Personalized news recommendation based on collaborative filtering

Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results. © 2012 IEEE.


Published in:
Proceedings - 2012 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2012, null, null, 437-441
Year:
2012
Laboratories:




 Record created 2014-03-11, last modified 2018-03-17

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)