

Pr(b′j,p = 0|r > 1, b1,p = 1) = Pr(b′j,p = 1|r > 1, b1,p = 1) =
1

2

which implies

Prui [b
′
j,p = bj,p|r > 1, bi,p] =

1

2

and thus the final result

AdvIDT
ui

(SchedGM) = 0, ∀N > 2

• User linkability advantage

Hereafter we intuitively show that ∃N > 2|AdvLNK
ui

(SchedGM) ≥ 1/p(N),

where p(N) is any positive polynomial function of N . After Step 4 of

the challenge-response game, the Adversary u1 knows (i) its own schedule

bit b1,p and (ii) the number r of masked schedules of one particular kind.

Even though u1 cannot determine with certainty whether the r elements
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Table 2.2: Client and server specifications.

 
Client (Nokia N810) Server 

Processor 
TI OMAP 2420,  

400 MHz 
Intel Centrino Duo 

T2500, 2 x 2.00 GHz 
RAM DDR RAM 128 MB DDR2 RAM 3 GB 

OS 
Maemo Linux OS2008 

(Diablo) 
Ubuntu 9.10,  

kernel 2.6.31.22 

correspond to the “available” or to the “busy” state, it knows that the

challenger picks the two other bits bh,p, bj,p, j �= h �= i, at random and

therefore it also knows that the lower the value r, the greater the probability

that any two bits in the sequence under consideration have the same value.

Intuitively, if r = 1 it means that there are N − 1 schedules of one kind

and only one schedule of the other kind. Therefore, the probability that

any two users have same schedule value is greater than, for instance, when

r = 	N/2
. Thus, the linkability advantage AdvLNK
ui

(SchedGM) is not

less than 1/p(N), ∀N > 2, as ∃r ∈ {1, . . . , 	N/2
}|AdvLNK
ui

(SchedGM) ≥
1/p(N) for some positive polynomial p(N).

• Server advantages

As in SchedElG and SchedPa, the server performing the SchedGM algo-

rithm does not have access to any schedule bit. Therefore, SchedGM is

server-private. �

2.5 Implementation and Performance Evaluation

In this section we present the system and implementation details related to our

three privacy-preserving scheduling algorithms. First, we describe the details

about the systems and platforms on which we developed and implemented our

applications. Second, we present the experimental measurements of the perfor-

mance of our applications (both on the client devices and on the server), and we

thoroughly discuss these results and compare the efficiency of all the algorithms.

2.5.1 Systems and Platforms

Clients and server systems The client application was run, tested and eval-

uated on the Nokia N810 devices. The server application was implemented and

evaluated on a laptop. The hardware and OS specifications are listed in Table

2.2
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Figure 2.7: Flowchart showing the initiation of a meeting scheduling request on
the client application. The function names (such as encrypt (elg/pa/gm) or
requestCommonSchedule (elg/pa/gm) that appear in this figure are intuitive
placeholders for the actual function names that are used in the client application.

Code specifications Our privacy-preserving scheduling applications were

developed with the Qt 4.0 framework [119], using QtCreator as the IDE. The

client application was ported to the N810 devices using the Maemo SDK on the

Scratchbox cross-compilation toolkit2.

Cryptographic libraries The libgcrypt standard GNU library3 was used

to implement the Elgamal and the RSA cryptosystems. Similarly, the libpaillier

library4 was used to implement the Paillier cryptosystem. For the Goldwasser-

Micali cryptosystem, we did not find any existing available libraries, and therefore

we developed a new library, libgm, to implement the basic cryptographic opera-

tions. We intend to release our libgm library to the public under the GPL licence.

2.5.2 Software Architecture

Our privacy-preserving activity scheduling software consists of two applications:

the client and the server. The client application runs on the Nokia N810 mobile

device, and has a GUI to take inputs from the users. The server application runs

on the Intel-based PC and is managed through the standard Unix console.

2Details on the Scratchbox and Maemo SDK are available at
http://maemo.org/maemo release documentation/maemo4.1.x/node4.html.

3The documentation for libgcrypt is available at http://www.gnupg.org/documentation
/manuals/gcrypt/index.html

4Source code available at http://acsc.cs.utexas.edu/libpaillier/.
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Core Functions

Encryption Keys Server RSA privkey Server RSA pubkey

RSA decrypt
Message 
received 
from client

Parse

Process login

Start new 
meeting

Store and wait for 
other schedules

Process Elg

Process Pa

Process GM

Meeting participants
list sent to clients

Computation result
sent to clients

Figure 2.8: Flowchart showing the server application structure when handling
meeting requests and replies from and to the clients. The function names (such
as RSA Decrypt or Process Elg) that appear in this figure are intuitive place-
holders for the actual function names that are used in the server application.

Client Application

The client application stores the schedules of the users and displays the list of

potential meeting participants for each user. This list is maintained and managed

by the user himself, who can choose the meeting participants before initiating the

meeting scheduling procedure. Each user can use the GUI to set his availabilities,

send a meeting scheduling request, reply to an ongoing meeting request or refuse

to participate in a received meeting request. To send a meeting scheduling re-

quest, the initiator first selects one of the available privacy-preserving algorithms

(SchedElG, SchedPa or SchedGM ) and the intended meeting participants. Then,

the procedure is initiated by a click on the “Start meeting” button. Figure 2.7

shows a flowchart of the application on the client device, when a user sends a

request to schedule a meeting.

Server Application

The server is a GUI-less application that interacts with the clients to handle

requests such as login and computation of common availabilities. The main server

class, ScServer, inherits QTcpServer and is used as the server socket. Figure 2.8

shows the server flowchart structure.

More details about the inner structure of the server will be made available to
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Table 2.3: Efficiency and privacy comparison with the scheduling protocols
DisCSP [158], MPC-DisCSP2 [143] and SDC [79]

.
  

Per-user 
encr. 

Per-user 
decr. 

Per-user 
comm. 

Order of an 
encr. availab. 

Privacy 
properties 

Ce
nt

ra
liz

ed
 SchedElG O(m) O(m) O(m) 1024 bits User-private  

Server-private 

SchedPa O(m) O(m) O(m) 2048 bits User-private  
Server-private 

SchedGM O(m) O(N · m) O(N · m) 1024 bits User-private # 
Server-private 

Naïve 0 0 O(m) 1 bit * None 
    

H
yb

rid
 

DisCSP 
protocol O(m) O(m) O(N · m) 1024 bits Private  

    

D
ist

rib
ut

ed
 MPC-

DisCSP2 
protocol 

O(N · m) O(m) O(N · m) 2048 bits Private 

SDC 
protocol O(N2 · m) O(N · m) O(N · m · 

log2(N) ) 1024 bits Private 

(*) The naïve algorithm does not encrypt the schedule bits 
(#) Adv IDT is a negligible function, whereas, for some output Y of the algorithm, Adv LNK is  
     non-negligible 

the public, together with the source code, under the GPL licence.

2.5.3 Experimental Performance Evaluation

Before presenting the performance measurement details, let us first perform a

comparative analysis of the asymptotic complexities of the proposed protocols, as

shown in Table 2.3. In order to compare our three algorithms with an equivalent

security, we set the bit-lengths of the ElGamal modulus q and the Paillier and

GM modulus n to 1024 bits. A time-slot availability would then be encrypted to

a 2-tuple of 1024-bit ciphertexts for ElGamal, to a 1024-bit ciphertext for GM

and to a 2048-bit ciphertext for the Paillier encryption scheme.

From Table 2.3 we can see that the SchedElG and SchedPa protocols are

very efficient, both in terms of communication O(m), where m is the number of

time slots, and computation complexity O(m). Moreover, these two algorithms

provide strong privacy guarantees. SchedGM, on the contrary, is comparatively

less efficient due to the greater number of exchanged messages (O(N ·m), where N

is the number of participants). From the privacy perspective, SchedGM reveals

more information: users can infer the ratio of free/busy participants for each time

slot without identifying those that are busy and those that are free. Because



36 CHAPTER 2. PRIVACY-PRESERVING MEETING SCHEDULING

Figure 2.9: Frontend of the scheduling application on a Nokia N810.

in all schemes, the server operates only on encrypted data, it cannot gain any

knowledge about the users’ private schedules.

Distributed [143, 79] and hybrid [158] solutions proposed in the literature

are less efficient from the communication standpoint as compared to the pro-

posed protocols. Moreover, the computational complexity of these schemes is

higher than SchedElG and SchedPa, and this undermines their applicability on

resource-constrained mobile platforms. Even though the hybrid approach [158]

has comparable computation complexity, it is not completely reliable from the

privacy point of view because it assumes that the server(s) can get clear-text

access to the individual availabilities.

We further evaluate the performance of SchedElg, SchedPa and SchedGM by

implementing the client component of the protocols and primitives on Nokia N810

mobile devices with a 400 MHz CPU and 128 MB RAM (Figure 2.9), and the

server component on a desktop computer with a 2 GHz CPU and 3 GB RAM.

The results of the experimentation are shown in Figure 2.10.

Client Encryption

As we can see from Figure 2.10, the time required to perform the scheduling op-

erations increases with the number of time slots for all the proposed algorithms,

which is intuitive. With respect to encryption performance, Figure 2.10(a) shows

that SchedElg is the most efficient scheduling algorithm, requiring 4 seconds to
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Figure 2.10: Testbeb implementation performance measurements.

encrypt 45 time slots (a typical weekly schedule on a per hour basis). The same

task is accomplished by SchedGM and SchedPa, respectively, in 7 and 14 sec-

onds. These results might be explained by the following. First, the cryptographic

primitives for the ElGamal scheme are implemented in a standard well-optimized

library, libgcrypt, present in most Unix-based operating systems. SchedGM, on

the contrary, does not use a standard library and can be further optimized. Sec-

ond, the encrypted elements in SchedPa have twice the bit-length of those used

in the other two algorithms, and therefore the same operations (multiplications

and exponentiations) require more time.
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Client Decryption

Figure 2.10(b) shows the time required for decrypting the final result (common

availabilities) of the scheduling algorithms at the client. Similarly to the encryp-

tion time, the fastest algorithm for the decryption is SchedElg, which takes 4

seconds in order to obtain the aggregated availabilities for a 45 time-slot period.

For the same number of time slots, SchedPa takes approx. 7 seconds, which is

almost twice longer than the best performance. The decryption times for both

SchedElg and SchedPa are independent of the number of participants. The per-

formance of SchedGM, due to the fact that the final output of the algorithm is

a sequence of vectors instead of just a single aggregated vector, decreases with

the number of users, as well as with the number of time slots. Thus, for a rea-

sonable number of participants (e.g. N = 5), SchedGM is still practical enough

to be implemented on resource-constrained mobile devices, although it is not the

preferred solution.

Client Communication

Figure 2.10(c) shows the (application layer) data that each client exchanges dur-

ing one execution of the scheduling algorithm. In general, all the proposed

privacy-preserving scheduling algorithms have reasonable communication costs.

SchedElg and SchedPa are the most efficient algorithms and they require 22 kB

of data in order to compute the aggregated availabilities of a 45 time-slot period,

whereas SchedGM requires 39 kB for the same result. As previously mentioned,

SchedGM uses a sequence of masked vectors in order to compute the final avail-

abilities of the users, and therefore the amount of data is proportional both to

the number of users and time-slots.

Server Performance

The scheduling server’s performance is shown in Figure 2.10(d). As it can be

seen, the time required to perform the scheduling operations on encrypted values

increases with both the number of users and time slots. For instance, the running

time (in seconds) for the server implementation of the SchedElG algorithm is at

most 2 ·N ·m ·Tmul−ElG, where N is the number of clients, m the number of time-

slots and tmul−ElG is the time required to compute one multiplication operation

between two �log(q)
-bit integers (q is the order of the group in the ElGamal

encryption scheme). The running time for the SchedPa and SchedGM is, respec-

tively, at most N ·m · Tmul−Pai +m · Texp−Pai (where Tmul−Pai and Texp−Pai is

the time required to perform a multiplication and an exponentiation respectively

of two �log(n2)
-bit integers) and 3 ·N ·m ·Tmul−GM (where Tmul−GM is the time

required to perform a multiplication between two �log(n)
-bit integers).
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As it can be seen, even with a large number of users and time slots, the

amount of time required for the server-side scheduling operations is still below

0.2 seconds, which suggests that the load on the server is limited, which allows it

to efficiently handle multiple scheduling events, without incurring in huge com-

putational overhead.

2.6 User Study

In this section we present the modalities and results of the user study that we

carried out with our prototype meeting-scheduling application. The goal of this

study was to assess the sensitivity of the subjects to privacy issues in meeting-

scheduling applications, as well as to obtain feedback with respect to our proto-

type application.

2.6.1 Background

Based on the privacy- and usability-related questionnaire guidelines from ([33,

98]), we prepared and conducted a targeted user-study on 19 subjects, sampling

a population of university students (both undergraduate and graduate), non-

scientific personnel and people from a non-technical environment.

The entire study was divided into three phases, with two different sets of

questions that were given in Phase 1 and Phase 3 respectively. In Phase 1, the

participants were asked to reply to a set of 20 questions before using the meeting

scheduling application. In Phase 2, they were asked to use our prototype appli-

cation to schedule meetings with the other participants both in a controlled and

uncontrolled setting; the first time, we instructed them how to use the applica-

tion, and afterwards they were free to use it as they pleased. Finally, in Phase

3 the participants answered a second set of 14 post-experience questions, after

having used our prototype application.

The goal of Phase 1 of the study was to assess the participants’ level of adop-

tion of mobile technology and applications, and to get their opinion on privacy

issues in such applications. The participants were not told beforehand what kind

of mobile application they will be asked to use in Phase 2. During Phase 1,

the respondents answered the Pre-Experience A questionnaire, which comprises

20 questions on both generic technology topics (such as usage and ownership of

mobile devices, utilization of mobile social networks and calendar/agenda) and

more specific privacy-related questions (such as their online behavior and opin-

ions on information release). For instance, one statement related to users’ online

behavior and privacy is “I am willing to use my real name in online discussions

(forums, chat rooms, etc.)”, to which the respondents had to answer with either

Disagree, Tend to disagree, Tend to agree or Agree.
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After Phase 1 was completed, in Phase 2 we instructed the participants on

the specifics of our prototype scheduling application and how it works, in a step-

by-step fashion. We then asked them to execute one instance of the scheduling

process. Next, we told them to use the application as they please, without the

experimenters overseeing the process. The goal of Phase 2 was to show our

application and to let the participants use it autonomously, in order to get an

opinion for the Phase 3 of the study.

The goal of Phase 3 was to obtain feedback on different performance and

privacy aspects of our prototype application. The respondents answered the

Post-Experience B questionnaire, which comprises 14 questions centered on our

application prototype, its perceived usefulness, efficiency, ease of use, and pri-

vacy. For example, the statement “I could easily identify who was/were the per-

son/people that were not available for a particular time slot” could be answered

by Disagree, Tend to disagree, Tend to agree or Agree.

Hereafter we provide the summary of the results and discussion on our user-

study.

2.6.2 Results

Phase 1

Technology Utilization In this first part, we discuss the results concerning

the technology utilization habits of the respondents. With respect to mobile

applications, our results show that 63% the respondents browse the Internet with

a mobile device, whereas 53% of them use the mobile calendar/agenda application

on their devices in order to organize meetings. 86% of such meetings are scheduled

once or twice a week, and most of the time (89%) such meetings involve 2-4 people.

In order to reach a consensus, the meeting participants use e-mail 58% of the time

and the telephone for the remaining 42%. Social networks, such as Facebook

or Twitter, are used by 84% of the respondents, and 44% of them access such

services using their mobile devices. These results suggest that although meeting

scheduling and calendar management using mobile devices is already a reality,

people still struggle to reach a consensus in an efficient way. In order to agree on

a common time slot by using e-mail, multiple rounds of interaction among the

meeting participants are required.

Privacy Attitudes In this second part, we discuss the privacy concerns of

the respondents when using everyday applications. In general, 63% of the respon-

dents tend to disagree or disagree with the statement “I would put photos/videos

of myself, my family and friends on the Internet”. When asked about third

parties sharing personal information about them, 89% of the respondents agree

that no third party should disseminate users’ private information without their

knowledge. With respect to privacy in online interactions, 63% feel that they
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Figure 2.11: Extract of the user-study questionnaire about people’s privacy atti-
tudes.

would prefer not to use their real name and use pseudonyms instead. Figure 2.11

shows other interesting privacy attitude results. In summary, our respondents

tend to by sensitive to the privacy issues related to the use of mobile applica-

tions, and thus effectively controlling the access to and dissemination of personal

information is a valuable differentiator for mobile applications.

Scheduling Applications and Privacy The third part of the results show

the opinion of respondents about meeting-scheduling applications on mobile de-

vices. According to the results, 84% of the respondents are not aware of any

existing mobile application for meeting scheduling. Among those, 43% would be

quite (or a lot) interested in having such applications. With respect to privacy,

58% would be comfortable in sharing their basic schedule availabilities with the

other meeting participants, while none of them would be willing to share all the

details (such as place, time and subject) about these availabilities.

With respect to priorities in mobile meeting-scheduling applications, Figure

2.12 shows the choices of the respondents, ordered by the perceived priority (on a

scale from 1 to 4, where 1 is the top priority and 4 is the least priority). The figure

shows that privacy is perceived as the first priority in mobile meeting-scheduling

applications 33% of the time. If we consider the cumulative result for the 1st

and 2nd priorities, privacy achieves a total of 77%. Although the ease of use of

the application is perceived as the top priority for 50% of the respondents, the

cumulative result for the 1st and 2nd priorities achieves 67%, which is 10% less

than privacy. The speed and the Graphical User Interface (GUI) have the least

priority for the users, where speed is only the third priority most of the time, and

the GUI is almost exclusively the least priority.

Overall, the results suggest that privacy is indeed perceived as being the top
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Figure 2.12: Extract of the user-study questionnaire about people’s priorities in
mobile scheduling applications.

or the second priority in meeting-scheduling applications, which is in line with the

concerns that the respondents had before using our application. From a software

developer standpoint, this means that both ease of use and privacy need to be

taken into account from the beginning of the application development process.

In particular, the privacy mechanisms should be implemented in a way that does

not significantly affect the usability or performance. The acceptance of meeting-

scheduling applications is thus highly influenced by the availability of effective

and intuitive means for controlling privacy preferences.

Phase 3

User-Experience Figure 2.13 shows some interesting results about the perceived

user experience while using our prototype meeting-scheduling application on the

Nokia N810 devices. As it can be seen, almost 70% of the respondents agree

that they were able to perform the meeting scheduling task quickly by using our

application. Moreover, 95% of them agree that it was easy for them to learn to

use our application. Regarding the information presented on the screen, users

mostly agree that it was easy to find all necessary information, such as the meeting

participants, the individual schedule and control buttons. Similar results have

been obtained for the organization of the user interface.

These results suggest that it is indeed possible to integrate simple privacy

mechanisms into mobile application, without incurring in significant learning

overhead. A clean GUI with a transparent integration of privacy features proved

to be very effective in this regard.

Privacy in Our Prototype Application In this last part, we discuss the

subject of privacy with respect to our prototype application, and how its im-

plementation was perceived by the respondents. Figure 2.14 shows some of the



2.6. USER STUDY 43

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

I was able to
compute the task
quickly using this

application

It was easy to
learn to use this

application

It was easy to find
the information

that I needed

The organization
of information on
the system screen

was clear

Tend to disagree Tend to agree Agree

Figure 2.13: Extract of the user-study questionnaire about the user experience
for our prototype application.

results obtained from the user study. In general, all respondents tend to agree

or agree that it is important to not reveal any more information to the central

server than strictly necessary. When asked about the way privacy has been im-

plemented in our prototype application, 95% of them claim that they could not

identify the people who were available (or not) in a given time-slot. Concerning

the potential overhead due to the privacy mechanisms, 71% of the users feel that

having the privacy feature in such application did not make it more complicated

for them to use it; only 5% tend to agree with the opposite.

Regarding the third-party knowledge of the individual schedules, 74% agree

that they felt comfortable knowing that the central scheduling server did not

know their private schedules, and only 5% of them disagree. The users were told

about this feature during Phase 2 of the study. However, when the third-party is

the other meeting participants (and not the central server), 47% felt comfortable

knowing that their privacy was preserved. Nevertheless, this percentage increases

to 95% when considering responders who tend to agree with such statement, in

addition to those who agree.

In summary, this user-study has shown that the majority of the respondents

are concerned about their privacy in scheduling applications, and that they would

welcome effective and simple means for protecting it and still enjoy such services.

Our prototype application has proven to be effective in both providing a user-

friendly interface for the meeting scheduling participants, and a transparent way

to ensure that privacy of individual schedules is preserved. The results have also

shown that there is no significant overhead for using privacy in such applications,

and that people appreciated having the ability to not disclose more information
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Figure 2.14: Extract of the user-study questionnaire about people’s opinions on
the privacy features in our prototype application.

about their schedules than what was strictly necessary in order to compute the

available time slots.

2.7 Extensions

In this section, we show how SchedPa can be easily extended to the case where

user schedules are non-binary, i.e., each time slot is a non-negative cost Ci,j that

indicates ui’s preference for time-slot j. We also describe several active attacks on

the proposed scheduling schemes, such as collusion between users-server and data

modifications by the users, and how these attacks can be mitigated by using ex-

isting cryptographic mechanisms. Finally, we discuss some further enhancements

for the privacy of users’ schedules and how to implement them.

2.7.1 Non-Binary Schedules

The goal here is to find, in a privacy-preserving fashion, the time-slot with the

minimum aggregated cost. The scheme works as follows:

1. Each user ui reorders his cost sequence Ci,1 . . . Ci,m using the shared per-

mutation σ and encrypts each cost Ci,σj in the sequence using the Paillier

cryptosystem with the shared group key KP . He then passes the result

(EKP ,ri,1(Ci,σ1) . . . EKP ,ri,m(Ci,σm)) to the server.
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2. The server computes the encrypted sum of costs EKP ,rj (R ·∑N
i=1Ci,σj ), ∀j,

where R is a random integer (greater than one) chosen by the server.

3. The server selects a pre-determined user uk and passes a randomly ordered

(different from σ) sequence of the encrypted aggregated costs to it. This is

to prevent uk from learning the aggregated cost function.

4. User uk decrypts all the elements passed from the server, and identifies the

minimum aggregated cost.

5. User uk then queries the server for the index of the (encrypted) minimum

aggregated cost. The server then distributes the queried index to all users.

It can be easily shown that the above scheme is execution privacy-preserving.

2.7.2 Active Attacks

There are five kinds of possible active attacks on the scheduling schemes: (i)

collusion between the scheduling server and users, (ii) collusion among users, (iii)

fake user generation by the server, (iv) individual user schedule modification and

(v) integrity and replay attacks.

In order to thwart the first issue, the invited participants could agree to es-

tablish a shared secret by using techniques from threshold cryptography, such

as [146]. The server should then collude with at least a predefined number of

participants in order to obtain the shared secret and learn the individual avail-

abilities. The second concern may arise if k colluding users set their schedules

to all-available, and try to learn the schedules of other users. Assuming that

N is the total number of participants and k the number of colluding ones, our

schemes would provide some level of schedule privacy to honest users, as long as

N − k ≥ 2. Only if all but one users collude, then they would be able to deter-

mine the schedule of the remaining user. In order for the third attack to succeed,

the server would need to generate fake users and convince the true participants

about the legitimacy of the fake users. In practice, this is a non-trivial task to

achieve, and thus the attack has a very slim chance of succeeding. Moreover, the

effectiveness of such an attack could be further reduced by adopting the threshold

cryptographic scheme mentioned previously, because the server would then need

to generate k fake users and validate them as true participants.

The fourth attack is also not able to succeed in revealing the availability

of other meeting participants, as the best a malicious user can do is to set its

own schedule to all-available, and then guess the availabilities of the other N −
1 participants. Even if a malicious user attempts to modify its own schedule

with invalid values, such as negative values, the message domain restrictions of

cryptosystems (such as ElGamal and Paillier) would prevent such modifications.
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Figure 2.15: Extended algorithm scheme for revealing a single available time slot.

Thus, malicious attacks consisting of manipulating the final result by using invalid

negative values as schedule values are not possible in the proposed protocols.

The last attack concerns the integrity and freshness of the encrypted sched-

ules. The participants are the only entities in the system that know the secret

that has been used to generate the public/private key pair, and therefore they are

the only ones that can generate and verify the integrity of the encrypted data.

Moreover, using the shared common secret, each participant could generate a

fresh nonce at each algorithm execution and send it (in encrypted form) to the

server during the scheduling process. The server would then forward these en-

crypted nonces to each participant, who could verify that all received nonces are

equal. If not all nonces are equal, then the participants know that there has been

at least one replay attack, and thus the schedule results are not to be trusted.

2.7.3 Single Available Time Slot

The output of conventional, non-privacy-preserving scheduling services (such as

Doodle [45] or Outlook [110]) consists of time slots in which all participating users

are available. The proposed schemes follow this paradigm and they provide, in an

efficient and privacy-preserving way, all time-slots for which all users are available.

In some cases, however, it might be desirable to limit the disclosure of common

availabilities to only one time-slot, instead of the set of all available time-slots.

This would provide an additional layer of privacy for the individual schedules, as

the participants would be given a single feasible solution. Hereafter we describe

one simple way to adapt the proposed schemes to support this feature (Figure

2.15).

First, all users participating in the scheduling process perform Step 1 of the

respective algorithm (SchedElg, SchedPa or SchedGM ). Second, the server per-

forms Step 2 but it does not send the final output to each user. Instead, it

randomly chooses a private time-slot permutation function θ = [θ1, . . . , θm] and
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applies it to the elements of the final output vector(s) Esched. We call this new

vector(s) Eθ
sched. At this point, the schedules have been permuted twice, once by

the users prior to the encryptions (with σ) and once by the server (with θ).

Next, the server sends Eθ
sched to the user who started the activity scheduling

(the initiator), which then gets the common availabilities but in a doubly per-

muted order. The initiator is able to determine the available slots in this doubly

permuted time slot list, but he is not able to determine the time slots they cor-

respond to in the original schedule. The initiator selects one commonly available

time slot θk and securely sends the index θk to the server. Fourth, the server

(i) replaces all availabilities other than θk in Eθ
sched with random numbers, (ii)

reverts the permutation θ, and (iii) sends this new vector(s) Êsched to each user.

Finally, each user decrypts and reverts the initial permutation σ of the received

vector(s) and determines which time slot j is the only commonly available time

slot.

This simple solution that reveals only a single available time slot to all the

participants involves one extra message exchange between the initiator and the

scheduling server, as shown in Step 3 of Figure 2.15. Although the permuta-

tion θ performed by the server preempts the initiator from knowing the true

common availabilities, he might still want to maliciously modify the permuted

availabilities. However, the only action the initiator can do is to choose one of

the permuted time slots and communicate its index θk to the server, as it is the

server who will then revert the permutation θ and send the final vector(s) Êsched

to all users.

2.8 Related Work

In the literature, the four most relevant bodies of work that address privacy

in scheduling or similar scenarios are based on techniques from private set-

intersection [93, 41], distributed constraint satisfaction [155, 158, 143, 142], secure

multi-party computation [79, 46] and e-voting [92]. Hereafter, we review the most

relevant aspects of such approaches.

In the private set-intersection domain, Kissner and Song [93] use mathematic

properties of polynomials to design privacy-preserving union, intersection and el-

ement reduction operations on private multisets by leveraging on the Goldwasser-

Micali homomorphic encryption scheme [69]. De Cristofaro and Tsudik [41] pro-

vide efficient variations of private-set intersection protocols and present a com-

parison in terms of computational and communication complexity, adversarial

model and privacy. The authors also give informal definitions of client and server

privacy. However, PSI approaches are generally distributed, and an efficient ex-

tension to an n-party protocol is challenging. In the meeting scheduling scenario,

for instance, a trivial extension of the 2-party PSI to n parties (by running a 2-
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party protocol between each pair of users) would undermine the privacy of users’

schedules as well; knowing the personal availability and the aggregate availability

is sufficient to infer the other party’s schedule.

Distributed constraint satisfaction approaches were investigated by Wallace

and Freuder [155]: they study the tradeoff between privacy and efficiency and

show that the information that entities learn during the negotiation of a common

schedule has, in some cases, a tremendous impact on privacy. Details of an

accept/reject response are exploited by intelligent agents in order to successfully

infer the availabilities of other peers involved in the scheduling process. Similarly,

Zunino and Campo [163] design a scheduling system in which entities learn and

refine their knowledge about user preferences by using a Bayesian network. Yokoo

et al. [158] use secret sharing among third-party servers in order to determine a

suitable agreement among entities in a collusion-resistant way.

Solutions based on secure multi-party computation were investigated in [46]

and a practical scheme was proposed in [79]. Herlea et al. [79], for instance,

design and evaluate a distributed secure scheduling protocol by relying on prop-

erties of the XOR operation over binary values, in which all users contribute to

the secrecy of individual schedules while ensuring the correctness of the results.

Although not a pure e-voting scheme, Kellerman and Böhme [92] proposed an

event scheduling protocol that inherits several security and privacy requirements

from the e-voting context. However, a formal study of such properties and ex-

perimental performance results are missing in their work.

In contrast to most of the above solutions, we take a more centralized ap-

proach (with a single third-party server) for the privacy-preserving scheduling

problem. Our solutions overcome communication and computational complexi-

ties intrinsic to most distributed approaches discussed above, as well as ensure

that no private information (other than the resulting common availabilities) is

exposed. Moreover, our protocols can easily fit into today’s popular provider-

consumer service architectures without incurring a huge communication cost on

the service-provider.

2.9 Summary

Activity-scheduling applications are increasingly used by people on-the-move in

order to efficiently and securely manage their time. In addition to privacy, which

is paramount, such services should also be practical and feasible to implement,

given the client-server paradigm that most providers use, and they should be as

transparent to the user as possible. In this chapter, we have provided a framework

for the formal study of privacy properties in such applications, and we have pro-

posed three novel privacy-preserving protocols that, in addition to guaranteeing

privacy, are more efficient than similar solutions in terms of computation and com-
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munication complexities. Our implementation and extensive performance evalu-

ation on real mobile devices demonstrates that the proposed privacy-preserving

schemes are well suited to practical network architectures and services. Moreover,

a thorough user-study of the prototype application suggests that our algorithms

and software architecture are seamlessly integrated with the privacy-preserving

algorithms, in a way that does not impede the user from quickly and effectively

utilizing our application.

Publications: [21, 18]





Chapter 3

Privacy-Preserving Location

Determination

As mentioned in the previous chapter, today’s highly-interconnected urban popu-

lation is increasingly dependent on mobile gadgets to organize and plan their daily

lives. In addition to popular schedule management applications on these devices,

such as Doodle mobile and Tymelie, various other urban applications and ser-

vices are also gaining significance. Taxi-sharing applications, route-planning and

participatory sensing services are a few noticeable examples. These applications

most often rely on current (or preferred) locations of individual users or a group

of users, which jeopardizes their privacy; users do not necessarily want to reveal

their current (or preferred) locations to the service provider or to other, possibly

untrusted, users. In this chapter, we propose privacy-preserving algorithms for

determining an optimal meeting location for a group of users. We perform a

thorough privacy evaluation of the proposed approaches, under both passive and

active adversarial models, by formally quantifying privacy-loss in this setting. In

order to study the performance of the proposed approaches in a real deployment,

we implement and test their execution efficiency on Nokia devices. By means

of a targeted user-study, we attempt to get insight into the privacy-awareness of

users in location-based services and the usability of the proposed solutions.

Chapter Outline In Section 3.1, we introduce the location determination prob-

lem. We present the system architecture in Section 3.2 and the problem definition

in Section 3.3. In Section 3.4, we formalize the privacy requirements and present

our algorithms. We then perform a comparative analysis and discuss the imple-

mentation results in Section 3.5, and we summarize the results of our user-study

in Section 3.6. We discuss the extensions of our schemes in Section 3.7, and we

present the related work in Section 3.8. We summarize this chapter in Section

51
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3.9.

3.1 Introduction

Advances in handheld device and smartphone technology, coupled with their

rapid proliferation in urban communities, have enabled users to be constantly

in connection with each other and to enjoy context-rich services on their de-

vices while on-the-move. Online service providers take advantage of this dy-

namic and ever-growing technology landscape by proposing novel and innovative

context-based services or by enhancing existing ones for the end-users. These

services heavily rely on the improved computing and context-sensing capabilities

of modern-day mobile devices and smartphones. Location-based services (LBS),

an example of one such type of context-based services, are used by millions of

mobile subscribers every day in order to obtain location-specific information and

services [52].

Two popular features of location-based services are location check-ins and

location sharing. By checking into a location, users can share their current loca-

tion with family and friends or obtain location-specific services from third-party

providers or businesses [58]. The obtained service does not depend on the loca-

tions of other users. Facebook, for instance, recently launched a check-in service

by which users can benefit from on-the-spot discounts and deals from localized

businesses [51]. The other type of location-based services also becoming popu-

lar are those that rely on the sharing of locations (or location preferences) by a

group. According to a recent study [111], location sharing services are used by

almost 20% of all mobile phone users. One noticeable example of such a service

is the taxi-sharing application, offered by a global telecom operator [123], where

smartphone users can share a taxi with other users at a suitable location by

revealing their departure and destination locations. Similarly, another popular

service [97] enables a group of users to find the most geographically convenient

place to meet by minimizing the distance everyone has to travel. Several other

providers [108, 109] offer variants of this service, either as on-line or stand-alone

applications.

One important, and often overlooked, concern in location-sharing-based ap-

plications is the privacy of the user’s location information or location preferences

vis-à-vis the service provider and other, potentially untrusted, users. For instance,

such information can be used to de-anonymize users and their availabilities [70],

to track their preferences [62] or to identify their social networks [61]. For exam-

ple, in the taxi-sharing application, a curious third-party service provider could

easily deduce the home/work location pairs of users who regularly use their ser-

vice. Without effective protection, even sparse location information has been

shown to provide reliable information about users’ private spheres, which could
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have severe consequences on their social, financial and private lives [95]. Mali-

cious entities, if they get hold of this private information, could use it for all kinds

of nefarious activities [129]. Even service providers who legitimately track users’

location information in order to improve the offered service can inadvertently

harm users’ privacy, if the collected data is leaked in an unauthorized fashion or

improperly shared with corporate partners. Thus it is clear that, in any location-

sharing-based service (LSBS), the disclosure of private locations to untrusted

third-parties and peers must be limited. Recent user studies [111] on location

information sharing in LSBSs, including the one we present in this chapter, show

that end-users express the same concern. Our study on 35 participants, including

students and non-scientific staff, showed that a large percentage of users (nearly

88%) are extremely concerned about sharing their location information.

In this chapter, we study privacy issues in location sharing-based services and

propose practical, efficient solutions for the same. In line with this goal, we focus

on a specific problem in LSBS, called the fair rendez-vous point (FRVP). Given

a set of user locations or location preferences, the FRVP problem is to choose

an optimal (or fair) location among the proposed ones such that the maximum

distance between this location and all other users’ locations is minimized. Our

goal is to provide practical, privacy-preserving techniques to solve the FRVP

problem, such that neither a third-party nor users can learn about other users’

locations; participating users learn only the optimal location. The FRVP problem

is not only an important prerequisite in most LSBSs but it also nicely captures

the significant privacy threats that can arise because of location sharing in LSBSs.

In particular, we first analytically model the privacy requirements in the

FRVP problem and propose two privacy-preserving solutions for the same. We

further evaluate the robustness and resilience of our schemes against various pas-

sive and active attacks and provide an in-depth privacy analysis of the proposed

solutions. By means of a prototype implementation on a testbed of Nokia mobile

devices, we analyze the efficiency and performance of the proposed algorithms on

real systems. We also extend our existing solutions and implementations [20] to

include cases where users could provide more than one location preferences and

could assign priorities to those preferences. Finally, by conducting a targeted

study of participants who used and interacted with our prototype, we attempt to

gain insight into the current level of privacy-awareness and privacy requirements

of LSBS users and, at the same time, verify the feasibility and acceptance of the

proposed solutions.
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3.2 System Architecture

We consider a system composed of two main entities: (i) a set of users1 (or mobile

devices) U = {u1, . . . , uN} and (ii) a third-party service provider, called Location

Determination Server (LDS). Each user’s mobile device is assumed to be able to

establish communication with the LDS, either in a P2P fashion or through a fixed

infrastructure-based Internet connection. The mobile devices are able to perform

public-key cryptographic operations, and each user ui has means of determining

the coordinates Li = (xi, yi) ∈ N2 of his preferred rendez-vous location (or his own

location) by using a common coordinate system. We consider a two-dimensional

position coordinates system, but the proposed schemes can easily be extended

to other practical coordinate systems. For instance, the definition of Li can be

made fully compliant with the UTM coordinate system [154], which is a plane

coordinate system where points are represented as a 2-tuple of positive values

(distances in meters from a given reference point).

We define the set of the preferred rendez-vous locations of all users as L =

{Li}Ni=1. For the sake of simplicity, we assume a flat-Earth model and we consider

line-of-sight Euclidian distances between preferred rendez-vous locations. Even

though the actual real-world distance (road, railway, boat, etc.) between two

locations is at least as large as their Euclidian distance, the proportion between

distances in the real world is assumed to be correlated with the proportion of the

respective Euclidian distances. Location priorities, discussed in Section 3.7, can

be used for isolated or ranked locations.

We assume that each of the N users has his own public/private key pair

(Kui
P ,Kui

s ), certified by a trusted CA, which is used to digitally sign/verify the

messages that are sent to the LDS. Moreover, we assume that the N users share

a common secret that is utilized to generate a shared public/private key pair

(KMv
P ,KMv

s ) in an online fashion for each meeting setup instance v. The private

key KMv
s generated in this way is known only to all meeting participants, whereas

the public key KMv
P is known to everyone including the LDS. This could be

achieved through a secure credential establishment protocol such as in [29, 32,

101].

The LDS executes the FRVP algorithm on the inputs it receives from the users

in order to compute the FRV point. The LDS is also able to perform public-key

cryptographic functions. For instance, a common public-key infrastructure using

the RSA cryptosystem [134] could be employed. Let KLDS
P be the public key,

certified by a trusted CA, and KLDS
s the corresponding private key of the LDS.

KLDS
P is publicly known and users encrypt their input to the FRVP algorithm

using this key; the encrypted input can be decrypted by the LDS using its private

key KLDS
s . This ensures message confidentiality and integrity for all the mes-

1Throughout this chapter, we use the words users and devices interchangeably. The meaning
is clear from the context, unless stated otherwise.
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Table 3.1: Table of symbols.

SYMBOL DEFINITION SYMBOL DEFINITION 

AdvIDT Identifiability advantage Li 
Preferred rendez-vous location of user i,  
Li = (xi, yi) 

Advd-LNK Distance-linkability advantage Lfair Fair rendez-vous location 
Advc-LNK Coordinate-linkability advantage PS Positioning Service 

dij 
Euclidian distance between two 
points Li, Lj in the plane ua 

Attacker (a user participating in the PPFRVP 
protocol) 

Di
M Maximum Euclidian distance of Li i 

to any other Lj, j  i E(.) Encryption of (.) (the encryption scheme is 
clear from the context) 

f Public transformation function based 
on secret key (for privacy) 

ElG(.)/ 
Pai(.) 

Encryption of (.) using the ElGamal/Paillier 
encryption scheme 

g Optimization function ,  Element-permutation functions 
LDS Location Determination Server   

sages exchanged between users and the LDS. For simplicity of presentation, in

our protocols we do not explicitly show these cryptographic operations involving

LDS’s public/private key. A complete list of symbols can be found in Table 3.1.

The PS (or Positioning Services) is a service that allows users to determine

their preferred (or own) position by using a third-party localization service, if they

are not able to determine such positions locally on the devices. The PS is also

required to determine the geographic coordinates of a given POI within a region

(e.g. a known restaurant). In order to limit the information that the PS learns

about the users’ location requests, a private information retrieval technique, such

as [65], can be used. This would effectively prevent the PS from knowing which

POIs the users have requested and thus protect their location privacy vis-à-vis

the PS.

Adversarial Model

Location Determination Server The LDS is assumed to execute the algo-

rithms correctly, i.e., take all the inputs and produce the output according to

the algorithm. However, the LDS may try to learn information about users’

location preferences from the received inputs, the intermediate results and the

produced outputs. This type of adversarial behavior is usually referred to as

honest-but-curious adversary (or semi-honest) [68]. In most practical settings,

where service providers have a commercial interest in providing a faithful service

to their customers, the assumption of a semi-honest LDS is generally sufficient.

Users The participating users also want to learn the private location pref-

erences of other users from the output of the algorithm they receive from the

LDS. We refer to such attacks as passive attacks. As user inputs are encrypted

with the LDS’s public keyKLDS
P , there is a confidentiality guarantee against basic

eavesdropping by participants and non participants. In addition to these attacks,

participants may also attempt to actively attack the protocol by colluding with
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Each user i
Preferred 

rendez-vous location
Li (by GPS or PS)

Transformation 
function f

Location Determination Server

PPFRVP algorithm A

Fairness function g

f(Li)

f(Lfair) = g(f(L1),...,f(LN))

Inverse 
function f--1

Fair rendez-vous 
location Lfair

Figure 3.1: Functional diagram of the PPFRVP protocol, where the PPFRVP
algorithm is executed by an LDS.

other users or manipulating their own inputs to learn the output.

3.3 Problem Definition

In this work, we consider the problem of finding, in a privacy-preserving way,

the rendez-vous point among a set of user-proposed locations, such that (i) the

rendez-vous point is a point that is fair (as defined in Section 3.4.1) with respect

to the given locations, (ii) each of the users gets to know only the final rendez-

vous location and (iii) no participating user or third-party server learns private

location information about any other user involved in the computations. We refer

to an algorithm that solves this problem as Privacy-Preserving Fair Rendez-Vous

Point (PPFRVP) algorithm. In general, any PPFRVP algorithm A should accept

the inputs and produce the outputs, as described below.

• Input : a transformation f of private locations Li: f(L1)||f(L2)|| . . . ||f(LN ).

where f is a one-way public function (based on secret key) such that is hard

(success with only a negligible probability) to determine the input Li with-

out knowing the secret key, by just observing f(Li).

• Output : an output f(Lfair) = g(f(L1), . . . , f(LN )), where g is a fairness

function and Lfair = (xl, yl) ∈ N2 is the fair rendez-vous location that has

been selected for this particular set of users, such that it is hard for the

LDS to determine Lfair by just observing f(Lfair). Given f(Lfair), each

user should be able to compute Lfair = f−1(f(Lfair)) using his local data.

Figure 3.1 shows a functional diagram of a PPFRVP protocol, where the

PPFRVP algorithm A is executed by an LDS. The fairness function g can be

defined in several ways, depending on the preferences of users or policies. For
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Lopt,a=ga(f(L1)...f(L4))

Lopt,b=gb(f(L1)...f(L4))

Lopt,c=gc(f(L1)...f(L4))

(x3,y3)

(x2,y2)

(x4,y4)(x1,y1)

(a) General PPFRVP scenario, where dis-
tinct fairness functions ga, gb, gc output
three different fair rendez-vous locations
Lopt,a, Lopt,b, Lopt,c, given the user-preferred
rendez-vous locations L1, . . . , L4.

3
MD

2
MD

1
MD

4
MD

(x2,y2)

(x3,y3)

(x1,y1) (x4,y4)

(b) PPFRVP scenario, where the fairness func-
tion is g = argmini(D

M
i ). The dashed arrows

represent the maximum distanceDM
i from each

user ui to any user j �= i, whereas the solid line
is the minimum of all such maximum distances.
The fair rendez-vous location is Lfair = L2 =
(x2, y2).

Figure 3.2: Possible PPFRVP problem solutions for the general g fairness function
3.2(a) and a specific, minimum distance-based g function 3.2(b).

instance, users might prefer to meet in locations that are close to their offices,

and their employers might prefer a place that is closest to their clients. Figure

3.2(a) shows three different optimal locations for three distinct fairness functions

g.

In Section 3.4.1 we describe one such fairness function that minimizes the

maximum displacement of any user to all other locations. Such function is glob-

ally fair and general enough, and it can be extended to include more constraints

and parameters.

3.4 Privacy-Preserving Location Determination

In the previous section, we have defined the fundamental building blocks that

constitute a PPFRVP problem, both from a functional perspective (as in Figure

3.1) and from a privacy context. From a practical point of view, however, the

problem is to design specific solutions and protocols that can be implemented

on existing commercial mobile devices. In order to achieve the integration be-

tween resource-constrained mobile devices and the existing client-server network

paradigm, our solutions have to be efficient in terms of computations and com-

munication complexities, while taking advantage of the increasingly available

communication bandwidth on mobile devices.

In this section, we present our solution to the PPFRVP problem. First, we

discuss the mathematical tools that we use in order to model the fairness func-

tion g and the transformation functions f .In the following subsections, we define

the fairness function g by taking advantage of the properties of three well-known

cryptographic primitives that are used to implement the transformation function
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f . These primitives, in turn, will guarantee that no private information about

the preferred locations of any user is leaked to any other user or third-party in-

volved in the computations. Finally, by merging the f and g components of the

PPFRVP algorithm, we design our complete PPFRVP protocol. We then ana-

lytically evaluate its privacy properties and its computation and communication

complexities.

In order to separate the optimization part of the PPFRVP algorithm A from

its implementation using cryptographic primitives, we first discuss the fairness

function g and then the transformation function f .

3.4.1 Fairness Function g

In order to determine a fair rendez-vous location, there are several factors that

need to be considered. First, the optimality criterion needs to consider the spatial

constraints present in the problem. For example, a rendez-vous location Lfair =

(xl, yl) among N users U = {ui}Ni=1 might be fair when all users can reach Lfair

in a “reasonable” amount of time. Another criterion might be to minimize the

total displacement of all users in order to reach Lfair, or simply making sure that

no user is “too far” from Lfair with respect to another user. Second, computing

an fair rendez-vous location in a privacy-preserving way requires g to perform

optimization operations in an oblivious fashion. In this work, we achieve this

by using the properties of appropriate cryptographic schemes. Features such

as homomorphic encryption and semantic security are of particular interest, as

they allow operations on the plain text elements to be accomplished by oblivious

computations on encrypted elements.

In this work, we consider the fairness criterion that has been widely used in

operations research to solve the k-center problem. In the k-center problem, the

goal is to find L1, . . . , Lk locations among N given possible places, in order to

optimally place k facilities, such that the maximum distance from any place to

its closest facility is minimized. For a two dimensional coordinate system, the

Euclidian distance metric is usually employed.

As the PPFRVP problem consists in determining the fair rendez-vous loca-

tion from a set of user-preferred locations, we focus on the k-center formulation

of the problem with k = 1. This choice is also grounded on the fact that not

choosing Lfair from one of the location preferences L1, . . . , LN might potentially

result in a location Lfair that is not suited for the kind of meeting that the

participants require. The solution can easily be extended or integrated with

mapping applications (on the users’ devices) so that POIs around Lfair are auto-

matically suggested for the meeting. Figure 3.2(b) shows an example PPFRVP

scenario modeled as a k-center problem, where four users want to determine the

fair rendez-vous location Lfair.
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The k-center formulation considers the Euclidian distances, but it does not

encompass other fairness parameters, such as accessibility of a place and the

means of transportation. In this work, we focus on the pure k-center formulation

as the essential building block of a more complete model, which we extend to

encompass multiple and prioritized preferences in Section 3.7.

Let dij ≥ 0 be the Euclidian distance between two points Li, Lj ∈ N2, and

DM
i = maxj �=i dij be the maximum distance from Li to any other point Lj . Then,

the PPFRVP problem can be formally defined as follows.

Definition 3.1. The PPFRVP problem is to determine a location Lfair ∈ L =

{L1, . . . , LN}, where fair = argminiD
M
i

A solution for the PPFRVP problem finds, in a privacy-preserving way, the

fair rendez-vous location among the set of proposed (and user-desired) locations,

such that the distance from the furthest proposed location to the fair one is

minimized.

There are two important steps involved in the computation of the fair location

Lfair. The first step is to compute the pairwise distances dij among all preferred

locations Li, Lj ∈ {L1, . . . , LN}. The second step requires the computations

of the maximum and minimum values of such distances. Before proceeding with

these computations, in the following subsection we examine the features provided

by the cryptographic functions that will ensure the privacy of individual user-

desired locations Li, ∀i = 1, . . . , N .

3.4.2 Transformation Functions f

The fairness function g requires the computation of two functions on the private

user-preferred locations Li: (i) the distance between any two locations Li �= Lj

and (ii) the minimum of the maximum of these distances. In order to solve

the FRVP problem and to preserve privacy, we rely on computationally secure

cryptographic primitives. In our protocol, we consider three such schemes: the

Boneh-Goh-Nissim (BGN) [24], the ElGamal [49] and the Paillier [124] encryp-

tion schemes.

There are several cryptographic schemes that can be used, but not all of

them provide the same features. We are interested in using secure schemes that

allow us to compute the Euclidian distance between two points in the plane and

the maximization/minimization functions. What makes these schemes useful

in our setting are their homomorphic encryption properties. Given two plain

texts m1,m2 with their respective encryptions E(m1), E(m2), the multiplicative

property (possessed by the ElGamal and partially by the BGN schemes) states

that E(m1) � E(m2) = E(m1 · m2), where � is an arithmetic operation in the

encrypted domain that is equivalent to the usual multiplication operation in the

plain text domain. The additive homomorphic property (possessed by the BGN
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and the Paillier schemes) states that E(m1) ⊕ E(m2) = E(m1 + m2), where ⊕
is an arithmetic operation in the encrypted domain which is equivalent to the

usual sum operation in the plain text domain. Details about the initialization,

operation and security of the encryption schemes can be found in [49, 24, 124].

Hereafter we describe the main operational aspects the BGN scheme; in Section

2.4 we already described the properties for the ElGamal and Paillier encryption

schemes.

BGN Given two plaintexts m1,m2 ∈ Z∗T (where T < q and q is a large prime)

with their respective encryptions E(m1), E(m2), the BGN possesses the following

multiplicative and additive homomorphic properties

E(m1 ·m2) = e(E(m1), E(m2)) · hr1 mod n

E(m1 +m2) = E(m1) · E(m2) · hr mod n

where e : G × G → G1 is an admissible bilinear map, G,G1 are two bilinear

groups of composite order n = pq (p, q are two large primes), h, g are public,

h1 = e(g, h) and r ∈ Zn is a random integer. BGN is an elliptic curve-based

scheme and therefore much shorter keys can be used compared to ElGamal and

RSA. A 160-bit key in elliptic curve cryptosystems is generally believed to provide

equivalent security as a 1024-bit key in RSA and ElGamal [135]. However, due

to the construction of the BGN scheme, only one homomorphic multiplication on

each encrypted element is allowed, whereas an infinite number of homomorphic

additions can be performed.

Based on the three aforementioned encryption schemes, we now describe the

distance computation algorithms that are used in our solution.

3.4.3 Distance Computations

To determine the fair rendez-vous point, we need to find the location Lfair,

where fair ∈ {1, . . . , N}, that minimizes the maximum distance between any

user-preferred location and Lfair. In our algorithms, we work with the square of

the distances, as they are much easier to compute in an oblivious fashion using

the homomorphic properties of the encryption schemes. The problem of finding

the argument that minimizes the maximum distance is equivalent to finding the

argument that minimizes the maximum squared distance (provided that all dis-

tances are greater than 0). As the squaring function maintains the relative order,

the algorithm is still correct.

Hereafter we propose two distance computation modules that will be used in

our PPFRVP protocol. Each of these modules computes the square of all pairwise

distances between any two user-desired locations, and preserves the privacy of

each user’s preferred location Li, ∀i ∈ {1, . . . , N}.
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1. Each user i generates
Ei(a) = <ai1|...|ai6> = 
< E(xi

2) | E(T-2xi) | E(1) |
E(T-2yi) | E(yi

2) | E(1) >
Ei(b) = <bi1|...|bi6> = 
< E(1) | E(xi) | E(xi

2) |
E(yi) | E(1) | E(yi

2) >

2. Server computes
For i =1...N-1

For j = i+1…N
For k = 1...6

choose random r  Zn
cij,k = e(aik,bjk)·hr

end for
cij

tot = cij,1· ...· cij,6
end for

end for       

Ei(a),
Ei(b)

Users LDS

Figure 3.3: Distance computation protocol based on the BGN encryption scheme.

BGN-distance

Our first distance computation algorithm is based on the BGN encryption scheme.

and is shown in Figure 3.3. This novel protocol requires only one round of

communication between each user and the LDS, and it efficiently uses both the

multiplicative and additive homomorphic properties of the BGN scheme. The

BGN-distance protocol works as follows. In Step 1, each user ui, ∀i ∈ {1, . . . , N},
creates the vectors

Ei(a) =< ai1| . . . |ai6 >=< E(x2i )|E(T − 2xi)|E(1)|E(T − 2yi)|E(y2i )|E(1) >

Ei(b) =< bi1| . . . |bi6 >=< E(1)|E(xi)|E(x2i )|E(yi)|E(1)|E(y2i ) >

where E(.) is the encryption of (.) using the BGN scheme with the fresh session

key KMv
P and Li = (xi, yi) is the desired rendez-vous location of user ui. After-

wards, each user sends the two vectors Ei(a), Ei(b) over a secure channel to the

LDS. In Step 2, the LDS computes the scalar product of the received vectors by

first applying the multiplicative and then the additive homomorphic property of

the BGN scheme. For example, in a scenario with two users, one can easily verify

that

Ei(a) • Ej(b) = E(x2i + xj(T − 2xi) + x2j + yj(T − 2yi) + y2i + y2j mod T )

= E(d2ij mod T )

where T is chosen such that ∀i, j ∈ {1, . . . , N}, d2ij < T . At this point, the LDS

has obliviously computed E(d2ij), which is the (encrypted) square of the pairwise

distances between all pairs Li, Lj of user-desired locations, where i �= j.
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1. Each user i generates Ei(a)
= <ai1|...|ai4> = < Pai(xi

2) | ElG(xi) | Pai(yi
2) | ElG(yi) >

2.1 Server computes
For i =1...N-1, For j = i+1…N:

choose random rs, rt  Zn
*, find their 

multipl. inv. rs
-1, rt

-1

rij,s = rs ; rij,sinv = rs
-1 ; rij,t = rt   ; rij,tinv = rt

-1

cij,s = ai2 · aj2 · ElG(n-2rij,s); cij,t = ai4 · aj4 · 
ElG(n-2rij,t)

end for. end for       

Ei(a)

Users LDS

User 1

User N

1 1
| ... |

N
c c

( 2 ) ( 1)
| ... |

N N N N
c c

3. Each user i decrypts the    
received elements c .. using  
the ElGamal key, obtaining
F .. = DElG(c ..)
and re-encrypts them using   
the Paillier encryption 
scheme, obtaining Pai(F ..) 

All users
Pai(F .. )

4.  Server inverts the permutation  with -1 on 
the received encrypted elements Pai(F )

2.2 Chooses random element-permut. fct.
 = ( 1,.., N(N-1)) and selects cij,. accordingly

4.1 For i =1...N-1. For j = i+1…N: 
cij

tot = ai1·Pai(Fij,s)rij,sinv· aj1·ai3·Pai(Fij,t)rij,tinv·aj3
end for. end for

Figure 3.4: Distance computation protocol based on the ElGamal and Paillier
encryption schemes.

Paillier-ElGamal-distance

An alternative scheme for the distance computation is based on both the Paillier

and ElGamal encryptions, as shown in Figure 3.4. As neither Paillier or ElGa-

mal possess both multiplicative and additive properties, the resulting algorithm

requires one extra step in order to achieve the same result as the BGN-based

scheme, i.e., obliviously computing the pairwise squared distances d2ij . The dis-

tances are computed as follows. In Step 1, each user ui, ∀i ∈ {1, . . . , N}, creates
the vector

Ei(a) =< ai1| . . . |ai4 >=< Pai(x2i )|ElG(xi)|Pai(y2i )|ElG(yi) >

where Pai(.) and ElG(.) refer to the encryption of (.) using the Paillier or ElGa-

mal encryption schemes, respectively. Afterwards, each user ui sends the vector

Ei(a) to the LDS, encrypted with LDS’s public key. In step 2.1, the LDS com-

putes the scalar product of the second and fourth element of the received vectors

(as shown in Figure 3.4). In order to hide this intermediate result from the users,

the LDS obliviously randomizes these results with random values rs, rt. At the

same time, the LDS computes the multiplicative inverse of such values, denoted

as r−1s and r−1t respectively. These randomized scalar products are denoted as

cij,s and cij,t. In step 2.2, the LDS permutes the order of all cij,s and cij,t with its

private element-permutation function σ = [σ1, . . . , σN(N−1)], and sends N such

distinct elements to each user ui. In step 3, each user simply decrypts the received

elements with the ElGamal private key and re-encrypts them with the Paillier

public key. Then each user sends the re-encrypted elements to the LDS in the
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with  

Figure 3.5: Privacy-Preserving Fair Rendez-Vous Point (PPFRVP) protocol.

same order as he received it. In step 4, the LDS reverts the element-permutation

function σ, and in step 4.1 it finally computes the d2ij for all i, j, after having

removed the randomizing factors rij,s, rij,t with their inverses rij,sinv and rij,tinv.

At this point, the LDS has securely computed E(d2ij), the (encrypted) square of

the pairwise distances between all pairs of user-desired locations Li �= Lj .

As the ElGamal-Paillier based distance computation involves decryption/re-

encryption operations, it may be possible for participants to maliciously change

the masked values. For instance, such an active attack could be performed in or-

der to disrupt the distance computations or to manipulate the result for personal

advantage (such as a personally convenient but generally subfair rendez-vous lo-

cation). We discuss such active attacks in Section 3.4.6.

3.4.4 The PPFRVP Protocol

In the previous subsections, we defined all the necessary operations and crypto-

graphic tools that are required in order to solve the PPFRVP problem. We now

describe our protocol for the PPFRVP problem, as shown in Figure 3.5. The

protocol has three main modules: (A) the distance computation module, (B) the

MAX module and (C) the ARGMIN MAX module.

Distance computations

The first module (distance computation) uses one of the two protocols defined in

the previous subsection (BGN-distance or Paillier-ElGamal-distance). We note

that modules (B) and (C) use the same encryption scheme as the one used in
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module (A). In other words, E(.) of Figure 3.5 refers to the encryption of (.) using

either the BGN or the Paillier encryption scheme. Once the distance protocol

has been decided, the next modules (B) and (C) are executed as follows.

MAX computations

In Step B.1, the LDS needs to obliviously hide the values within the encrypted

elements (i.e., the pairwise distances computed earlier), before sending them to

the users, in order to avoid leaking any kind of private information such as the

pairwise distance or desired locations to any user.2 In order to obliviously mask

such values, for each index i the LDS generates two random values ri, si that are

used to scale and shift the ctotij (the encrypted square distance between Li, Lj) for

all j, obtaining d∗ij . This is done in order to (i) ensure privacy of real pairwise

distances, (ii) be resilient in case of collusion among users and (iii) preserve the

internal order (the inequalities) among the pairwise distance from each user to

all other users. Afterwards, in Step B.2 the LDS chooses two private element-

permutation functions σ (for i) and θ (for j) and permutes d∗ij , obtaining the

permuted values d∗σiθj
, where i, j ∈ {1, . . . , N}. The LDS sends N such distinct

elements to each user. In Step B.3, each user decrypts the received values, de-

termines their maximum and sends the index σmax
i of the maximum value to

the LDS. In Step B.4 of the MAX module (B), the LDS inverts the permutation

functions σ, θ and removes the masking from the received indexes corresponding

to the maximum distance values.

ARGMIN MAX computations

In Step C.1, the LDS masks the true maximum distances by scaling and shifting

them by the same random amount, such that their order (the inequalities among

them) is preserved. Then the LDS sends to each user all the masked maximum

distances. In Step C.2 each user decrypts the received masked (randomly scaled

and shifted) maximum values, and determines the minimum among all maxima.

In Step C.3, each user knows which identifier corresponds to himself, and the

user whose preferred location has the minimum distance sends to all other users

the fair rendez-vous location in an anonymous way.

After the last step, each user receives the final fair rendez-vous location, but

no other information regarding non-fair locations or distances is leaked. In the

next section, we analyze our PPFRVP protocols with respect to their privacy and

2After the distance computation module (A), the LDS possesses all encrypted pairwise
distances. This encryption is made with the public key of the participants and thus the LDS
cannot decrypt the distances without the corresponding private key. The oblivious (and order-
preserving) masking performed by the LDS at Step B.1 is used in order to hide the pairwise
distances from the users themselves, as otherwise they would be able to obtain these distances
and violate the privacy of the users.
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complexity aspects. In order to assess the efficiency and to know whether the

proposed PPFRVP protocol fulfills the privacy requirements defined in Section

3.3, we present the complexity and privacy analysis in the next subsection.

3.4.5 Privacy Requirements and Definitions

Informally, the privacy requirements can be stated as follows. After the execution

of the PPFRVP algorithm, any user ui should not be able to infer (i) the preferred

location Lj of any other user uj �= ui nor (ii) the relative distances dij between

any two users ui �= uj . Likewise, any LDS (and PS) should not be able to

infer (iii) the preferred location Li of any user ui, (iv) the relative distance dij
between any two users ui �= uj nor (v) the final rendez-vous location Lfair. Such

privacy requirements can be grouped in two components, called as user-privacy

and server-privacy, formally defined as follows.

User-Privacy

The user-privacy of any PPFRVP algorithm A measures the probabilistic ad-

vantage that an attacker a (a user participating in the PPFRVP protocol or an

external user) gains towards learning the preferred location Lj of at least one

other user j ∈ {1, . . . , N}, except the final fair rendez-vous location Lfair, after

all users have participated in the execution of the PPFRVP protocol. Clearly,

an external user does not learn about any preferred locations as it does not re-

ceive the output of the algorithm. Therefore, we only consider the non-trivial

case of users participating in the PPFRVP protocol as attackers, i.e., ua where

a ∈ {1, . . . , N}.
We express the user-privacy in terms of three adversary advantages. First,

we measure the identifiability advantage, which is the probabilistic advantage of

ua in correctly guessing the preferred location Li of any user ui �= ua. We denote

it as AdvIDT
a (A). Second, we measure the distance-linkability advantage, which

is the probabilistic advantage of ua in correctly guessing whether the distance dij
between any two users ui �= uj , is greater than a given parameter s, without nec-

essarily knowing any users’ preferred locations Li, Lj . We denote this advantage

as Advd−LNK
a . Finally, we measure the coordinate-linkability advantage, which is

the probabilistic advantage of ua in correctly guessing whether a given coordinate

xi (or yi) of a user ui is greater than the corresponding coordinate(s) of another

user uj �= ui, i.e., xj (or yj), without necessarily knowing any users’ preferred

locations Li, Lj . We denote this advantage as Advc−LNK
a . The next observation

follows from the above definitions.

Observation 3. If an adversary has an identifiability advantage over any two

distinct users ui �= uj, this implies it has distance- and coordinate-linkability
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advantages over those two users as well. However, the inverse is not necessarily

true.

We semantically define the identifiability and linkability advantages by using a

challenge-response methodology, which has been widely used to prove the security

of cryptographic protocols. We now describe such a challenge-response game

for the identifiability advantage AdvIDT
a (A) of any adversary ua in a PPFRVP

algorithm A. Let U = {u1, . . . , uN , ua} be the set of all users, including the

adversary ua, and let C be the challenger. The game is defined as follows:

1. Challenger setup: C privately collects the preferred rendez-vous locations

Li; Li �= Lj , ∀i, j ∈ {1, . . . , N}.
2. Algorithm execution: C executes the PPFRVP algorithm A with all users

U and computes f(Lfair) = g(f(L1), . . . , f(LN ), f(La)). It then sends

f(Lfair) to each user ui ∈ U.

3. Challenge: C chooses a random k ∈ {1, . . . , N} and sends Lk to the adver-

sary ua.

4. Guess: ua chooses a value k′ ∈ {1, . . . , N} and sends it back to the chal-

lenger. ua wins the game if k′ = k, otherwise he loses.

The identifiability advantage is defined as the probabilistic advantage of the

adversary in winning this game. It is denoted as:

AdvIDT
a (A) = Pr[ua wins the game]− 1/N = Pr[k′ = k]− 1/N (3.1)

where Pr(k′ = k) is the probability that ua correctly guesses the value k chosen

by the challenger.

The above notion of identifiability is also called weak identifiability because

the adversary knows that the challenge belongs to one of the participant. A

stronger notion of identifiability can also be defined. In the definition of strong

identifiability, the challenge (in Step 3) is a randomly chosen non-trivial two

dimensional position coordinate, instead of restricting the challenge location to

belong to one of the participating user. The adversary in this game wins if he

correctly guesses if the challenge location belongs to one of the participants or

not. In this work, we focus only on the weak identifiability property.

Similarly, we define the distance-linkability advantage Advd−LNK
a (A) of any

adversary ua in a PPFRVP algorithm A by means of the following game.

1. Challenger setup: C privately collects the preferred rendez-vous locations

Li �= Lj , ∀i, j ∈ {1, . . . , N}.
2. Algorithm execution: C executes the PPFRVP algorithm A with all users

U and computes f(Lfair) = g(f(L1), . . . , f(LN ), f(La)). It then sends

f(Lfair) to each user ui ∈ U.
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3. Challenge: C chooses a random value s and two distinct users uj , uk, ∀j, k ∈
{1, . . . , N}, j �= k. C sends (j, k, s) to the adversary.

4. Guess: ua responds with a value s∗ ∈ {0, 1}. ua wins the game if s∗ = 0

and dj,k ≥ s, or if s∗ = 1 and dj,k < s. Otherwise, the adversary looses.

The distance-linkability advantage is defined as the probabilistic advantage

of the adversary in winning this game. It is denoted as:

Advd−LNK
a (A) = Pr[s∗ = 0 ∧ dj,k ≥ s] + Pr[s∗ = 1 ∧ dj,k < s]− 1/2 (3.2)

Finally, we define the coordinate-linkability advantage Advc−LNK
a (A) of any

adversary ua in a PPFRVP algorithm A by means of the following game.

1. Challenger setup: C privately collects the preferred rendez-vous locations

Li �= Lj , ∀i, j ∈ {1, . . . , N}.
2. Algorithm execution: C executes the PPFRVP algorithm A with all users

U and computes f(Lfair) = g(f(L1), . . . , f(LN ), f(La)). It then sends

f(Lfair) to each user ui ∈ U.

3. Challenge: C throws an unbiased coin to select a coordinate axis b ∈ {x, y}.
C randomly chooses j, k ∈ {1, 2, . . . , N}, j �= k. C sends {j, k, b} to ua as a

challenge.

4. Guess: ua responds with a value r ∈ {0, 1} and sends it back to the chal-

lenger. ua wins the game if:{
r = 0 and bj ≤ bk OR

r = 1 and bj > bk

ua looses the game otherwise. T

The coordinate-linkability advantage is defined as the probabilistic advantage

of the adversary in winning this game. It is denoted as:

Advc−LNK
a (A) = Pr[r = 0 ∧ bj ≤ bk] + Pr[r = 1 ∧ bj > bk]− 1/2 (3.3)

For the third-party (LDS) adversary, the game definitions are similar to those

of the user adversary, except that the LDS does not receive Lfair at the Step

2 of the game. As the LDS obtains no additional information compared to ua
but even less, the probability that it guesses correctly in Step 4 cannot be higher

than that of ua and not lower than a random guess. Thus, the LDS cannot win

the game with non-negligible advantage.

We now define the user-privacy of any PPFRVP algorithm A on a per-

execution basis in the following way.
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Definition 3.2. An execution of the PPFRVP algorithm A is user-private if the

identifiability advantage AdvIDT
a (A), the distance-linkability advantage Advc−LNK

a (A)

and the coordinate-linkability advantage Advc−LNK
a (A) of each participating user

ui, i ∈ {1, . . . , N} are negligible in terms of the number of user-preferred rendez-

vous locations Li.

In general, a function f(x) is called negligible if, for any positive polynomial

p(x), there is an integer B such that for any integer x > B, |f(x)| < 1/p(x)

[68]. According to Definition 3.2, an execution of the PPFRVP algorithm is

user-private if and only if any user ua does not gain any (actually, negligible)

additional knowledge about the preferred rendez-vous locations Lj of any other

user uj �= ua, except the value of the final fair rendez-vous location Lfair.

Server-Privacy

The server-privacy of any PPFRVP algorithm A measures the probabilistic ad-

vantage that the LDS gains in learning the preferred rendez-vous locations Li

of any user ui, i ∈ {1, . . . , N}. As in the case of user-privacy, we express the

server-privacy by means of three advantages. First, we measure the probabilis-

tic advantage of an LDS in correctly guessing the preferred location Li of any

user ui, called identifiability advantage and denoted as AdvIDT
LDS(A). Second, we

measure the probabilistic advantage of an LDS in correctly guessing whether the

distance dij between any two users ui �= uj is greater than a given parameter s,

without necessarily knowing any users’ preferred locations Li, Lj . We call this

the distance-linkability advantage and we denote it as Advd−LNK
LDS (A). Third, we

measure the probabilistic advantage in correctly guessing whether a given coor-

dinate xi (or yi) is greater than the same coordinate of another user j �= i, i.e.,

xj (or yj), without necessarily knowing any users’ preferred locations Li, Lj . We

call this the coordinate-linkability advantage and we denote it as Advc−LNK
LDS (A).

Definition 3.3. An execution of the PPFRVP algorithm A is server-private if the

identifiability advantage AdvIDT
LDS(A), the distance-linkability advantage Advc−LNK

LDS

and the coordinate-linkability advantage Advc−LNK
LDS of an LDS are negligible.

However, it is reasonable to assume that in practice users will be able to

perform multiple executions of the PPFRVP protocol, possibly with different sets

of participating users at each time. This is particularly true if such a meeting-

location service is offered, for instance, by providers to their subscribers. As a

consequence, privacy of a PPFRVP should be defined over multiple executions.

PPFRVP Privacy

We now formally express the privacy conditions that any PPFRVP algorithm A

has to satisfy, based on the above definitions. First, we define a private execution
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of a PPFRVP algorithm as follows.

Definition 3.4. A private execution of any PPFRVP algorithm A is an execution

which does not reveal more information than what can be derived from the inputs,

the intermediate results and its output.

Based on how memory is retained over sequential executions, we define two

types of algorithm executions, namely, dependent and independent.

Definition 3.5. An independent (respectively dependent) execution is a single

private execution of the PPFRVP algorithm defined in Section 3.3 in which no

(respectively some) information of an earlier and current execution is retained

and passed to future executions.

The information that might be transferred from an earlier execution to the

next can include past inputs to the algorithm, intermediate results (on the LDS)

and the outputs of the algorithm. Based on the type of execution, the privacy

conditions of a privacy-preserving meeting-location algorithm can be defined as

follows.

Definition 3.6. A PPFRVP algorithm A is execution (respectively fully) privacy-

preserving if and only if for every independent (respectively all) execution(s)

1. A is correct; All users are correctly able to compute the final fair rendez-

vous location Lfair;

2. A is user-private;

3. A is server-private.

A fully privacy-preserving meeting-location (PPFRVP) algorithm is a much

stronger (and difficult to achieve) privacy requirement. In this work, we focus

on achieving execution privacy. The relationship between a fully PPFRVP and

execution PPFRVP algorithm is given by the following observation.

Observation 4. Any PPFRVP algorithm A, as defined in Section 3.3, is exe-

cution privacy-preserving if it is fully privacy-preserving, but the inverse is not

true.

3.4.6 Analytical Evaluation

The proposed PPFRVP protocol, shown in Figure 3.5, is based on the interaction

between users and a third-party LDS. Each of these parties performs operations

on both plaintext and encrypted elements, and the resources available on the user

devices are usually lower than those of the LDS. We now present the privacy and

complexity analysis of our protocols, and then we show the asymptotic complex-

ities of our two distance and PPFRVP protocols, by considering both client and

LDS computation, communication and memory complexities.
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Privacy Analysis

In our analysis, we consider two types of adversaries: Passive (honest-but-curious)

and active adversaries. The passive try to learn as much information as possible

from their inputs, the execution of the PPFRVP protocol and its output, without

maliciously injecting or modifying data. The active adversaries, on the contrary,

try on purpose to manipulate the data in order to obtain private information.

The aforementioned definition captures the privacy requirements of a single

execution of a PPFRVP algorithm. By repeated interactions among a stable set

of users, Lfair could be used to infer possible Li of other users. The issue of

learning from repeated interaction is inherent to any algorithm that, based on a

set of private inputs, chooses one of them in particular, based on some criterion.

For this reason, in this work we consider privacy for a single execution of the

PPFRVP algorithm, or for repeated executions but with different sets of users.

Passive Adversary Under the passive adversary model, we have the following

result.

Proposition 3.1. The proposed PPFRVP protocols are correct and they guar-

antee identifiability- and coordinate-linkability privacy. However, they do not

guarantee distance-linkability privacy.

In other words, Proposition 3.1 states that both the proposed algorithms

correctly compute the fair rendez-vous location, given the received inputs, and

that they do not reveal any users’ preferred rendez-vous locations to any other

user, except the fair rendez-vous location Lfair. However, in the following proof

we show that there is at least one case where the adversary can win the distance-

linkability game with non-negligible advantage. Nevertheless, both algorithms do

not reveal information about the location or relationship between the coordinates

of any Li, ∀i ∈ {1, . . . , N}. The LDS does not learn any information at all about

any user-preferred locations.

Proof. Correctness

Given the encrypted set of user-preferred locations f(L1), . . . , f(LN ), the pro-

posed PPFRVP algorithms compute the pairwise distance between each pair of

users dij , ∀i, j ∈ {1, . . . , N}, according to the schemes of the respective distance

computation algorithms. Following the sequence of steps for such computation,

one can easily verify that the ElGamal-Paillier based distance computation algo-

rithm computes

Pai(d2ij) = Pai(x2i ) · Pai(−2xixj) · Pai(y2j ) · Pai(y2i ) · Pai(−2yiyj)

· Pai(y2j ) = Pai(x2i − 2xixj + x2j + y2i − 2yiyj + y2j )

which is the same result that is achieved by the BGN-based distance algorithm.
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After the pairwise distance computations, the PPFRVP algorithm computes

the masking of these pairwise distances by scaling and shifting operations. The

scaling operation is achieved by exponentiating the encrypted element to the

power of ri, where ri ∈ Z∗w is a random integer and r−1i is its multiplicative

inverse. The shifting operation is done by multiplying the encrypted element with

the encryption (using the public key of the users) of another random integer si
privately chosen by the LDS. These two algebraic operations mask the values d2ij
(within the encrypted elements), such that the true d2ij are hidden from the users.

Nevertheless, thanks to the homomorphic properties of the encryption schemes,

the LDS is still able to remove the masking (after the users have identified the

maximum value) and correctly re-mask all maxima, such that each user is able

to correctly find the minimum of all maxima.

In the end, each user is able to determine Lfair, where fair = argminimaxj d
2
ij

from the outputs of the PPFRVP algorithm, and therefore the PPFRVP algo-

rithms are correct.

User Identifiability Advantage Hereafter we provide sketches of the proofs

of user-privacy, after a private execution of the PPFRVP algorithm A. A sketch

is usually given to intuitively show how the formal proof can be constructed

with the argument presented in the sketch. In particular, the following sketches

are exhaustive, i.e., they cover all possible cases, and they are used to show

whether the different advantages are non-negligible and thus whether a PPFRVP

algorithm A is execution privacy-preserving.

In the identifiability advantage, there are only two possible outcomes of the

PPFRVP algorithm, depending on users’ preferred locations Li: The first case is

when Lfair = La, i.e., when the fair rendez-vous location is the one proposed by

the adversary; the second case is when Lfair �= La, i.e., when the fair location is

different from the one proposed by the adversary. Hereafter we split the sketch

of our proof according to these two (and only possible) cases, and show that the

advantage of the adversary is negligible in both these cases:

1. Lfair = La: In this case, the adversary does not learn any additional in-

formation that was not already known to him before the execution of the

protocol, except the order among the maximum distances between the users

and the corresponding indices. Moreover, we consider here the non-trivial

case where the challenger chooses a value k �= a, otherwise the correct an-

swer to the challenge is trivial. It should be noted that the challenger cannot

select the trivial case with a probability greater than 1/N (during the chal-

lenge step or step 3). In this non-trivial case, the adversary cannot guess

the value k �= a with a higher certainty than he would by a random guess

because only the LDS knows the secret scaling and shifting values used for

the masking operation. In fact, the order among the masked distances does

not reveal any additional information about the actual locations, as there



72 CHAPTER 3. PRIVACY-PRESERVING LOCATION DETERMINATION

could be infinitely many locations at the same masked distance. Thus, the

advantage of the adversary in this case is negligible.

2. Lfair �= La: In this case, the adversary learns, after the execution of the

protocol, another preferred location Lfair �= La different from his own, in

addition to the order among the maximum distances for all users. The ad-

versary is able to compute the distance da,fair between his preferred location

and Lfair. However, thanks to the masking operation on the distances and

to the independence among the users’ preferred locations, the adversary

has no additional knowledge to link da,fair to any other masked dMAX
i he

knows. For instance, it is impossible for him to even compare da,fair to

any of the dMAX
i as only the LDS knows the secret scaling and shifting

values used for the masking operation. Hence, even with the additional

knowledge of the da,fair and Lfair, the adversary cannot guess the value of

k with a probability higher than a random guess. Thus, the advantage of

the adversary is negligible in this case as well.

Considering the previous arguments, we have the following:

AdvIDT
a (A) = Pr(k′ = k|Lfair = La)Pr(Lfair = La)

+ Pr(k′ = k|Lfair �= La)Pr(Lfair �= La)− 1/N

= 1/N · 1/(N + 1) + 1/N ·N/(N + 1)− 1/N = 1/N − 1/N

= 0

Thanks to the independence of k′ conditioned on the outcome Lfair. Thus, the

identifiability-advantage is negligible.

User Coordinate-Linkability Advantage

Similarly to the identifiability advantage, there could only be two possible out-

comes of any PPFRVP algorithm A, represented by the two cases Lfair �= La and

Lfair = La. Hereafter we show that the advantage of the adversary is negligible

in both cases.

1. Lfair = La: In this case, the adversary does not learn any additional in-

formation about the coordinates of any two users j, k. As the masked and

ordered distances cannot be linked to a specific coordinate with a success

probability higher than 1/2, the adversary cannot guess whether the coor-

dinate value bj is larger or smaller than bk with a probability higher than

a random guess (1/2). In fact, as the order among the masked distances is

a relative measure between locations that is position-independent, it does

not provide any additional information about the values of the coordinates

of Lj , Lk. Thus, the advantage of the adversary is negligible.

2. Lfair �= La: In this case, the adversary can once again compute the dis-

tance da,fair between Lfair and La. As the distance by itself conveys no
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information about the orientation or relative position between Lj and Lk,

∀j, k ∈ {1, . . . , N} and j �= k, the adversary cannot guess whether the co-

ordinate b, randomly chosen by the challenger, is larger or smaller for Lj

with respect to Lk with a higher certainty than a random guess. Thus, his

advantage is negligible.

Similarly to the identifiability advantage, we obtain:

Advc−LNK
a (A) = Pr(r = 0 ∧ bj ≤ bk|Lfair = La)Pr(Lfair = La)

+ Pr(r = 0 ∧ bj ≤ bk|Lfair �= La)Pr(Lfair �= La)

+ Pr(r = 1 ∧ bj > bk|Lfair = La)Pr(Lfair = La)

+ Pr(r = 1 ∧ bj > bk|Lfair �= La)Pr(Lfair �= La)

− 1/2

= Pr(r = 0) · Pr(bj ≤ bk) + Pr(r = 1)

· Pr(bj > bk)− 1/2 = 1/4 + 1/4− 1/2 = 0

Thanks to the independence of the coordinate b from the outcome Lfair. Thus,

the coordinate-linkability is negligible.

User Distance-Linkability Advantage

The PPFRVP algorithm defined in this chapter takes as inputs the preferred

rendez-vous locations Li of each user ui ∈ U and outputs both f(Lfair) and

the set of randomized (but order-preserving) maximum distances dmax
i , ∀ui ∈ U.

By means of an example, we show that there is at least one case in which our

PPFRVP algorithm does not satisfy distance-linkability.

Suppose that, at Step 3 of the distance-linkability game, C chooses a value

s > maxui∈U dmax
i . At Step 4, ua obtains (s, j, k) and it knows that s is larger than

any of the maximum randomized distances that it already possesses. Moreover,

ua also knows that the order-preserving randomization procedure Rand(.) is such

that dmax
i = Rand(cmax

i ) > cmax
i , i.e., the randomization strictly increases the

output compared to the input because the two randomizing factors ri, si are

positive. Hence, if s > maxui U dmax
i , ua knows that for sure s > dj,k, ∀j �= k.

Thus, ua can win the game with non-negligible probability by choosing s∗ = 0,

proving that in this case our PPFRVP algorithm A does not satisfy user distance-

linkability.

Active Adversary We consider three main categories of active attacks against

PPFRVP protocols, namely (i) the collusion among users and/or LDS, (ii) the

fake user generation and/or replay attacks and (iii) unfair rendez-vous location.

Collusion Regardless of the protocol used or the encryption methods, in the

case when users collude among themselves the published fair result (together with

the additional information malicious users may get from colluders) can be used to

construct exclusion zones, based on the set of equations and known constraints.
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An exclusion zone is a region that does not contain any location preferences,

and the number of such exclusion zones increases with the number of colluders.

We are currently working on quantifying this impact on our optimization and

encryption methods. However, in the unlikely case of collusion between the LDS

and the participants, the latter will be able to obtain other participants’ prefer-

ences. In order to mitigate such a threat, the invited participants could agree

on establishing a shared secret by using techniques from threshold cryptography

[139]. The LDS should then collude with at least a given number of participants

in order to obtain the shared secret and learn Li.

Fake Users Generating fake users can be attempted both by the LDS and

by any meeting participant, in order to disrupt or manipulate the computations

of the fair rendez-vous location. However, the security of our algorithms prevents

such attacks from succeeding. In case the LDS generates fake users, it would

not be able to obtain the secret that is shared among the honest users and

which is used to derive the secret key KMv
s for each session v. This attack is

more dangerous if a legitimate participant creates a fake, because the legitimate

participant knows the shared secret. In this scenario, however, the LDS knows

the list of meeting participants (as it computes the fair rendez-vous location) and

therefore it would accept only messages digitally signed by each one of them.

Here we rely on the fact that fake users will not be able to get their public keys

signed by a CA. Replay attacks could be thwarted by adding and verifying an

individually signed nonce, derived using the shared secret, in each user’s message.

Unfair RV The last type of active attack could lead to the determination of

an unfair rendez-vous location. Maliciously modifying or untruthfully reporting

the maximum masked values (Step B.3 of Figure 3.5) could deceive the LDS to

accept the false received index as the maximum value, and therefore potentially

lead to the determination of a subfair rendez-vous location. However, this is

rather unlikely to happen in practice. For instance, even if in Step B.3 a user

falsely reports one of his values to be the maximum when actually it is not, this

would cause the algorithm to select a subfair rendez-vous location if and only if

no other user selected a smaller value as the maximum distance.

Complexity Analysis

Table 3.2 summarizes the complexity results for our two protocols, both for the

client devices and for the LDS. As it can be seen, the client complexity is in

general O(N), where N is the number of users. However, there is a notable

exception for the BGN-based scheme; the number of exponentiation required for

a single decryption is O(
√
T ) [24], where T is the order of the plaintext domain. In

Section 3.5, we show how this charateristic impacts the decryption performance.

The LDS complexity for both protocols is in general O(N2), with the notable

exception of BGN, where in addition to multiplications and exponentiations the
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Table 3.2: Asymptotic complexity of the proposed PPFRVP protocols, where
N is the number of participants. The Distance protocol is the one used in the
module A of Figure 3.5, whereas PPFRVP includes modules A,B and C.

CLIENT PROTOCOL BGN 
(mod n) 

ELGAMAL- 
PAILLIER 
(mod n2) 

LDS 
BGN 

(mod n) 
ELGAMAL- 
PAILLIER 
(mod n2) 

Mult. Distance O(1) O(N) Mult. O(N2) O(N2) PPFRVP Exp. 

Exp. 
Distance O( ) 

O(N) 
Bilinear 

O(N2) ------- PPFRVP O(N ) mapping 

Memory Distance O(1) O(N) Memory O(N2) O(N2) PPFRVP O(N) 

Comm. Distance O(1) O(N) Comm. O(N) O(N2) 
PPFRVP O(N) O(N2)  

schemes requires additional O(N2) bilinear mappings. These operations are re-

quired in order to support the multiplicative property of the BGN scheme. The

bilinear mappings are not required in the ElGamal-Paillier scheme. Nevertheless,

the exponentiation operations can be pre-computed in BGN (because the h value

is public), as opposed to the ElGamal-Paillier-based approach.

3.5 Implementation and Performance Evaluation

In this section, we discuss the results of the performance measurements using our

implementations of the proposed algorithms on Nokia devices.

The tests were conducted on Nokia N810 mobile devices (ARM 400 MHz

CPU, 256 MB RAM). The operating system on the N810s is the Linux-based

Maemo OS2008, and we wrote our applications using the Qt programming lan-

guage, which is optimized for such OS. The LDS has been implemented on a 2

GHz Intel CPU with 3 GB RAM, running the Ubuntu 9.04 Linux. Figure 3.6

shows the software architecture diagram, where the function of each block is self-

explanatory, whereas Figure 3.7 depicts the prototype application running on a

Nokia N810.

For the elliptic curve BGN-based PPFRVP protocol, we measured the perfor-

mance using both a 160-bit and a 256-bit secret key, whereas for the ElGamal-

Paillier-based one we used 1024-bit secret keys. As BGN is an elliptic curve-based

scheme, much shorter keys can be used compared to ElGamal and RSA. A 160-

bit key in elliptic curve cryptosystems is generally believed to provide equivalent

security as a 1024-bit key in RSA and ElGamal [135]. Readers should note that

we measured only the computation time on the devices, without the message

communication delays. As several wireless interfaces (WiFi, cellular, bluetooth)
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GUI Core Functions
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Encrypt (el/pa/bgn) EncryptRSA EncrsaQ

On_startMeetingButton_clicked RequestCommonLocation (el/pa/gm)

Update_Location (el/pa/bgn)

Location
Li
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for LDS
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for LDS

Modified Li preference

Selected meeting participants

PPFRVP 
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Client privkey (el/pa/bgn)

Client pubkey (el/pa/bgn)

Figure 3.6: Architecture diagram of the client PPFRVP prototype application.

Lfair Li

Figure 3.7: Prototype PPFRVP application running on a Nokia N810 mobile
device. The image on the left is the main window, where users add the desired
meeting participants. The image on the right is the map that shows the fair
rendez-vous location (green pin) and the user-preferred rendez-vous location (red
pin).

with different connection data rates and delays could be used to access these

services, we do not measure time delays here.

LDS Performance

Figures 3.8(a), 3.8(b) and 3.8(c) show the computation time required by the LDS.

We can see that it increases with the number of users, and that the ElGamal-

Paillier algorithm is the most efficient across all computations, requiring 4 seconds

to execute the PPFRVP protocol with 10 participants. The two BGN-based

algorithms are less efficient, but are still practical enough (9 seconds). The CPU-

intensive bilinear mappings in BGN are certainly one important reason for such

delays.

Regarding the subsequent modules B and C of the PPFRVP protocol, we
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Figure 3.8: Performance measurements.

observe a that the BGN-based algorithms outperform the ElGamal-Paillier one

(Figure 3.8(b) and 3.8(c)). The maximum computations on the LDS require 0.5

seconds for the 160-bit BGN algorithm, whereas the ElGamal-Paillier takes al-

most 2 seconds. A similar result can be observed for the minimum computations.

There are two main reasons for this. First, there are no bilinear mappings in-

volved in these modules and second, the BGN-based algorithms use much smaller

key sizes. From a practical perspective, both the ElGamal-Paillier and the BGN

algorithms have good performance in modules B and C of the PPFRVP protocol.

Client Performance

Figures 3.8(d) and 3.8(e) show the different computation times on the Nokia N810

mobile device. As it can be seen, thanks to the efficient use of the homomorphic

properties of our BGN-based algorithm, this protocol is the most efficient for the

distance computations, requiring only 0.3 seconds, independently of the number

of users. The alternative protocol, on the contrary, needs 4 seconds with 10

participants. However, in the subsequent phases, the results are not as good, as

the BGN protocol makes intensive use of bilinear mappings.

Overall, we can see that the ElGamal-Paillier protocol has a better perfor-

mance than the BGN-based one, both on the client and on the LDS. Neverthe-

less, both schemes are practical enough and have acceptable time requirements
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in order to be implemented on current generations of mobile devices. Thanks to

the homomorphic properties of BGN, the pairwise distances can be obliviously

computed by the LDS, without involving any decryption/re-encryption operation

from the clients (as opposed to the ElGamal-Paillier alternative). Even with a

comparatively larger security resistance, the BGN scheme is still faster than the

alternative one. It is also important to notice that the design of the proposed

BGN distance algorithm allows it to perform well, independently of the number

of participants.

3.5.1 Discussion

The implementation measurement results of our two PPFRVP algorithms show

that the ElGamal-Paillier based algorithm has a better overall performance than

the BGN-based alternative. On a comparable security level and without con-

sidering communication delays, both the LDS and the client device require less

computation time for the former algorithm compared to the latter. However,

aside from the performance, the BGN-based algorithm presents several advan-

tages. First, it involves three less message exchanges between each client and the

LDS (Figure 3.3) compared to the alternative algorithm. Second, much shorter

security parameters can be used in order to achieve the same resistance to attacks,

and thus lower the memory requirements on the client devices. Third, malicious

users cannot change the masked user-preferred meeting-location coordinates once

they have been sent to the LDS, as there are no decryption/re-encryption oper-

ations in the BGN-based algorithm, as opposed to the ElGamal-Paillier based

one.

3.6 User Study

In this section, we present the methodology and results of the user study we

conducted with our prototype application.

Novel LSB services, such as deals and check-ins, are offered by large service

providers such as Google and Facebook. In order to assess users’ opinions about

the potential and challenges of such services, we conducted a targeted user study

on 35 respondents, sampling a population of technology-savvy college students

(in the age group of 20-30 years) and non-scientific personnel. The questionnaires

are based on the privacy and usability guidelines from [33, 98].

The entire study consisted of three phases: the purpose of Phase 1, during

which respondents answered a first set of 22 questions without knowing the sub-

ject of the study, was to assess the participants’ level of adoption of mobile LSBS

and their sensitivity to privacy issues in such services. The answers to these

questions are either “Yes” or “No”, or on a 4-point Lickert scale (where 1 means

Disagree, 4 is Agree). In Phase 2, the respondents were instructed to use our pro-
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Figure 3.9: Summary of the user-study results for Phase 3.

totype mobile FRVP application. Finally, in Phase 3, the participants answered

the second set of 12 questions, choosing from a 4-point Lickert scale, after having

used our application. The purpose of this phase was to capture users’ opinions

on the usability of our application, and to assess whether privacy undermines

usability or performance in such an application.

Phase 1 The majority of the participants are males, 20-25 years old. Around

86% of them use social networks, and 74% browse the Internet with a mobile

device. When organizing meetings, 54% of the time they involve groups of 4

people and 29% groups of 6 individuals, and participants use their mobile device

for organizing 63% of such meetings. Although only 14% are aware of existing

LSBSs, 51% would be very or quite interested in using a LSBS such as the

FRVP. However, they are sensitive to privacy (98%) and anonymity (74%) in

their online interactions, especially with respect to the potential misuse of their

private information by non-specified third-parties (88%). Furthermore, most of

the participants (80%) agree that no organization or person should disseminate

their personal information without their knowledge.

These results indicate that, although rare at the moment, LSBSs are perceived

as interesting by the majority of the sampled population, who are also the most

likely to adopt LBS technologies [111]. With respect to privacy, they agree that

it is crucial for the acceptability of such services, and thus LSBSs should work

properly by requiring a minimum amount of personal information.

Phase 2 In this phase, the participants were instructed on the usage of our

PPFRVP prototype application and they used it several times to determine a

fair rendez-vous point. The participants were seated in separate places of the
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experimentation area and they could not speak to other participants or see their

device screens.

Phase 3 Figure 3.9 summarizes the main findings of this phase. After using

our application, all participants tend to agree (34%) or agree (66%) that it was

easy to use, and that they could quickly compute the task (97%). Around 80%

feel that it was easy to learn to use such application, and 91% tend to or agree that

the GUI was clearly organized. More than 68% agree that the application was

interesting to use, and if we include those who tend to agree as well, all but one

participant found it interesting. With respect to privacy in such applications, 66%

agree that it is important to reveal only the necessary information to the system,

in order to compute the fair rendez-vous location. More than 71% appreciated

that their preferred rendez-vous point was not revealed to other participants, and

only 8% did not care about the privacy of their rendez-vous location preference.

Only 26% of the participants were able to identify to whom the FRVP location

belonged to, which was to be expected. The users ran our application in groups

of 5 during the experimentation, and therefore there was always one person out

of five that knew that the FRVP location was his preferred location.

From a software developer’s standpoint, this means that both ease of use

and privacy need to be taken into account from the beginning of the application

development. In particular, the privacy mechanisms should be implemented in

a way that does not significantly affect the usability or performance. Moreover,

the acceptance of LSBS applications is highly influenced by the availability of

effective and intuitive privacy features.

3.7 Extension

The PPFRVP protocol defined in Section 3.3 allows each user i to select one

preferred location Li in order to determine the fair rendez-vous location Lfair.

A natural extension of the existing protocol would consist in allowing any user

i to select multiple preferred locations Li,1, . . . , Li,vi, and to associate a personal

priority to any such preference. This way, the users would have more flexibility

in making choices and the output of the PPFRVP algorithm would better reflect

the ranking of the location preferences. Moreover, priorities could also be used to

assign weights to location preferences based on their availability and accessibility,

if such information is available. Hereafter, we propose such an extension to our

PPFRVP protocol and discuss its characteristics. Figures 3.10(a) and 3.10(b)

show the new protocol and its preliminary implementation, respectively.

The multi-point preferences are considered by assigning a priority to each

preferred location Li,j for all users i and preferences j. One way to include

them in the distance computations is to assign weighting coefficients pi,j for the

maximum distances c(Li,j , Lk,h) computed at the end of Step 3 in Figure 3.10(a);
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1. Each user i chooses vi 
locations Li,1,…,Li,vi and 
generates encrypted vectors 
according to distance transf. 
function f(Li,1),…,f(Li,vi)

2. For each user i, server 
obliviously computes 
distances between Li,j, 
and all other users’ Lk,h: 
c(Li,j,Lk,h), for all h,k  i

f(Li,1),
…,

f(Li,vi)

Users LDS

c(Li,1,Lk,h),
…,

c(Li,vi,Lk,h),
for all k  i

3. Each user i employs the
minmax algorithm to 
obliviously det. Max 
distance of each Li,1,
…,Li,vi to all other users’ 
pref. Lk,h, for all h,k  i

3.1 Mult. each max dist. with 
respective priority factor 
pi,1,…,pi,vi

argmini,j
(pi,j · Li,j)

2. Start Phase A of 
PPFRVP with 
received Li,j as Li

(a) Extension of the existing PPFRVP protocol. (b) Prototype application.

Figure 3.10: Extension of PPFRVP to multiple user-preferred locations.

this way, the highest priority could be defined by using the lowest value of pi,1 = 1,

whereas the lower priorities could be assigned higher values of pi,2 = pi,3 = 2 (as

in Figure 3.10(b)). As a result, the minimum of these maximum meta-distance

is crucial for each client in order to select his own prioritized location in Step

3.1, which will then be sent to the LDS for the continuation of the PPFRVP

computations.

3.7.1 Privacy Discussion of the Multi-Point Extension

The proposed extension to the PPFRVP protocol relies on the same cryptographic

primitives as the original PPFRVP protocol. As the operations performed by

the LDS are the same (oblivious distance computations and randomization), the

extended PPFRVP protocol also inherits the privacy guarantees possessed by

the single-location PPFRVP one. Therefore, the PPFRVP protocol (BGN- and

ElGamal-Paillier-based) with the extension to multiple user-preferred locations

preserves identifiability and coordinate-linkability privacy in the passive adver-

sary scenario. However, it retains the same vulnerabilities in the active adversary

scenario.

3.7.2 Performance Discussion of the Multi-Point Extension

With respect to the ElGamal-Paillier-based protocol the BGN-based distance

computations of the extension clearly reduce the number of message exchanges

between each client and the LDS. However, as there is a decryption operation

performed by the clients in Step 3, the distance computation for the extended

protocol with the BGN scheme would put an extra complexity factor, increas-
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ing the overall complexity of the BGN-based extended PPFRVP protocol to

O(N
√
T maxi vi), where vi is the number of location preferences of user i, com-

pared to O(N maxi vi) of the ElGamal-Paillier-based scheme. The communica-

tion complexity would however remain the same for both protocols, which is

O(N maxi vi). Hence, the ElGamal-Paillier-based, extended PPFRVP protocol

would be more preferable from a performance standpoint.

3.8 Related Work

Hereafter, we present some works in the literature that address, without protect-

ing privacy, strategies to determine the optimal meeting location. To the best

of our knowledge, ours is the first work to address the problem in a privacy-

preserving way, by determining one location among a set of proposed locations.

Santos and Vaughn [138] present a survey of existing literature on meeting-

location algorithms and propose a more comprehensive solution for such a prob-

lem. Although considering aspects such as user preferences and constraints, their

work (or the surveyed papers) does not address any security or privacy issues.

Similarly, Berger et. al [14] propose an efficient meeting-location algorithm that

considers the time in-between two consecutive meetings. However, all private

information about users is public.

In the domain of Secure Multiparty Computation (SMC), several authors have

addressed privacy issues related to the computation of the distance between two

routes [63] or points [99, 145]. Frikken and Atallah [63] propose SMC protocols for

securely computing the distance between a point and a line segment, the distance

between two moving points and the distance between two line segments. Zhong

et al. [162] design and implement three distributed privacy-preserving protocols

for nearby friend discovery, and they show how to cryptographically compute the

distance between a pair of users. However, due to the fully distributed nature of

the aforementioned approaches, the computational and communication complex-

ities increase significantly with the size of the participants and inputs. Moreover,

all parties involved in the computations need to be online and synchronized.

There have also been several research results in the literature that focus on

the problem of privacy-preserving location-based queries and location sharing or

anonymous location check-ins. However, these research efforts attempt to solve

issues that are orthogonal, and uniquely different, from the ones addressed in

this paper. Jaiswal and Nandi [91] propose a privacy-preserving platform, called

Trust No One, for privately locating nearby points-of-interest. Their architecture

relies on three non-colluding parties, i.e., the mobile operator, the LBS provider,

and the matching service, for decoupling user locations from user queries. The ar-

chitecture proposed by Jaiswal and Nandi [91] addresses the problem of location-

privacy preserving information retrieval, which is different from our focus. In
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another related effort, Olumofin et al. [122] use Private Information Retrieval

(PIR) techniques to preserve user’s location privacy in location-based queries,

e.g., retrieving points-of-interest information related to current location. This

line of work focuses on private information retrieval based on user locations,

whereas we focus solely on private computations based on user provided locations

or location preferences. Besides these, many earlier research efforts [64, 6, 160]

on anonymizing location-based queries employed the k-anonymity approach. In

this approach, for each query issued by a user, a trusted third party generates an

obfuscation or cloaking region containing k− 1 other users. The third party then

forwards the cloaking region, instead of the user’s actual location, in the user

query to the service provider. In our work, the goal is not to simply anonymize

users’ location data, but to hide this data from the service provider and to enable

provider-oblivious computations on it.

In the direction of anonymous location sharing, Pidcock et al. [128] propose a

novel architecture called ZeroSquare where the main goal is to provide a location

hub for privacy-preserving geospatial applications. The main idea of the authors

is to decouple user (profile) information from location information by assuming

two non-colluding entities that store this information. Their work is different

from ours because they do not consider the problem of privately computing some

function based on the location data, rather they want to enable privacy-preserving

location sharing in mobile applications. Contrary to the work by Pidcock et al.

[128], Guha et al. [76] propose a privacy-preserving system that allows users

to set location-triggered alarms based on presence at specific locations, rather

than sharing location coordinates. In another related effort, Herrmann et al.

[80] propose two constructions for privacy-preserving location sharing by using

broadcast encryption techniques. Their construction prevents the service provider

from learning the identity of the user and her location, but allows it to determine

which other users are allowed to know the user’s location. Contrary to our work,

which focuses on efficient computation of some common function based on shared

user locations while keeping these locations private (from the service provider),

they focus on keeping both the identities and the shared locations private from

the service provider. Carbunar et al. [30] also propose a set of privacy-preserving

protocols, using well-known cryptographic constructs, which anonymously proves

to a venue that a user checked-in (her location) a certain number of times. In

our work, we do not consider the problem of anonymously proving presence at

a particular location. Rather, our goal is to hide the user’s location claim (or

location preference) from other users and the service provider.
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3.9 Summary

Novel LBS applications are taking advantage of the numerous technological ad-

vances in order to provide a better and more efficient user experience. Major

online providers are leveraging on the enthusiasm for such services in order to

deliver increasingly sophisticated location-based applications, such as location-

sharing-based (LSB) applications. However, the existing users’ concerns about

privacy in such services need to be effectively considered from the beginning, as

they are essential for the success and adoption of such services.

In this chapter, we have addressed the problem of privacy in the FRVP prob-

lem by providing practical and effective solutions based on homomorphic prop-

erties of well-known cryptosystems. We have designed, implemented on real mo-

bile devices and evaluated the performance of our privacy-preserving protocols

for solving the fair rendez-vous problem in a privacy-preserving manner. Our

solutions are proved to be effective in terms of privacy, have acceptable perfor-

mance, and do not create additional overhead for the users. Moreover, we have

extended the proposed solutions to include more realistic scenarios where users

have several preferred and prioritized locations preferences. Finally, our user-

study showed that the proposed privacy features are crucial for the adoption of

any such application, which reinforces the need for further exploration in privacy

of LSB services.

Publications: [20, 19]
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Chapter 4

Privacy of Social Communities in

Pervasive Networks

Wireless network operators increasingly deploy WiFi hotspots and low-power,

low-range base stations in order to satisfy users’ growing demands for context-

aware services and performance. In addition to providing better service, such

capillary infrastructure deployment threatens users’ privacy with respect to their

social relationships and communities, as it allows infrastructure owners to infer

users’ daily social encounters with increasing accuracy, much to the detriment of

their privacy. Yet, to date, there are no evaluations of the privacy of commu-

nities in pervasive wireless networks. In this chapter, we address the important

issue of privacy in pervasive communities by experimentally evaluating the ac-

curacy of an adversary-owned set of wireless sniffing stations in reconstructing

the communities of mobile users. During a four-month trial, 80 participants car-

ried mobile devices and were eavesdropped on by an adversarial wireless mesh

network on a university campus. To the best of our knowledge, this is the first

study that focuses on the privacy of communities in a deployed pervasive network

and that provides important empirical evidence on the accuracy and feasibility

of community tracking in such networks.

Chapter Outline In Section 4.1, we introduce the privacy issue in pervasive social

networks, and in Section 4.2 we detail the experimental trial framework together

with its system and network models. In Section 4.3, we outline the community

and privacy analysis. In Section 4.4 we present the results of the analysis of

communities and their privacy vis-à-vis the external adversary. We present the

related work in Section 4.5, and we summarize the chapter in Section 4.6.
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4.1 Introduction

Every day, mobile operators collect large amounts of users’ data that is mined

for commercial and performance goals, such as billing, throughput, coverage and

usage statistics. In addition to the explicit information (such as cost, duration,

location) that can be derived from the communications, operators and infrastruc-

ture owners are able to gain additional knowledge based on the communication

and contextual patterns, without any action from the user for this regard [75, 81].

Users’ home/work locations [75, 81], activities [107], interests [120] and social net-

works [38, 105] can be inferred from their location and social interactions, much

to the detriment of not only their own privacy, but also to that of their peers.

More recently, telecom manufacturers have also added support for seamless,

low-cost, wireless device-to-device communications, such as Nokia Instant Com-

munity [36], AirDrop by Apple [4] and FlashlinQ by Qualcomm [37], thus comple-

menting existing infrastructure-based communications. The possibility of real-

time data sharing among devices, without the need for infrastructure, enables

people to form localized and short-lived groups or communities of users, which

can emerge in scenarios where the infrastructure is inadequate, expensive, un-

trusted or hostile [132, 55]. Although still an emerging research subject in the

wireless domain [161], pervasive communities and their structured networks of

interactions are able to significantly improve the performance of opportunistic

networks [85, 31], by leveraging on the structural properties and patterns of the

evolving user interactions. In the literature, there are several routing and packet-

forwarding algorithms [83, 86, 31] that exploit the underlying evolving social in-

teractions to improve the network performance, mostly based on the frequency of

recorded Bluetooth encounters. Similarly, social communities have been studied

from the behavioral perspective [38, 48, 72], in order to analyze people’s prefer-

ences and group formation characteristics. The undisputed value of friendship

networks and social ties to service providers such as Facebook and Twitter has

also dramatically increased their monetary value [28], as more and more targeted

advertisements and tailored services are proposed to groups of users with similar

attitudes and interests.

In spite of the soaring interest for the analysis and exploitation of perva-

sive communities in the wireless domain, in terms of privacy very little has been

achieved. Privacy of communities and their members is a major concern in regions

where the ability to keep such information from being inferred by unscrupulous

third-party providers or suppressive governments is critical [132, 55]. Even in

developed countries, where each person has (on average) more than one mobile

subscription [88] and where small and pervasive base stations (femtocells) al-

ready outnumber conventional base stations [54], the issue of community privacy

is extremely relevant. Furthermore, the increased availability of public WiFi

hotspots and the rapid deployment of low-power and low-range cellular base sta-
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tions (femtocells) [54] makes such inference even more accurate, as more precise

user proximity data can be collected, regardless of the kind of upper-layer pro-

tocols and applications. The risks of unsolicited user profiling, data censorship,

racial discrimination and political repression, based on users’ physical proximity

derived from short-range communications, are a major concern. Because most of

the existing literature on communities in wireless networks has been primarily fo-

cused on performance or human behavior, to the best of our knowledge there is no

single empirical work that has addressed the issue of the privacy of communities

in deployed wireless networks.

In this chapter, we address the problem of community privacy by taking a

comparative analysis of the exposure of social relationships and encounters in a

deployed wireless peer-to-peer (P2P) network. Over a four-month trial (March-

June 2011) with 80 participants, we studied and quantified the extent of leakage of

private community information by users, by providing empirical evidence about

the network or infrastructure owner’s accuracy of reconstruction of the social

communities of people. Our work is unique in three respects:

• We provide the first privacy analysis of the exposure of community infor-

mation in a deployed wireless network.

• We experimentally evaluate and compare the wireless sniffing stations owner’s

accuracy of reconstruction of the social communities of people, based on the

observed traffic patterns, with the local proximity and the encounter data

that is collected by the mobile devices.

• We characterize the evolution of the social interactions among the partici-

pants, and we evaluate the strength of their interactions by implementing

three different social interaction measures that take into account the num-

ber, the proximity, the recency and aging effects of social relationships in

the underlying wireless network.

4.2 System Architecture

During four months (March-June 2011), we conducted a large-scale trial with

80 participants on the EPFL university campus, in order to collect encounter

and proximity data. Similarly to previous data collection campaigns [71, 78, 47],

we programmed and distributed 80 Nokia N900 smartphones to the volunteering

participants, sampling a coherent population of master’s students and instructors

of two classes taught during the spring semester. The participants were asked

to carry their device with them as frequently as possible, and they were allowed

to use it as their primary phone. At the end of the trial, we obtained useful

information from 66 devices, amounting to almost ten GBs of collected log data

and over 8 million packets captured by the adversarial network. The remaining
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(a) Trial network architecture.

66 m

186 m

(b) Deployed wireless mesh network of 37 APs controlled
by the adversary.

Figure 4.1: Trial setup and deployed eavesdropping network controlled by the
adversary.

14 devices were either not used regularly or did not collect the data properly,

hence they were excluded from the analysis.

4.2.1 Device Configuration

The Nokia devices were configured with both standard infrastructure-based com-

munications, such as cellular and WiFi, as well as with a novel WiFi-based P2P

technology, called Nokia Instant Community or NIC [36]. Users could connect

to both standard Internet services using the WLAN or cellular interface of the

device, as well as to an experimental context-aware wireless P2P messaging plat-

form − in order to exchange information with their physical neighbors in a P2P

fashion (Figure 4.1(a)). Moreover, several campus and course-related applica-

tions were developed in order to stimulate and encourage the usage of the devices

throughout the duration of the trial. In order to enhance the context-awareness

of the pre-installed applications, the devices were running background services

that collected and stored, at regular intervals of [1-30] seconds, information such

as the list of neighbors, the associated Received Signal Strength Indicator (RSSI)

and the time stamp in the local memory. Whenever a participant connected to

the Internet with the device, the new encounter logs were uploaded on a central-

ized database storing all device logs. To preserve users’ anonymity, we removed

all personal identifier information (such as the mapping between MAC address -

IMEI - participant ID) from the database.

4.2.2 Adversarial Model and Infrastructure

We emulate a practical adversary who monitors a fixed area using a limited num-

ber of wireless sniffing stations. Specifically, the adversary is the owner of a

deployed wireless mesh network of 37 APs (Asus WL-500gP APs running Open-

WRT Linux) in a specific region of the campus [8], covering one level of six

interconnected buildings which have a very high user (student) density (Figure

4.1(b)). The coverage area includes the classrooms in which the two classes that
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Figure 4.2: Flowchart of the pervasive community privacy evaluation process.

the students attended took place. We assume that the adversary passively eaves-

drops on the participants’ communications, and that he1 periodically uploads the

eavesdropped data to a centralized server, populating a unified log database for

each AP.

In order to perform the pervasive community reconstruction attack discussed

in the following section, we assume that the adversary collects the 3-tuple (Time

stamp, Source MAC, RSSI) from the messages sent by the participants’ smart-

phones. As encryption is sometimes used to protect the confidentiality of network

and application-layer data in real networks, we assume that the adversary does

not have access to such data. This reinforces the practicality and better em-

bodies real-world limitations that an external adversary might have, being much

weaker than the omniscient Dolev-Yao adversary [44]. Moreover, the information

collected by the adversary is present in almost all kinds of wireless networks and

technologies (such as Bluetooth, WiFi and cellular), which enlarges the appli-

cability and scope of the results. In this work, we assume that the adversary

does not have direct access to any information stored on the mobile devices, and

that all devices are honest (i.e., not colluding with the adversary). As part of

our future work, we will consider a stronger adversary that can collude and gain

access to some of the mobile devices as well.

4.3 Community Analysis

In order to evaluate the extent of community information leakage in our setting,

we first need to define the analytical framework that captures the pervasive com-

munity information from the collected data. In this section, we introduce some

background on communities in wireless networks and describe how we evaluate

communities and their privacy in our trial. A flowchart of the entire process is

depicted in Figure 4.2.

1For conciseness and without loss of generality, we refer to the adversary in the masculine
form, although both masculine and feminine forms apply.
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4.3.1 Background

In society, people tend to organize themselves in social groups or communi-

ties, such as family, work colleagues and hobby groups, where members usu-

ally have stronger similarity traits with other members than with non-members

[57]. From a graph-theoretic perspective, people and their relationships can be

represented by an undirected graph G = (V,E,W ), where the vertex set V cor-

responds to people, the edge set E expresses the existence of a relationship be-

tween people, and the weight function W quantifies the intensity of such relation-

ship. In their simplest form, communities can then be represented as subgraphs

{Ci = (Vi, Ei,Wi, )}Mi=1, where Ci ⊆ G and M is the number of communities Ci.

Several community detection (or clustering) algorithms are present in the

literature, and they work on either unweighted/weighted and undirected/directed

graphs. Although hierarchical clustering [77] and modularity-based algorithms

[115] − surveyed in [57] − have been applied to community detection, most of

them lack a fundamental characteristic that is intrinsic to social communities.

People are often members of several communities at the same time, such as

friends, family members and work colleagues, and most of the aforementioned

algorithms assign a single vertex to only one community. In order to allow a

vertex to be assigned to multiple (possibly overlapping) communities, Palla et al.

[126] developed a technique, the Clique Percolation Method (CPM), which allows

different communities to share vertices. The idea is that communities are formed

by the union of adjacent k-cliques (complete graphs with k vertices), where two

k-cliques are adjacent if they share k−1 vertices. Due to the social nature of our

trial and the experimental setting, we use the CPM algorithm to detect pervasive

communities based on physical proximity and encounter data.

After the pervasive communities have been discovered, several privacy-sensitive

statistics can be obtained from the community structure, their overlap and their

members. We describe the relevant statistics in Section 4.3.3.

4.3.2 Trial Framework

In order to model the collected encounter data using a graph, hereafter we de-

scribe the type of information that is used in order to define the existence and

intensity of relationships between users.

Trial Data

In our trial, we have two sources of proximity information: (i) the local device

logs collected by the mobile devices and containing encounter (list of neighbors,

the time stamps and the RSSI values of received packets), and (ii) the adversarial

(sniffing) logs containing the headers of the packets sent by the mobile devices,
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which include the time stamps and RSSI values of received packets at the sniffing

stations, as well as the device ID of the sender.

We use these two data sources in order to formulate the “strength” or intensity

of the social relationships between users and to define the weights of the edges

connecting the respective vertices in the social graph G = (V,E,W ). There

are two types of proximity information in our network: device-to-device RSSI

data (collected on the devices) and device-to-AP RSSI data (collected by the

adversary). From the local device logs, we can directly obtain the device-to-device

proximity information because the recorded RSSI values on the receiving device

depend on the real distance to the sending device. However, this is not exactly

the case for the RSSI values recorded by the adversarial network, as they depend

on the distance between the sending device and the receiving sniffing station,

and not the receiving mobile device. Therefore, the adversary needs to derive

the device-to-device proximity information from the device-to-AP RSSI values.

Hence, we first need to estimate the position of a device, and then compute the

device-to-device proximity information in order to determine the weights between

vertices of the social graph.

To this end, we developed a robust localization algorithm based on RSSI

trilateration [23], which determines the estimated position of a received packet

based on the RSSI at all sniffing stations that received that packet. Using the po-

sition estimate, we then compute the distance and RSSI between mobile devices,

as described later in this section.

Social Interaction Intensity

We define three distinct weight functions {w(d)
i,j }3d=1 between the vertices i, j ∈ V ,

taking progressively into account the proximity, the intensity and the aging and

recency of the relationships between users. We divide the timeline of the trial

into discrete time intervals {Tk}Nk=1, where N = 120 days, and for each day Tk

we define the weights wi,j(Tk)
(d) between users i, j.

The first and simplest weight function is the (shifted, non-negative) average

of the RSSI value between a pair of users i, j for each day Tk, defined as

wi,j(Tk)
(1) =

⎛
⎝ 1

ci,j(Tk)
·
ci,j(Tk)∑
q=1

RSSIi,j(Tk, q)

⎞
⎠− rmin

where ci,j(Tk) is the sum of the number of packets received by i (and sent by j)

and received by j (and sent by i) during the day Tk, RSSIi,j(Tk, q) is the RSSI

value of a packet q received by a user i (and sent by j) or received by j (and sent

by i) during the day Tk, and rmin is the minimum RSSI value that was recorded

during the trial. For instance, we fix rmin = −100 dBm as no RSSI values lower

than −100 dBm have been recorded by any device. Apart from the intensity, this
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weight function does not consider the duration of the encounters (as it normalizes

the intensity by the number of packets) between users or any aging or recency

effect.

The second weight function takes into account the duration of the encounters

through the sum of the (shifted, non-negative) RSSI values between users i, j, for

each day Tk. It is defined as

wi,j(Tk)
(2) = ci,j(Tk) · wi,j(Tk)

(1) =

ci,j(Tk)∑
q=1

(RSSIi,j(Tk, q)− rmin)

As the devices who are in continuous radio contact automatically exchange more

context messages than the non-connected devices, this weight function takes into

account the duration of the contacts, in addition to their intensity.

As communities of mobile devices are dynamic and evolve over time, the

third weight function captures the natural evolution of social relationships be-

tween individuals, where past experience, recency and current state determine

the intensity of interactions among people [125]. In this way, two users that have

spent much time together in the past, but have not met on a given day, would

still keep a relationship during that day (which is not the case for wi,j(Tk)
(1) and

wi,j(Tk)
(2)), even if its intensity is lower due to the aging effect − thus avoiding

strong temporal fluctuations. Inspired by the formulations in [125, 157], we define

the third weight function as

wi,j(Tk)
(3) = 1ci,j(Tk)>0

(
τ · w(3)

i,j (Tk−1) + (1− τ) · γi,j(Tk)
)

(4.1)

+ (1− 1ci,j(Tk)>0) ·
(
w

(3)
i,j (Te) · θi,j(Tk, Te)

)
where

γi,j(Tk) =
1

α
· wi,j(Tk)

(2)

θi,j(Tk, Te) = exp

(
− λ(Tk − Te)

1 +
∑min(Tk−Te,Te)

r=0 mi,j(Te − r)

)

mi,j(Tk) =

{
1 if γi,j(Tk) > β

0 otherwise

and 1ci,j>0 is the indicator function, 0 ≤ τ ≤ 1 is the aging coefficient, α > 0 is

the normalization factor, 0 < λ ≤ 1 is the temporal decay value, 0 ≤ Te ≤ Tk−1
is the last day before Tk when users i, j exchanged messages, mi,j(Tk) ∈ {0, 1}
is the recency factor that indicates whether a meeting took place during Tk or

not, and β ≥ 0 is the meeting threshold value. The idea behind the formulation

is the following: If users i, j exchanged at least one message on a day Tk, then

the weight of their edge is an exponential moving average of the aged weight

− accumulated up to the day before (Tk−1) − and the recent day’s weight; on
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Figure 4.3: Users’ positions estimates by the adversary. In this example, the
adversary has the position estimate of user u at z = 1 but not at subsequent
subintervals. In this case, u’s last position estimate (at z = 1) is assumed to be
valid in f subsequent subintervals. Here f = 1.

the contrary, if i, j did not exchange any message on day Tk, the current day’s

weight is a function of the previously accumulated weight, the frequency of their

encounters just before the last encounter and the amount of time between the

last time i, j had exchanged messages (Te) and the current day Tk.

The weight functions can be directly applied to the local-device proximity

information, as the available proximity information (time stamps, RSSI values

from neighboring devices and their IDs) are sufficient for their computations.

However, an intermediate step is required in order to compute the weights by

using the external (adversarial) proximity information (time stamps, RSSI values

from devices to sniffing APs and device IDs). In the following we show how to

use the external proximity information in order to compute the edge weights.

User-Distance Estimation by the Adversary

As the adversary does not have access to device-to-device proximity data, he can

decide to only use the estimated positions of a user i in a day Tk, defined as

Pi(Tk) = {pi(Tk, 1), . . . , pi(Tk, b)}, where b is the number of subintervals of a day

Tk and pi(Tk, z) = (xi(Tk, z), yi(Tk, z)) ∈ R2 is the estimated position of user i

in the subinterval z of day Tk. Moreover, because there is a possibility that a

user’s packet may not be detected in each subinterval z, due to mobility or radio

interference, we assume that the last position estimate pi(Tk, zlast) of a user i is

valid in f subsequent subintervals, if no {pi(Tk, zlast + 1), . . . , pi(Tk, zlast + f)}
are available (Figure 4.3).

With such information, the adversary computes the edge weights as follows:

(1) ∀z ∈ {1, . . . , b}, compute pi(Tk, z) for all users i observed on day Tk.

(2) ∀z ∈ {1, . . . , b}, compute the estimated Euclidian distance di,j(Tk, z) =

||pi(Tk, z)− pj(Tk, z)|| between any two users i, j observed on day Tk.
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(3) ∀z ∈ {1, . . . , b}, compute the estimated RSSI value according to the adapted

Haka-Okumura model for indoor radio propagation [26]

R̂SSIi,j(Tk, z)[dBm] = Pt + 20 log

(
λ

4π

)
+ 10n log

(
1

di,j(Tk, z)

)

where Pt = 20 [dBm] is the transmission power of the mobile device, λ =

0.125 [m] is the wavelength, n = 4.8 is the path-loss exponent suited for

office environments such as the university buildings under observation. The

R̂SSIi,j(Tk, z) value replaces RSSIi,j(Tk, q) in the weight functions w
(d)
i,j (Tk),

where z ∈ {1, . . . , b}.

Weight Distributions

Due to the different features of a social relationship that each weight function

models, their numeric values fall in different domains. For example, if α = 100,

β = 1, λ = τ = 0.5 we have 0 ≤ w
(1)
i,j < rmin, 0 ≤ w

(2)
i,j < 2.5 · 105 and

0 ≤ w
(3)
i,j < 600. It is therefore necessary to put them on the same scale for

the identification of communities, as simply comparing the absolute values of

the three weight functions is pointless. Hence, rather than comparing absolute

values, we compare the weight distributions relative to the maximum of each

weight function for each day Tk. To this end, we select an equal number of bins

I(d) for each weight function w
(d)
i,j (Tk). We then count the number of weight

values that fall inside each such bin for all weight types, and we compare the

distributions.

Figure 4.4(a) and Figure 4.4(b) show the relative edge weight distribution for

a day Tk, by using the internal (local device) and external (adversarial estimate)

input data, respectively. We see that, compared to the adversarial data, the local

device data yields more pronounced characteristics for all three weight types and

provides a more discriminating information set for the subsequent community

detection phase, whereas the external data is less feature-rich due to the presence

of uncertainty in the estimates of the proximity between users. This means that

the adversary will likely struggle to infer with high accuracy the community

characteristics for that day. We quantify such inaccuracies in Section 4.4.

Next, we describe the method we adopted to evaluate the extent of community

information leakage and the related privacy measures.

4.3.3 Communities and Privacy

Having quantified the social interaction intensity as edge weights between any two

trial participants, we now outline the community detection process, the suitable

community statistics and privacy measures used to evaluate community privacy

in our work.
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Figure 4.4: Relative edge weight distribution for different input data sets.

Community Detection

In its simplest form, the CPM community detection algorithm is defined for

undirected and unweighted graphs [125], thus requiring only connectivity be-

tween vertices in order to discover communities. However, in order to consider

the “strength” of the interactions between vertices, it was extended to work on

weighted graphs by the use of a threshold weight w∗. In its weighted version, the

CPM algorithm considers the existence of an edge ei,j between two vertices i, j if

and only if the weight w
(d)
i,j > w∗. In order to determine the threshold weight w∗,

Palla et al. propose to choose a value such that “the largest community becomes

twice as big as the second largest one”[126], which is below the critical value w∗crit
for which a giant connected component arises [42].

In our experiment, we calibrated the {w∗q}Tq=1 threshold values on a per-day

basis, instead of keeping the same w∗ throughout the trial. Because most of the

participants followed one specific class that took place on Wednesdays, and the

remaining days they might or might not have followed any common classes, we

registered high RSSI proximity values on course days and more sparse values on

non-course days. Hence, the per-day threshold {w∗q}Tq=1 was better suited for

such bi-modal proximity patterns.

To illustrate the output of CPM, Figure 4.5(a)2 and 4.5(b) show an example

of the detected communities on a given day, based on the internal data and the

observations of the adversary respectively. As it can be seen, some communities

detected by the adversary are not present in the internal case; there is however an

overlap between the members (the larger vertices) of the two sets of communities.

We discuss and quantify this difference in Section 4.4.

2The figure is obtained by using the CFinder application developed by the authors of the
CPM algorithm, freely available on www.cfinder.org.
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Figure 4.5: Detected communities on a day Tk based on internal (local device)
and external (adversarial estimates) data, respectively. The larger vertices are
present in both community sets.

Community Statistics

In addition to detecting communities and their members, we compute five privacy-

relevant and common community statistics {S(i)(Tk)}5i=1 that will be compared

in the accuracy evaluation process. In particular, for each day Tk of the trial

we compute and compare the following statistics: S1 is the community degree

(the number of edges shared between two communities), S2 is the distribution

of the community size (the number of members of each community), S3 is the

community density (proportion of edges out of all possible edges relative to the

sparsest set with |Ci| − 1 vertices), S4 is the ratio of total out- and in-degree of

communities and S5 is the community membership value (the number of com-

munities a vertex belongs to). The difference between the results obtained using

the internal and external input data is defined by Eq. (4.2) as the ratio between
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the absolute difference of the observed statistics over the maximum value

ΔSi(Tk) =
|Sext

i (Tk)− Sint
i (Tk)|

max
∀Tk

(
Sext
i (Tk), S

int
i (Tk)

) (4.2)

We have ΔSi(Tk) = 0 when the adversary’s statistics is exactly the same as the

statistics obtained using the internal proximity data, and ΔSi(Tk) = 1 when the

two statistics have the largest discrepancy (or lowest similarity). We define the

adversary’s accuracy in inferring the community statistics as 1−ΔSi(Tk).

Community Privacy

In addition to the differences in statistics ΔSi(Tk), it is crucial to assess the

similarity of the community composition in order to ascertain in a comprehensive

way the privacy leakage of community information. To this end, we compute

the well-established Jaccard index measure [89] for community similarity on each

day Tk, which is a statistic that computes the similarity between two sample sets

(or communities) Ci, Cj , where values close to zero mean that the adversary did

not accurately infer the communities and their members, whereas values close to

one indicate a very good adversarial accuracy in inferring the same communities.

The Jaccard index is defined as

J(Ci, Cj , Tk) =
|Ci(Tk)

⋂
Cj(Tk)|

|Ci(Tk)
⋃

Cj(Tk)| (4.3)

In order to evaluate the adversary’s accuracy of reconstruction of the com-

munities in our pervasive network, we compute the Jaccard index on each day

Tk between the communities Ci(Tk), detected using internal device data, versus

the reconstructed communities Cj(Tk), detected using the adversarial estimated

proximity information. Given J(Ci, Cj , Tk) for each i, j on a day Tk, we define the

Jaccard index matrix JMat(Tk), where each element of the matrix is defined as

JMat(Tk)i,j = J(Ci, Cj , Tk), i.e., the Jaccard index for all pairs of communities

Ci and Cj . Without having access to the internal data, the adversary has no

prior knowledge about which community Ci corresponds to which reconstructed

community Cj . Therefore, in order to consider the best possible match for any

pair of internal/reconstructed communities for each day Tk, we choose the match

(Ci(Tk), Cj(Tk)) that maximizes JMat(Tk)i,j . We then compute the aggregated

Jaccard index over all such best matches as

JI(Tk) = avg∀i

(
max
∀j

(JMat(Tk)i,j)

)
(4.4)

for each day Tk of the trial where there is at least one community detected by

using both the internal and adversarial proximity information.
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In the next section we quantify the community privacy leakage by computing

the accuracy measure 1 − ΔSi(Tk), and similarity JI(Tk) for each day Tk and

weight function {w(d)
i,j }3d=1, comparing the results obtained using the internal

(local device) and external (adversarial) input data respectively.

4.4 Results

In this section we provide the experimental evaluation of the privacy of pervasive

communities through a comparative analysis of the adversary’s accuracy of recon-

struction of both community statistics and memberships. First, we evaluate the

privacy across the three weight functions {w(d)
i,j }3d=1 (inter-weight accuracy), by

comparing the similarity between communities and the accuracy of their statis-

tics obtained by using the internal (local device) proximity information with the

external (adversarial estimates) data collected by the set of wireless sniffing sta-

tions. This will allow us to observe the evolution of the accuracy while increasing

the sophistication of the weight functions, taking progressively into account sev-

eral features of human and social behavior such as proximity, intensity, aging and

recency of social relationships. Second, we perform an intra-weight comparison

for the more realistic weight function w
(3)
i,j , in order to characterize the effect of

the aging factor τ on the similarity and accuracy of community reconstruction

attained by the adversary.

Figure 4.6 and 4.7 show the adversarial reconstruction similarity and accuracy

results with respect to the communities detected using internal data, for the inter-

weight and intra-weight scenarios respectively. For Figure 4.6(a) and 4.7(a), a

value of JI(Tk) = 0 means that on day Tk there were no communities detected

either using the internal proximity data or the external one. The complete list of

the experimental parameters − selected in order to provide as much information

as possible − can be found in the Appendix, which is provided as a supporting

file to this document.

4.4.1 Inter-Weight Accuracy

By observing Figure 4.6(a), we first notice that the adversary is able to cor-

rectly reconstruct communities and identify their members in 20%− 40% of the

cases, compared to the communities detected by using internal proximity data.

In general, we observe that there is a significant difference in terms of similarity

results between the first two weight functions w
(1)
i,j , w

(2)
i,j and the third function

w
(3)
i,j . The former two functions are solely based on the observations made on

each particular day and independently of what happened in the previous days.

Therefore one noticeable characteristic is the increased fluctuations in the simi-

larity from one day to the other, which is a much less visible aspect for the latter

weight function. As w
(1)
i,j , w

(2)
i,j are very exposed to the periodicity of the course
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Figure 4.6: Adversary’s accuracy of reconstruction of the pervasive communities
for the three weight functions.

schedule of the participants, the adversary’s similarity of reconstruction of the

actual communities and their members greatly depends on the amount of data

collected by his wireless mesh network. We notice that for the days when most

students attended a particular class, the reconstruction similarity is higher (up

to 40%) than for days in which students do not attend classes together. Hence

even the two basic weight functions are able to provide a sensible similarity to

the adversary when the users’ movements are tracked by several sniffing stations

simultaneously.

Contrary to w
(1)
i,j and w

(2)
i,j , w

(3)
i,j is able to capture more proximity information

and allow the CPM algorithm to detect communities on the days in which the

other two weight functions were unable to provide a sufficient amount of data.

At the same time, however, the peaks of similarity tend to be much lower (25%)

compared to the other functions. This suggests that w
(3)
i,j , while being able to

produce more community information with scarce data, performs worse in the

identification of the members in each community.

Regarding the difference in community statistics, depicted in Figure 4.6(b),

we observe a better accuracy for w
(3)
i,j compared to w

(1)
i,j and w

(2)
i,j . In four out

of five community statistics, w
(3)
i,j has an almost 40% better accuracy compared

to the other functions, which indicates that the former function provides better

results on a higher structural community level rather than on an lower, individual

community member level.

In general, we observe that all three weight functions are better able to pro-

duce accurate community statistics (Figure 4.6(b)) than to identify the correct

community members (Figure 4.6(a)). In particular, w
(3)
i,j shows that it is possi-

ble to achieve very accurate community statistics only by relying on externally

collected data, thus shrinking the discrepancy between the community statistics

based on internal data and adversarial’s estimates down to 9%. This result indi-

cates that, by collecting and analyzing radio information passively and without

access to the devices themselves, an adversary is able to breach the privacy of
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Figure 4.7: Adversary’s accuracy of reconstruction of the pervasive communities
for three different values of the aging factor τ .

community information very successfully, although the more fine-grained identi-

fication of members of any given community remains a more challenging task.

4.4.2 Intra-Weight Accuracy

Figure 4.7(a) shows the adversary’s performance in correctly identifying the com-

munities and their individual members when using w
(3)
i,j with three different values

of the aging factor τ = {.25, .5, .75}. According to its definition in Eq. (4.3.2),

we assign an increasing coefficient to the past accumulated weight information

w
(3)
i,j (Tk−1) in the computation of the current day’s weight function w

(3)
i,j (Tk). The

goal is to study the effect of the “retention” of the intensity from the past on the

privacy (or lack thereof) of community information.

One recurring characteristic, present also in the inter-weight comparison, is

that the CPM algorithm detects communities in all days of the trial, indepen-

dently of the amount of information available to the adversary on each particular

day, even for a small value of τ . When τ = .25, as expected the similarity fluc-

tuates more when compared to τ = .5, especially at the beginning of the trial.

However, Figure 4.7(a) shows that the stabilization of the similarity is not

achieved by simply increasing the value of τ from .25 to .75; in fact, for the

intermediate value of τ = .5, we notice that the fluctuations are less pronounced

than for a smaller or larger value. This suggests that, for relatively small or

large values of the aging factor, the similarity achieved by the adversary tends to

diverge more frequently from steady values, indicating that a stable value for the

aging factor is more likely to be in the middle of the possible values [0.25,0.75],

rather than at any of the extremes. When τ = .75, the adversarial similarity

increases sharply as the time passes, especially towards the end of the trial. This

is somewhat surprising, as we would expect that by increasing the emphasis on

the past − rather than on the current weight information − the similarity would

be more stable when going through the trial. This is an interesting aspect to
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consider in further studies on our community data.

When observing the results on the accuracy of the community statistics, as

shown in Figure 4.7(b), we notice that, among the three considered values of τ ,

τ = .5 is the least accurate, compared to smaller or larger values of τ . Moreover,

in four out of five statistics, the largest value of τ = .75 produces the best accuracy

on average over the trial duration. This suggests that, although not converging

towards a stable interval for the accuracy in identifying the communities and

their members, putting more emphasis on the past accumulated information does

increase (on average) the adversary’s accuracy in computing correct community

statistics using only passively collected data from fixed WiFi access points.

Overall, the results indicate that although less stable and more accurate at

inferring community structures, emphasizing the past yields better accuracy for

both community detection, identification of their members and for generic com-

munity statistics. This finding in particular is concerning in regard to privacy, as

the amount of individual and community data that is collected by external par-

ties might provide very accurate statistics, especially for group and community-

targeted services. These results are significant, as they show how the message

source ID, contained in almost any kind of radio message, not only is enough to

provide accurate social community statistics, but it is also sufficient to success-

fully infer almost half of the members of such communities.

4.5 Related Work

The structural properties of short-lived communities in pervasive networks have

been recently investigated from the performance [85, 31] and routing [83, 86, 31]

perspectives; the authors of [38, 48, 72] investigated similar issues on the socio-

behavioral level while studying people’s preferences and group formation char-

acteristics. For instance, it is shown that performance of packet-forwarding al-

gorithms could greatly benefit from the human mobility and sporadic nature of

inter-contacts [85], as the different connection frequencies between members of

the same community with respect to members of other communities could sig-

nificantly improve intra-community packet-forwarding while not disrupting inter-

community communications. Similarly, [86] shows how forwarding performances

similar to state-of-the-art algorithms could be achieved at a sensibly lower re-

source utilization if structural properties of communities are considered.

With respect to privacy, several works on location privacy address the risk

and propose protection mechanisms for users’ locations [13, 82, 90]. These con-

tributions focus mostly on individual mobile users and their current neighbors.

However, to the best of our knowledge, there is no prior study on the increasingly

important issue of pervasive community privacy and its evaluation on a deployed

network. This work constitutes the first building block for analysing community
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privacy issues in pervasive networks.

4.6 Summary

In this chapter, we have addressed the important aspect of community privacy

in pervasive networks. We conducted an experimental analysis of the adversary’s

accuracy of reconstruction of the communities. In particular, we focused on iden-

tifying the individual community members and on inferring the generic commu-

nity statistics that are less dependant on the correct identification of individual

users inside such communities.

Through a fine-grained characterization of the intensity of social contacts

among people, we quantified the accuracy in both community reconstruction and

community statistics for the whole duration of the trial, showing that even basic

social intensity functions capture very accurately the generic statistics, such as

the degree of a community, its size and density of links. However, reconstructing

more specific information about the composition of each community and their

individual members remains more challenging, even when using a more com-

prehensive model for characterizing the intensity of social relationships, which

considers recency, ageing, and contact frequency in addition to proximity and

duration. As a result, there is a substantial risk that accurate community infor-

mation could be easily collected, inferred and misused by external third-parties,

much to the detriment of users’ community privacy.

Our results provide empirical evidence about the two distinct levels of com-

munity information leakage to external observers, who could be able to infer with

high accuracy the different social groups and generic communities of people in

pervasive networks, while being much less accurate in determining the affiliation

of any particular individual to a community.

Publication: [22]



Chapter 5

Privacy of Social Relationships in

Pervasive Networks

WiFi base stations are increasingly deployed in both public spaces and private

companies, and the increase in their density poses a significant threat to the

privacy of connected users. Prior studies, including the one presented in Chap-

ter 4, provide evidence that it is possible to infer the social relationships and

communities of users from their location and co-location traces, but they lack

one important component: the comparison of the inference accuracy between an

internal attacker (e.g., a curious application running on a mobile device) and a

realistic external eavesdropper in the same field trial. In this chapter, we experi-

mentally show that, for some social relationships, such an eavesdropper is able to

infer the type of social relationships between mobile users better than an internal

attacker. Moreover, our results indicate that by exploiting the underlying social

community structure of mobile users, the reliability of the inference attacks in-

creases by a factor of three. Based on our findings, we propose countermeasures

to help users protect their privacy against eavesdroppers.

Chapter Outline In Section 5.1, we introduce the social relationship inference

problem and present our goals. In Section 5.2, we introduce the experimental

setup and system architecture. In Section 5.3, we detail the characterization of

the social interactions and communities. We describe our relationship inference

framework in Section 5.4 and its application to the experimental data. In Sec-

tion 5.5, we present the results of the inference framework and their implications

on the privacy of users’ social relationships. We also discuss the limitations and

perspective of this work, as well as countermeasures to help users protecting their

privacy. We present the related work in Section 5.6 and we summarize the chapter

in Section 5.7.
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5.1 Introduction

Innovative Internet mobile services and products, such as location-based ser-

vices and information-sharing platforms, enable users to enjoy a multitude of

applications to easily stay in touch, work, have fun and exchange data. Be-

side online services accessed through infrastructure-dependent communications

(e.g., WiFi hotspots and cell towers), upcoming near-field [116] and peer-to-peer

(P2P) technologies, such as Nokia Instant Community (NIC)[36] and Qualcomm’s

AllJoin [131], allow for direct device-to-device connections, thus creating a new

form of localized and context-aware interactions. For instance, Apple’s AirDrop

enables users to exchange files between mobile devices by creating an ad-hoc WiFi

network. All in all, the amount of data exchanged wirelessly by mobile devices,

be it in an infrastructure or P2P ad-hoc mode, has consistently increased over

the past few years.

The information that can be inferred only by observing the data exchange

patterns and users’ (co-)location traces is of great importance and very sensitive:

Home/work locations [81], activities [107], and social networks [38] are often data

that people would prefer not to reveal publicly. Users’ social relationships are

no exception either, as several studies on ubiquitous computing have shown that

location and co-location traces alone can reveal the presence and type of social

relationships among people [47, 48]. Most of the existing works that evaluate

the effectiveness of the inference of social relationships from location and prox-

imity data are based on a single source of information: either proximity logs

stored on the mobile devices or WiFi/cellular connection data obtained from the

network operators. Although the existing results are significant and necessary

for an initial attempt at tackling the issue of social relationship inference, they

lack an important characteristic: data-source diversity for the same experimental

settings. In other words, they lack the simultaneous access to proximity data

present on both the mobile devices and in the operators’ logs. Having access to

these two data sets is paramount, as this enables us to evaluate and compare the

accuracy in inferring the social relationships between an internal attacker, who

has access to the data on the device, and an external eavesdropper who does not.

In this chapter, we address the problem of social relationships inference by

carrying a comparative analysis of the exposure of such relationships and encoun-

ters in a deployed, peer-to-peer and infrastructure-based wireless network. We

gathered communication and proximity information from 80 participants carry-

ing smartphones during a four-month experiment. We collected complementary

encounter information both from the smartphones and from the WiFi sniffing net-

work, comprised of a set of access points (APs) passively intercepting communi-

cations between the participants; thus our study is the first to possess data-source

diversity for the same experimental setting. These two sources reflect accurately

the information that can be gathered by (i) a curious application running on a
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smartphone or an experimenter and (ii) a network infrastructure owner such as

a company which seeks to infer the social relationships between its employees or

a network of compromised (community) access points; both of them represent

realistic and practical adversarial scenarios. By exploiting such complementary

data, we design a statistical inference framework to evaluate the accuracy of the

inference of social relationships in localized and pervasive networks. This eval-

uation provides empirical evidence about the difference between an adversary’s

accuracy and that of a curious application in determining the type of social rela-

tionships between people. More specifically, our contribution is two-fold:

• We provide the first analysis, to the best of our knowledge, of the exposure

of social relationships, based on proximity data, in a deployed adversarial

WiFi network with data-source diversity.

• We design a statistical inference framework for relationship classification

and use it to evaluate the success of the owner of the WiFi sniffing stations in

inferring the type of social relationships between users and we then compare

it against a curious application.

Our experimental results show that the infrastructure operator is able to infer

some types of relationships between users better than a curious application that

uses on-device proximity data. This is partially due to the fact that the external

adversary has location information about the encounters between users. In addi-

tion, when exploiting the social community structure, the inference accuracy of

the attacker is significantly higher. To put our results in perspective, we com-

pare the strength of the considered adversary, in terms of the density of sniffing

stations, to some existing hotspot networks.

5.2 System Architecture

In this section, we describe the methodology and experimental setup of our field

experiment, along with the network model and the adversarial model.

5.2.1 Experiment Setup

The analysis presented in this chapter is based on the same experimental data

collected in the summer 2011 on the EPFL campus. The detailed description of

the experimental settings and the network model are can be found in Chapter 4

(Section 4.2).

5.2.2 Adversarial Model

The adversary considered in this chapter makes use of the same infrastructure

presented in Chapter 4. However, the goal of the adversary in this chapter is
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different. In order to infer the social relationships, the adversary collected the 3-

tuple (Timestamp, Source MAC, RSSI) from the sniffed NIC messages. Note that

at no time did the participants connect to the Internet through the adversarial

APs, that were used only for passively sniffing the NIC packets. Due to the

localized nature of the NIC message exchanges, they can be captured only by

a local adversary. Such data arguably leaks an amount of personal information

lower than the data that flows through the infrastructure. Because application-

layer encryption was sometimes used to protect the message confidentiality, we

assume that the adversary did not have access to such data. All adversarial

knowledge is built from the analysis of the NIC data, passively collected by the

sniffing APs.

In summary, the adversary performed the following: (1) Captured the NIC

message exchanged by the participants’ devices; (2) Built a social graph repre-

senting the presence and intensity of the encounters among users, based on the

estimated physical proximity between their mobile devices; (3) Inferred the social

communities of the participants, based on the social graph and the intensities of

their pairwise interactions; (4) Inferred the type of social relationships between

participants by using our inference framework (presented in Section 5.4, the lo-

calized communities and the trained relationship inference framework. Note that

the adversary usually has some background knowledge about the types of social

relationships to be inferred, based on the targeted population and context (in our

case, students on a campus).

5.3 Social Interactions and Communities

In this section, we describe the methodology used to model the user interactions

during the experiment. The social graph representing the user interaction is used

to infer the community structure, which is subsequently used to refine the social

relationships inference mechanism, as explained in Section 5.5.

Following the notation for social communities defined in Chapter 4, we repre-

sent people and their relationships by an undirected weighted graphG=(V,E,W ),

where the vertex set V corresponds to people, the edge set E expresses the ex-

istence of a relationship between people, and the weight function W :E → R+

quantifies the intensity of such relationships. In their simplest form, communi-

ties can be represented as subgraphs {Ci = (Vi, Ei,W )}Mi=1, where Ci ⊆ G and

M is the number of communities. As people are usually members of several

communities, different community subgraphs can share vertices.

5.3.1 Experimental Data

We model the collected encounter data from the experiment as a social graph G.

Hereafter, we describe the type of information that is used to define the existence
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and intensity of relationships between users. In our experimental data, we have

two sources of proximity information: (i) the internal data, constituted by local

device logs collected by the mobile devices themselves and containing encounter

data (list of neighbors’ MAC addresses, the timestamps and the RSSI values of

received packets), and (ii) the adversarial data, containing the headers of the

sniffed packets (sent by the mobile devices), which include the timestamps and

RSSI values of received packets at the sniffing APs, as well as the device ID of

the sender.

We use these two data sources to formulate the ‘strength’ or intensity of the

social relationships between users and to define the weights of the edges that

connect the respective vertices in the social graph G = (V,E,W ). From the local

device logs, we can directly obtain the device-to-device proximity information

because the recorded RSSI values on the receiving devices are correlated with

the real distances to the sending devices. However, this is not the case for the

RSSI values recorded by the adversarial network, as they depend on the distance

between the sending device and the receiving sniffing station. Following a similar

approach as in Chapter 4, we estimate the position of a mobile device that sent

a packet based on the RSSI at all sniffing stations that overheard the packet.

In our social graph, we consider three distinct weight functions {w(d)
i,j }3d=1

for the edges between vertices i, j ∈ V to quantify the intensity of their social

interactions. The three weight functions [22] progressively take into account

the proximity, the intensity, and the aging/recency of the relationships between

users. Moreover, to investigate the effect of community detection on the accuracy

of the inference attack, we apply the well-suited CPM method[126] to extract

community information from the social graph G.

5.3.2 Relationship Labels

In addition to the strength of social relationships, we also characterize the type of

relationship between users. More specifically, we consider three labels (i) friends,

(ii) classmates and (iii) others. The possibility of associating multiple labels to a

single relationship is crucial in social networks, as people can be simultaneously

classmates and friends. To construct the ground truth data, each relationship is

assigned one (or more) labels based on (i) the participants’ answers to the survey

questionnaires (for friends) and (ii) the database of academic course registration

provided by the university (for classmates). For instance, if two participants

followed the same class during the experiment, their relationship was catego-

rized as classmates; furthermore, if one of the same participants also listed the

other as friends in the questionnaires, their relationship was categorized as both

classmates and friends. We note here that for the friendship label, due to the

lower number of declared friendships, we considered asymmetric relationships as

symmetric because of the subjective nature of the friendship relationship that
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could be perceived by one person and not by the other. From our ground truth

data, we observed that 25% of all the 3,160 possible relationships were tagged as

classmates and 2% as friends. We tagged the remaining as others.

We choose these types of relationships for two reasons. First, we followed the

approach of [25] and selected the types of relationship relevant to our context.

For instance, as our population was comprised almost exclusively by students on

a university campus, we considered the two relationship types aforementioned,

as well as the estimated user location. For a more diverse on-campus population,

including researchers and instructors, we would have had to consider the role of

the hierarchy as well. Second, it was possible for us to collect the ground truth

for these two types of relationships.

5.4 Relationship Inference Framework

In this section, we introduce our relationship inference framework by which we

evaluate the accuracy of the attacker’s reconstruction of users’ social relationships

on our data sets. First, we describe the method we adopt for characterizing a re-

lationship from the internal and adversarial (estimated) proximity data. Second,

we describe each component of the framework and we explain how it exploits the

two different data sets.

Pathways
Public places
Classrooms

Figure 5.1: Partition of the map (in which the experiment was conducted) into
three types of areas: pathways, public places, and classrooms.

5.4.1 Relationship Characterization

The relationships between two users are characterized by their interactions. To

characterize and classify relationships, we first formalize the notion of encounter :
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it captures a significant interaction between two users. A relationship is defined

by a set of encounters.

Encounter Detection

We define an encounter between any two users as a continuous time interval

that meets a threshold, both on its duration and on the proximity of the two

involved users. Typical values of these thresholds are a few minutes and a few

dozens of meters, respectively. The proximity between users is computed in two

ways, according to the source of the data. From the internal device logs, we

use the RSSI values of messages exchanged between users (in a P2P fashion)

in order to determine their distance, whereas from the adversarial sniffed data,

the proximity is determined by computing the Euclidian distance between the

estimated location coordinates of each user, based on device-to-AP RSSI values.

A number of features are extracted from the internal/adversarial logs, either

at the granularity of an encounter or of a relationship. For instance, we extract

the duration of each single encounter and the total number of encounters between

the two users for each relationship. The extracted features are then fed to the

classification algorithm. In order for the adversary to accurately classify the

relationships based on specific features, these features must vary significantly from

a category (such as friends) to another. Typical discriminating features include

encounter duration, the proximity of users during encounters, inter-encounter

time, and the number and periodicity of encounters [159].

Training set
feature extraction

Internal logs /
adversarial
estimates

Parameters 
optimization
(EM, AIC)

Trial Data

Survey relationship labels

Training Data

Gaussian Mixture Model

Test set feature extraction

Test Data

Maximum Likelihood 
Classifier

True / False Positive 
Rate

Synthetic pdfs

Figure 5.2: Overview of the inference framework.

5.4.2 Relationship Classification

In order to select the set of possible relationship classes, we use the ground-

truth collected through (i) survey questionnaires at the beginning of the trial

and (ii) the official university course-registration database. We then designed

an inference framework (Figure 5.2) based on the features extracted from the

internal/adversarial data.
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The classification algorithm operates as follows. First, we extract the features

of a small subset of the encounters and relationships, namely a training set. From

the survey and administrative records, we know the category of each encounter

and relationship in the training set. Then, for each of the three categories of

relationships, we compute the experimental probability density function (pdf) of

the various features and plot the corresponding histograms. We fit each exper-

imental probability density function with an appropriate parametric model, the

Gaussian Mixture Model (GMM) [47], and determine the parameters according

to two optimization criteria. The obtained synthetic pdfs are subsequently used

to classify the encounters of the rest of the data set, i.e., the test set. Based on

the synthetic pdfs, for each encounter and for each category of relationships, the

likelihood that the encounter belongs to this category is computed from the val-

ues of its features. The likelihood that a relationship belongs to a given category

is computed by taking into account the different features of the relationship and

those of its encounters.

Encounter Location Classification

In our context, the location where encounters take place is a key feature of rela-

tionships. This information is only available in the adversarial data and is com-

puted from the users’ locations estimated by the adversary. More specifically, the

region of the experiment covered by the adversarial network is partitioned into

different areas classified in three types: pathways, public spaces and classrooms

(Figure 5.1). We expect such a classification to be discriminating, with respect to

the types of relationships the adversary wants to infer. For instance, classmates

are expected to experience frequent encounters mostly in classrooms, whereas

friends might hangout more frequently in public spaces and pathways. Because

users can move during a given encounter, for each encounter, we compute the

proportion of the time spent in each type of location. In this way, we can capture

the fact that an encounter that started in a pathway continues through public

spaces.

Feature Extraction

We detect encounters based on interaction duration and proximity between users.

With the internal data, we assume that an encounter occurred if at least two

messages are exchanged within an interval of 5 minutes and the average RSSI

of the exchanged messages is greater than -80 dBm (to account for radio noise,

interference and fading), which corresponds to a distance of at most 18 meters.

These threshold values have been determined empirically. The encounter spans

from the first exchanged message to the last. For example, if two users exchange

messages, all with RSSI values of -50 dBm, at times 1, 3, 7, and 15 minutes, an

encounter is detected and it spans from 1 to 7 minutes With the adversarial data,
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we first need to estimate the users’ locations. In order to reduce the noise on

the users’ estimated locations, we divide the trial timeline in small sub-intervals

of 30 seconds and we average user locations over each sub-interval. First, we

consider that an encounter occurs if at least two messages are exchanged within

an interval of 5 minutes and the distance between the two users’ locations is

consistently lower than 5 meters (i.e., lower than 5 meters in each sub-interval

between the times at which the messages were exchanged). A distance of 5 meters

between two devices translates to an RSSI value of around -53 dBm. To compare

the results with the internal data, we also considered distance thresholds of 10,

20, 30, and 40 meters, corresponding to RSSI values of -68, -82, -91, and -97 dBm,

respectively.

At the granularity of an encounter, we extract the following features: (i) the

encounter duration (the time elapsed between the first and last message ex-

changed during the encounter), (ii) the inter-encounter time (the time elapsed

since the end of the previous encounter and the beginning of the current en-

counter), and (iii) the average encounter RSSI value (the average of the RSSI

values of the messages exchanged during the encounter). For the adversarial data,

we further consider (iv) the encounter location, characterized by the fraction

of the encounter time that takes place at each type of location, such as pathways,

public places and classrooms. The location of an encounter is defined as the

midpoint of the two users. At the granularity of a relationship, we consider an

additional feature: the total number of encounters over the whole trial.

Supervised Learning

In order to train our inference framework, we use a subset (the training set) of

all the relationships, which account for approximately 30% of the whole data

set. We divide the relationships in the training set into three categories, i.e.,

friends, classmates, and others according to the labels obtained from the surveys

and the university database. Because two users can simultaneously be friends and

classmates, a relationship can belong to both categories. Note that an alternative

way to proceed would be to divide the training set into four categories: friends,

classmates, others, and friends and classmates. However, as in our data set

the latter category does not contain enough relationships to perform a proper

training, we consider the former three categories. For each category, and for

each feature, we compute the experimental distribution of the feature for all

the relationships in the category, by means of histograms composed of 100 bins.

We denote by f̃ feat
cat , cat ∈ {friends (f), classmates (c), others (o)} and feat ∈

{encounter duration (ed), inter-encounter time (iet), average RSSI (rssi), and

number of encounters (ne)} (and encounter location (el) for the adversarial data),

the functions corresponding to the histograms. For example, f̃ ed
f (x) gives the

proportion, in the training set, of encounters between friends that last between
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x and x + δx minutes. These functions can be thought of as indicators of the

likelihood that a given encounter belongs to a given category, based on the value

of one of its features, and will be used as such by our classification algorithm.

Intuitively, it can be expected that the pairs of users whose relationships are

classified as friends and classmates would experience more frequent encounters

than users belonging to the category others. Similarly, classmates are expected

to meet according to a fixed pattern (e.g., every Monday for a particular class),

whereas on-campus encounters between friends are not expected to follow a fixed

pattern. This intuition is confirmed by our observation of the data, as shown

in Figures 5.3 and 5.4. The former depicts the experimental distribution of two

features: the encounter duration (at the granularity of an encounter) and the

number encounters (at the granularity of a relationship), whereas the latter shows

the location feature. It can be observed that, as expected, these features discrim-

inate the three categories of relationships, therefore we foresee a high potential

for classification. For instance, friends meet more than classmates and others

and classmates meet for longer times (classes). Also, classmates meet mostly

in classrooms. Note that the aforementioned intuitions are given for the sake of

information, the inference algorithm is based on the rigorous techniques that we

describe.
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Figure 5.3: Encounter location feature for the adversarial data (distance threshold
of 40 meters).

As it can be observed in Figure 5.4, the experimental distributions are noisy

and thus cannot be used as is for classification purposes: For instance, we can

observe in the histograms that there are no relationships between friends com-

posed of exactly 35 encounters in our training set. Therefore, if the histogram of

the number of encounters is used as is to determine the likelihood of two users

being friends, two users who meet 35 times during the trial would be assigned a

null likelihood for the friends category. For this reason, we fit the experimental

histograms with parametric pdfs, namely multi-dimensional Gaussian mixture
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Figure 5.4: Experimental distributions (histograms) and fitted GMM pdfs
(dashed lines) of two features extracted from the adversarial data (distance
threshold of 40 meters): encounter duration and number encounters. From top
to bottom, we show the GMM pdfs for the class labels friends, classmates and
others, repectively.

models of the form:

p(x; θ) =

K∑
k=1

πk
1√|Σk|(2π)d/2

e−
1
2
(x−μk)Σ

−1
k (x−μk),

where
∑

k πk = 1 and d is the dimension of the feature vector. The set of

parameters is denoted by θ = ((π1,μ1,Σ1), . . . , (πK ,μK ,ΣK)), and x is the value

of a feature. We use one-dimensional GMMs for scalar features, e.g, encounter

duration, and multi-dimensional GMMs for the encounter location (fractions of

time spent in pathways, classrooms, and public places).
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The number K of Gaussian components, and their respective weights (πk),

means (μk), and covariance matrices (Σk) are free parameters and must be cho-

sen to best fit the experimental distributions. For a given value of K, we deter-

mine the other free parameters of the Gaussian components through expectation

maximization (EM). We choose the values of the parameters that maximize the

likelihood that the n values {xi}i=1..n of the features (observed in the training set)

have been drawn from a Gaussian mixture with these parameters. The likelihood

function is given by

�(θ;x1, . . .xn) =

n∏
i=1

p(xi; θ),

and the estimated value of the parameters is θ̂ = argmaxθ �(θ;x1, . . .xn). We

repeat this estimation step for several values ofK, and we subsequently determine

the most appropriate value of K according to the Akaike information criterion [1]:

AIC = 2k′ − 2 ln �(θ), where k′ is the number of parameters of the GMM.

The learning phase produces a likelihood function �featcat for each category cat ∈
{f, c, o} and for each feature feat ∈ {ed, iet, rssi, ne} (and el for the adversarial

data).

Relationship Classifier

Our classification algorithm is based on likelihood maximization and operates

in two steps. We first determine if the two users are actually involved in a

relationship (friends or classmates) or not (others) based on the likelihood of a

relationship, with respect to each category. This likelihood is computed from

the value of the features and from the synthetic distribution obtained from the

training set. If users are believed to have a relationship, we refine the classification

by discriminating between friends and classmates.

More specifically, the algorithm operates as follows (see Figure 5.5 for illus-

tration). If the likelihood is maximized for the others category, the relationship

is classified as others and the classification ends. If it is maximized for the friends

category, the relationship is assigned the friends label and a second step is per-

formed to decide whether the classmates label is assigned as well. This second

step is based on a threshold: If the likelihood of the relationship for the cate-

gory classmates is higher than the likelihood of friends multiplied by a factor

γ ∈ [0, 1], the relationship is assigned the classmates label as well. The same

process applies in the case the likelihood is maximized for the classmates cate-

gory. The classification process can be summarized by the decision tree depicted

in Figure 5.5.

The likelihood �cat of a relationship, with respect to each category cat, is

given by

�cat(r) =
∏
e∈r

�edcat(ed(e))·�ietcat(iet(e))·�rssicat (rssi(e))× �cat(ne(r)) (5.1)
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�f ≥ max (�c, �o)

friends and classmates
�c ≥ γ · �f

friends
�c < γ · �f

�o > max (�f , �c)
others

�c ≥ max (�f , �o)
classmates

�f < γ · �c

friends and classmates
�f ≥ γ · �c

Figure 5.5: Decision tree used by the classifier.

where m ∈ r denotes the encounters between the two users concerned by the

relationship r. For the adversarial data, the factor �el(el(e)) must be inserted in

the product in Eq. (5.1) to take location into account.

5.5 Results

In this section, we present the performance results of our relationship classifi-

cation inference framework. First, we describe the metrics used to evaluate the

inference accuracy of the adversary, then we discuss the performance of the classi-

fier and the effect on the users’ relationship privacy. Finally, based on our results,

we discuss possible countermeasures to mitigate the success of the adversary in

inferring social relationships. We evaluate his success by using both pairwise-only

and community-enhanced proximity information.

5.5.1 Pairwise Relationship Inference

The performance of a classifier is usually evaluated in terms of its true positive

rate (TPR) and false positive rate (FPR). Hereafter, we present the accuracy

of the adversary’s relationship inference on our data set, where the adversary

considers only the estimated pairwise proximity information between users, i.e.,

without taking into account the underlying community structure. Figure 5.6(a)

shows the TPR and FPR for the three classes for different distance thresholds.

Internal Proximity Data

By using the internal proximity information between users, the performance of

our inference framework is, in general, satisfactory, given the limited amount

of training samples (30% of the total). This means that we have a high TPR

and a moderate FPR. For the class friends, we observe the best TPR (84%)
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(a) Pairwise-based classifier accuracy.
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Figure 5.6: Accuracy of the external adversary in inferring social relationships.
The horizontal lines correspond to the accuracy of the classifier when the internal
(local device) proximity data is used.

and a moderate FPR (27%), which means that the actual proximity data and

the encounter features we selected for the classification are quite discriminating

for this class. Classmates and other relationship classes have a TPR/FPR of

56%/18% and 37%/13% respectively, which are lower than for friends. As a result,

the actual proximity data works well for the friends and classmates relationships

inference, whereas it has a more limited success in classifying other types of

relationships. This is not surprising, as proximity information, without taking

into account the actual location of the interaction, is intuitively tied to inferring
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close and periodic interactions more than sporadic encounters.

Adversarial (Estimated) Proximity Data

In general, the adversary’s accuracy in inferring users’ social relationships has a

bi-modal behavior with respect to TPR and FPR. First, at a lower encounter-

distance threshold (5-10 meters), the adversary has a very high TPR rate for

classmates and friends (79% and 74% respectively) while it suffers from an ele-

vated FPR as well (53% for friends). The accuracy for others is relatively low at

28%, meaning that the prediction suffers from a significant number of false pos-

itives that negatively affect the successful recognition of friends and classmates.

Whereas, for larger encounter-distance thresholds (20-40 meters), the accuracy

for others doubles and is consistently larger than for the friends.

Internal vs. Adversarial

For low encounter-distance thresholds, on one hand the external adversary has a

similar or higher accuracy in correctly inferring the relationships of participants

compared to the case of the internal adversary (i.e., using the actual proximity

data). On the other hand, the FPR is also substantially higher, which renders

the relationship prediction much less reliable at low distance thresholds. As

the adversary can estimate, in addition to users’ proximity, some contextual

information (location of the encounter), it is easier for him to infer the type of

relationship given this additional feature, but it is also easier to wrongly include

other types of relationships in the friends class.

When increasing the distance threshold (20-40 meters), we can see that the

success in inferring friendships from external data decreases by at least 50%

compared to the case where internal data is used. Meanwhile, there is a two-

fold increase in TPR for the others category. In other words, the larger the

allowed distance between users is, the better the inference accuracy for the others

category. And the classmates performance stays at comparable levels for the

different distance thresholds. Figure 5.7 shows the ROC surface (TPR vs FPR)

of our statistical inference framework for different distance thresholds, considering

pairwise-only (left) and community-enhanced (right) interactions.

Overall, we observe that the increase of the encounter-distance threshold for

the adversary is highly beneficial for the detection of non-friendships. By adjust-

ing such a threshold based on the target relationship class, the external adversary

obtains an inference performance comparable to that of the internal adversary

who uses the actual proximity information available on the devices.
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Figure 5.7: Receiver Operating Characteristic curve. On the left chart, the
TPR/FPR values are based on pairwise-only proximity data. On the right chart,
the TPR/FPR values are based on the community-enhanced proximity data.

5.5.2 Community-Enhanced Relationship Inference Results

Hereafter, we describe the performance of the relationship inference framework

when the adversary relies on the underlying structure of user communities. This

pre-processing step will enable us to observe the effect of such information on

the accuracy of the adversary’s inference compared to the previous case without

community information. The results are shown in Figure 5.6(b).

Internal vs. Adversarial

For low-distance threshold values (5 meters), we see that the external adversary

has a TPR comparable to the case where no community information is extracted

(for most weight functions). However, the FPR values are significantly different:

The false-positive rate for friends and classmates relationships is three to four

times lower when using community structure than when not. When inferring the

others class of relationships, the TPR is three times better than the community-

less counterpart, with only a comparable FPR. These results indicate that by

using the community structure of social relationships among users, the adversary

is able to significantly increase his performance (both in terms of TPR and FPR)

across all relationship types, especially in terms of false positives. With respect

to the weight functions we defined for the CPM community detection algorithm,

we can see that the first two functions w(1) and w(2) have a slightly better per-

formance for friend and classmate relationships and are twice as good for the

others class. This suggests that by modeling the interactions of non-friends or

classmates with memory-less weight functions, the detected community structure

is better suited for distinguishing between such types of relationship, as they did

not exhibit most of the periodic and close interactions during our experiment as

friends or classmates.
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5.5.3 Discussion

The results we have presented so far show that, even without any additional pre-

processing by the adversary, the estimated location and proximity among mobile

users is often enough to make predictions about the kind of social relationship

between any two users (Figure 5.6(a)). Even if the users rely on encryption for

their communications, the considered external adversary can distinguish users as

friends, classmates or neither by capturing their identifiers and by correlating

them over time and space.

Even more striking is the fact that by adding an extra step in the inference

process, both the accuracy (TPR) and reliability (FPR) are improved signifi-

cantly. In particular, the dynamic social community structure of people and

their behavior over time leak a substantial amount of additional private infor-

mation to the adversary. By pre-processing the proximity data and detecting

communities, in most cases the adversary is able to double his performance when

inferring the types of relationships between users inside communities, much to the

detriment of the privacy of users and their communities. This suggests that even

a simplistic characterization of human encounters, based on memory-less and

time-independent functions, GPS-less data and standard tri-lateration position-

ing algorithms, is enough to enable a wireless infrastructure owner to successfully

detect communities and to determine the type of relationships among users inside

each community.

Finally, by transposing our results to existing wireless networks, we hypoth-

esize that similar findings can be obtained by self-interested or curious third-

parties, such as commercial service providers and cellular network operators. The

increasing deployment of low-range cellular base stations [54] and the increased

availability of public WiFi hotspots [56] severely undermine people’s ability to

resist or opt-out from unwanted scrutiny.

5.5.4 Countermeasures and Limitations

Countermeasures

A solution for limiting the success of the inference attack, which is specific to

the threat presented in this chapter, consists in reducing the information avail-

able to the adversary and his confidence in this information. To achieve this,

technical solutions include the use of changing pseudonyms as wireless identifiers

and sending dummy messages. With pseudonyms, users can change their MAC

address every day while off-campus or, upon encounters, collectively interrupt all

communications for a certain time and reconnect with fresh random pseudonyms

(i.e., mix-zones [13]). The use of pseudonyms makes it difficult for the adversary

to link and track identities of users over time. It reduces the learning period to a

few hours instead of a the whole trial timespan, therefore decreasing the success of
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the inference. However, such a mechanism has a negative effect on the usability of

the communication features, e.g., Bluetooth pairing and MAC filtering. Another

technical countermeasure is to dynamically change the transmission power to con-

fuse RSSI-based triangulation and limit the eavesdropping possibilities. However

this comes at the cost of decreased networking performances. Finally, injecting

dummy messages would artificially increase the intensity of the encounters, thus,

biasing the results of the inference.

Limitations

The results and discussions presented in this study are based on a large-scale

experiment conducted on a university campus, where most of the participants

are students. The characteristics of such a population are rather homogeneous,

with respect to the utilization of technology and the age. As in several other

university-based field experiments, the results of our study might apply – to a

lower extent – to scenarios involving a more diverse population with respect to

education, age, gender and technology usage habits. In order to mitigate this, as

part of our future work we would like to extend our experiment to a more diverse

population, and therefore to assess the effectiveness of the inference attacks in a

more mixed environment. Finally, as off-campus interactions are more insightful

with respect to social relationships – for instance, the larger variety of location

types (e.g., bars, cinemas and residential areas instead of just public places and

classrooms) – we expect a greatly improved performance of the inference when

considering off-campus interactions as well. This would enable us to consider

fine-grained social relationships, such as close friends and relatives.

Strength of the Adversary Regarding the relative strength of the adversary con-

sidered in the chapter, in terms of the number of APs, we studied the density of

three deployed WiFi AP networks for comparison. We looked at the FreeWifi [60]

and SFRWifi [141] hotspots networks that consist of the wireless modems and

set-top boxes of the subscribers of two major ISPs operating in France. Such

networks of hotspots constitute concrete examples of an adversary as they are

operated by a single entity. For the Paris area, the average density is 564±270

APs/km2 (resp. 853±346 APs/km2), and goes up to 1450 APs/km2 (resp. 1560

APs/km2) in populated areas for Free (resp. SFR). For comparison, the adver-

sarial network of sniffing APs we considered has a density of 1138 APs/km2 (37

APs deployed over a region of size 130m×250m). Another example is that of

a company exploiting its WiFi stations to infer the social relationships between

its employees. For instance, our university has ∼880 WiFi APs deployed over a

region of 500m×800m, that is a density of 2200 APs/km2. These statistics show

that our results are realistic and applicable to existing networks.
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5.6 Related Work

Eagle et al. [48, 47] studied complex social systems by collecting Bluetooth en-

counter data from 94 students equipped with mobile phones. In particular, they

identified proximity patterns between devices and performed relationship infer-

ence on the data by comparing the results with the ground truth obtained from

surveys and answers to questionnaires. Similarly to other user studies [43, 117],

the authors could only compare their findings (based on Bluetooth encounters

between devices) with the ground truth, without having access to a network in-

frastructure that would allow them a more thorough analysis by comparing these

results with those obtained by a passive third-party adversary. However, off-

campus location data was collected in [48, 47] and it significantly improved the

quality of the inference results. A recent study [9], performed on a group of 27

participants, shows that it is possible to accurately infer the social relationships

between people based on Bluetooth encounters, phone calls, SMSs and cell-tower

IDs, without any prior knowledge about the participants. Nevertheless, these

findings are based on data that is available only on the local devices, therefore it

is unclear to what extent the results apply to the inference success of an external

adversary. Other studies focused on inferring the social relationships from co-

presence of users, as in the case of Flickr [38], and on dynamics of inter-encounter

times [159]. A large user study, involving 168 participants over 2 years, was con-

ducted in [94] in order to study people’s behavior with respect to mobile phone

usage, activity and location.With regard to location privacy in pervasive wireless

networks, [23] studied the efficacy of dynamic allocation of pseudo-random IDs

in specific regions called mix-zones [13], showing that in deployed networks such

a mechanism provides only limited success in protecting users’ location privacy.

By relying on the graph-theoretic analysis introduced and evaluated in [22],

our work uses weight functions and community structures that are well suited for

the analysis and inference of social relationships in a pervasive wireless network.

In contrast to the former work, in this chapter we focus on the accuracy of the

adversary in classifying the type of social relationships among users, and we

study the effect of using the community structure on the performance of the

classification.

5.7 Summary

In this work, we have experimentally evaluated a practical adversary’s accuracy

in inferring the type of relationship of users in ubiquitous networks. The avail-

ability of source-diversity in our experiment enables us to compare the accuracy

of an external adversary with that of an internal adversary (e.g., a malicious ap-

plication) who has access to actual proximity information stored on the devices.

Our results show the following two aspects. First, social relationships are exposed
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to a significant inference threat by an external adversary, who can quite accu-

rately infer the type of social relationships (friend, classmate and other) between

users simply by relying on location estimates and encounter characteristics, com-

pared to a curious application running on the device (or to the experimenter).

Second, by applying a well-suited community detection algorithm, the adversary

can double his inference accuracy on the same data set.

Publication: [17]
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Chapter 6

Adaptive Information-Sharing in

Mobile Social Networks

Personal and contextual information is increasingly shared via mobile social net-

works. Users’ locations, activities and their co-presence can be shared easily

with online “friends”, as their smartphones already access such information from

embedded sensors and storage. Yet, people usually exhibit selective sharing be-

havior depending on contextual attributes, thus showing that privacy, utility,

and usability are paramount to the success of such online services. In this

chapter, we present SPISM, a novel information-sharing system that decides

(semi-)automatically whether to share information with others and at what gran-

ularity, whenever they request it. Based on active machine learning and context,

SPISM adapts to each user’s behavior and it predicts the level of detail for each

sharing decision, without revealing any personal information to a third-party.

Based on a personalized survey about information sharing involving 70 partic-

ipants, our results provide insight into the most influential features behind a

sharing decision. Moreover, we investigate the reasons for the users’ decisions

and their confidence in them. We show that SPISM outperforms other kinds of

global and individual policies, by achieving up to 90% of correct decisions.

Chapter Outline In Section 6.1, we present the topic and formulate the goals

of this chapter. In Section 6.2, we introduce the SPISM information-sharing

platform, including the system architecture, the operating principles and the

decision-making core. In Section 6.3, we present our user-study and the method-

ology. We then evaluate SPISM and present the results from the study in Section

6.4. We discuss the related work in Section 6.5, and we summarize the chapter

in Section 6.6.
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6.1 Introduction

Mobile social networks are becoming extremely popular. Every month, more than

250 million people use their smartphones in order to get the latest updates from

their favorite social networks1. Having access to users’ personal data and physical

context (through an increasing number of embedded sensors), mobile devices

represent a simple means to quickly share information with others; location and

photos are just two examples of data that can be easily shared. In addition to the

user-triggered sharing decisions, applications such as FourSquare and the now-

closed Gowalla enable users to configure their smartphones to share their location

and co-presence automatically. With a small set of default information-sharing

policies, users have the possibility to adjust the settings in order to match their

sharing behaviors with their privacy concerns.

Prior studies on sharing behavior in mobile social networks have investigated

the issues related to contextual information-sharing [144, 152, 12, 136]. By ana-

lyzing people’s sharing behaviors in different contexts, they show that it is pos-

sible to determine the features that most influence users’ sharing decisions, such

as the identity of the person that is requesting the information and the current

location[152]. For instance, tools such as the location-sharing systems Locaccino

[153] and PeopleFinder [136] have been used to gain significant insight into the

benefits of providing users with the ability to set personnal sharing policies. Two

recurrent findings in UbiComp studies are that (i) users are not particularly good

at effectively articulating their information-sharing policies (compared to their

actual behavior) [136] and (ii) that sharing policies evolve over time [153, 136].

In order to overcome these two issues, machine learning techniques have been

applied to improve to some extent the decision-making process [40, 53, 136]. The

advantage of such systems is that they can decide in a (semi-)automatic fashion

whether or not to share information. Most existing schemes, however, enable

users to share only a specific kind of information (e.g., location). Moreover, they

only make binary decisions on whether to share the requested information. In

particular, this last issue is often mentioned as a crucial catalyst for overcom-

ing concerns related to privacy [148] and for encouraging a more open, sharing

behavior.

In this chapter, we perform a comprehensive study of information-sharing

in mobile social networks by tackling, all at once, the issues related to context,

user-burden trade-offs, and privacy. First, we develop a novel information-sharing

system (SPISM) for (semi-)automatic decision-making in mobile social networks:

It enables users to share different types of information (location, activity and

co-presence of other people) with other users or services in a privacy-aware fash-

ion. The decision-making core is supported by an active learning method that

1Social networking statistics, http://www.statisticbrain.com/social-networking-statistics/
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enables SPISM to either decide automatically – whenever the confidence in the

decision is high enough – or to rely on the user’s input otherwise. Second, we

conduct a personalized online study involving 70 participants where, in addition

to collecting data about their sharing behaviors, we provide insight into two other

crucial factors in UbiComp studies [10]: the reason behind a decision to share

and the confidence that the user has in her decision. Third, we evaluate SPISM

with respect to the amount of training data (provided by the user) and its per-

formance, and we compare it against two policy-based mechanisms. Our results

show that SPISM significantly outperforms both the individual user-privacy poli-

cies and several consolidated ones that are based on statistical analysis [3, 152],

and it achieves up to 90% of correct sharing decisions. We also demonstrate the

advantages of active learning techniques in our setting.

6.2 The SPISM Information-Sharing Platform

In this section, we describe the functionality, the operating principle, the archi-

tecture and the design of the SPISM information-sharing platform.

In order to better understand the following, we need to distinguish between

two different kinds of subscribers to SPISM: (i) the requester, who wants to know

something about other subscribers by sending information requests, and (ii) the

target, who receives requests for information.

The SPISM platform is composed of the SPISM application, that runs on

mobile devices (as for now it is implemented only for the Android platform), and

the SPISM Information Sharing Directory (ISD), that runs on a dedicated server.

6.2.1 Overview

The SPISM application enables subscribers, who can be users, third-party online

services or mobile apps, to request information about other subscribers. The in-

formation that can be requested includes contextual data (the geographic location

and the wireless identifiers of physically co-located devices) and the time-schedule

availability. The features that are currently implemented are the following. The

geographic location is determined by processing data obtained from the embed-

ded GPS sensor (if available) or by WiFi tri-lateration (which relies on the Google

localization service). The list of devices that are physically co-located with the

target subscriber is obtained through periodic scans of the Bluetooth and WiFi

interfaces. If a MAC address in the vicinity of the target is a known MAC ad-

dress (there exist an entry associated with a subscriber in the contact list of the

target), the name of the contact is displayed. Finally, the schedule availabil-

ity is obtained from the subscriber’s calendar (accessed through the on-device

calendar application). Subscribers can specify a level of detail for the requested

information: low, medium or high. The information sent by the target subscriber
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Figure 6.1: SPISM mobile application interfaces. From left to right, the differ-
ent windows allow users to register and log in, check other subscribers’ current
location, the other devices around them, their availability. The subscribers can
access other features such as the record of past activity and their contacts’ lists.

is provided with a level of detail lower or equal to the requested level. For the

location, the coordinates are truncated; for the neighboring devices, the presence

(i.e., some devices/no devices), the number, or the identifiers of the devices are

provided; for the schedule availability, the availability (i.e., busy/available), the

title or the detailed record of the calendar activity is provided. Figure 6.1 shows

the main application windows, where subscribers can log in and register, request

the location, the co-located devices and the availability of their contact, as well as

enjoy additional features such as visualizing the past activity and their contacts’

list. At the time of this writing, we are implementing the possibility for users to

audit and change a past decision, which will be then taken into account for the

subsequent requests.

6.2.2 System Model

The SPISM platform is composed of the ISD and the subscribers of the service,

who can be either users or third-party online services. The roles of the ISD and

of the subscribers are as follows:

• ISD: Its main purpose is to allow users to discover the current IP addresses

of their contacts when they want to send them information requests. The

ISD stores the list of registered SPISM subscribers, their credentials, their
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contact lists and the MAC addresses of the Bluetooth interfaces of each

user’s mobile devices. The subscribers interact with the ISD in the regis-

tration phase (once per user), during the log-in phase (once per application

start), when downloading the contacts lists, when periodically reporting

their IP addresses and updating their online status, and when sending in-

formation requests to one of their contacts.

• Subscribers: A subscriber, either an online service or a mobile user, can

be a requester (when she sends queries to another subscriber) or a target

(when she receives queries from other subscribers). In order to inform

the ISD of her online status, each subscriber connected to the ISD sends

periodic keep-alive messages. Requesters can see, at any time, the list of

online and offline contacts, and they can choose to send queries to the online

subscribers in their contacts list, in order to know their location, the devices

around them and their availability. The requests that target subscribers

receive and process are based on several features of their current physical

and social contexts, including their current location, the time of the day

and the people that are currently close by.

To enhance the security of the communications, all messages exchanged be-

tween the subscribers and the ISD are encrypted with a public-key certificate

obtained from a trusted Certification Authority (CA). In order to protect users’

privacy with respect to the ISD, no information requests or replies are tunneled

through the ISD. This is a crucial aspect of our platform, as it prevents the service

provider from learning the information sent by a subscriber about her location,

physical context and availability. This approach has, however, two shortcomings

as well: (i) The target knows the IP address of the requester (if no proxies are

used), and therefore she may be able to infer the coarse-grained location of the

requester (based on IP-geolocation), and (ii) the target may be able to infer the

co-location of other users if they share the public IP address with the some of

the requesters (when connected to a WiFi hotspot for example).

6.2.3 Operating Principle

SPISM works as follows. A user first logs in to the ISD with her username and

password. She can subsequently report her online status and obtain the online

status (and IP addresses) of her contacts from the ISD. In a typical scenario, the

user requests some information from one of her (connected) contacts. To do so,

the user first chooses the type of information she wants to request, by selecting the

corresponding icon in the main window (See Figure 6.1), and then she selects the

target subscriber from the list of her connected contacts. Finally, the user specifies

the level of detail for the requested information and the request is prepared and

sent directly to the target subscriber’s device. If the reply is received within a
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fixed amount of time (typically a few seconds) it is automatically showed to the

user, together with the requested information if shared by the targeted requester

(See Figure 6.1); otherwise, the user is redirected to the main window and she

will be notified when the reply is received. At the targeted subscriber’s device,

the request is processed automatically when it is received: (1) The requested

information is stored and (2) the information linked to the request (i.e., the

time, the type of information requested and the requester) is combined with

various contextual features (periodically collected in the background by SPISM

from the various data sources and sensors available on the device) and fed to

the information-sharing framework that we describe in detail in the next section.

If SPISM can make the decision with enough confidence, based on the target

subscriber’s past decisions, the request is processed automatically. Otherwise,

the target subscriber is notified and asked to decide; Her decision is then stored

(note that the target subscriber can postpone her decision). Once a decision is

made, it is sent back to the requester together with the requested information if

the decision is positive. Before being sent, the requested information is processed

to match the level of detail specified by the decision. All the sent and received

requests are stored and can be accessed by the user by selecting the corresponding

icon in the main window. In particular, the user can audit automatic decisions

and correct those she disagrees with (to avoid similar errors in the future).

6.2.4 Decision Making

The SPISM information-sharing decision-making core processes each incoming

information request. In order to make the decision, several contextual features are

taken into account by the target device. Features such as the identity of and the

social ties with the requester, the current location and the activity of the target,

the people around the target and the time of the day were extensively studied in

the past; several independent pieces of work show (with statistical significance)

that they are strongly correlated with the information-sharing behavior of mobile

users [152, 3, 27, 144, 35]. With these findings, we incorporated 18 such features

in the SPISM decision-making core; the list of all the features we included is

shown in Table 6.1. Due to the different natures of the features, some of them

are defined as categorical (they are in a finite and pre-defined set of values, such

as the social ties with the requester) or numerical (floating or integer values for

the time and location coordinates).

Some of these 18 features can be extracted from the request itself or the target

mobile device, such as the time, the current schedule availability or the requester

ID, whereas other features require more information, e.g., the social ties with the

requester and the semantics of the current location of the target subscriber. To

obtain such information, SPISM takes advantage of the existing social networks,

such as Facebook, and other data available on the phone (e.g., call logs). In ad-
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Feature Type Feature Type

Person
Familiarity Float 

When?

Time Int. 
Social tie Cat. Weekday Cat. 
User ID Cat. Daytime Cat.

Service Service
category 

Cat. Activity Cat. 

What? Request type Cat. 
With  

whom? 

Neighbors Int. 
Details Float Neighbors 

Type Cat.

Location 

Latitude Float 
Longitude Float 

Last
interact. 

Time last 
request

Float 

Semantic 
location 

Cat. Details last 
request

Float 

Table 6.1: Features used by the SPISM machine learning framework to decide
whether or not to share information and with what accuracy.

dition, other third-party services (such as Google Maps, OpenStreetMap and the

Android application store, i.e., Google Play) are used to obtain more information

about the location and type of application (in the case where the requester is a

mobile application). In some cases, the extraction of the features requires access

to the sensors embedded on the device; GPS and Bluetooth scans usually require

a non-negligible amount of time and resources [130], and a per-request access

to such sensors can drain the battery. For this reason, some time- or energy-

consuming features (such as the GPS coordinates and Bluetooth MAC addresses

of the nearby devices) are obtained periodically and cached, so that they can be

polled by the device at any time instant without incurring resource-consuming

operations. Note that the location, the list of nearby devices and the schedule

availability are all used to make the decision and to be shared.

After all 18 features have been extracted from the request and determined

from the context, they are aggregated into a feature vector and fed to a classifier.

The output space of the classifier comprises a binary classifier that outputs a

“share/not share” decision, followed by a linear regression function to estimate

the level of detail. All machine learning components used by SPISM are imple-

mented in the WEKA2 Android library. Hereafter we detail the binary classifier

and the linear regression components of SPISM.

2http://www.cs.waikato.ac.nz/ml/weka/
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SPISM Stage I: To Share or not to Share

The first decision-making block of the SPISM framework consists of a logistic

binary classifier, based on a logistic function defined as:

yω(φ(x)) =
1

1 + e−(ωTφ(x))
=

1

1 + e
∑M

i=1 ωiφi(x)
= p(S|φ(x)) (6.1)

where ω is the weight vector that is optimized during the training phase, M

is the total number of elements of the feature map vector φ(x), S is the class

that represents the “share” decision (whereas NS is the “not share” class), and

p(S|φ(x)) is the probability of the “share” decision given the input feature map.

We chose the logistic regression module for binary classification because (i) it

does not penalize correct instances that are far from the classification hyperplane,

(ii) it performs reasonably well with a small number (up to a few hundreds) of

training instances and (iii) it outputs a value ∈ [0, 1] that is also the posterior of

the “sharing” class in our case.

At the first execution of the SPISMmobile application, this classifier is trained

on a set of instances derived from the results of past research in information-

sharing behavior [3, 152]. The sharing rules extracted from these works allow

us to build a set of default sharing policies that reflect the tendencies that were

observed with statistical significance. For example, people are usually less willing

to share their information when they are sleeping or eating, and when they are

at or close to their own home or to that of their friends. However, they are more

likely to share when they are with friends and family, when they are alone or

during the afternoon on weekdays (but not weekends).

After computing the probability of sharing p(S|φ(x)) for each received query,

we distinguish between three possible outcomes:

p(S|φ(x))

⎧⎪⎪⎨
⎪⎪⎩
> τS then Share

< τNS then Not share

otherwise Ask user

where 0 ≤ τNS < τS ≤ 1 are the thresholds for the confidence sharing decision

that can be set for each subscriber. If p(S|φ(x)) > τS then SPISM will automat-

ically share the information, whereas if p(S|φ(x)) < τNS the information will not

be shared. In case SPISM is not confident enough to make an automated shar-

ing decision (when τNS ≤ p(S|φ(x)) ≤ τS), the subscriber will be prompted to

manually decide whether she would like to share and to what extent. This weak

form of active learning [140] is important as it allows the classifier’s parameters

to be recomputed each time there is a new manual sharing decision.

Currently, SPISM has three pre-defined levels of the confidence thresholds

τS , τNS that can be selected by each subscriber: Low, medium and high confi-

dence. The three levels of information-sharing thresholds have been adapted from
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Figure 6.2: Diagram of the SPISM decision framework, which consists of a two-
stage process that filters information requests and estimates the precision of the
shared information to be included in the reply, based on the request, the context
of the target and her past behavior.

prior works on the privacy attitudes of people in online scenarios [96, 121, 87].

When the low confidence threshold is selected (τNS = 0.45, τS = 0.55), SPISM

will make most sharing decisions autonomously, without asking the subscriber,

even when the confidence in the decision is quite low. The medium settings

(τNS = 0.3, τS = 0.7) requires a slightly higher confidence in the decision in

order not to ask the subscriber, whereas the high confidence settings (τNS = 0.1,

τS = 0.9) would make the automated decision only if very confident, and would

ask the subscriber otherwise. SPISM allows the subscriber to audit past sharing

decisions (both automated and manual) and modify them for subsequent requests

if she feels that the decisions do not reflect her preferences in that specific con-

text. When a past decision instance is modified, the SPISM framework takes this

modification into account for subsequent requests.

SPISM Stage II: How much to share?

If the decision of the first stage classifier is to “share”, SPISM invokes the sec-

ond stage which computes the extent of detail that is going to be shared, and

consequently the level of obfuscation to be applied. For instance, subscribers
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may want to share their location information at different resolutions with dif-

ferent requesters depending on the context [100]; they may want to share their

geographic coordinates at the street, city or country level. Similarly, one may be

willing to share the fact that she is currently not alone in some cases, whereas in

other instances she may want to reveal the identity of the people nearby to the

requester. Based on a linear regression function (Figure 6.2), SPISM determines

the optimal accuracy of the information to be shared, according to the target’s

past behavior in similar contexts. After the obfuscation, the information is sent

back to the requester.

6.3 Study and Data Collection

In order to better understand how users share information and to evaluate the

efficacy of the SPISM framework with a large use sample, we ran an online user

study in early 2013. The participants were not asked to use our proof-of-concept

mobile application; however, their responses were fed to the actual decision-

making core that is implemented in the application, so that the results of the

study would reflect the actual behavior of the mobile application when making

decisions. The study consists of an online survey that puts the participants in

realistic, personalized and contextual UbiComp sharing scenarios where they are

asked to answer a set of questions regarding their willingness to share private

information, the confidence in and reason for their decisions.

6.3.1 Participants and Remuneration

We recruited people directly from four large university campuses (in the US,

Canada and Europe), and indirectly via the Amazon Mechanical Turk platform

(MTurk)3. The latter allowed us to draw participants from a pool of non-student

population, in order to limit the bias towards academic and student behaviors.

To advertise our study, we used dedicated mailing-lists and we ran a media cam-

paign through Facebook, LinkedIn, Google+ and official university websites, co-

ordinated by our academic media office. We screened participants according to

the following prerequisites: (i) aged between 18 and 80 years, (ii) with an active

Facebook account with at least 50 friends and (iii) uses a smartphone. Such

criteria were selected so as to sample people that are active in social networks

and are aware of the information-sharing possibilities linked to the use of smart-

phones. Furthermore, we screened the MTurk workers who could access our

survey based on their past Human Intelligence Task (HIT) approval rate (>95%)

and the number of past approved HITs (>100). This was only a preliminary step

for preventing non-serious and inexperienced MTurk workers from accessing our

survey.

3https://www.mturk.com/mturk/welcome
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The survey requires access to private information of the participants (such

as names of their friends on Facebook4) and it demands a significant amount of

time (40 - 60 minutes). To provide incentives for the completion of the survey, we

implemented two separate reward schemes: (i) the chance for one participant to

win an Apple iPad and (ii) a fixed amount of money (US$4.5/HIT [106]). The first

option was proposed to the participants recruited at the universities and through

the academic media, whereas the second option was offered to the workers of

the Amazon Mechanical Turk. We chose not to offer the second option to the

academic participants due to our experience gained from previous on-campus

studies: It appeared that the motivation for financial rewards was lower than for

the possibility of winning a popular gadget.

6.3.2 Online Survey

We structured our survey in five parts: With a total of 94 questions, the first 19

are fixed (the same for each participant) and the last 75 are personalized (based

on each participant’s Facebook friends). In the very first part, the participants

were required to log in to their Facebook account and grant our application access

to their friend list.

In the first 15 questions, the participants were asked about their demograph-

ics, technology usage and privacy attitudes, in particular with respect to online

social networks.

In the next question (16), the participants were asked to assign some of their

friends to social groups, and we presented them with five distinct categories

(based on [156]): (1) school colleagues, (2) friends, (3) family members, (4) work

colleagues and (5) acquaintances. Each participant could assign one Facebook

contact to at most one category. It is possible, however, that one such contact is

a member of several categories (a school colleague that she works with currently).

In this case, the participants were instructed to assign the contact to the most

appropriate category.

In questions 17 through 19, the participants were asked to enter a set of information-

sharing rules in free-text. The sharing rules are entered as a set of logical ex-

pressions that are based on the following features: (1) the participant’s current

location, (2) people nearby, (3) social group of the requester, (4) time of the day

and (5) weekday/weekend. They can put conditions on these features (such as

=, <,>, �=,∈ or categorical values). For example, a location-sharing rule could

be defined as:

4Before beginning the survey, the participants are informed that they would need to reveal
the names of their Facebook friends for the purpose of this study. They approve a data retention
and processing agreement, informing them that all data collected in our study is used solely for
the purpose of our academic research project, and that we will not disclose or use it in any other
way than what explicitly mentioned. Once the survey is completed, the name of the Facebook
friends are replaced with anonymous identifiers.
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Figure 6.3: Histograms of the information-sharing decisions by (a) information
type, (b) social group of the requester and (c) the time of the day.

“I am at a friend’s place AND with acquaintance AND the re-

quester is a work colleague: do not share”

In the last 75 questions, the participants were presented with sharing scenarios

and they were asked to decide whether they want to share the specific information

in the given context, their confidence in the decision and the level of detail. A

typical scenario is “Would you share your location with John on Saturday at

11:PM, assuming you are at an event with work colleagues?” (where the requester

name is chosen from the participant’s Facebook friends and the other features

are chosen at random). We use these six features (shown in italic in the previous

sentence) for the classification task. In the actual mobile application, we will be

able to use all 18 features as presented in Table 6.1.

Depending on their answers (“Yes”, “No” and “Uncertain”) to the questions

in this part, participants were presented with sub-questions. More specifically,

“Yes” and “No” answers were followed by a set of additional questions asking

the participants about the confidence in their decisions (i.e., “not so confident”,

“confident”, “very confident”) and the features that influenced the most their

decision (i.e., “requester”, “day of the week”, “time”, “location” or “neighboring

people”). For “Yes” answers, the participants were also asked about the level of

detail of the shared information (“low”, “medium” or “high”). Similarly, “Un-

certain” answers were followed by sub-questions regarding the reasons for being

uncertain, such as a conflict between some features (in this case, the participant

can specify the features that motivates her the most to share and to not share,

and then specify in free text the reason they conflict) or simply a lack of infor-

mation (in this case the participant can specify which information would have

helped her reach a decision).

In order to detect sloppy answers (e.g., random answers or bots), we included a

number of “dummy” questions that require human understanding to be correctly
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answered [106, 127]. These are questions such as simple computations (e.g.,

“3 + 4”) or general-knowledge questions (e.g., “How many days are there in one

week?”). Based on the answers to these questions and on the survey timing data

(explained below), we ruled out dishonest participants from the dataset.

6.3.3 General Statistics and Validation

A total of 194 participants took part in our survey. 78 (40%) of them did not

complete it, leaving 116 (60%) complete questionnaires. Out of these, 56 (48%)

came from the university advertisement campaign (UNI) and 60 (52%) were re-

cruited via MTurk. The average age of all the respondents is 27y±7 (Mturk avg.

31y±6, UNI avg. 25y±6), and 74% of them are male. 42% of all participants

are students, 25% work in the IT industry and 8% in the education sector. It

took 44±15 minutes on average to complete the survey (MTurk avg. 42 minutes,

UNI avg. 47 minutes). We observed a sharp contrast, with respect to privacy

concerns, between the two groups of participants: Most MTurk participants were

not, or slightly, concerned about their privacy whereas most UNI participants

were concerned about it.

Based on internal survey tests and detailed timing statistics, only the ques-

tionnaires that meet the following four validation criteria were retained.

• All answers to the dummy questions are correct;

• At least one different Facebook friend is assigned to each of the 5 social

groups;

• The survey completion time is greater than 30 minutes.

• At least three of the following four timing conditions are met5: (1) Facebook

friends assignment to groups time>5 minutes, (2) location sharing scenarios

time >4 minutes, (3) activity sharing scenarios time >4 minutes, (4) nearby

people sharing scenarios time >4 minutes.

All participants correctly answered the dummy questions. Based on timings, 46

(40%) of them were ruled out and 70 (60%) were kept for the analysis (33 MTurk

and 37 UNI). The demographics remained mostly unaltered.

6.4 Analysis and Evaluation

In this section, we present three sets of results. First, using descriptive statistics

of the survey questionnaire, we discuss the effect on the sharing decisions of

different contextual features, of the requester, of the information type, and the

5These timing conditions were determined based on the observed timing distributions among
all participants and on sample executions performed by test users.
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main reasons behind the decisions. Second, we compare the performance of the

SPISM automated decision-making process against that of the users’ own policies

and an established default policy. Third, we discuss the effects of the increase

of user-involvement on the performance of SPISM, by using active learning with

different confidence thresholds.

6.4.1 Survey Statistics

Based on the survey data, we computed the proportion of “Yes/No/Uncertain”

decisions for the different values of each contextual feature we considered, such as

the participant’s current location, the social group of the requester, the time of

day, day of week, and the type of information requested. We found that the two

that have the largest effect on the decision are the social group of the requester

and the type of information that is being requested.

Regarding the type of information being asked, Figure 6.3a shows that users

disclose their location in 64% of the cases (the sum of the “yes (low)”, “yes

(medium)” and “yes (high)” bars, aggregated over the 70 participants and for all

the 25 location-sharing questions – out of the 75 questions – that is a total of

1,750 answers), and only 8% of the time at a coarse granularity (“Yes (low)”).

The information about activity and people nearby is disclosed 50% of the time.

People tend to be slightly more willing to share their location than to share other

information6: Location, contrary to the activity and the co-presence of other

people, is widely shared information in most mobile social networks. In addition,

this was confirmed by self-reported privacy concerns about information sharing

on OSNs (not shown in the chapter).

Figure 6.3b shows the percentage of disclosure of information based on the

social ties with the requester. We can see that, in accordance with previous Ubi-

Comp studies, there are substantial differences7 between the close ties (“family”

and “friend”) and the more distant ones (“acquaintances” and “colleagues”). For

instance, the close ties are granted access to any type of information (70%-80%)

more than twice the times compared to the more distant ones (30%). Moreover,

the level of detail of the shared information is much higher for the close ties (up

to 45% of “yes (high)”) compared to the distant ones (down to 8%). In fact,

the proportion of “Yes (low)” and “Yes (medium)” does not vary significantly.

Hence, the results indicate that users tend to exhibit a more tailored sharing

behavior depending on the type of information, the social ties and closeness with

the requester[156]. As illustrated in Figure 6.3c, the time at which the request is

sent does not substantially influence the decision: users are slightly less willing

to share in the evening but exhibit the same behavior in the morning as in the

6With statistical significance, based on global and pair-wise χ2 homogeneity tests with
p < 0.01.

7Ibid.
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Figure 6.4: Histograms of users’ responses to the survey questionnaire regarding
(a) their main reasons for (not) sharing and (b) the confidence in their decisions.

afternoon8. Our findings are aligned with those obtained in [15], where the time

of day and the location do not appear to be influential factors when sharing per-

sonal information such as location, as opposed to the type of social ties with the

requester.

We also looked at the reasons for (not) disclosing information and at the

users’ confidence in their decisions. First we observe that the social ties with

the requester is by far the most frequent reason for sharing (or not) informa-

tion (45%-67%), followed by the type of information (15%-28%) and the current

location (11%-21%). Second, we see again that the higher the level of detail (Fig-

ure 6.4(a)), the more important the social ties with the requester (on average).

Unsurprisingly, the confidence that the participants have in their decision (Fig-

ure 6.4(b)) is lower for the intermediate level of detail: It can be observed that

the proportion of “Very confident” is significantly lower for “low” and “medium”

levels of detail than for “No” and “Yes (high)”. In addition, the proportion of

“Not so confident” is more than doubled for the most borderline decision, i.e.,

“Yes (low)”. This could be explained by the fact that users try to minimize the

risk by limiting the level of detail when their confidence is low.

6.4.2 Static Policies

We compared the performance of our SPISM decision framework with two other

policy-based approaches. For the following comparisons, we used 10-fold cross

validation and a logistic regression binary classifier. In order to be consistent with

the policy-based approaches, we only compare the binary (“Yes/No”) decisions

here as the participants were instructed to only specify share/not share policies

8Ibid.
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in the survey. The first policy-based approach, called AT studies, is inspired from

the findings presented in [3, 152], and is derived by the following two rules:

1. Do not share any information while sleeping (12 AM - 6 AM) or eating (12

PM - 1 PM).

2. Do not share any information when you are around people that are not

your family members or friends, except when you are at an event.

The second policy-based approach is derived from the individual policies that each

participant specified in free text in the survey. We selected a random sample of

19 participants and we manually transposed their free-text policies to a format

suitable to be evaluated against their own decisions. The participants specified

between 1 and 15 policies (avg. 6.9).

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Participant ID 

Participant's policy AT studies SPISM(ML)

Figure 6.5: Histograms of the proportion of correct sharing decisions for three
different sharing policy approaches. The AT studies’ policies are derived from [3,
152], the participants’ individual policies are derived from their free text answer
in the survey and the SPISM approach is based on machine learning (without
active learning).

The results of the three-way comparison are shown in Figure 6.5 where the

results are sorted in descending order, based on the performance of the partici-

pant’s individual policies. First, we can observe that the SPISM machine-learning

approach consistently outperforms the other two approaches (this holds for all

users when compared only to the AT policies defined earlier). The SPISM perfor-

mance rate is between 53% and 100%, with an average of 71%. Compared to the

participant’s policy (avg. 22%) and the AT studies (avg. 12%), SPISM is signif-

icantly better at adapting itself to the user’s sharing behavior. We also observe

that usually where the participants’ own policies correctly represent their actual

behavior, the AT policies exhibit the worst performance (left side of Figure 6.5).

The inverse appears to be true as well, as the policies inspired by the AT studies

perform better for the participants whose own policies do not particularly match
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Figure 6.6: Performance of the machine learning-based decision making algo-
rithm.

their actual behavior. This points out an interesting question, which is outside

of the scope of this work: Are people who are not able to articulate well their

sharing policy better suited to not trying to modify the default policies at all?

For the individual policies, we also observed the correctness of the decisions

as a function of the number of policies, and found that a small number of policies

(1-5) achieved up to 41% of correct decisions, followed by a slightly better perfor-

mance for the number of policies between 6 and 9 (up to 45%), and then a much

worse performance (up to 28% of correct decisions) for the highest number of

policies (10 - 15). This suggests that there is an advantage in having a moderate

number of sharing policies (up to 9) but not higher; With a larger number of

policies, the risk of having overlapping but contradicting policies is higher, which

could result in a worse overall performance.

6.4.3 Machine Learning

In order to assess the potential of (semi-)automatic information-sharing decision

making, which constitutes the core of SPISM, we evaluate the performance of

a logistic classifier in predicting the users’ sharing decisions. To do so, we use

the survey data comprised of 75 scenarios for each of the 70 participants: Each

scenario corresponds to a feature vector and the decision made by the participant

constitutes the ground truth. We considered only the “Yes” and “No” decisions.

We evaluate the performance of the classifier in terms of the proportion of correct

predictions (i.e., that match the user’s decision), the proportion of cases where

the information is incorrectly shared (whereas the user would have not shared

it), thus compromising the user’s privacy, and the proportion of cases where the

information is incorrectly not shared (whereas the user would have shared it),

thus reducing the utility of the system.

Firstly, we consider the case where the users first manually make n decisions to
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train the classifier, and then the classifier makes the remaining decisions automat-

ically. For several values of n, and for each participant, we compute the average

proportions of correct and incorrect decisions following a 20-fold cross-validation

approach. For each value of n, we obtain one data point (i.e., a proportion of

“correct”, “share less”, and “share more” decisions) for each user and each fold,

that is 1,400 data points. We represent the results across the different users

and folds by showing the median, the first and third quartiles, and the 5 and

95-percentiles, as depicted in Figure 6.6(a). It can be observed that the median

proportion of correct decisions increases from 60% and reaches 70% for a training

set of only 30% of the data, which correspond to ∼25 scenarios. The proportion

of correct decisions then quickly stabilizes around 74% after approximately 40

decisions (i.e., ∼50% of the data). The third quartile and the 95-percentile show

that for more than 25% of the users, the proportion of correct decisions goes up

to 80% and for some of them, it is consistently higher than 96%. The propor-

tion of incorrect decisions is evenly distributed between sharing and not sharing

the information, yet slightly biased towards incorrectly sharing the information.

Should a user favor her privacy over the utility of the system, she could assign a

higher error-penalty to this type of errors in order to make decisions in a conserva-

tive way. Without penalties and active learning, over-sharing happens in 10-20%

of the cases, in line with the results reported in [15] and obtained with different

classifiers. Note that the size of the training set (represented on the x-axis) rep-

resents the burden of the user as she has to manually make the corresponding

decisions.

Secondly, we consider the case of active learning in which the user is asked to

manually make the decision when the confidence of the classifier is low. The clas-

sifier outputs a distribution over the possible decisions; we define the confidence

as the normalized entropy of this distribution. The classifier is first initialized

with 10% of the data. For each user, we run the active learning-based classifier

for several values of the confidence threshold (under which the user is asked to

make the decision). Each experiment gives one data point comprised of (1) the

proportion of decisions (including the first 10%) the user has to manually make

and (2) the proportions of correct and incorrect decisions (among the decisions

that are made automatically). In order to represent the data in a form that is

comparable to that of Figure 6.6(a), we group the data points in bins of size

5% (on the x-axis as represented in the figure) based on the proportion of man-

ual decisions. Note that the number of data points varies across the different

bins. Within each bin, we compute the median and the relevant percentiles. The

result are depicted in Figure 6.6(b). It can be observed that active learning out-

performs training-only learning in most cases (i.e., for a given number of manual

decisions, it provides a higher proportion of correct decisions). The proportion

of manual decisions remains lower than 50% which shows that the classifier can
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make the decision with very high-confidence for at least half of the scenarios.

For some users, the proportion of manual decisions remains low (∼20%), regard-

less of the confidence threshold, and the proportion of correct decisions is high

(∼80%). This corresponds to the users whose decisions are highly predictable.

With active learning, we observe a significantly improved performance in terms of

over-sharing compared to the absence of active learning. We posit that, coupled

with cost-sensitive classifiers, active learning can be used to improve the correct-

ness of the sharing decisions while maintaining a significantly lower over-sharing

rate.

6.5 Related Work

A substantial research effort has been made on the topic of privacy and infor-

mation sharing in mobile social networks, notably with respect to the attitudes

of people when sharing static and contextual data with other peers. The studies

that are most related to our work can be grouped, from a high-level perspective,

into two categories: (i) contextual information sharing and privacy [144, 152, 12]

and (ii) machine learning for information sharing [40, 53, 133, 112, 2, 136].

Contextual Information Sharing and Privacy Smith et al. [144] provide an early

investigation on technologies that allow people to share their contextual informa-

tion, such as location, in mobile social networks. In addition to allowing users

to manually decide when to share their location with others, the authors imple-

mented a system called Reno that can automate the process based on a set of

pre-defined regions. By allowing Reno to automatically send notifications when-

ever the user entered or exited such regions, the authors show that there is both a

value and a cost associated with automatic information disclosure. In particular,

they show that static rules for location sharing in pre-defined regions are inef-

fective in accurately expressing the users’ actual behavior when other contextual

elements change, such as the time of the day or the day of the week.

More recently, Toch et al. [152] study the effect of the type of locations

visited by the users on their willingness to share them with others. By considering

simple statistical models that take into account factors other than the geographic

location, the authors showed that the semantic category of the location being

shared (such as a shopping center or a hospital) and the social group of the

person asking for the location are significant factors in deciding whether to share

the location. These results support earlier efforts [3, 104, 136] in providing a set

of contextual features that have a statistically significant impact on the location-

sharing behavior of mobile users.

In an attempt to capture the cost of mistakenly revealing a location due

to ineffective sharing policies, in addition to sharing preferences, Benisch et al.
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[12] compare simple access control policies (white lists) to more sophisticated

ones (based on time, day and location). They found out that (i) the accuracy

of the sharing policies increases with their complexity (or flexibility), and that

(ii) the accuracy benefits are the greatest for the highly sensitive information.

This suggests that the notion of the cost of mistakenly revealing information to

unauthorized parties (in particular contexts) is an important factor in designing

and optimizing automated information-sharing mechanisms.

Wiese et al. [156] investigate the effect of physical and perceived social close-

ness on people’s willingness to share information with others. Among the main

results of the study, the authors show that social closeness and the frequency of

communication are better predictors of sharing than physical proximity. More-

over, these two factors were also shown to have a capacity to predict sharing

better than the social groups of the people asking for the information. Thus, the

authors suggest that automatic methods for inferring social closeness could be

suited for accurate information-sharing decisions more than physical co-location,

in the case automated mechanisms (such as in [147, 84, 149, 113]) are envisaged.

Machine Learning and Information Sharing Whereas studies on information-sharing

attitudes and privacy shed light on the behavior of people and the factors that in-

fluence their decisions, they are mostly concerned about understanding the causes

and effects of such behavior. Meanwhile, there has been a substantial effort in

devising methods that help and nudge the users to make information-sharing deci-

sions, or even make decisions on their behalf. We present some of these methods,

including both supervised and unsupervised approaches for decision-making.

In [136], Sadeh et al. compare the accuracy of user-defined sharing policies

with an automated mechanism (case-based reasoner) and a machine learning ap-

proach (random forests), showing that these approaches have an accuracy better

than the user-defined policies. Owing in part to the greater flexibility of the

supervised machine-learning approaches compared to the more coarse-grained

user-defined policies, the automated methods also benefited from the fact that

users appeared to not be able to create sharing rules consistent with their own

choices. On the contrary, the feedback provided by the users to the machine-

learning methods did however appear to be consistent with their actual sharing

behavior, which helped the automated methods to achieve better accuracy re-

sults.

Unsupervised or semi-supervised methods, which reduce the initial setup bur-

den of the default sharing policies for each user, are investigated in [40, 53]. For

instance, Danezis [40] proposes a method for automatically extracting privacy

settings for online social networks; the method is based on the notion of a lim-

ited proliferation of information outside of a given social context. The proposed

method, which determines cohesive groups of users where users belonging to a



6.6. SUMMARY 147

group have stronger ties to the users outside of the group, shows promising re-

sults on a limited set of evaluation samples. This study also shows that the social

groups, and especially methods for their automated extraction, are a key factor

to sharing private information in social networks.

Fang and LeFevre [53] propose a novel approach to the inference and definition

of access control policies for personal information on online social networks. They

enable the supervised learning mechanism to learn the sharing preferences of a

user by asking her a limited number of questions about her sharing behavior with

some of her friends; these specific friends are the most “informative”, i.e., those

for which the classifier is most uncertain about. The authors show that their

approach of iteratively asking questions about the most uncertain case (active

learning with uncertainty sampling) reduces the effort required by the users and

maintains a high accuracy compared to the ground truth (based on a 45-user

study on Facebook).

Bigwood et al. [15] evaluate different machine learning algorithms for infor-

mation sharing in terms of information over-exposure and correct decisions. Al-

though their work is focused exclusively on binary (yes/no) location-sharing, the

authors provide a machine-learning-based determination of the most influential

features for the sharing decisions; moreover, they take into account cost-sensitive

classifiers to reduce over-exposure.

An interesting approach towards the assessment of the privacy risks in online

social networks is proposed by Liu and Terzi [102], who introduced a novel method

for computing the privacy score of a user. Based on two values, the sensitivity and

the visibility of the personal information, their score captures both the role of the

user’s own preferences for sharing (sensitivity of the released information to the

individual) and her role (or visibility) in the network; the greater the sensitivity

of the information item, the higher is her privacy score. Similarly, the greater the

number of people who know a particular information item about a user (visibility

of the information), the higher is her privacy score. Furthermore, when coupled

with probability estimation techniques used in Item-Response Theory (IRT) [103],

such privacy scores can be comparable across different social networks (such as

Facebook, MySpace, Twitter). The latter property is important whenever users

may have online accounts on different social networks, as it may be possible to

link information shared on different social networks to reconstruct the information

about the user [114].

6.6 Summary

Mobile social networks enable users to share an increasing number of contex-

tual information, such as their location, their activity and their co-presence with

others. To simplify the sharing process and improve usability, the research com-
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munity has been studying sharing preferences and developing applications that,

based on several contextual features, can automate to some extent the sharing

process. Machine-learning approaches have been developed and evaluated for

specific instances of information (mostly location) or for online social network

(without the notion of context).

In this chapter, we have presented and evaluated a novel privacy-preserving

information-sharing system (SPISM) that decides in a (semi-)automated fashion

whether or not to share different types of contextual information and to what

level of detail. Using a personalized online user-study involving 70 participants,

we show that SPISM significantly outperforms both individual and general user-

defined sharing policies, achieving up to 90% of correct sharing decisions, with

only a limited cost for the user in terms of initial setup thanks to active learning.

We also show that the system has a slight bias towards incorrectly sharing the

information, which could be mitigated by introducing a penalty for this kind

of errors. Furthermore, our results provide significant insight into two other

crucial aspects of UbiComp studies: the reasons behind sharing decisions and

the participants’ confidence in them. We show that the type of the requested

information, in addition to the social ties of the requester, is an influential feature

in the decision process.

Publication: [16]
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Conclusion

In this thesis, we have focused on the privacy of mobile users in context-aware

networks. From the application to the link layer of the ISO/OSI stack, we have

performed information leakage analysis and designed privacy-preserving protocols

in order to enable users to benefit from added security and privacy while executing

common tasks and using social and context-aware services. In our studies, we

involved a large population of external participants in both online and in-situ

experiments, in order to assess the challenges they face with respect to privacy

and to evaluate our protocols.

In Part I, we have studied two privacy problems that arise on the application-

layer: meeting scheduling and optimal meeting location determination for mobile

devices. For these two problems, we designed and evaluated privacy-preserving

protocols that enable users to privately determine common meeting times and to

choose, among a set of private preferred places, the optimal one among them. By

means of targeted user studies and prototype applications, we have demonstrated

that our protocols can be efficiently run on current mobile devices and that

they fare better, with respect to computational and communication complexity,

compared to existing centralized and distributed approaches. Furthermore, our

proof-of-concept applications scored well with the users, who found them easy

to use and provided us with input to formulate design guidelines for application

developers.

In Part II, we have investigated the issues of social community and relation-

ship privacy in pervasive networks. First, we conducted the first large experiment

in which we compared the accuracy in inferring social communities of an exter-

nal eavesdropper, who did not have access to the data stored on the mobile

devices, with that of a malicious application or an experimenter who had access

to such data. Our results showed that the eavesdropper could infer, with high

accuracy, generic statistics of social communities of users, even by using a basic
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characterization for the weight functions of the underlying social graph of users’

encounters. With a more comprehensive weight function, such an adversary can

achieve positive results also with respect to the identity of the members of the so-

cial communities. Moreover, we have studied the effect of exploiting the inferred

social community information in reconstructing the social ties of the mobile users.

In particular, we have shown how the false positives can be reduced by a factor

of three while doubling the true positive rate of social ties inference for specific

types of relationships. By adjusting the inference parameters, it is possible to

achieve high success rates for specific target social relationship classes.

In Part III, we have focused on cross-layer approaches for privacy protec-

tion in mobile social networks. The context-awareness of current mobile devices

and the possibility of sharing such information with almost anyone on the social

network represent two important aspects to consider when developing privacy-

aware information-sharing mechanisms. We designed a novel and automated

information-sharing mechanism that enables users to share different kinds of per-

sonal and contextual information with each other and third parties. Our decision-

making core is developed with both privacy and ease of use in mind, as it mimics

the users’ behavior with respect to information sharing – by learning from the

past behavior and the current context – and it relieves the users from having

to decide manually and once and for all whether they want to share personal

information. In addition to the sharing decision, our system is also able to in-

fer the level of granularity for each information request. Our results indicate

that our proposed mechanism is able to make better sharing decisions than both

the existing systems and users’ own sharing policies. Furthermore, by choosing

the appropriate questions when user input is required – by actively choosing the

question that yields the most information to the classifier – we can minimize

the number of interruptions for the users while maximizing the gain in terms of

confidence in the decision by the mobile device.
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