Robotic Clusters: Multi-Robot Systems as

Computer Clusters
A topological map merging demonstration

Ali Marjovi *!, Sarvenaz Choobdar #, Lino Marques *3
* Institute of Systems and Robotics, University of Coimbra, Portugal
Department of Computer Science, University of Porto, Portugal

lali@isr.uc.pt,

Abstract—In most multi-robot systems, an individual robot
is not capable to solve computationally hard problems due to
lack of high processing power. This paper introduces the novel
concept of robotic clusters to empower these systems in their
problem solvings. A robotic cluster is a group of individual robots
which are able to share their processing resources, therefore,
the robots can solve difficult problems by using the processing
units of other robots. The concept, requirements, characteristics
and architecture of robotic clusters are explained and then the
problem of ‘“topological map merging” is considered as a case
study to describe the details of the presented idea and to evaluate
its functionality. Additionally, a new parallel algorithm for solving
this problem is developed. The experimental results proved
that the robotic clusters remarkably speedup computations in
multi-robot systems. The proposed mechanism can be used in
many other robotic applications and has potential to increase
the performance of multi-robot systems especially for solving
problems that need high processing resources.

Index Terms—Robotic Cluster, Computer Cluster, Distributed
Robotics, Task Sharing in Multi-Robot Systems, Cluster Com-
puting, High Performance Computing.

I. INTRODUCTION

Multi-robot systems can potentially provide several ad-
vantages over single robot systems, namely higher task ac-
complishment speed, higher accuracy and fault tolerance.
For example, multiple robots can localize themselves more
efficiently [1], fulfill search and exploration missions faster
[2], [3], [4], [5], and generate maps of unknown environments
more accurately [6]. As argued in [7], performance/cost ratio
is the main advantage of multi-robot systems over single-
robot systems. Using heterogeneous robots with a subset of
the capabilities to accomplish a particular task, one can use
simpler robots that are less expensive to engineer than a
single monolithic robot with all of the necessary capabili-
ties. Therefore, multi-robot systems mostly consist of simple
robots that usually have low computational capability due to
cost constraints [8], [9]. However, there are situations where
high computational capabilities are required to solve complex
problems. This paper proposes a novel approach based on
computer cluster concepts to increase the processing efficiency
of each individual robot inside a distributed robotic system.
The general idea is to design a corporation mechanism for high
performance computing in multi-robot systems and solving
complex problems in robotics applications.

2sarvenaz@dcc. fc.up.pt, 3l:Lno@isr.uc.pt

There are two different architectures for multi-robot sys-
tems; centralized and decentralized (also known as distributed)
architectures. In both, higher efficiency in performing the
tasks is achieved by dividing the main task to a set of
subtasks and distributing the subtasks between the individ-
ual robots. In the centralized approaches, a base station is
responsible for distributing the subtasks between the robots
whereas decentralized architectures lack such base station. It
is widely claimed (e.g. in [10], [11], [12]) that decentralized
architectures have several inherent advantages over centralized
architectures, including fault tolerance, reliability, and scalabil-
ity [13]. Moreover, there are hybrid centralized/decentralized
architectures ([14], [15]) wherein there is a central planner that
applies high-level control over robots which have some degree
of autonomy in their task distribution.

In multi-agent systems (MAS), the sub-problems of a con-
straint satisfaction problem are allowed to be subcontracted
to different problem solving agents with their own interests
and goals. Distributing a number of independent subtasks
on a given number of non identical agents is an area that
has attracted much interest in the past years, especially from
operations research [16], [17], [18], artificial intelligence [19],
[20] and also game theory [21]. Distribution and scheduling
of subtasks seeks algorithms that minimize the total time it
takes for all subtasks to be completed. This problem has
been well structured for the job shop related applications
[21]. Moreover, interaction protocols between the agents [22],
planning communicative actions [23], [24], agents’ competi-
tiveness [25], types of negotiations [26], agents’ commitments
[27] and resource managements [28] are among the important
challenges in MAS that are mostly common challenges in
several robotic applications as well. Although much of the
research in non-robotic MAS is relevant to robotics, this paper
studies the processing ability of the individuals in multi-robot
systems that is very different from MAS. Despite the robots
in multi-robot systems that have their individual physical
processing units, the agents in a MAS are usually virtual
identities with a common processing unit. Therefore this paper
focuses exclusively on distributed multi-robot systems.

Parallelism in multi-robot systems in particular is achieved
by similar methodologies defined in MAS [19]. Robots usually
run a distributed algorithm and based on a given criteria, the

tasks are assigned among the robots. In these systems, usually
the individual robots do not have a global view of the problem
and they pick up the subtasks based on different strategies
(e.g., market-based approaches [29], priority approaches [30]
or coalitions [31], [32]). Each one of them solves its local
problem and the emergent result will be the global solution.

Basically, in multi-robot systems, robots share the physical
subtasks in order to increase the efficiency of the team [33],
[34]. None of the studies in this field has ever suggested to
share the processing resources of agents/robots to increase
the processing efficiency of each individual in the system.
However, there are several robotic applications which require
high processing resources for the individual robots in a multi-
robot system, namely “mapping” [35], [36], “robotics vision”
[37], “path planning” [38] and “large-scale signal processing”
[39]. For example, in multi-robot exploration and mapping,
usually robots share their local topological maps and each one
of them merges them to generate a global map of the whole
environment. This problem is computationally hard if the
robots do not share a reference coordinate frame in complex
environments. In fact, topological map merging in this case
is an NP-hard “maximum common subgraph isomorphism”
problem. One of the best solutions for this problem in robotics
with several simplifications and assumptions is an O(n*log(n))
algorithm [6], i.e. if the number of vertexes is several hundred,
most robots are not able to merge two maps in real time.
Considering the fact that robots usually have to merge more
than two maps (based on the number of robots participating
in the mission) and the low processing capability of the usual
robots, this problem poses a tough challenge. There are many
similar applications in this field that require high processing
resources for individual robots.

Most of distributed robotic systems tend to use simple
robots with advanced communication capabilities (e.g. [40]).
Nowadays, small robotic processing boards run Linux and
come with embedded wireless LAN adapters (e.g. Gumstix!).
Utilizing robots’ communication capabilities, we propose a
corporation mechanism based on computer cluster concepts
to facilitate problem solving in multi-robot systems.

A computer cluster is a type of distributed computer sys-
tem which consists of a collection of networked computers
working together as a single integrated computing resource
[41]. The components of a cluster are commonly connected
to each other through a local area network. Each individual
computer called node contains one or more processors, RAM,
hard disk and LAN card. Clusters are usually deployed to
improve performance and availability, while typically being
much more cost-efficient than single computers of compa-
rable speed or availability. The advantage of clusters over
other traditional platforms were proved by several academic
projects such as Beowulf?, Berkeley NOW [42], NetSolve
[43] and HPVM?. These advantages include low-entry costs

Thttp://www.gumstix.net
Zhttp://www.beowulf.org/
3http://www-csag.ucsd.edu/projects/hpvm.html

to access supercomputing-level performance, an incrementally
upgradeable system, an open source development platform,
and not being locked into particular vendor products. Nowa-
days, clusters have conquered not only the traditional science
and engineering marketplaces for research and development,
but also marketplaces of commerce and industry due to the
overwhelming price/performance advantage of this type of
platform over other ones.

The main contribution of this paper is to propose computer
cluster concepts for multi-robot systems. The robots are able
to establish a computer cluster and share their processing
resources (brains) in solving complex problems when needed.
To the best of the authors’ knowledge, none of the previously
designed multi-robot systems in robotics community has ever
used the computer cluster concepts in order to increase the
robots’ processing capability. Additionally, this paper provides
a novel parallel solution for the problem of topological map
merging based on the proposed method. A state of the art of
topological map merging is provided in section IV.

The term “robotic cluster” has been used in the context
of robotics with different meanings. Several researchers have
used cluster computers to process the data provided by a robot
(mostly in image processing) such as [44]. However, this is
very different from the presented concept in this paper. In
the current study the robots do not use a computer cluster
but they share their own processing resources to establish a
computer cluster and solve a problem. Other researchers have
used this term in modular robotics field, where robots join
together and physically establish a cluster. In these studies
“cluster” is defined as group of robots that physically attach to
each other and generate a bigger structure (e.g. [45] and [46]).
In a few works this term is used for the robots which actually
do “clustering” tasks and literally means robots which classify
and distinguish physical items [47]. Finally, “robotic cluster”
in some cases is used to refer to a community of researchers
who work on robotics. This paper represents a new definition
for “robotic clusters”.

Section II presents a definition for robotic clusters and
describes their characteristics and requirements and clarifies
their differences with computer clusters. Section III presents
a real implementation of robotic clusters. Afterwards, an
efficient parallel solution to solve the problem of topological
map merging (as a case study) is presented in section IV and
the results obtained by a real cluster are presented. Finally, a
discussion and conclusion is written in sections V.

II. ROBOTIC CLUSTERS

In this system, each robot is a computation node of a
computer cluster in order to empower multi-robot systems in
solving computationally hard problems. Computer clusters are
typically independent computers connected via a single local
area network (LAN). Robots can also establish a computer
cluster through wireless networks to form a robotic cluster. We
propose the following definition for a robotic cluster and then
explain its characteristics, requirements and implementations
in details.

Shared Processing Resources

Sensors and
Actuators

Fig. 1.

Concept of robotic clusters

Definition 1. A robotic cluster is a group of individual
robots which are able to share their processing resources
among the group in order to quickly solve computationally
hard problems.

In a robotic cluster, the processing resources can be shared
by applying computer clustering approaches. In these systems,
each node is still able to run its own tasks independently,
moreover, the CPUs of these robots are shared in the cluster.
Therefore, when a robot sends some processing jobs to the
others, the robots simultaneously run their own tasks and also
the shared requested job. Fig. 4 demonstrates the concept of a
robotic cluster which consists of multiple heterogeneous robots
connected through a wireless network.

Applications of robotic clusters are tasks that demand

« extreme processing resources, and
« relatively cheap designs.

Processing high amount of data or mapping a large and
complex environment with multiple simple robots are two
examples of these applications. Processing and cost, both, are
hard constraints that emphasize simplicity of the individual
robots, and thus motivate a cluster approach to solve compu-
tationally hard problems. Excessive research is needed to find
methodologies that allow designing and implementing robotic
clusters to address several challenges in robotics research. This
section goes to the details of this concept.

A. Characteristics of robotic clusters

Robotic clusters benefit from a number of advantages of-
fered by concepts of computer clusters, including:

L. Processing Power: Each robot in a cluster is potentially
able to use the processors of other robots. Most of the previous
experiments with real robots show that the robots usually
perform simple tasks (e.g. data logging and navigation) that do
not require high processing power, but in some situations they
need to process a huge amount of data (e.g. when a robot needs
to process sensory data or finds itself in a different situation or
needs to make a hard decision). Therefore in a group of robots,
most of the robots usually perform simple tasks and only few
robots need high processing resources. Using the clustering
concepts the robots which need processing power will be able
to use the processing units of the other robots. This idea can be
more developed such that there can exist some special robots

that do not participate directly in robotic mission but help the
other robots with sharing their processing power.

II. Reduced Cost: The price of off-the-shelf simple com-
puters or small laptops has decreased in recent years. These
simple computers can be used as the processing unit of each
individual robot and as a cluster they provide high processing
capacity. Generally, in comparison with single robots systems,
the parallel processing power of a robotic cluster is, in many
cases, more cost efficient than a single robot with the same
processing capability.

III. Scalability: One of the greatest advantages of robotic
clusters is the scalability that they offer. While complex single
robots with high processing resources have a fixed processing
capacity, robotic clusters are easily expandable by adding
additional nodes to the system when conditions change.

IV. Availability: When a single supper robot fails, the entire
mission fails. However, if a robot in a robotic cluster fails, its
operations can be simply transferred to another robot within
the cluster, ensuring that there is no interruption in the service.

B. Required equipments for robotic clusters

For implementing a robotic cluster, there is no need of
extra hardware rather than a wireless network and some
robots equipped with simple computers. Most of the recently
developed robots are already equipped with small computers
running an operating systems capable of clustering. Only
some software packages (named middleware) and applications
should be installed on the robots to form a robotic cluster. This
paper will describe the details of these packages in section II-D
and III.

C. Programming

Programming for robotic clusters is different from other
types of robotic programming. Programs should be written us-
ing parallel programming approaches. The programmer should
consider the following questions:

o Which parts of the code should be run simultaneously in
more than one robot and which parts should be run only
on one robot?

« Which message passing protocol is better for a specific
application?

o Which variables should be local in a robot and which
variables should be global to all robots?

o How and when should the robots communicate?

o How should the local results of individual robots be
aggregated to find the global result?

The answers of these questions depend on the cluster’s archi-
tecture and the robotic application. For example, programming
on a cluster with shared memory for the whole system is
very different from a cluster that does not have any shared
memory. Since in many robotic systems, the robots are struc-
turally independent, the programmer should not use any shared
memory approach and should try to minimize the number of
messages to be sent and received. Based on the application, the
programmer should design an algorithm and address the men-
tioned questions. Section IV particularly provides an example

and presents a parallel algorithm for a robotic application.
Generally speaking, most of the parallel programs are written
in C language using message passing protocols provided by
clustering middleware for communication between the nodes.
Section II-D presents details of these protocols.

D. Middleware

In a robotic cluster (similar to a computer cluster), the
activities of the computing nodes (robots) are orchestrated by
“clustering middleware”, a software layer that allows the users
or applications to treat the cluster as one cohesive computing
unit, e.g. via a single system image (SSI) concept [48].
Middleware actually resides between the operating system and
the user applications. It glues hardware resources by message
passing, moving processes across machines, monitoring and
synchronizing work of nodes [49]. Resource management,
advanced task scheduling, workload management, communi-
cations, tools for cluster management, and providing cluster
building kits are the most important issues in clustering that
middleware standards provide solutions for them.

There are many different implemented standards for the
middleware in computer clusters. Among these standards,
three of them are well accepted by the community; Open
Multi-Processing (OpenMP) [50], Parallel Virtual Machine
(PVM) [51], and Message Passing Interface (MPI) [52].
OpenMP can only be run in shared memory computers,
being not appropriate for robotic clusters. In contrast, PVM
is a distributed operating system that forms a framework for
building a single high performance parallel virtual machine
from a collection of interconnected heterogeneous computers
[51]. Since PVM combines the nodes and generates a unique
virtual machine, it is not very appropriate for the distributed
robotic systems that need to be individually independent. MPI
software are widely accepted standards for communication
among nodes that run a parallel program on a distributed-
memory system. MPI defines an interface for a set of functions
and libraries that can be used to pass messages between pro-
cesses on the same computer or on different computers. MPI
libraries offer easy ways of parallel programming techniques
for memory distributed systems (as well as shared memory
systems). Using these libraries, programmers can define which
parts of the code run on the cluster and which parts on local
node. Moreover, the programmer can declare which variables
are globally passed to the other nodes of the robotic cluster
and which variables are local. Therefore, MPI standard is the
most appropriate protocol for robotic clusters and provides all
of their necessary requirements. Section III presents the exact
MPI middleware that is used in this study.

E. Load distribution

Load distribution is the action of partitioning the total
task to several subtasks which can be assigned to different
processing robots to be run in parallel. When these subtasks
are assigned to the nodes (robots), they are called load. Load
distribution is a very important problem specially when the
robots are heterogeneous and the application is unbalanced.

Robots submit jobs to the cluster at random times. When
application is well balanced (similar to the case study of this
paper in section IV), pure MPI programs usually result in
good application performance [53]. The problem appears when
application has internal unbalance load. If the load unbalance
is static, analyzing the application and performing the dis-
tribution accordingly can solve the problem [54]. However,
if load unbalance is dynamic, more complex methodologies
should be used to increase the efficiency of the system.
Several researchers have addressed the problem of dynamic
load balancing in computer clusters. In [53] the proposed
system dynamically measures the percentage of computational
load from the different MPI processes and, according to
that, it redistributes processes among them. Bhandarkar et al.
[55] presented an implementation of Adaptive MPI (AMPI)
that supports dynamic load balancing for MPI applications.
Utrera et al. [56] proposed a mechanism, the Load Balancing
Detector (LDB), to classify applications dynamically, without
any previous knowledge, depending on their balance degree
and apply the appropriate process queue type to each job.
Erciyes and Payli [57] developed a framework and a protocol
to perform dynamic load balancing in grids of heterogeneous
computational resources. Zhu et al. [58] presented a study on
dynamic load balancing based on MPICH* libraries.

In general, there are two key parameters for dynamic load

balancing in a robotic cluster:

1) the middleware of a cluster that should provide required
message passing protocols so that the robots will be able
to know and estimate the other robots processing status,

2) a robotic algorithm that has to be able to dynamically
partition the total task to produce fine granulated sub-
tasks which can be efficiently distributed between the
robots.

Since the first parameter is available in any robotic cluster, it
is the duty of the programmer to address the latter issue in the
design of the robotic algorithms. In robotic clusters (similar to
computer clusters), depending on the specific application, the
system designer should choose a dynamic/static load balancing
method. Section IV-B1 goes to the details of a real example
of load distribution in a real robotic cluster application.

F. Communication

Communication is a fundamental key in clustering. For the
physical layer of communication of a robotic cluster, any
standard wireless architecture can be used. However, in most
wireless LAN architectures, routers play a significant role in
the distribution of the robots in the space. To get into the
cluster, robots should physically approach to a router. On
the other hand, using an ad-hoc architecture (e.g. OLSR or
BATMANG®) that the robots connect to each other and establish
a network wirelessly and automatically without using a router,
the relative spatial topology of the robots is an important point

“http://www.mes.anl.gov/research/projects/mpi/mpich1
Swww.olsr.org
Shttp://www.open-mesh.org

Fig. 2. Dynamic mobile robotic clusters. The robots have established 2
networks and 3 computing clusters. A: Coverage area of a wireless ad-hoc
network established between six robots. B: The coverage area of the second
network. C: Three robots inside network A have generated a cluster to share
their processing resources. D: Two robots in network B have established a
cluster. E: Two robots in network A have established another cluster. F: a
robot that is not inside any network or cluster.

in the performance and functionality of the cluster. In case of
existence of routers, the wireless routers can be carried by
the robots, thus the network zone changes while the robots
which carry the routers (called router robots) move. Fig .2
illustrates this characteristic of robotic clusters. The position of
the router robots relative to the other robots leads to different
configurations for the robotic cluster. This issue arises several
questions that need to be answered in this field:

« How should the group of robots move in the environment
in order to get more advantages from the clustering?

« What are the differences in behaviors of the router robots
and the other robots?

« How far can a robot get from the mobile routers in
different conditions?

« What should be the spatial formation of the router robots
considering the position of the other robots and the
environment to keep the cluster established?

« Given a fixed configuration, which robots should establish
a cluster to increase the efficiency of the group?

Similar questions hold in the case of an ad-hoc robotic cluster
where there is no router. It is obvious that these questions do
not have unique answers in different applications/conditions
and should be studied by the community in any application
that this concept will be used.

Despite most of the works in computer clusters that start
with the assumption of perfect communication, namely no
delay and unlimited bandwidth [59], robotic clusters consist of
loosely coupled distributed robots that simultaneously execute
multiple tasks and imply different and unpredicted delays
in cluster parallel processing. There are several works on
studying [60], [61], modeling [59], and dealing with the com-

Parallel Applications I_IJ

I
I
| Sequential Applications LIJ

I Parallel Programming Environment I

| Cluster Middleware |

PC/workstation |[PC/workstation| |PC/workstation| |PC/workstation|

Comm. SW | | Comm. SW | | Comm. SW | | Comm. SW

Network
Interface
Hardware

Network
Interface
Hardware

Network
Interface
Hardware

Network
Interface
Hardware

Network (LAN, WLAN, High Speed Lan, etc.)

Fig. 3. Computer cluster architecture

munication issues (namely latency, overhead and bandwidth)
in parallel processing with computer clusters that can be
adapted to robotic clusters as well.

The impact of communication overhead on the system
performance is highly dependent on the application [60].
In a robotic cluster, communication occurs when a robot
dispatches a task to the robots in the cluster and the robots
return computed results. Performance degradation occurs when
communication overhead is relatively large compared with
execution time of a single task. Therefore, the robotic cluster
concept is more useful in the applications that the amount
of data that should be exchanged between the robots is low
while the required processing is huge; thus the impact of
communication overhead on performance is insignificant.

Due to dynamic distribution of the robots in the environment
and their loose communication connection, one of the main
problems in a robotic cluster is how to deal with commu-
nication failures. Cluster’s middleware provides libraries and
functions that a user or an application can check and find the
available working nodes in the cluster. The middleware layers
in different nodes send and receive especial messages to each
other and they are always aware of the others nodes’ status.
On the other hand, the algorithms in robotic clusters should
consider this problem. The algorithm should be designed such
that if one or more nodes in the cluster fail or lose the
communication connection before or after load distribution,
the system still be able to manage the situation and solve
the problem. Section IV-B1 presents this issue in a particular
application in details.

G. Dynamic architecture

Despite computer clusters that their hardware structure is
either fixed or changed by a human administrator, in robotic
clusters the hardware structure of the system dynamically
changes while the robots spatially move in the environment.
The robots eventually (and sometimes intentionally) get in, or
get out of, the network range, making the hardware structure
of the cluster very dynamic. This is one of the most significant

obot 1
Parallel Programming
Environment

Cluster Middleware

Robot's
Processing
Unit

Network
Interface
Hardware

Sequential |I
Applications)

Fig. 4. Robotic cluster architecture

differences between a computer cluster and a robotic cluster.

A typical architecture of a computer cluster is shown in
Fig. 3. The key components of a cluster include multiple
standalone computers, operating systems, a high performance
interconnection, communication software, middleware, and
applications. Fig. 4 illustrates the architecture of a robotic
cluster. In this architecture, each robot is an independent stand-
alone node that has minimum requirements and is free to join
to a cluster or disconnect from the cluster.

To establish robotic clusters, the robots should automatically
decide to connect or to disconnect from the neighboring
robots. This issue raises the questions of when and how the
robots can make these decisions. The answer to these questions
depends on many parameters including:

« The robotic application: Not all the robotic problems that
need high processing resources can take advantage of
clustering; in some applications the nature of the problem
is sequential and it cannot be divided to smaller sub-
problems to be solved by multiple processing nodes.
This issue has been already studied deeply in parallel
programming literature [62].

o The amount of required and available processing re-
sources: The robots which lack processing resources
(called requesters) or have extra processing resources
(called providers), should join together to establish a
cluster and help each other. The role of the robots as
being requesters or providers can dynamically change in
a robotic cluster.

o The overhead of the clustering and the speed of the
network: The robots which request for using processing
resources of the cluster should measure the overhead of
clustering for that special task before sending the request.

(G)

Evaluate
state of cluster
and calculate the
overhead of splitting
the task

Evaluate
availability of my
processing resources,

Provide
slave
processing

N = Get number

Do the task
sequentially
of available robots

Split the job to N tasks
Send the tasks to other robots

(A). Extra processing required.

(B). It is "worth" to split the job.

(C). It is not "worth™ to split the job.

(D). Request received from other robots.

(E). | have extra processing resources.

(F). | do not have extra processing resources,|
(G). Done

\Wait until getting all the results
from other robots

Merge the results

Fig. 5. Clustering and task distribution for individual robots.

The overhead of clustering depends on many parameters
including network’s speed, the amount of data that needs
to be exchanged between the robots, the speed of slowest
node of the cluster and the level of parallelism of the
robotic application.

Fig. 5 presents a state diagram that individual robots in
a robotic cluster follow in their decision makings. In this
diagram, the robots which do not need and have extra process-
ing resources broadcast a message of “I am available” to the
neighboring robots. On the other hand, the robots which lack
processing resources, measure the current available processing
resources in the cluster and the overhead of using the network
and check if it is worth to split the task or not. We define the
following conditions as the meaning of being “worth”:

Tp + Toverhead < Tveq (1)

Where, T), is the estimated time that it takes for the nodes of
the cluster to finish processing their share of task. T, is mostly
relative to the time that the computationally slowest robot of
the cluster takes to process its subtask. Ty, is the estimated
time that it takes for the robot to sequentially process its own
task. T,yerneaq 18 defined by following formula:

Toverhead = Tsplit + Teomm + TAgg 2

Tspiiz is the estimated required time for splitting the task, Teomm
is the estimated communications time and 7., is the time
required for aggregating the distributed results and provide
the final result of the process.

If condition (1) holds, the robot splits its task into N
subtasks and sends requests to the available robots to process
the subtasks. N is the number of current available providers
in the cluster. The robot waits until getting all results from
the other robots and then it merges the results. On the other
hand, if condition (1) does not hold, the robot performs the
task sequentially on its own processor.

H. Spatial distribution

In spite of computer clusters, in robotic clusters, nodes are
distributed in the space and they are able to interact with the

Fig. 6. Spatial distribution of robotic clusters, a conceptual picture.

environment by their sensors and actuators. In some robotic
applications this point may provide several profits/interests.
For instance, environmental features detection/extraction, that
is one of the main challenges in many robotics applications
namely search, exploration, patrolling, coverage, mapping,
etc, can benefit from this characteristic of robotic clusters.
Fig. 6 illustrates several robots that are distributed in the area
and extract the environmental features using the clustering
concept. The robots can sense the environment from different
points of view and share their acquired data with each other
through the cluster. By running a parallel algorithm in this
cluster the robots can cooperatively process the shared data
and extract/detect the feature. Therefore, in addition to higher
processing capabilities, the spatial distribution of the robotic
clusters might be a beneficial point in some applications. These
concepts need to be more studied by the community in future.

Most of the above mentioned issues related to the robotic
clusters are dependent on the application. To present the
details of this concept and to evaluate its performance, a case
study is demonstrated in section IV as an example of robotic
applications.

III. IMPLEMENTATION OF A ROBOTIC CLUSTER

We have designed and implemented a robotic cluster using
modified iRobot Roomba’ robots. The iRobot Roomba robot
is an attractive platform because it is inexpensive, readily
available and can be fully monitored and commanded through
a serial port interface. In this work, a set of eight Roomba
robots were upgraded with small laptop computers (ASUS
Eee PC 901 and ASUS Eee PC 1015PEM) running Ubuntu®
operating system and the Player” environment to control the
robots. Fig. 7 shows the implemented robotic cluster.

After configuring some necessary parameters (e.g. IP ad-
dresses) on the robots, an MPI software is needed to be
installed. MPI is actually a library of routines that can be

"http://www.irobot.com
Shttp://www.ubuntu.com
“http://playerstage.sourceforge.net

Fig. 7.

Implemented robotic cluster

called usually from Fortran or C programs. There are a large
number of implementations of MPI, two open source versions
are LAM!? and MPICH. LAM is an effective way for fast
client-to-client communication and is portable to all Unix-
based machines. MPICH is another freely available, portable
implementation of MPI, a standard for message passing for
distributed memory applications used in parallel computing,
available for most flavors of Unix and other operating systems.

We installed MPICH libraries because it provides more
programming facilities on Ubuntu and its installation is straight
forward. After installing LAM or MPICH or a similar MPI
library, the cluster is established, it is only needed to write
and compile parallel programs on the robots. Compiling MPI
programs can be done with several compilers, e.g. mpic++,
with extended MPI libraries.

IV. CASE STUDY: MAP MERGING IN A ROBOTIC CLUSTER

As stated in section II, the concept of robotic clusters is
useful when the robots need high processing capability in
short periods of their operations. There are many robotics
problems with these characteristics. One of these problems
is “topological map merging”. This section goes to the details
of this problem and provides a solution based on the robotic
clusters.

10http://www.lam-mpi.org

=TI
p %: \lﬂ O
“plOED =
Dﬁ =
pe ¢
Fig. 8. An environment being explored by two robots with different

coordinate systems (left). Matching generated maps of two robots exploring
the environment (right).

Mapping with multiple robots has received much attention
in the recent years due to its variety of applications such as
planning. Consider several robots navigating in an environment
and each one has its own coordinate system. Their X and Y
axes do not match with each other and even they do not know
where the reference point of the other’s localization system is.
Each robot is generating its own topological map of visited
local area. Topological maps provide a brief characterization
of the navigability of a structured environment, and, with
measurements collected during exploration, the vertexes of the
map can be embedded in a metric space [6]. These maps use
a graph to represent possibilities for navigation through an
environment and need less memory than their metric counter-
parts. The robots repeatedly send these local self generated
topological maps to each other. The submaps generated by
individual robots contain translation and orientation errors.
The problem is how each one of them can integrate the data
coming from the others to its local map and generate a more
complete map. Fig. 8 shows an example of this problem.

While most research on multi-robot mapping has addressed
the problem by creation of occupancy grid maps ([63], [64],
[65]), some research has been done on feature based or
topological maps ([3], [8], [66], [67], [68]). Jennings et al.
[69] used individual robots to create topological partial maps,
and then used a simple distance metric to merge the maps
considering a global reference frame for all robots. Dudek
et al. [70] created maps of a graph-like world under the
assumption that all robots start from the same point in the
graph. Konolige et al. [71] analyzed and showed the efficiency
of taking a feature-based approach to merging instead of
attempting to match occupancy data.

Most of the works in multi-robot mapping assume that all
robots in the system have a common reference frame, an
assumption not made in this paper. A few notable exceptions
tackle the problem without a common reference frame. Ko
et al. [65] presented a method in which robots exchange
occupancy maps and localize themselves in each others maps
using particle filters. Dedeoglu and Sukhatme [66] proposed a
different approach for merging landmark-based maps without
a common reference frame. They used heuristics to estimate a
transformation between two maps using a single-vertex match
found and paired other vertexes that are approximately close

to each other under this transformation. The work most related
to ours is that of Huang and Beevers [6] who have presented
a method that creates vertex and edge pairings using the
structure of the maps and then estimates a transformation using
this match. By comparing the map structure, mismatches can
be discard earlier in the algorithm, and the transformations
can be computed using multiple-vertex matches instead of
single-vertex matches. In our previous experiments in [8],
it was assumed that although there is no common reference
frame, the robots start the mission from the same initial node.
This assumption made it easier to solve the problem of map
merging with multiple robots. Here we do not make any of
these assumptions and present an approach for this problem
considering no common reference frame and no common
initial node. Moreover we develop a novel parallel algorithm
for this problem to run in robotic clusters using parallel
programming approaches.!!

Usually, in exploration and mapping scenarios the robots
navigate in the environment and whenever they get into a new
environmental feature they send the data of the updated map to
the other robots. In certain conditions each robot will integrate
its own achieved local maps with the other robot’s maps. This
task is computationally intensive since it requires an exhaustive
search of data. In this case the robot needs a high processing
resource to analyze the maps and merge them together.

A. Sequential solution

Algorithm 1, Merge_seq, works on two given maps M| =
[V,E,ki] (where V is the set of vertexes V; , E is the set
of edges e; and k| (called size) is the number of edges of
the map) and M, = [W,F,k;] and finds the largest common
connected subgraph between these two and calculates the best
transformation function that maps M; on M,. This transforma-
tion function matches the coordinate reference frames of the
two maps. Therefore, the final merged map is derived by over-
lapping only the vertexes’ positions using the transformation
function.

This paper defines the stated terms in the algorithms as
following:

o “V_equiv(v,w,F)”: checks if vertexes v and w are equiv-
alent. Two vertexes are equivalent if their environmental
features match with each other and their positions can be
approximately matched by function F'.

o “E_equiv(e;, f;)”: Two edges ¢; and f; are equivalent if
their lengths are approximately equal, i.e.

Length(f;) — Ar < Length(e;) < Length(f;)+Ar

and their connecting vertexes are equivalent. Ay is a
distance threshold that should be defined based on the
model of robots’ localization error.

o “Transform_func(V;,W;,Vi,W;)”: calculates a transforma-
tion function that maps vertex V; on W; and vertex Vj on
W;. Having the positions of two vertexes in map M; and
two vertexes in map M,, with a geometric calculation

"The source code of all of the presented algorithms (serial and parallel)
is available online in http://www.isr.uc.pt/~ali/mapmerging

Algorithm 1: Merge_seq(M;,M>,MAP)

Algorithm 2: Com_subgraph(M;,M,,F,IG1,1G2,size)

1 inputs

2 M) = [V,E,kl}

3 M, = [W7 F7k2]

4 Output: A map that is the result of merging M; and M,

5 begin

6 LIST = Null

7 for i =1;i <ky;i++ do

8 for j=1;j<ky;j++ do

9 if E_equiv(e;, f;) then

10 (11M1,12M1) = Index Adj(e,'))

11 (I,Ma, M) = Index (Adj(f)))

12 F = TraIlSfOI‘Il’l_fl]l’lC(V]lM1 .,"V]le s V]le ,W[zMz)
13 L_equ_v = Null

14 S = Com_subgraph(M,M,,F,I;M,,1;M;,0)
15 if S > 0 then

16 | add [F,S,L_equ_v] to LIST

17 F = Transform_func(V,m, , Wrymy s Viymy s Wiy)
18 L_equ_v = Null

19 S = Com_subgraph(Ml ,/‘/[27 F, LM, 711/142,0)
20 if S > 0 then
21 | add [F,S,L_equ_v] to LIST

22 I = the index of largest S saved in LIST
23 if / == Null then

24 | return(Null)
25 F; = Transformation function saved in LIST (I)
26 L_equ_V; = List of equivalent vertexes saved in LIST (I)

27 Mlmapped = FI<M1)

28 MAP = Save_overlap(M1,,4pped, M2, L_equ_Vr)
29 return(MAP)

30 end

Fig. 9.
merging maps (right).

Two maps with different coordinate systems (left). The result of

a transformation function can be simply extracted that
contains translation and rotation parameters.

o “Adj(e;)”: Returns the two vertexes of edge e;.

« “Index(Adj(e;))”: Returns the indexes of two vertexes
connected to edge e;.

e “Link(Vig1,M,F,N)”: Finds the Nth connected vertex to
Vigi in map M, considering the rotation parameter in
function F.

¢ “Max Node Deg” is the maximum degree of vertexes in
the maps, i.e. the maximum number of edges connected
to a vertex.

Algorithm Merge_seq compares all the edges in M| and M,
one by one. Once an edge e; in M is found equivalent of an
edge f; in M3, a transformation function F will be calculated
that maps e; on f;. Then the algorithm 2, Com_subgraph, finds
the largest common connected subgraph between the two maps
starting from the edge e; and f; to check the compatibility of
the vertexes based on the transformation function F. Since

1 inputs:

2 M :[V7E,k1],M2:[W,F,k2]

3 F = The transformation function that maps M; on M,

4 IG1 = the index of the current under process vertex of M
5 1G2 = the index of the current under process vertex of M»
6 size = the current size of common subgraph
7 Output: Size of the largest common subgraph
8

begin
9 if /(V_equiv(Vig1,Wig2.F) then
10 | return 0
11 if [1G1,1G2] ¢ L_equ_v then
12 L_equ_v =L_equ_v U {[/IG1,IG2]}
13 size ++
14 for N = I; N < Max Node Deg ; N++ do
15 IG1 = Link(Vig1,M;,F,N)
16 IGZILink(VV[(;Q,Mz,l,N)
17 if 3 VlGl & 3 WIGZ then
18 | size = Com_subgraph(My, My, F,IG1,1G2,size)
19 if size == 0 then
20 | return 0
21 return(size)
22 end

each edge has two vertexes, for every common edge, the
algorithm 2 is applied two times; once assuming that the first
vertex of e; is matched with the first vertex of f; and once
assuming the second vertex of e; is matched with the first
vertex of f;.

Com_subgraph is a recursive algorithm that creates lists
of corresponding vertexes between the two maps (each list
is called a hypothesis) by locally expanding single vertex
matches. It starts with the starting vertexes, compares them,
and if they are compatible it finds the next connected vertex
to these vertexes and runs the algorithm with the new found
vertexes. If the algorithm finds any conflict (mismatch), it
returns zero indicating that matching e; and f; using function
F will lead to a conflict in the rest of map edges and this match
should be ignored. Otherwise, if there were no mismatch
during the process of Com_subgraph algorithm, it saves the
list of compatible vertexes in L_equ_v and returns the number
of the found common connected subgraph (one hypothesis).
Algorithm Merge_seq saves the data (size, matched vertexes
and the transformation function) of the generates hypothesis
in LIST and then processes the next edges in M; and M,.
Finally, the LIST will contain all common subgraphs that can
be generated between M| and M, with different transformation
functions. Algorithm Merge_seq finds the biggest hypothesis
in the LIST and generates M1,,4,p.q based on its transfor-
mation function. Eventually, M1,,,,p.¢ and M, have common
coordinate reference frames and we have the list of matched
vertexes between these two, merging these two maps can be
easily done by overlapping them on each other and generate
a new map.

Table I shows how the algorithm Merge_seq and
Com_subgraph work on two example maps of Fig. 9.(left).
Starting from e; and fj, equivalent edges are (e; — f1),
(e2 — f1), (ea — f2), etc. These edges are listed in the first

TABLE I
LIST OF SIMILAR EDGES AND PROCESSED VERTEXES IN ALGORITHMS 1
AND 2 FOR THE MAPS SHOWN IN FIG. 9.(LEFT). MISMATCHES ARE
COLORED RED IN THIS TABLE.

Edges [Processed vertexes |[Edges | Processed vertexes

el —fa | ViWy es—fr | VaWp, VoW

er—fa | ViWs, VaWy, V3Wy es—fr | VaWs, VaW,, VsWi, VoW,
er—fi | Vil es—f1 | VaWo,VsWi, V3W3, VoW,
ea—fi | VaW es—f1 | VuW,

ea—fr | Vol es—fo | VaWa,VsW3

ea—f | VaWa,VuWy es—fr | VaWsVsWh

er—fi | VoW es—fi3 | VaWs,VsWy

ea—f3 | VaWa,VaWo, VsW oWy || ea—f53 | VuWy

ea—fs | oW es—f5 | VuWi

ea—fs | VaW es—fs | VaW,

e3—fi | VsW es—f1 | VsW,

es—f1 | VaWp,VuWy es—fa | VsWs

column of table 1. Algorithm Com_subgraph compares the
vertexes of the two maps, starting from the ones that are
connected to the equivalent edges, that generates hypotheses.
The second column of table I has listed the vertexes that are
compared for each pair of edges. The mismatches are colored
red. For instance, processing equivalent edges (e; — f1), al-
gorithm Com_subgraph considers the first hypothesis which
includes V;,Ws. Since V; is of degree one and W, is of degree
four, they do not match, so the algorithm does not continue
processing this hypothesis and returns zero (V;Ws is colored
red in the table to indicate the mismatch). Processing current
equivalent edges (e; — f), the algorithm takes next hypothesis
into account which starts with V; ,Ws. These vertexes (V| and
Ws) are compatible so the next vertexes V, and Wj will
be compared. Since these two are also compatible the next
vertexes V3 and W) are compared that are incompatible (so
we have ViWs, V,Ws,V3W) in the table). Finally algorithm 1
will have the list of all hypotheses saved in LIST. For the
mentioned example above, LIST contains three hypotheses
because only those which do not lead to any mismatch are
saved in LIST. These hypotheses are colored blue in table I.
Based on the biggest found hypothesis (or one of the biggest
ones), algorithm Merge_seq will map the M; with the associ-
ated transformation function to that hypothesis, this action will
overlap M; on M, (Fig. 9.(right) shows this overlap). Finally
the complete map is driven by overlapping matched submaps.

B. Parallel solution

We provide a parallel solution for the topological map
merging problem using message passing interface (MPI) stan-
dard. This is the first parallel implementation of topological
map merging problem. Algorithm 3 demonstrates the pseudo-
code of the proposed algorithm for parallel topological map
merging. The parallel part of this algorithm, lines 8 to 30, is
run on multiple robots of the cluster and the rest of the code
is run serially only on the robot which has initially started the
program.

1) Load distribution: Following the flowchart in Fig. 5 each
robot individually makes its decision to connect or to establish
a cluster or exit from it. When a robot needs to distribute a

Algorithm 3: Merge_parallel(M; ,M, ,MAP), MPI solution

1 inputs:
2 M) = [V7E ,kl]
3 My = [W, F, kz]
4 Output: A map that is the result of merging M; and M,
5 begin
6 MPIL_Init(...)
7 MPI_Barrier(MPI_COMM_WORLD)
8 begin
9 MPI_comm_rank (MPI_COMM_WORLD, &id)
10 MPI_comm_size (MPI_COMM_WORLD, &p)
11 Low_value = (id — 1) x ki /p+1
12 High_value = (id) x k| p
13 LIST = Null
14 for i = Low_value;i < High_value;i+ + do
15 for j=1;j<ky;j++ do
16 if E_equiv(e;, f;) then
17 (hMy,LM;) = Index (Adj(ey))
18 (LM, bM,) = Index (Adj(f)))
19 F = Transform_func(Vy, i, , W my s Viomy s Wiy)
20 L_equ_v = Null
21 S = Com_subgraph(M;,M,,F,1;M;,1;M>,0)
22 if S > 0 then
23 L add [F,S,L_equ_v] to LIST
24 F = Transform_func(Vy,p, , W my Vi, My, Wiy
25 L_equ_v = Null
26 S = Com_subgraph(M,M,,F,L,M;,I;M;,0)
27 if S > 0 then
28 L add [F,S,L_equ_v] to LIST
29 end
30 MPI_Bcast (&LIST, ...
31 if id == S;; then
32 MPI_Reduce (&LIST,...)
33 if \MPI_SUCCESS then
34 | return(MPI_ERROR)
35 I = the index of largest S saved in LIST
36 if / == -1 then
37 | return(NULL)
38 F; = Transformation function saved in LIST(I)
39 L_equ_V; = List of equivalent vertexes saved in LIST(I)
40 Mlmapped = FI(MI)
41 MAP = Save_overlap(M 1,5qpped, M2, L_equ_Vr)
42 return(MAP)
43 end

task between the other robots in the cluster, it first should
know how many robots have joined to the cluster and then
distribute the load between them. Section II-E mentioned the
two key parameters of load balancing in robotic clusters i.e.
middleware and parallel algorithms.

In terms of middleware, using the MPICH environment,
the robots can use “mpd” commands (e.g., “mpdboot”,
“mpdallexit”, etc.) to establish, connect to or exit from a
cluster. Moreover, each robot is also able to find the number
of available processing units in the robotic cluster by using
the command “mpdtrace” or the function MPI_comm_size.
For running a parallel program, the robots only need to run
the command “mpirun —np N APP”, where N indicates the
number of robots that the program should be run on, and
“APP” is the name of parallel program that should be executed
(i.e. algorithm Merge_parallel in this case). A robot always
can use the middleware libraries and commands to find the

available working nodes and run the program exclusively on
them.

In terms of parallel algorithm, the algorithm 3 dynamically
distributes the load between the available robots in the cluster
in real time. Algorithm 3 first finds the number of available
operational nodes in the cluster (by MPI_comm_size in line
10) and then it distributes the load between them. Therefore,
if one or more nodes in the cluster have failed or have lost
the communication connection, algorithm 3 distributes the
load only between the operational nodes. However, if after
distributing the load, one of the robots fails (or loses the
connection), the robot which has initially distributed the task
will get a timeout (i.e. an MPI error message) instead of
the results. The algorithm returns the error (lines 33 and 34
of algorithm 3) and this robot has to start over running the
algorithm, so that it will distribute the load between the current
available robots again.

The main source of potential parallelism in this application
is data decomposition i.e. dividing problem search space
between the robots. To automatically divide the search space
between the robots (without having a central base station),
this algorithm uses the robots’ IDs as unique indicators. In
algorithm 3 all of the processing nodes (robots) have complete
data of two maps of M; and M, and each robot finds the
biggest common subgraphs between the two maps that starts
in its share of data. Each robot should work on a block
(that is a division of whole search space) specified by two
variables named Low_value and High_value. Low_value; and
High_value; are computed in robot i based on the following
formulas:

k
Low_value; = (id; — 1) x AL 3)
p
) . ky
High_value; = (id;) x —)
p

where id; denotes the ID of robot i in the cluster, p is the total
number of nodes and k; is the size of map M. To explain these
formulas, we provide an example; imagine the map size k; is
1000 and the current number of available robots p is 5. Based
on (3) and (4), for the robot whose id is 1, Low_value; and
High_value; are respectively 1 and 200, and for the robot
with id = 2, Low_value, is 201 and High_value, is 400.
Thus, Robot 1 works on interval [1,200], robot 2 on interval
[201,400], robot 3 on [401,600] and so on. If the current
number of robots was 10, the share of each robot would be
intervals with length 100.

Using function MPI_comm_rank() in the algorithm
the robots find their own ID and -calling function
MPI_comm_size() they will be aware of the total number of
robots (p) participating in the cluster at the moment. It is worth
to mention that in MPI programming, the variables are private,
i.e. changes in a variable in a node (inside the parallel part
of code) does not have any effect in the value of the same
variable in another node.

By considering ki (and not k») in (3) and (4), map M; is
divided between the robots in equal shares. Now each node

Fig. 10. Robots mapping a real environment [3]

T [S]

Lk sm

Fig. 11. The topological map with 54 nodes of the environment shown
partially in Fig. 10.

runs the previously presented sequential algorithm but starting
from its given share of data in M; and finds the biggest
common subgraphs between M; and M, (see algorithm 3).

2) Functionality: Similar to algorithm 1, algorithm
Merge_parallel compares all the edges in a block of M; and
M, one by one. Once an edge e; in M is found equivalent
with an edge f; in M, a transformation function F will
be calculated that maps e; on f;. Then the algorithm 2,
Com_subgraph, finds the largest common subgraph between
the two maps starting from the edge e¢; and f; to check
the compatibility of the vertexes based on the transformation
function F. Each robot saves its found common subgraphs
into its LIST. Finally, the LISTs will contain all common
subgraphs that can be generated between M; and M, with
different transformation functions. These LIST's are generated
by different robots and need to be aggregated to one node and
be processed.

3) Aggregating the results: MPI_Bcast is called in the
algorithm, so that each robot will broadcast its results (LIST)
to the cluster. In this algorithm, the robot with id = S;; is
responsible to aggregate the distributed results and calculate
the final result. S;; denotes the id of the robot which ini-
tially requested the map merging process. This robot runs
MPI_Reduce to gather the results of processed data from the
other computers to its own LIST. Based on the biggest found
common subgraph (hypothesis), algorithm Merge_parallel
will map the M; with the associated transformation function
to that hypothesis and generates M1,,,,peq. Finally the output
map (MAP) is generated by overlapping M1,,4ppeq and M.

C. experimental results

The algorithms have been run on the implemented robotic
cluster (Fig. 7, explained in section III) using up to eight
modified Roomba robots. For evaluation of the method, all
algorithms are tested ten times with different sets of maps.
Several topological maps were experimentally generated by
real robots using the results of our past experiments in [3],
[32], [8], [72]. Fig. 10 shows two robots exploring and

] [-U' .|
l=s5 o1 =4

Fig. 12. Three robots mapping an environment with 36 nodes (left). Three
robots mapping an environment with 81 nodes (right).

Do aon
”Dl_jll_]

| D Ij [__N
=
10H s]

Four robots mapping an environment with 136 nodes

Fig. 13.

mapping a real environment. This environment is the corridors
of second floor of Institute of Systems and Robotics in Coim-
bra. Fig. 11 shows the topological map of this environment
generated by the robots. Moreover, a set of exploration and
mapping experiments were done in Player/Stage framework.
Fig. 12 and Fig. 13 show three simulated environments being
mapped by multiple robots.

Fig. 14 and 15 demonstrate an example of the map merging
experiments. In Fig. 14 two partial maps of one environment
are shown that were generated by two robots without having
common reference frames. About 10 percent of vertexes and
edges of these partial maps are equivalent. Fig. 15 presents
the result of merging these maps. The execution time for each
merging experience is measured five times and their mean
values are shown in Fig. 16. These results show that if the
maps are large enough (map size bigger than 54 in this case),
execution time decreases as number of robots increase.

Parallel algorithms are usually evaluated by analyzing their
speedup and their efficiency over the serial algorithms. Reduc-
tion of processing time by using more robots (speedup) can
be calculated by:

T,
Speedup = =1—
p p TParaIlel
where:

e T4 execution time of code using one robot.
o Tparanier: execution time of parallel code using several
robots

-l--l -
F == r.
[| []
IFI -II|I—
-_—
A =ET]
-1 -
.-:I-I
- N . - ‘t‘
- - --I /.‘;,v‘*\
- - . .- e ‘;“‘ \
n, \ Y

Fig. 15.

The result of map merging algorithm for the maps of Fig. 14

A parallel algorithm is called “efficient” if its speedup is
nearly linear to number of processors [73]. Fig. 17 presents
the speedup of the parallel algorithm for different size of maps.
It can be seen that speedup has almost linear relation to the
number of robots for all size of N in large maps, thus, proving
the efficiency of the proposed parallel algorithm. This means
that having more robots in the cluster increases the speed of
solving this problem. It should be mentioned that, according
to the Amdahl law [74], [75], it is very difficult, even in an
ideal parallel system, to obtain a speedup value equal with
the number of processors because each program, in terms of

- 36
T

_ =54
w 35
2 81
@ 30 8
E ! ——136
- s -
S 2 =274
'.g 15 I - 455
§ 809
[11]

w s
/
Graph

Size

1 2 3 4 5 6 7]
Number of robots

Fig. 16. Execution time results for different size of real world and simulation
maps based on number of robots.

- -1
' -=-3
6
4
5 : <
=3 ——F
S 4
3 /_’/ —+—6
s 3 y/ 7
L) 8
! S
0 T 3
an
36 54 81 136 274 455 809 [=]
2
Graph size E e
Fig. 17. Speedup for different sizes of problem in the real world and

simulations.

running time, has a part that cannot be parallelized and has to
be executed sequentially by one single processor.

The size, the topology and the degree of connectivity of the
maps are also important effective parameters in the speed of
the algorithms. Sometimes a smaller map takes more time to
process than a bigger one because of the other parameters. For
evaluating the methods in a more scientific way we generated
several artificial maps similar to the maps of real structured
environments by running a C program. The maps generated
by this software are structurally similar to each other but their
sizes are different. The maps are split to two submaps having
about 10 percent of vertexes and edges in common. Then
one of the submaps is rotated with a random angle and the
results are fed to the algorithms as inputs. Fig. 18 shows two
examples of these generated maps. Fig. 19 shows the merged
map resulted from running the algorithms on the maps of
Fig. 18. The execution time and speedup are measured for
these experiments and are reported in Fig. 20 and Fig. 21.
These results show that for large enough maps, the speedup
increases by the number of robots in the cluster.

Another parameter to evaluate the performance of parallel
algorithms is efficiency which measures the utilization rate of
the processors in the execution of a parallel program. It is equal
to the ratio of speedup and the number of processors used. We

Fig. 18. Two given artificial maps to be merged by the algorithms.

Fig. 19. Merged map with about 1000 vertexes and 900 edges.

Algorithm 4: Merge(M;,M>,MAP), with clustering solution

1

2 M, = |V,E,ki]

3 My = [W, F, kz]

4 Output: A map that is the result of merging M; and M,
5 begin

6 if (ki <M) and (ko < M) then

7 L Merge_seq(M;,M>,MAP)

8

return(MAP)
9 else
10 Merge_parallel(M;,M, , MAP)
11 return(MAP)
12 end

have measured this parameter for the proposed map merging
parallel algorithm. Fig. 22 demonstrates the efficiency of the
proposed parallel algorithm on the real world and simulation
topological maps, while, Fig. 23 presents the efficiency of
the algorithm on the artificially generated topological maps.
Both graphs show similar results, i.e, the efficiency is mostly
between 0.6 and 0.8 specially on large graphs it converges to
7.2. This is a significant result that proves the efficiency of the
method in reality, since it was obtained by implementation of
the algorithm on a real robotic cluster.

Considering both sequential and parallel solutions in algo-
rithms 1 and 3, this question arises that “when should a robot
use each of these algorithms?”. Considering the state diagram
of Fig. 5, a robot should use the cluster only if it is “worth” to
use it. The experimental results (in Fig. 17 , Fig. 21, Fig. 22
and Fig. 23) showed that if the size of maps is too small
the parallel solution will take more time than the sequential
solution. Based on this information, we present Algorithm 4

Execution time (s)

1 2 3 4 5 6 7 8
Number of robots

Fig. 20. Execution time results for different size of artificial maps based on
number of processors

L C T T R - -]

Speedup

15 20 50 100 200 400 600 800 1000

Graph size

Number of
robots

Fig. 21. Speedup for different sizes of artificial topological maps

that checks the size of input maps and calls the sequential
algorithm if the maps are smaller than threshold M and calls
the parallel algorithm if the maps are large enough.

For this particular application and the specified hardware
and software, based on the speedup results of Fig. 17 and
Fig. 21, we found that M should be set to 50. For other
applications, the system designer should estimate or measure
the system’s performance in both sequential and parallel cases
and design a method similar to algorithm 4 that uses the
robotic cluster efficiently.

The presented results showed that the proposed method can
speed up the execution time of a map merging algorithm. We
believe that this approach can be used in many other multi-
robot applications that demand for high processing resources.

V. CONCLUSIONS AND DISCUSSIONS

This paper presented the novel concept of robotic clusters,
an approach for better problem solving in distributed robotic
systems. Using this approach, heterogeneous robots are able to
share their processing resources in solving complex problems
while they are still independent. The paper explained the
characteristic, requirements and benefits of the method in
multi-robot systems. A real world robotic cluster was imple-
mented using eight robots and the problem of topological map
merging was studied as a case study. The proposed parallel

0.9 -=-2

0.8 -3
ot J- 4

2 0.6
05 S
E 0.4 =6
i 0.3 7
0.2 —3

0.1

0

36 54 81 136 274 455

g

=l
Number of
robots

Graph size

Fig. 22. The efficiency of parallel algorithm in different size of real and
simulated topological maps.

0.9]
0.8 -3
>‘0.7 4
] 0.6 ——
205 p

o ——

04 B /

E 03 7
0.2 =8
0.1 s

0 3,
15 20 50 100 200 400 600 800 1000 'E s

=

Graph size E e

Fig. 23. The efficiency of parallel algorithm in different size of artificially
generated topological maps.

solution for topological map merging was another contribution
of this paper. The method was tested with experimentally
real-world, simulation, and artificially generated topological
maps, and the results showed that robotic clusters increase the
speed of robots in solving topological map merging problem.
The idea of robotic clusters can be advantageous in many
other multi-robot systems that (i) demand for high processing
resources, (ii) require relatively cheap design, and (iii) intend
to address problems that can be done in parallel with negligible
overheads.

Finally, there are some issues that should be discussed here.
An issue is the amount of data that should be exchanged
between the robots in a cluster during the process. This highly
depends on the application’s nature and is part of clustering
overhead explained in section II-G. In the presented case study
in this paper, the size of very large topological maps is usually
less than a few kilobytes and they are exchanged only at the
beginning and at the end of the processing period. Considering
the communication speed of wireless networks, the time
required for transferring this amount of data is negligible in
compare with the time required for the processing of this data.
However, there are robotic applications that demand for high
amount of data that need to be exchanged between the nodes if
clustering is applied. This issue might increase the clustering

overhead and thus decrease the speedup and efficiency of the
clustering approach. This is an important parameter that the
system designer should consider before designing a robotic
cluster.

Another discussion can be done about the communication
issues (namely latency, overhead and bandwidth). As section
II-F already mentioned, this issues also are dependent on
the application and are part of clustering overhead. For the
particular case study of this paper and in the implemented
robotic cluster, the communication overheads were insignifi-
cant for large graphs, however, for other applications, the sys-
tem designer should estimate or measure the communication
overheads to design a clustering method that is efficient and
tolerant to possible failures.

Although this paper defined the concept of robotic clusters
and presented its advantages, requirements, implementation,
challenges and potential applications, still excessive research
is needed to develop methodologies that allow designing and
implementing robotic clusters to address several challenges
in robotics research. Specially the spatial distribution of
clustering robots in the environment and its effect on the
system’s performance should be studied in various applications
in future. Finally, more dynamic clustering strategies should
be developed by the community in order to optimize the usage
of available processing resources in different conditions.

VI. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful and constructive comments that helped
improving the manuscript. This work was partially supported
by the Portuguese Foundation for Science and Technology
contract SFRH/BD/45740/2008 and SFRH/BD/72697/2010.

REFERENCES

[1] K. Leung, T. Barfoot, and H. Liu, “Decentralized localization of
sparsely-communicating robot networks: a centralized-equivalent ap-
proach,” IEEE Trans. on Robotics, vol. 26, no. 1, pp. 62-77, 2010.

[2] W. Sheng, Q. Yang, J. Tan, and N. Xi, “Distributed multi-robot coordi-
nation in area exploration,” Robotics and Autonomous Systems, vol. 54,
no. 12, pp. 945-955, 2006.

[3] A. Marjovi and L. Marques, “Multi-robot olfactory search in structured
environments,” Robotics and Autonomous Systems, vol. 52, pp. 867881,
2011.

[4] A. Marjovi, J. Nunes, P. Sousa, R. Faria, and L. Marques, “An olfactory-
based robot swarm navigation method,” in Proc. IEEE Int. Conf. on
Robotics and Automation, Alaska, USA, 2010.

[5] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Trans. on Robotics, vol. 21, no. 3, pp.
376-386, 2005.

[6] W. Huang and K. Beevers, “Topological map merging,” The Interna-
tional Journal of Robotics Research, vol. 24, no. 8, p. 601, 2005.

[7]1 D. Jung and A. Zelinsky, “Grounded symbolic communication between
heterogeneous cooperating robots,” Autonomous Robots, vol. 8, no. 3,
pp- 269-292, 2000.

[8] A. Marjovi and L. Marques, “Multi-robot topological exploration using
olfactory cues,” in Int. Symp. on Distributed Autonomous Robotics
Systems, Lausanne, Switzerland, 2010.

[9] C. Yu and R. Nagpal, “A Self-Adaptive Framework for Modular Robots

in Dynamic Environment: Theory and Applications,” The International

Journal of Robotics Research, 2010.

R. Beckers, O. Holland, and J. Deneubourg, “From local actions to

global tasks: Stigmergy and collective robotics,” in Artificial life 1V,

vol. 181. MIT Press, 1994, p. 189.

[10]

[11]

[12]
[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

R. Arkin, “Cooperation without communication: Multiagent schema-
based robot navigation,” Journal of Robotic Systems, vol. 9, no. 3, pp.
351-364, 1992.

L. Steels, “A case study in the behavior-oriented design of autonomous
agents,” From animals to animats, vol. 3, pp. 445-452, 1994.

R. Brooks, “Interaction and intelligent behavior,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1994.

O. Causse and L. Pampagnin, “Management of a multi-robot system in
a public environment,” in /EEE/RSJ Int. Conf. on Intelligent Robots and
Systems, vol. 2, 1995, pp. 246-252.

F. Noreils, “Toward a robot architecture integrating cooperation between
mobile robots: Application to indoor environment,” The International
Journal of Robotics Research, vol. 12, no. 1, pp. 79-98, 1993.

E. Nowicki and C. Smutnicki, “An advanced tabu search algorithm for
the job shop problem,” Journal of Scheduling, vol. 8, no. 2, pp. 145-159,
2005.

V. Tkindt and J. Billaut, Multicriteria scheduling: theory, models and
algorithms. Springer Verlag, 2006.

D. Trietsch and K. Baker, “Minimizing the number of tardy jobs with
stochastically-ordered processing times,” Journal of Scheduling, vol. 11,
no. 1, pp. 71-73, 2008.

Y. Martinez, A. Nowé, J. Sudrez, and R. Bello, “A reinforcement learning
approach for the flexible job shop scheduling problem,” Learning and
Intelligent Optimization, pp. 253-262, 2011.

A. Page and T. Naughton, “Framework for task scheduling in het-
erogeneous distributed computing using genetic algorithms,” Artificial
Intelligence Review, vol. 24, no. 3, pp. 415429, 2005.

E. Opiyo, E. Ayienga, K. Getao, W. Okello-Odongo, B. Manderick, and
A. Nowé, Game theoretic multi-agent systems scheduler for parallel
machines. Fountain Publishers, Kampala., 2008.

M. Wang, Z. Shi, and W. Jiao, “Dynamic interaction protocol load in
multi-agent system collaboration,” Multi-Agent Systems for Society, pp.
103-113, 2009.

M. J. Mataric, “Interaction and intelligent behavior,” Ph.D. dissertation,
MIT EECS, 1994.

B. Galitsky, J. de la Rosa, and B. Kovalerchuk, “Discovering com-
mon outcomes of agents’ communicative actions in various domains,”
Knowledge-Based Systems, vol. 24, no. 2, pp. 210-229, 2011.

A. Rawal, P. Rajagopalan, and R. Miikkulainen, “Constructing compet-
itive and cooperative agent behavior using coevolution,” in IEEE Conf.
on Computational Intelligence and Games, 2010.

M. Wang, H. Wang, D. Vogel, K. Kumar, and D. Chiu, “Agent-based
negotiation and decision making for dynamic supply chain formation,”
Engineering Applications of Artificial Intelligence, vol. 22, no. 7, pp.
1046-1055, 2009.

A. Chopra and M. Singh, “An architecture for multiagent systems an
approach based on commitments,” in Int. Conf. on Autonomous Agents
and Multiagent Systems, Workshop on Programming Multiagent Systems,
Budapest, Hungary, 2009.

B. An, V. Lesser, and K. Sim, “Strategic agents for multi-resource
negotiation,” Autonomous Agents and Multi-Agent Systems, vol. 23,
no. 1, pp. 114-153, 2011.

M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257-1270, 2006.

C. Clark, T. Bretl, and S. Rock, “Applying kinodynamic randomized
motion planning with a dynamic priority system to multi-robot space
systems,” in IEEE Aerospace Conf. Proceedings, vol. 7, 2002, pp. 7—
3621.

E. Ferranti, N. Trigoni, and M. Levene, “Brick&Mortar: an on-line
multi-agent exploration algorithm,” in Proc. IEEE Int. Conf. on Robotics
and Automation, 2007, pp. 761-767.

A. Marjovi, J. G. Nunes, L. Marques, and A. T. de Almeida, “Multi-robot
exploration and fire searching.” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, St. Louis, MO, USA, 2009.

Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,” Autonomous Robots, vol. 4, pp.
7-27, 1997.

G. Dudek, M. R. M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for
multi-agent robotics,” Autonomous Robots, vol. 3, no. 4, pp. 375-397,
1996.

D. Borrmann, J. Elseberg, K. Lingemann, A. Niichter, and J. Hertzberg,
“Globally consistent 3d mapping with scan matching,” Robotics and
Autonomous Systems, vol. 56, no. 2, pp. 130-142, 2008.

[36]

(371

(38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

J. Faigl and L. Pfeucil, “Self-organizing map for the multi-goal path
planning with polygonal goals,” Artificial Neural Networks and Machine
Learning, pp. 85-92, 2011.

H. Tamimi, H. Andreasson, A. Treptow, T. Duckett, and A. Zell,
“Localization of mobile robots with omnidirectional vision using Particle
Filter and iterative SIFT,” Robotics and Autonomous Systems, vol. 54,
no. 9, pp. 758-765, 2006.

S. Carpin and E. Pagello, “An experimental study of distributed robot
coordination,” Robotics and Autonomous Systems, vol. 57, no. 2, pp.
129-133, 2009.

F. Beutler, M. Huber, and U. Hanebeck, “Probabilistic instantaneous
model-based signal processing applied to localization and tracking,”
Robotics and Autonomous Systems, vol. 57, no. 3, pp. 249-258, 2009.
D. Bhadauria, O. Tekdas, and V. Isler, “Robotic data mules for collecting
data over sparse sensor fields,” Journal of Field Robotics, vol. 28, no. 3,
pp. 388-404, 2011.

G. Pfister, In search of clusters.
1998.

T. Anderson and D. Culler, “A Case for Network of Workstations
(NOW),” IEEE Micro., vol. 15, no. 1, pp. 54-64, 1994.

H. Casanova and J. Dongarra, “NetSolve: A network-enabled server for
solving computational science problems,” International Journal of High
Performance Computing Applications, vol. 11, no. 3, p. 212, 1997.

K. Kurihara, S. Hoshino, K. Yamane, and Y. Nakamura, “Optical
motion capture system with pan-tilt camera tracking and real time data
processing,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2002.
F. Tagliareni, M. Nierlich, O. Steinmetz, T. Velten, J. Brufau, J. Lopez-
Sanchez, M. Puig-Vidal, and J. Samitier, “Manipulating biological cells
with a micro-robot cluster,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2005.

E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and
S. Kokaji, “A motion planning method for a self-reconfigurable modular
robot,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2002.
A. Samiloglu, V. Gazi, and A. Koku, “Effects of asynchronism and
neighborhood size on clustering in self-propelled particle systems,”
Computer and Information Sciences, pp. 665-676, 2006.

R. Buyya, “High performance cluster computing: Architectures and
systems (volume 1),” Prentice Hall, Upper SaddleRiver, NJ, USA, vol. 1,
1999.

S. Georgiev, “Evaluation of cluster middleware in a heteroge-
neous computing environment,” Master’s thesis, Internationaler Univer-
sitdtslehrgang, 2009.

L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” IEEE Computational Science Engineer-
ing, vol. 5, no. 1, pp. 46-55, 2002.

A. Geist, PVM: Parallel virtual machine: a users’ guide and tutorial
for networked parallel computing. the MIT Press, 1994.

N. Desai, R. Bradshaw, A. Lusk, and E. Lusk, “MPI cluster system
software,” Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Springer, pp. 277-286, 2004.

J. Corbalan, A. Duran, and J. Labarta, “Dynamic load balancing of MPI+
OpenMP applications,” in IEEE Int. Conf. on Parallel Processing, 2004,
pp. 195-202.

Q. Snell, G. Judd, and M. Clement, “Load balancing in a heterogeneous
supercomputing environment,” in Int. Conf. on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, NV, 1998, pp. 951—
957.

M. Bhandarkar, L. Kale, E. de Sturler, and J. Hoeflinger, “Adaptive
load balancing for MPI programs,” Computational Science-ICCS, pp.
108-117, 2001.

G. Utrera, J. Corbalén, and J. Labarta, “Dynamic load balancing in MPI
jobs,” in High-Performance Computing. Springer, 2008, pp. 117-129.
K. Erciyes and R. Payli, “A cluster-based dynamic load balancing
middleware protocol for grids,” Advances in Grid Computing-EGC, pp.
436-436, 2005.

Y. Zhu, J. Guo, and Y. Wang, “Study on Dynamic Load Balancing
Algorithm Based on MPICH,” in I[EEE WRI World Congress on Software
Engineering, vol. 1, 2009, pp. 103-107.

I. Stoica, F. Sultan, and D. Keyes, “Modeling communication in cluster
computing,” in Proc. of the 7th SIAM Conf. on Parallel Processing for
Scientific Computing, San Francisco, CA, 1995, pp. 820-825.

R. Martin, A. Vahdat, D. Culler, and T. Anderson, “Effects of commu-
nication latency, overhead, and bandwidth in a cluster architecture,” in
IEEE Int. Symp. on Computer Architecture, 1997, pp. 85-97.

Prentice-Hall Englewood Cliffs, NJ,

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

(741

[75]

J. Hromkovi¢, Communication complexity and parallel computing.
Springer-Verlag New York Inc, 1997.

M. J. Quinn, “Parallel Programming in C with MPI and OpenMP,”
McGraw-Hill Press, 2003.

R. Grabowski, L. Navarro-Serment, C. Paredis, and P. Khosla, “Het-
erogeneous teams of modular robots for mapping and exploration,”
Autonomous Robots, vol. 8, no. 3, pp. 293-308, 2000.

S. Thrun, “A probabilistic on-line mapping algorithm for teams of
mobile robots,” The International Journal of Robotics Research, vol. 20,
no. 5, pp. 335-363, 2001.

J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai, “A practical,
decision-theoretic approach to multi-robot mapping and exploration,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 4, 2003, pp.
3232-3238.

G. Dedeoglu and G. Sukhatme, “Landmark-based matching algorithm
for cooperative mapping by autonomous robots,” in Int. Symp. on
Distributed Autonomous Robotics Systems, 2000.

J. Fenwick, P. Newman, and J. Leonard, “Cooperative concurrent
mapping and localization,” in Proc. IEEE Int. Conf. on Robotics and
Automation, vol. 2, 2002, pp. 1810-1817.

H. Wang, M. Jenkin, and P. Dymond, “Enhancing exploration in graph-
like worlds,” in IEEE Canadian Conf. on Computer and Robot Vision,
2008, pp. 53-60.

J. Jennings, C. Kirkwood-Watts, and C. Tanis, “Distributed map-making
and navigation in dynamic environments,” in /EEE/RSJ Int. Conf. on
Intelligent Robots and Systems, vol. 3, 1998, pp. 1695-1701.

G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Topological exploration
with multiple robots,” in Int. Symp. on Robotics and Applications,
Anchorage, AK, USA, 1998.

K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart, “Map merging
for distributed robot navigation,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, vol. 1, 2003, pp. 212-217.

A. Marjovi, J. Nunes, L. Marques, and A. de Almeida, “Multi-robot
fire searching in unknown environment,” in Field and Service Robotics.
Springer Tracts in Advanced Robotics, 2010, vol. 62, pp. 341-351.

C. Kruskal, L. Rudolph, and M. Snir, “A complexity theory of efficient
parallel algorithms,” Theoretical Computer Science, vol. 71, no. 1, pp.
95-132, 1990.

G. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Spring joint computer Conf. ~ACM,
April 1967, pp. 483-485.

F. ALECU, “Performance analysis of parallel algorithms,” Journal of
Applied Quantitative Methods, p. 129, 2007.

