Understanding and Improving Relational Matrix
Factorization in Recommender Systems

Li Pu
Artificial Intelligence Laboratory, EPFL
INR240, EPFL-IC-LIA, Station 14
CH-1015, Lausanne, Switzerland

li.pu@epfl.ch

ABSTRACT

Matrix factorization techniques such as the singular value
decomposition (SVD) have had great success in recommender
systems. We present a new perspective of SVD for con-
structing a latent space from the training data, which is
justified by the theory of hypergraph model. We show that
the vectors representing the items in the latent space can be
grouped into (approximately) orthogonal clusters which cor-
respond to the vertex clusters in the co-rating hypergraph,
and the lengths of the vectors are indicators of the represen-
tativeness of the items. These properties are used for making
top-N recommendations in a two-phase algorithm. In this
work, we provide a new explanation for the significantly bet-
ter performance of the asymmetric SVD approaches and a
novel algorithm for better diversity in top-/N recommenda-
tions.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering

Keywords

recommender system, matrix factorization, hypergraph

1. INTRODUCTION

In a recommender system, there are two types of entities,
i.e. users and items. The users give weighted connections, or
ratings, to the items. These connections can be modeled as a
rating matrix R where the rows represent the users and the
columns represent the items. The entry R(7, k) is the rating
given by user i to item k (if the rating exists). The goal of the
recommender system is to predict unseen items that might
be rated with high scores. A common assumption for making
predictions is that certain latent factors are associated with
each user and each item, and a user gives ratings according
to her latent factors and the latent factors of the items.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or afee. Request permissions from permissions@acm.org.

RecSys' 13, October 12-16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2409-0/13/10 ...$15.00.
http://dx.doi.org/10.1145/2507157.2507178.

Boi Faltings
Artificial Intelligence Laboratory, EPFL
INR230, EPFL-IC-LIA, Station 14
CH-1015, Lausanne, Switzerland
boi.faltings@epfl.ch

A B C D E
a |l 3 2 old ratings
b 5 1 4 —i
c |3 2 5
d |2 matrix
e 5 A factorization

Y recommendations
some new
} <
ratings <

prediction model extracted latent factors

Figure 1: Recommender system using matrix fac-
torizations.

For example, in the Lastfm dataset, the items are the
artists in a music website. The latent factors could be the
music genres. The recommender system first obtains the
genres of the artists, and the users’ interests on different
genres. Then the system makes recommendations by align-
ing the user’s interests to the genres of the artists.

For ratings modeled as the matrix R, various matrix fac-
torization techniques have been applied to extract the latent
factors and make recommendations. Figure 1 shows a typ-
ical recommender system using matrix factorization. The
old ratings given by existing users are first decomposed into
multiple matrices to extract the latent factors. When new
users come into the system, their ratings are combined with
the extracted latent factors to make recommendations.

Sarwar et al. [17] proposed one of the early works that use
the low-rank Singular Value Decomposition (SVD) approx-
imation to replace the missing values in the original rating
matrix, i.e. R~ U;S;V;" where the sizes of the matrices are
R: mxn,U;: mxI,S;: Ix1I,and V;: nxl. The diagonal ma-
trix S; contains the [biggest singular values of R, and this
low-rank approximation is also called the truncated SVD.
This approach relies on the fact that the rank-I truncated
SVD approximation R = U;8;V," minimizes the Frobenius
norm || R — R||r among all the rank-I matrices, and we hope
that the matrix R would generalize the correct ratings to the
missing entries in R. Note that imputation of missing values
is implicitly required when computing the truncated SVD.
We can represent user ¢ with the vector w; = Sl_l/QUl(i7 a7
and item k with the vector v, = Sfl/QVl(i, J)T. The pre-
dicted rating from user i to item k is then R(i, k) = @, v,
where u; and v; can be considered as latent vectors.

During the Netflix prize competition, Funk [5] proposed
an iterative way to compute the low-rank SVD approxima-

tion on a very big matrix that minimizes only the Frobenius
norm on the non-empty entries in the original rating ma-
trix. Based on Funk’s work, Paterek [14] suggested a new
model to reduce the number of parameters that need to be
stored in the recommender system. In Paterek’s approach,
a truncated SVD is computed as before, but only the right
singular vectors in V; are taken into the second step. In the
second step, item k is represented by vy which is the k-th
column of V;', while user i’s latent vector is computed by
a linear combination of the v’s whose corresponding items
are rated by user ¢. Finally the rating prediction is the in-
ner product of a user’s latent vector and an item’s latent
vector. Koren [9] pointed out that this “asymmetric SVD”
which takes only the right singular vectors actually works
better in prediction accuracy. However, besides the empiri-
cal studies, the reason of such improvement for asymmetric
SVD is not clear.

The main contributions of this paper include (1) a new
explanation of the (approximate) orthogonal structure of the
latent space constructed from the asymmetric SVD, which
is used as an intermediate step in a top-IN recommender
system, and (2) a novel algorithm based on a hypergraph
formulation that brings more diversity in the recommenda-
tions by applying normalizations in the asymmetric SVD.

In the reminder of the paper, we start with the hyper-
graph representation and the normalized hypergraph cut.
We show that the asymmetric SVD approach follows the
hypergraph learning scheme, and there is an (approximate)
orthogonal structure associated with the right singular vec-
tors. Based on the lengths of the latent vectors obtained
from the right singular vectors, the items can be categorized
into anchor items and non-anchor items. Finally we present
a top-NN recommendation algorithm that utilizes the above
structures, and conduct experiments to compare our algo-
rithm with the state-of-the-art approaches.

2. PRELIMINARIES

Suppose we have two sets of entities: the user set Y =
{y1,v2, ..., ym } of size m, and the item set Z = {z1, 22, ..., 2n }
of size n. The items in set Z belong to s clusters {C1, Co, ...,
Cs}. Each cluster Cj is a subset of Z and C; N Cy = for
i#j

Taking the Lastfm dataset as an example again, let the
set Y be the set of users and the set Z be the set of artists.
Clusters or partitions over Z can be established according
to the genres of the artists. For example, C; includes the
rock music artists, while all the country music artists are in
C5. Each user in the set Y, on the other hand, is assumed
to have a preference over music genres. If the user likes
rock music, she would listen to the artists from C; with
high probability. If the user does not like country music,
she would rarely listen to the artists from Ca.

The mutually exclusion between clusters of items is the
basic assumption in our analysis. Each cluster can be con-
sidered as a latent factor by which the ratings are generated.
In some cases, however, an artist could play in multiple gen-
res. This does not pose a problem to our basic assumption,
because we can create a cluster (latent factor) that corre-
sponds to a combination of genres. In fact, if the intuition
behind the latent factors follows some categorical attributes,
e.g. genres, languages, professions, etc., or a combination of
categorical attributes, our basic assumption always holds.

A hypergraph from the old ratings. The induced graph from

There are 3 hyperedges {h,, hy, h.}. the hypergraph

78RS a‘w

Figure 2: The hypergraph representation of the rat-
ings in Figure 1 and the induced graph.

2.1 From Ratingsto Relations

The matrix R contains the ratings between the users and
the items, which can be seen as relations between two sets.
For simplicity, we assume that all the ratings are bigger than
zero, thus the empty entries in the m x n rating matrix R
can be represented by zeros. If we ignore the actual ratings
in R, we can obtain a binary matrix X = (R > 0) that
represents only the relations, i.e. X (i,k) =1 if R(i,k) > 0,
otherwise X (,k) = 0, and the resulting matrix X can be
precisely represented by a hypergraph.

A hypergraph is an extension of a graph for modeling re-
lations. In a graph, an edge connects exactly two vertices,
while in a hypergraph a hyperedge connects any number of
vertices. For a binary relation matrix X, the items are con-
sidered as the vertices of a hypergraph, and a user is repre-
sented by a hyperedge which contains all the items (vertices)
that have been rated by the user. Following the tradition
of visualizing a hypergraph in literatures, Figure 2 shows an
example of the hypergraph representation. The matrix X is
also called the incident matriz of the hypergraph. The ver-
tex degree (of an item) is the sum of the k-th column of X,
ie. deg(zx) = >, X (i,k). The hyperedge degree (of a user)
is the sum of the i-th row of X, i.e. deg(y:) = >, X (¢, k).

Recall that we assume there are some clusters of items,
and these clusters correspond to the latent factors. Thus ex-
tracting the latent factors is equivalent to finding clusters of
items (vertices) in the hypergraph. There is a wide range of
studies for clustering the vertices in a hypergraph [8, 1, 22].
In this paper, we focus on one particular line of studies that
convert a hypergraph into an approximated graph so that
the graph clustering algorithms can be applied to the hy-
pergraph. Zhou et al. proposed a transformation to convert
a hypergraph into a graph based on the Normalized Hyper-
graph Cut (NHC) [22] (others include the clique-expansion,
the start-expansion [1], and the hyperedge-expansion [15]).
We denote the transformation proposed in [22] as “NHC”,
and use it to find clusters in the hypergraph.

By applying the NHC transformation, the vertices of the
hypergraph are copied into a new graph. Then each hyper-
edge is converted into a clique of weighted edges in the new
graph that connect all the vertices in the original hyperedge.
The weights of the edges in the clique are normalized by the
hyperedge degree so that the contribution of each hyperedge
to the new graph is the same. With a linear combination
of all the cliques from all the hyperedges, the new graph
can be seen as an approximation of the hypergraph in the
sense that any two vertices connected by some hyperedges
are also connected in the new graph. We call this new graph
the induced graph (see Figure 2).

One can show that the adjacency matrix of the induced
graph is X " DX, where X' is the transpose of X and
D, = diag (X1) is the hyperedge degree matrix. D, is ac-
tually the diagonal matrix of row sums of X, and 1 is an
all-ones vector of proper length. With the NHC transfor-
mation, it is proposed to use the normalized Laplacian of
the induced graph to find clusters of vertices [22], where the
normalized Laplacian matrix L is defined as

L=I-D;Y*x"D;'xD;'> (1)

Matrix I is an identity matrix, and D, = diag (lTX) is the
vertex degree matrix.

As in standard spectral graph theory [4], the clustering
algorithm involves computing the leading (smallest) [eigen-
values {A1, A2, ..., \i} of L and the corresponding eigenvec-
tors [f1, f2,..., fi] = F. Then a vertex (or an item zp) can
be represented by a vector ay that is the k-th column of
FT (note that F is of size n x [). We call the [-dimensional
vector oy the latent vector, and the I-dimensional space the
latent space. Once the latent vectors are computed, one can
apply any clustering algorithm (such as k-means) in the la-
tent space to find clusters of vertices.

This scheme of spectral technique (the list of eigenvalues
are often called the spectrum of the matrix) has been widely
used in many areas. It has close connections to the Principal
Component Analysis (PCA), SVD, and many other matrix
factorization techniques. In the next section, we show that
the NHC transformation of a hypergraph is equivalent to a
SVD, and under certain conditions there is a structure with
the resulting latent vectors. Note that although the actual
ratings are ignored in the hypergraph representation, they
will be used again in the top-N recommendation algorithm
presented in Section 4.

3. HYPERGRAPH LEARNING USING SVD

The normalized Laplacian L is a symmetric matrix. Let
X =D;'?*XD;"* (2)

We can rewrite L = I — X " X. The biggest | eigenvalues of
XX are exactly {1 —A1,1— Xa,...,1 — X}, while the cor-
responding eigenvectors are still [f1, fa, ..., fi] = F. Then
we decompose the matrix X by the full SVD X =USV ',
where U and V are unitary matrices, and S is a rectangular
diagonal matrix. The biggest [singular values in S are ex-
actly {v1—XA1,v1—Xz2,...,v/1— X}, and the columns of
V (right-singular vectors) are the eigenvectors of X ' X.
Therefore, instead of computing the eigen-decomposition of
L, we can obtain F' from the SVD of X, i.e. F is the sub-
matrix of the first [columns of V.

Since we are looking for the right singular vectors of X as-
sociated with the largest [singular values, computing F' can
be done by the truncated SVD X ~ UlSlVlT =US,F".
Thus the NHC transformation is equivalent to the asymmet-
ric truncated SVD of X. We call the column vectors in X
the “profiles” of the items.

There are many advantages of using SVD to compute the
ay’s (latent vectors) rather than the eigen-decomposition of
L. Firstly, the matrix X is usually sparse, but X " X might
be non-sparse. When n is large, the computational cost and
storage cost of the eigen-decomposition might be impracti-
cal. Secondly, there are existing approaches to implement
SVD incrementally, which allows us to just compute the mi-
nor changes when modifying X.

3.1 A Special Case

We first consider a special case where all the items in one
cluster are rated by the same set of users. In other words,
each cluster C; is associated with a subset of users and these
users have rated all the items in C;. We call this special case
the “full concentrated case” because it can be modeled with
a beta distribution with a small concentration parameter. If
there are s clusters, the matrix X can be written as

X = (@1 & @B o B Es], (D)

|C1| vectors |C2| vectors |Cs| vectors

where the column vectors in one cluster are all the same.
We call the items in the s clusters the anchor items because
they define the cluster centers and remain clustered in the
latent space.

In spectral graph theory, if the graph contains s discon-
nected components, one can show that the latent vectors ob-
tained from the first s eigenvectors of the graph Laplacian
are aligned with the axes of the s-dimensional latent space
[13]. When the disconnected components are connected by
some weak links, the latent vectors are still aligned with s
approximately orthogonal lines [20]. However, the induced
graph of a hypergraph usually does not consist of more than
one connected component. Figure 3 shows an example of a
hypergraph in full concentrated case. The adjacency matrix
of the induced graph is not a diagonal block matrix (not
even approximately), so we need to develop a new analysis
to support the clustering algorithm for hypergraphs.

adjacency matrix of

the induced graph latent vectors

o ~

. [N

incident matrix X

full concentrated case

5% mnoise

10% noise

Figure 3: Examples of the incident matrix and the
latent vectors with the full concentrated case and
noisy cases. The noises are added by randomly flip-
ping some entries of X. Approximately orthogonal
structures can be observed in the noisy cases. In the
charts of latent vectors, the gray lines are from the
origin to the cluster centers.

If the rank of X is s, i.e. the anchor item profiles &;’s are
linearly independent, the truncated SVD X = U;S;V,' is
an exact decomposition when [= s. Recall that the latent
vectors in F' can be obtained from F = V. The following
statement shows the structure of F'.

ProPOSITION 1. If X is in the form of Eq. (3) and &;’s
are linearly independent, the latent vectors F = [o - - - an] |
given by the truncated SVD X = U,S.F" (columns of F
are normalized to 1) can be grouped by the clusters o, = 3;
forVzi € C;. The ai’s from the same cluster are identical
(denoted as 3;). Furthermore, we have ﬂ;,@j/ =0 forVj #
i', and B} B; = |C;|7" for Vj € {1,2,...,s}. (See appendiz
for proof.)

If all the items are anchor items, i.e. in the form of Eq.
(3) and having linearly independent &;’s, the latent vectors
would be in exactly s clusters whose centers are orthogonal
to each other (see Figure 3). The length of the latent vector
is the reciprocal of the cluster size. Unlike the graph case,
the latent vectors computed from a hypergraph are usually
not aligned with the axes of the latent space, but up to a
rotation that depends on the cluster sizes and the distribu-
tion of non-zero entries in X. Nevertheless, the orthogonal
structure of the latent vectors still provides us a similar the-
oretical foundation for clustering vertices as in the standard
spectral graph theory.

3.2 MoreGeneral Case

The assumption that all the items are anchor items is too
strict. We usually have some item profiles which are combi-
nations of some other item profiles. For example, there are
pure “SciFi” books and pure “romance” books that attract
distinct sets of readers (the anchor items). But one book
might have the “SciFi” element and the “romance” element
at the same time, so it could attract readers from both sets.
The item profile of this book is apparently a combination of
two profiles.

Besides the anchor items, we now consider the non-anchor
items that are combinations of anchor items. We assume
that the weights of the combinations are always non-negative,
which implies that only additions of profiles are allowed, but
not subtractions. If there are n’ non-anchor items and s
clusters of anchor items, X can be rewritten as

X:[i/l T, &Tyi---Ty To- &y - T s |, (4)
—— —— ———

n’ vectors |C1| vectors |Ca| vectors |Cs| vectors

where the profile of non-anchor item zj, is denoted as &,
(k € {1,2,...,n'}), and the profile of an anchor item from
cluster C; is still denoted as &;. Note that &) is not an
exact linear combination of the anchor items, because when
combining the profiles of the anchor items, there might be
redundant entries. For example, if &, = [1100]", &2 =
[0110]" and @) is a combination of &; and %2, &} would
be [1110]" instead of [1210]" because the incident matrix
X is always a binary matrix (normalizations are ignored in
this example for simplicity). Thus we need to subtract the
redundant entries when summing the anchor item profiles:

deg(z;) -
des() " " ®)

—/
= D

JEI(2y,)

where I(z},) is the set of anchor items from which zj, is con-
structed, and r denotes the column vector that consists of
the redundant entries in the profiles of the anchor items.
Obviously all entries of r are non-negative.

Denote the latent vector of an anchor item from cluster Cj
as 3;, and the latent vector of a non-anchor item zj, as 3j,.

By the SVD on X, 3}, can be expressed by the combination

Z deg ﬂfsl (6)

JjEI(=

If the entries in r are small enough to be considered as resid-
uals, or in other words the anchor items are associated with
disjoint sets of users, we could still expect approximately or-
thogonal structure between the latent vectors of the anchor
items.

PROPOSITION 2. If the anchor items are associated with
disjoint sets of users, i.e. :f:;rfij/ =0 forVj, 3 €{1,2,..,s},
j # j', the latent vectors of the anchor items are approwi-
mately orthogonal ﬂ;,@j/ ~ 0 forVj #j.

The conclusion of Proposition 2 follows from the fact that
i;:ij/ = ﬂ;Sf,@j/ = 0, and the first [singular values in
S, are approximately the same when the cluster sizes are
similar.

In practice, we can consider the anchor items as the most
representative items of each cluster. For example, the pure
“SciFi” books are the anchor items of the “SciFi” cluster, be-
cause they have the most unique features that define what
is “SciFi”. The anchor items are not necessarily the most
popular items or the most informative items in each cluster,
but the items that are most distant from all the other clus-
ters and attract a very unique group of users. Usually the
anchor items are in the long-tail part, i.e. less popular.

Although the anchor items exhibit the approximately or-
thogonal structure, we do not know which items are the an-
chor items. The following result suggests that it is possible
to distinguish the anchor items and the non-anchor items by
examining the length of the latent vectors.

PROPOSITION 3. For a non-anchor item zj,, denote I(z},)
the set of anchor items from which zj, is constructed. Sup-
pose that the anchor items in I(z},) are non-overlapping, i.e.
&,z =0 forVj,j' € I(z},),7 # j', and the cluster sizes of
the anchor items are similar, i.e. the lengths of the an-
chor latent vectors are similar (denoted as ||Bjll2 = bo for
Vj € I(z},), where ||-||2 is the l2 norm). We have ||B%|l2 < bo.
(See appendiz for proof.)

This result states that the length of a non-anchor latent
vector is smaller than the lengths of the anchor latent vectors
from which the former is constructed. Therefore, we can find
the anchor items by sorting the lengths of the latent vectors
in descending order.

In order to verify the conclusions in Propositions 2 and
3, we compute the latent vectors by the rank-I truncated
SVD of X, and select 10 - I items whose latent vectors have
the longest lengths. Then the selected latent vectors are
grouped into clusters by the k-means algorithm. By the
conclusions of the Propositions, the cluster centers of the
selected latent vectors should be approximately orthogonal.
In Figure 4, we show the results from a real dataset with
NHC and SVD. Because there is no hyperedge-degree and
vertex-degree normalizations in SVD, the longest latent vec-
tors are not necessarily the anchor items. We can observe
that there exists an approximately orthogonal structure in
the NHC results, while such structure is less clear with SVD.

There are existing works about the categorization of the
items or users based on their impact on the recommender

system, e.g. [12]. Our classification of anchor and non-
anchor items provides a new perspective in the context of
latent space. In summary, (1) if the latent vectors are all
orthogonal, each corresponds to a different anchor item (the
full concentrated case). (2) if they are not, there is an or-
thogonal subset such that each latent vector in this sub-
set corresponds to a different anchor item, and all the oth-
ers (non-anchor items) are approximately in the subspace
spanned by the orthogonal subset. (3) generally, the anchor
items are rated by different groups of users.

latent vectors (first 2d) clusters of anchor items

*
5 < 1

[ee)
O @
jant e 0.5
Z. 1]

Q

2 0

% 1
[m)] 4
> < 0.5
wn

(&)

o 0

Figure 4: The selected anchor items with longer la-
tent vector lengths in the dataset BookCrossing (see
Section 6 for the description of the dataset). (a) The
anchor items are shown in red x-markers. (b) The
cosine distance matrix of the clustered anchor items.
Sc is the sum of average distances between clusters
minus the sum of average distances within clusters,
normalized by the largest possible value with a per-
fect orthogonal structure. A Sc value close to 1 sug-
gests a better orthogonal structure.

4. THENORMALIZED RELATIONAL SVD

‘We now present a new algorithm based on the NHC Lapla-
cian and the above analysis. Once the latent vectors are
computed for the items, we model the user y;’s interests (or
latent profile) as another vector 8; in the same latent space.
The predicted score for user y; on item zi is P(yi,zx) =
0 ay, and the vector 6; should take the values such that
the predictor P coincides with the existing ratings (or as
close as possible).

In order to simulate the scenario where the recommenda-
tions are made for new users and evaluate the algorithm, we
split the rating matrix R into three parts

. R, }subset Vi,
R = [Rir, Rie] }subset Yy - ()

Firstly the users are separated into two subsets. Y, is the
subset of old users, and Y; is the subset of new users. The
sub-matrix R, contains all the ratings from the users in Y,,,,
and the ratings in R,, are used for constructing the hyper-
graph and computing the latent vectors. The ratings from
the users in Y; are further split into two parts: Ry and Re.
Ry, contains the “known” ratings of the new users. Based
on Ry, and the latent vectors, we can predict or recommend
more items for the users in Y;. Then the predictions are
evaluated by the ratings in R:.. Note that only R,, and
Ry, are taken as the inputs of the algorithm. R, is used
for evaluation.

Since our algorithm works with the hypergraph transfor-
mation and SVD, we call it HSVD, which contains the follow-
ing steps:

Step 1: Compute the I-dimensional NHC transformation
F by the truncated SVD X,, ~ U;S;F ", where X,, is
computed from the binary matrix X,, = (R > 0) (see Eq.
(2)). Normalize each of the ! columns of F' to 1 (I2 norm).

Step 2: For each user y; € Y;, we choose the 8; that min-
imizes the error ||R¢-(i,-) — 0 F'||3. The predicted score
vector is #; = @, FT. In matrix form, the full prediction
matrix is Rte = @TFT, where © is obtained by solving the
linear system F® = R, in a least-squares sense.

Step 3: For each user y; € Y:, recommend the top-N
unrated items with the highest scores in Rye.

There are several normalizations in the HSVD algorithm
which did not exist in previous matrix factorization meth-
ods. When computing X, in step 1, the hyperedge-degree
normalization (from the induced graph transformation it-
self) and the vertex-degree normalization (from the normal-
ized Laplacian of the induced graph) ensure that the anchor
latent vectors would have longer lengths. By Proposition
1, the normalization of the columns of F' in step 1 is also
indispensable for producing an (approximately) orthogonal
structure in the latent space.

When computing the 6; in step 2, two parts are actually
taken into consideration, which is illustrated in Figure 5.
Firstly we consider the latent vectors of the items which are
rated by user y; (the triangle points in Figure 5). We would
like to choose a 0; that is close to these rated ax’s. Since
the row vector R(i,-) is weighted by the ratings, 6; should
be even closer to the a;’s with higher ratings, which can be
expressed as 0; = argming >, g x>0 (R K) — OiTak)Q.
Because every non-anchor item is approximately a linear
combination of some anchor items (e.g. a3 is a combina-
tion of a1 and a5 in Figure 5), 6; should be in the sub-
space spanned by the latent vectors of the underlying an-
chor items. Secondly, for those a’s that are not rated by
user y; (the circle points in Figure 5), 6; should stay as
far from them as possible, ideally orthogonal to these un-
rated latent vectors. The orthogonality between the clus-
ter centers of the anchor items suggests that it is possible
to find a 6; which is orthogonal to the anchor items that
the user y; is not interested in. This can be expressed as
0, = argming Zk,R(i,k):O (Ojak)g. Putting the two parts
together, it suggests that in matrix form the 6;’s can be
obtained by solving the linear system F® = R/, in a least-
squares sense, which is in the step 2 of the HSVD algorithm.

a, %2
A O
@y

b
I

/

/

i

/ O items not rated
by user y;

A items rated by
user y;

Figure 5: Illustration of the HSVD algorithm in 3d
latent space. The dashed lines are cluster centers of
the anchor items.

Proposition 3 shows that the lengths of the anchor latent
vectors are longer than the non-anchor latent vectors, even if
the anchor items are less popular. For a fixed 0;, because the
score Rc (i, k) is simply the inner product of 8; and a, the
anchor items of longer length would have bigger chance to be
selected in the top-/N recommendations. This would allow us
to diversify the recommendation list and recommend more
less-popular items.

4.1 Scalability

The main computational cost of our algorithm comes from
the truncated SVD routine. Usually the numerical method
for truncated SVD on matrix X is in an iterative manner,
and operated as an eigen-decomposition of the Hermitian
matrix X ' X. The running time of the latter problem de-
pends on the complexity of each iteration and the total num-
ber of iterations. In each iteration the basic operation con-
tains two matrix vector multiplications X " Xv where v is a
dense vector. If the number of non-zero entries in X (or the
number of ratings in R) is M, the complexity of each itera-
tion would be O(M). On the other hand, the total number
of iterations to converge depends on the gap between the [
largest singular value and the [+ 1 largest singular value. A
bigger gap leads to a smaller number of iterations [6, 11]. If
the number of iterations is nr, the overall complexity of the
HSVD algorithm is O(n; M), which is linear to the number of
ratings. The parameter ! (dimensionality of the truncated
SVD) is considered as a constant, which can be determined
by cross-validation in practice.

5. RELATED WORK

In the introduction, we have mentioned the SVD [17], the
SVD on non-empty entries [5], and the asymmetric SVD [14,
9] for recommender systems. Another matrix factorization
technique that is widely used in recommender systems is
the non-negative matriz factorization (NMF). In NMF, the
rating matrix is approximately decomposed into two low-
rank, sparse and non-negative matrices R ~ GH ' such
that |R — GH " |? is minimized [7, 16]. The idea behind
NMF is that the set of orthogonal latent factors controls
the values in R, and each latent factor takes one axis in
the latent space. This idea is essentially similar to the HSVD
since we have shown that the anchor items also exhibit an
orthogonal structure in the latent space, although they are
not aligned to the axes.

In order to compare our algorithm with the existing ap-
proaches, we adapt the SVD and the NMF into our setting,
i.e. split the rating matrix into three parts as in Eq. (7) and

use the sub-matrix R’ = [R;R;H " to compute the SVD or
NMF, then evaluate the results on R¢.. The SVD and NMF
algorithms in this setting are denoted as SVDR and NMFR.

To make a better baseline, we also apply the SVDR and
NMFR on R,, and predict with R, in an asymmetric manner,
i.e. follow the same procedures in Section 4 but replace X,
with R,, (or replace F' with the matrix H in NMF). These
methods are denoted as ASVDR and ANMFR, where the leading
“A” means “asymmetric”.

We use the routine implemented by TimelyDevelopment
for computing the SVD on non-empty entries [18], which is
denoted as SVDN. Note that SVDN is exactly the same as SVDR
except for the SVD computation routine.

For the asymmetric SVD, we use the approach proposed
in [14]. In this approach, a decomposition is first computed

by SVDN R ~ U;S;V;", where V| = [al---an]T. Then a
user y; is represented by the currently rated items: 6; =
Ek,R(i,k)>0 ay. Finally a score is computed by the rule

R(i, k) = ar + 0, o, for each unrated item, where ay, is the
average rating of item z,. We call this method ASVDN.

6. EXPERIMENTAL RESULTS

In a top-N recommender system, the primary goal is to
discover the unrated items that might be liked by a user [3].
We first test the algorithm’s ability to discover the unrated
items, which is denoted as the scenario PREDICT-ALL. The
rating matrix is split into three parts as in Eq. (7), and we
randomly select Ry, to have 5 ratings in each row (for each
user). The remaining ratings in the Y; part are assigned to
R:.. This setting simulates the situation where new users
just come into the system with only a few ratings, which
is denoted as PREDICT-ON-5. Similarly, we create another
setting PREDICT-0N-20 where each row of Ry, has 20 ratings
to simulate the users with more available ratings. Thus in
the scenario PREDICT-ALL, there are two settings, namely
PREDICT-0N-5 and PREDICT-ON-20. Note that all the items
in Rt (rated or unrated) could be recommended in the top-
N recommendation list. In all the experiments, R, and R,
are randomly selected in 5 different runs.

To test the results, we check if the set of recommended
items coincides with the liked items (ratings higher than the
median) for each user in the corresponding row of R¢c. Let
Rfv and R; denote these two sets for user y;. We measure
the average precision

precision = (1/]Y;[) 3 (|1%§VmRi|/|R§V|). (8)

Y; €Yt

Lastfm YahooMusic BookCrossing
SVDR 0.113 | 0.083 | 0.237 | 0.207 | 0.078 | 0.063
ASVDR | 0.114 | 0.087 | 0.237 | 0.210 | 0.078 | 0.062
NMFR 0.114 | 0.090 | 0.218 | 0.189 | 0.073 | 0.054
ANMFR | 0.110 | 0.089 | 0.211 | 0.190 [0.071 | 0.056
SVDN 0.002 | 0.003 | 0.001 | 0.001 | 0.005 | 0.003
ASVDN | 0.003 | 0.002 | 0.007 | 0.005 [0.005 | 0.003
HSVD 0.180 | 0.158 | 0.258 | 0.227 | 0.075 | 0.065

Table 1: Average precisions in PREDICT-ALL. The left
column of each dataset: PREDICT-ON-5, the right col-
umn: PREDICT-0N-20. The bold number indicates the
method that performs significantly better than the
others (p-value < 0.05 in paired t-test).

Lastfm YahooMusic BookCrossing

SVDR 0.198 | 0.140 [0.490 | 0.418 | 0.743 | 0.744
ASVDR | 0.198 | 0.139 | 0.496 | 0.435 | 0.743 | 0.745
NMFR 0.541 | 0.545 | 0.763 | 0.774 | 0.731 | 0.740
ANMFR | 0.279 | 0.222 | 0.579 | 0.496 | 0.743 | 0.745
SVDN 0.177 | 0.244 | 0.249 | 0.224 | 0.389 | 0.165
ASVDN | 0.537 | 0.531 | 0.755 [0.783 | 0.696 | 0.714
HSVD 0.515 | 0.524 [0.765 | 0.766 | 0.745 | 0.747

Table 2: Average precisions in RANK-CANDIDATES. (see
the caption of Table 1 for more details)

In the scenario PREDICT-ALL, any item which is not in Ry,
can be considered in the recommendation list. But some-
times we already know a set of candidate items that a user

has suggested implicitly. For example, a user has viewed
a list of pages of artists, but did not make any further ac-
tions like purchase a CD or download a track. In this case,
we can limit our recommendations on the candidate items
and only pick up the items that are truly liked by the user,
which could be simulated by only recommending the rated
items in R:;.. We try to rank these items such that the
liked ones are ranked higher. This scenario is denoted as
RANK-CANDIDATES. The same measure (precision defined in
Eq. (8)) is evaluated in RANK-CANDIDATES.

We have tested all the methods listed in Section 5 with
the above settings on three datasets. Lastfm ! contains the
relations between users and artists collected from last.fm,
and the ratings in Lastfm are the actual counts of plays with
which a user has listened to an artist. YahooMusic ? is also in
the music domain, but includes relations between users and
tracks. The ratings in YahooMusic are in the range of 1 to
100. The last dataset BookCrossing contains ratings from
users to books [23]. The range of ratings in BookCrossing
is from 1 to 10. In each dataset, we take a subset such
that the induced graph of the hypergraph representation is
connected. When the dataset contains a hypergraph with
multiple connected components, we could simply apply the
algorithm to each connected component respectively.

RN RNNR;
mean = 163.125
median = 144
LualaLatl
mean = 164.202
median = 144
TR AT
mean = 104.868 =
median = 73 | | |I | mgg{;; :13917'698 |

0 100 10 100

mean = 190.845
median = 178

mean = 201.801
median = 196

HSVD NMFR SVDR

=

S | mean = 1123.961 mean = 1509.753

g median = 856 median = 1237

0

@ [mean = 1107.970 mean = 1569.781

% median = 824 median = 1272

= —..mul.l.l.ll.l.“ll.l..l.n.L

QA | mean = 1023.088 mean = 1390.724

% median = 721 median = 1123

= I 117 11| X
10 100 1000 10 100 1000

more popular — more popular —

Figure 6: The distribution of popularity of the items
(in the PREDICT-ALL scenario with N = 20). The x-axis
(popularity) is in log-scale. The mean and median
of the popularity of the items are also shown in each
sub-figure. Top: BookCrossing. Bottom: YahooMusic.

Table 1 and Table 2 show the results of PREDICT-ALL and
RANK-CANDIDATES respectively (with N = 20). In the first
case, our proposed method performs best within the mu-
sic domain, and shows results as good as the best methods
with BookCrossing. The approaches ignoring the empty
values (SVDN and ASVDN) does not perform very well. These
methods are originally designed to minimize the root mean
squared error on a testing set of known ratings, which is
not fully compatible with the scenario PREDICT-ALL. In the

! Available at http://mtg.upf .edu/node/1671

%Yahoo! ~ Webscope dataset ydata-ymusic-kddcup-2011-
track2 http://labs.yahoo.com/Academic_Relations

RANK-CANDIDATES, no method performs significantly better
than the others over all datasets. But the NMF-based method
NMFR and two asymmetric methods ASVDN and HSVD are al-
ways as good as the best one.

In recommender systems, we are mainly interested in rec-
ommending non-popular (long-tail) items, because the users
are usually already aware of the popular items from other
sources [19]. For the purpose of diversifying recommenda-
tions, we measure the popularity distribution of the items
in RY and RN N R, i.e. the set of all recommended items
and the set of successfully recommended items (Figure 6).
The popularity of an item z, is the number of ratings in
the k-th column of the rating matrix, i.e. deg(zx). We
observe that HSVD produces more diverse recommendations
with the same (or better) level of precision. Especially with
BookCrossing, there are much more less-popular recommen-
dations from HSVD compared to SVDR and NMFR.

Figure 7 explains why our approach produces more di-
verse recommendations. By using SVD without normaliza-
tion, the lengths of the anchor items are not necessarily the
longest ones. In fact, we can observe that there is a strong
correlation between the popularity and the length of the
latent vector with ASVDR, which would promote the popu-
lar items in the recommendations. In our approach HSVD,
the longest latent vectors correspond to the anchor items of
smaller popularity.

HSVD ASVDR
0.4

o
N}

0.3

=}
s
a

o
o
5}

length of the latent vector
o
=

o

100 200 300 400 500 0 100 200 300 400 500
popularity of the item

o

popularity of the item

Figure 7: The length of the latent vectors and the
popularity of all the items in BookCrossing.

7. CONCLUSION

In this work, we present a new perspective of SVD for
constructing a latent space from the training data, which
is justified by the transformation of normalized hypergraph
cut. We show that the latent vectors representing the items
in the latent space can be grouped into (approximately) or-
thogonal clusters, and the lengths of the vectors can be used
to distinguish the anchor items and the non-anchor items.
These properties are then utilized for making top-N recom-
mendations in the proposed algorithm HSVD. Instead of ex-
plicitly constructing the clusters, the recommendations are
generated by solving a linear system. We provide new expla-
nations for the significantly better performance of the asym-
metric SVD approaches and better diversity in top-N rec-
ommendations. Experiments conducted with three dataset
on two domains also confirm our analysis.

Future works could include further studies of the latent
space structures, and engineering methods that exploit such
structures. For example, we can explicitly extract the anchor
items to construct some clusters, and analyze the features of
a non-anchor item by studying the underlying anchor clus-
ters. It is also possible to include additional information,

e.g. contextual information [2] and social information [21],
or rating bias corrections [10] into our scheme for further
improvements.

8. REFERENCES

[1] S. Agarwal, K. Branson, and S. Belongie. Higher order
learning with graphs. In JCML, 2006.

[2] L. Baltrunas, B. Ludwig, and F. Ricci. Matrix
factorization techniques for context aware
recommendation. In Recsys, 2011.

[3] P. G. Campos, F. Diez, and M. Sdnchez-Montaiiés.
Towards a more realistic evaluation: testing the ability
to predict future tastes of matrix factorization-based
recommenders. In Recsys, 2011.

[4] F. Chung. Spectral Graph Theory. American
Mathematical Society, 1997.

[5] S. Funk. Netflix update: Try this at home, http://
sifter.org/~simon/journal/20061211.html. 2006.

[6] G. H. Golub and C. F. Van Loan. Matriz
computations. Johns Hopkins University Press, 1996.

[7] P. Hoyer. Non-negative matrix factorization with
sparseness constraints. Journal of Machine Learning
Research, 5:1457-1469, 2004.

[8] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Application in vlsi
domain. In Proc. of the 34th annual Design
Automation Conference, 1997.

[9] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In
SIGKDD, 2008.

[10] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30-37, 2009.

[11] D. Mavroeidis. Mind the eigen-gap, or how to
accelerate semi-supervised spectral learning
algorithms. In IJCAI, 2011.

[12] B. K. Mohan, B. J. Keller, and N. Ramakrishnan.
Scouts, promoters, and connectors: The roles of
ratings in nearest-neighbor collaborative filtering.
ACM Transactions on the Web, 1(2):8, 2007.

[13] A. Y. Ng, M. L. Jordan, Y. Weiss, et al. On spectral
clustering: Analysis and an algorithm. In NIPS, 2002.

[14] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In Proc. of
KDD Cup and Workshop, 2007.

[15] L. Pu and B. Faltings. Hypergraph learning with
hyperedge expansion. In ECML-PKDD, 2012.

[16] S. Rendle and L. Schmidt-Thieme. Online-updating
regularized kernel matrix factorization models for
large-scale recommender systems. In Recsys, 2008.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Application of dimensionality reduction in
recommender system-a case study. In WebKDD, 2000.

[18] TimelyDevelopment. http://www.timelydevelopment
.com/demos/NetflixPrize.aspx. 2006.

[19] S. Vargas and P. Castells. Rank and relevance in
novelty and diversity metrics for recommender
systems. In Recsys, 2011.

[20] L. Wu, X. Ying, X. Wu, and Z. Zhou. Line
orthogonality in adjacency eigenspace with application
to community partition. In IJCAI, 2011.

[21] Q. Yuan, L. Chen, and S. Zhao. Factorization vs.
regularization: fusing heterogeneous social
relationships in top-n recommendation. In Recsys,
2011.

[22] D. Zhou, J. Huang, and B. Scholkopf. Learning with
hypergraphs: Clustering, classification, and
embedding. In NIPS, 2007.

[23] C. Ziegler, S. McNee, J. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW, 2005.

APPENDI X

Proof for Proposition 1:

Firstly, it can be shown that oy = oy if 2z, 2 € Cj,
because the k-th column and the k’-th column of S, F'
must be the same to obtain the same &, and &,s, which
implies that ax = ays. Secondly, we consider the full SVD
of X and list the rows of V corresponding to items in C;:

T_[Bi B o B

Vo = Y72 Y] ©)
It is always possible to find a linear combination of the first
s columns of V' (denoted as [f1, f2, ..., fs] = F') such that
Ft;=[0"---1"...0"] " where t; are the coefficients, and
the 1’s on the right hand side correspond to the items in
C;. Because all the columns in V' are orthogonal to each
other, a column is also orthogonal to a linear combination
of some other columns (e.g. F't;). Thus the entries in each
dimension of the vectors {71, ..., alte? |} sum up to 0. In other

T
words, Zk:{l,Q,...,\Cj\}’yk =0, and V(gT)l =5l [B/0"] .
Since all the rows in V' are also orthogonal to each other, we
have (V(;1) " (V{},1') = 0, which implies that 8] 8, = 0.

Proof for Proposition 3:

dea(z;)
By Eq. (6) we know that 3, = 2jer(]) %ﬁfk)/@j (the

residual 7 is zero because the involved an%ho(r ‘i)tems are

non-overlapping). Thus ||8;]]3 = Zjel(z;) @b”ﬂj”% +
y/des(z;)deg(z;/) T

2 irer)) i 2 e P Bir-

. . ’

items are non-overlapping, we have Ejel(z;) deg(z;) = deg(zy,)-

Since the anchor

The above equation can be written as

N A LTS

/12 2
—p
1812 o + deg(7))

4,3" €1(24),5#5"

Following the proof for Proposition 1, it can be shown that

-1
BBy = ————
TG C

.
deg(z;) . deg(z1)
§ Bp E ﬁq)
I !

pEI=1(j) deg(zp) q€I=1(j") deg(z)

(11)

where T7!(j) is the set of non-anchor items that contain a
fraction of an anchor item in cluster C;. Since each 3, is a
linear combination of the 3;’s of the anchor items, and we
know from Proposition 2 that 3; B; ~ 0 for Vj # j’, it is
easy to show that ,B;F,Bj/ < 0. Applying this result to Eq.
(10), it concludes to ||B]l2 < bo.

