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Solving the infinite-horizon constrained LQR
problem using splitting techniques

Giorgos Stathopoulos, Milan Korda and Colin N. Jones

Abstract

This paper presents a method to solve the constrained infinite-time linear quadratic regulator (LQR)
problem. We use an operator splitting technique, namely the alternating minimization algorithm (AMA),
to split the problem into an unconstrained LQR problem and a projection step, which are solved
repeatedly, with the solution of one influencing the other. The first step amounts to the solution of a
system of linear equations (with the possibility to pre-factor) and the second step is a simple clipping.
Therefore, each step can be carried out efficiently. The scheme is proven to converge to the solution to
the infinite-time constrained LQR problem and is illustrated by numerical examples.

Constrained LQR, Alternating minimization, Operator splitting

I. INTRODUCTION

An important extension of the famous result of [14] on the closed form solution of the infinite-
horizon linear quadratic regulator (LQR) problem is the case where the input and state variables
are constrained. This problem is computationally significantly more difficult and has been by
and large addressed only approximately. A prime example of an approximation scheme is model
predictive control (MPC) which approximates the infinite-time constrained problem by a finite-
time one. Stability of such MPC controllers is then typically enforced by adding a suitable
terminal constraint and a terminal penalty. The inclusion of a terminal constraint limits the
feasible region of the MPC, and, consequently, the region of attraction of the closed-loop system.
In practical applications, this problem is typically overcome by simply choosing a “sufficiently”
long horizon based on the process insight (e.g., dominant time constant). Closed-loop behavior
is then analyzed a posteriori, for instance by exhaustive simulation or by investigating the set of
optimality conditions of the underlying optimization problem [19].

There have been few results addressing directly the infinite-horizon constrained LQR problem.
The most well-known effort is the work of [20], where they extend the work of [22]. The idea is
to solve a sequence of quadratic programs (QPs) of finite horizon length, which is monotonically
non-decreasing. After each QP has been solved, a membership condition for the terminal state
is checked. If the condition is not satisfied, the horizon was insufficient and hence has to be
increased.

Our approach is inspired from the framework of operator splitting methods, a class of al-
gorithms that has recently gained considerable attention in, e.g., the compressed sensing, ma-
chine learning and image processing communities (see, e.g., [9, 6, 11]). From this family of
algorithms, we use the Alternating Minimization Algorithm (AMA) [23] to split the infinite-
horizon constrained LQR problem into two parts, an unconstrained LQR problem and a proximal
minimization problem. These two problems are solved repeatedly (with the solution of one

G. Stathopoulos, M. Korda and C.N. Jones are with the Laboratoire d’Automatique, École Polytechnique Fédérale de Lausanne
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influencing the cost function of the other) until convergence to the solution to the original
problem. This is in contrast to the approach of [20], which requires the solution of a sequence
of constrained QPs. We show that both sub-problems of the proposed algorithm can be solved
tractably (which is not a priori obvious since we are working with infinite sequences), the first one
by solving a single finite-dimensional system of linear equations and the second one by simple
clipping of finitely many real numbers on the non-positive real line. The proposed method is
inspired by the splitting scheme used in [17] for the finite-time LQR problem.

Convergence of the scheme, and, consequently, recovery of a stabilizing controller is guaran-
teed under relatively mild assumptions. Therefore the proposed algorithmic scheme provides a
means to compute the solution of the infinite-horizon constrained LQR problem with guaranteed
convergence. The algorithm can address large-scale problems and, we believe, is potentially
competitive for real-time control.

The paper is organized as follows: In Section II we introduce the problem and formulate it
by means of the operator splitting framework. In Section III we explain in detail the algorithmic
scheme for the solution. Section IV discusses the computational aspects; we propose a method
to efficiently solve the linear system that appears in each iteration of the algorithm, which is the
most computationally demanding step. In Section V the main theoretical results are stated. In
Section VI we briefly introduce the idea of accelerating the algorithm using Nesterov’s relaxation
scheme. Both the basic and the accelerated version of the algorithm are illustrated with two
examples in Section VII. Finally, Appendices A, B and C provide the proofs for the results
presented in Section V.

II. PROBLEM STATEMENT AND AN OPERATOR SPLITTING APPROACH

A. Formulation of the problem
The goal of the paper is to solve the infinite-time constrained LQR problem

minimize 1
2

∑∞
i=0 x

>
i Qxi + u>i Rui

subject to xi+1 = Axi +Bui, i ∈ N
x0 = xinit

Cxi +Dui ≤ b.

(1)

where xi ∈ Rn and ui ∈ Rm and b ∈ Rp. We make the following standing assumption:
Assumption 1: The pair (A,B) is stabilizable, the optimal value of problem (1) is finite, the

set
X := {x ∈ Rn | Cx ≤ b}

contains the origin in the interior, the matrix [C D] has full column rank and the matrices Q
and R are positive definite.

Remark 1: Assumption 1 is standard except for the requirement that Q be positive definite;
this requirement facilitates the use of the alternating minimization algorithm (AMA) to solve
problem (1) and can be dropped by considering the dense form of (1); this is the subject of
future work.
The full column rank assumption on the matrix [C D] can be trivially satisfied by adding
redundant constraints on states and inputs, e.g., box constraints with sufficiently large diameter so
that they are never activated. Note that the condition is a technicality in order for the convergence
proof to hold true, and does not appear in the algorithmic implementation.
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Remark 2 (Stability): Clearly, under Assumption 1, the optimal control sequence for prob-
lem (1) is stabilizing. Therefore, there is no need to enforce stability ad hoc as is commonly
done when the infinite-time problem (1) is approximated by a finite-time one solved in a receding
horizon fashion.

We view any infinite sequence

z := (z0, z1, . . .) :=

(
x
u

)
:=

(
x0, x1, . . .
u0, u1, . . .

)
as an element of an l2-weighted (or l2w) real Hilbert space Hz induced by the inner product

〈z,y〉 =
∞∑
i=0

w−iz>i yi , ∀y ∈ Hz, z ∈ Hz,

where w > 1. The norm of any z ∈ Hz is thus given by

‖z‖Hz :=
√
〈z, z〉 =

√√√√ ∞∑
i=0

w−i‖zi‖2
2 .

Unless stated otherwise, for the rest of the paper by a Hilbert space we mean the l2w real
Hilbert space as just introduced.

In order to solve the problem (1) by making use of operator splitting techniques, we can
rewrite (1) using the slack variables σi ∈ Rp, i ∈ N, as

minimize 1
2

∑∞
i=0 x

>
i Qxi + u>i Rui

subject to xi+1 = Axi +Bui, i = 0, . . .
x0 = xinit

Cxi +Dui − σi = b, σi ≤ 0.

(2)

Viewing the sequence σ := (σi)i∈N as an element of Hσ, an l2w Hilbert space defined analogously
to Hz, we can further rewrite problem (2) as

minimize h(z) + g(σ)
subject to Az − σ = b,

(3)

where
• h(z) = f(z) + δD(z) = 1

2
z>Q∞z + δD(z), with

δD(z) =

 0 xi+1 − Axi −Bui = 0, i ∈ N
x0 = xinit

∞ otherwise ,

and Q∞ = diag(Q,Q, . . .), where Q = diag(Q,R).
•

g(σ) =

{
0 σi ≤ 0 ∀ i ∈ N
∞ otherwise ,

• The operator A : Hz → Hσ is defined by (Az)i = Āzi, where Ā := [C D]
• b = (b, b, b, . . .) ∈ Hσ.
We solve problem (3) by applying the Alternating Minimization Algorithm (AMA) [23] in an

infinite-dimensional Hilbert space framework. AMA belongs to the family of operator splitting
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methods, thus allowing for decomposition of a complex optimization problem into a sequence
of simpler ones. The method is presented below.

Algorithm 1 AMA for Problem (3).
0: Initialize λ0 ∈ Hσ, ρ ∈ (0, 2β)1

repeat
1: zk+1 = argmin

z∈Hz

{
h(z)−

〈
A?λk, z

〉}2

2: σk+1 = argmin
σ∈Hσ

{
g(σ) +

〈
λk,σ

〉
+ ρ

2
‖Azk+1− b− σ‖2

Hσ

}
3: λk+1 = λk + ρ(b−Azk+1 + σk+1)

until termination condition is satisfied

The algorithm produces a sequence (of sequences) zk converging to z∞, the sequence optimal
in (1). This result is stated rigorously in Section V, Theorem 1, and proven in Appendix A.

Contrary to the most popular operator splitting method, the Alternating Direction Method of
Multipliers (ADMM), AMA considers the minimization of the standard Lagrangian at Step 1 of
Algorithm 1 and the augmented Lagrangian at Step 2, while ADMM considers minimizing the
augmented Lagrangian in both steps. It will become apparent later that this attribute is crucial
in the case of the problem we are trying to solve, but comes with the extra restriction that
the function h(z) has to be strongly convex in order to guarantee convergence. Furthermore, it
introduces restrictions to the range of feasible stepsizes ρ for AMA to provably converge.

In order to prove convergence of the method in a real Hilbert space, we view the AMA as a
special case of the forward-backward splitting algorithm, first introduced by [8], popularized by
[18] and proven to convergence in a real Hilbert space in [3]. More details on convergence of
AMA as used in this paper are in Section V.

III. A FINITE DIMENSIONAL REPRESENTATION

The goal of this section is to show that each step of Algorithm 1 can be carried out in a
computationally tractable way (which is not a priori obvious since it involves infinite sequences
of real numbers).

Written explicitly the iterations of Algorithm 1 become

zk+1 = argmin
z

{
δD(z) +

1

2
〈z,Q∞z〉 −

〈
A?λk, z

〉}
(4)

σk+1
i =

(
Āzk+1

i − b− λki /ρ
)
− , i ∈ N (5)

λk+1
i = λki + ρ(b− Āzk+1

i + σk+1
i ), i ∈ N , (6)

1The permitted range for ρ is given in Theorem 4, Appendix A.
15We denote by (·)? the adjoint of an operator, which has the analogy of a transpose in a finite-dimensional space. More on

operator theory is presented in Appendix A.
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where (·)− = min{·, 0}. The first step of the algorithm (Eq. (4)) is an unconstrained LQ problem
with a biasing term 〈A?λk, z〉. Therefore, if for each iterate k ∈ N the sequence λk = (λki )i∈N is
zero from some time point T k on, the first step is equivalent to the finite-dimensional equality-
constrained quadratic program (QP):

minimize 1
2
x>
TkPLQxTk + 1

2

∑Tk−1
i=0

{
x>i Qxi + u>i Rui

−λki (Cxi +Dui)
}

subject to xi+1 = Axi +Bui, i = 0, . . . , T k

x0 = xinit ,

(7)

where we minimize over (x0, . . . , xTk), (u0, . . . , uTk−1), and PLQ is the solution to the Riccati
equation corresponding to the standard linear quadratic regulator problem associated with the
matrices (A,B,Q,R). Problem (7) can be efficiently solved by formulating the corresponding
Karush-Kuhn-Tucker (KKT) system. The solution involves a single matrix inversion (which can
be precomputed off-line for a given T k; see Section IV for details on how to efficiently carry
out this step). For i ≥ T k, the control law is ui = KLQxi, where the LQ gain KLQ is given
by KLQ = (R+B>PLQB)−1B>PLQA. In conclusion, the first step (Eq. (4)) can be carried out
efficiently as long as we can guarantee that for each k a finite time T k exists such that λki = 0
for i ≥ T k.

To see that this is indeed true we need to analyze the second and third steps (Eq. (5), (6)).
First, notice that when initialized with λ0

i = 0 for all i ∈ N, the statement trivially holds for
k = 0. Assume now k ∈ N and λki = 0 for all i ≥ T k. Then according to the previous discussion,
for times i ≥ T k, the sequence xk+1

i is generated by the LQ controller uk+1
i = KLQx

k+1
i and

therefore xk+1
i converges to the origin. Consequently, by Assumption 1, there exists a time

T k+1 ≥ T k such that Āzk+1
i = Cxk+1

i + Duk+1
i ≤ b for all i ≥ T k+1. Looking at (5) and

noticing that λki = 0 for i ≥ T k, it follows that σk+1
i = Āzk+1

i − b for all i ≥ T k+1. As a result,
the dual update term ρ(b− Āzk+1

i + σk+1
i ) in (6) is equal to zero for all i ≥ T k+1 and therefore

also λk+1
i = 0 for all i ≥ T k+1. Therefore, there indeed exists a sequence (T k)k∈N defined by

the recursion
T k+1 := min{T ≥ T k | Cxk+1

i +Duk+1
i ≤ b ∀ i ≥ T}, (8)

with T 0 = 0, such that λki = 0 for all i ≥ T k. To determine T k+1 computationally (given T k

and xk+1 and uk+1) we simply find the first time T S that xk+1
i enters a given subset S, with

0 ∈ intS, of the maximum positively invariant set of the system x+ = (A + BKLQ)x subject
to the constraint (C + DKLQ)x ≤ b. The time T k+1 is then equal to the first time greater than
T k such that Cxk+1

i +Duk+1
i ≤ b holds for all i ∈ {T k+1, . . . , T S}. More formally, we have the

equality

T k+1 = min
{
T ≥ T k | ∃T S s.t. Cxk+1

i +Duk+1
i ≤ b (9)

∀ i ∈ {T, . . . , T S} and xk+1
TS ∈ S

}
.

Remark 3: In practice, to determine T k+1 after solving (7), we iterate forward the system
dynamics x+ = (A+BKLQ)x starting from the initial condition xk+1

Tk until xk+1
i ∈ S.

Remark 4: The set S is determined offline and is not required to be invariant. A good candidate
is the set {x | x>PLQx ≤ 1} scaled such that it is included in {x | (C +DKLQ)x ≤ b}, or any
subset of this set containing the origin in the interior.

The preceding discussion is summarized in the following algorithm:
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Algorithm 2 AMA for the constrained LQR
Require: Q � 0, R � 0, Ā = [C D] full column rank

0a: Determine PLQ, KLQ solving the unconstrained LQR
problem associated with the matrices (A,B,Q,R).

0b: Determine a set S, with 0 ∈ intS, included in
any positively invariant set for the system
x+ = (A+BKLQ)x subject to the constraint
(C +DKLQ)x ≤ b. See Remark 4.

0c: Initialize λ0
i = 0, T 0 = 0.

repeat
1: Solve problem (7) to get xk+1, uk+1

2: Determine T k+1 using (9) (see Remark 3)
3: Set σk+1

i =
(
Cxk+1

i +Duk+1
i − b− λki /ρ

)
−

i = 0, . . . , T k+1

4: Set λk+1
i = λki + ρ(b− Cxk+1

i −Duk+1
i + σk+1

i )
i = 0, . . . , T k+1

until a termination condition is satisfied3

IV. COMPUTATIONAL ASPECTS

The most expensive step of Algorithm 2 is step 1, which requires the solution of the equality-
constrained QP (7). Necessary and sufficient optimality conditions for this problem are given by
the KKT system [

A11 A>21

A21 0

] [
z̃
ν

]
=

[
−h1

h2

]
. (10)

The involved matrices and vectors are defined as follows:

z̃ =


x0

u0
...
xT

 , h1 =


ρC>λk0
ρD>λk0

...
ρC>λkT

 , h2 =


xinit

0
...
0

 ,
A11 = diag(ITk ⊗Q, PLQ),

and

A21 =



I 0 0 0 · · · 0 0 0
−A −B I 0 · · · 0 0 0
0 0 −A −B · · · 0 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · I 0 0
0 0 0 0 · · · −A −B I

 ,

15Several termination criteria exist. We simply measure the progress of the error in the states for two subsequent iterates, as
described in Section VII.
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where A11 is block diagonal with T k blocks of size (n+m)× (n+m) and the last block n×n
for PLQ; A11 � 0 since Q � 0 by assumption. The matrix A21 is of full row rank (T k + 1)n.

We use block elimination to solve equation (10) (see [7, Appendix C]). The procedure involves
inverting S = −A>12A

−1
11 A12, which can be done by using Cholesky factorization on −S and

forward-backward substitution.

Note that the size of the QP (7) can only grow in the subsequent iterations of AMA since,
by definition (8), the sequence T k is nondecreasing. We thus look for an efficient way to solve
the upcoming QPs without seriously increasing the computational load. This can be done by
observing that:

1) Regarding matrix A11, increase of T k by ∆T k = T k − T k−1 translates to inserting ∆T k

blocks Q−1 to A−1
11 such that P−1

LQ remains the last bock. Thus A11 does not have to be
re-inverted.

2) Regarding matrix A21, the rows are expanded by ∆T k additional[
0 . . . 0 −A −B

]
matrices, and the columns with the corresponding (0, 0, . . . , I)

matrices of suitable dimension.
Hence, the matrices do not need to be reformulated. A Cholesky factorization can be performed
every time the matrices augment, i.e., at every iterate that ∆T k > 0. Empirically, we observe
that T k changes just a few times during the first iterates and converges to a stationary value,
typically long before the algorithm itself has terminated.

Remark 5: The method for solving (7) presented here is just one among many and not
necessarily the most efficient one. For instance, Riccati recursion (with the bulk of it carried
out offline for a sufficiently large estimate of T k) could be significantly more efficient. This is
subject to further investigation.

V. CONVERGENCE RESULTS

In this section we analyze convergence of Algorithm 2. In particular we show that (i) the
state-input sequence zk converges to the optimal state-input sequence, and (ii) that the sequence
T k defined in (8) is bounded. In order to do so, we use monotone operator theory. For the
sake of clarity we defer proofs relying on this theory to Appendix A, where we introduce the
necessary background; in Appendices B and C we provide some supplementary proofs to further
clarify the results from Appendix A.

For an introduction to monotone operator theory and the corresponding algorithms, the in-
terested reader is referred to [3] and [10]. The course notes by [5] provide a more readable
but brief introduction to the subject. Finally, in [11], the connection between various operator
splitting methods is analyzed in a clear and comprehensible manner.

A. Convergence of Algorithm 2
Several results exist for convergence of operator splitting methods in infinite-dimensional

Hilbert spaces. In [1] the authors prove convergence of a variant of ADMM, namely the Proximal
Alternating Direction Method of Multipliers (PADMM) in the weak sense. Weak convergence of
the Douglas-Rachford method was recently proven in [21]. The authors of [15], based on this
latest result and using the duality link between the alternating split Bregman and the Douglas-
Rachford method, prove weak convergence of the alternating split Bregman method.
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It is well-known that AMA can be cast as the forward-backward splitting algorithm (FBS)
(see, e.g., [23], [12]). The result is stated in Proposition 1 of Appendix A and the conversion
is performed in Appendix B. Making use of the convergence properties of FBS in real Hilbert
spaces (Theorem 4, Appendix A, we can establish the following crucial result:

Theorem 1: The state-input sequence
(
zk
)
k∈N generated from Algorithm 2 converges strongly

to the optimal state-input sequence z∞, i.e.,

‖zk − z∞‖Hz
k→∞−−−→ 0.

The proof is provided in Appendix A.

B. Boundedness of the sequence T k

In this section we prove that sequence defined in (8), which guarantees that the size of the
equality-constrained QP (7) solved in each iteration of Algorithm 2 is bounded. We establish
this by proving that the sequence of the first hitting times of the interior of the set S is bounded.

Theorem 2: The sequence T k generated by the Algorithm 2 is bounded.
First note that for the statement to hold it is sufficient to show that

lim sup
k→∞

T k <∞. (11)

To prove (11), define the sequence of the first hitting times of the interior of S as

τ k := inf{i ∈ N | xki ∈ intS}, k ∈ N ∪ {+∞},

where τ∞ <∞ is the hitting time of the optimal state sequence x∞. Clearly, τ k ≥ T k and τ k <
∞ since the origin is in the interior of S and for each k ∈ N the sequence (xki )i∈N generated by the
Algorithm 2 converges to the origin as i→∞. We shall prove that lim supk→∞ τ

k ≤ τ∞ <∞,
which implies (11).

For the purpose of contradiction assume that there exists a subsequence τ kj , j ∈ N, with
limj→∞ τ

kj ≥ τ∞+ 1. Since the sequence of hitting times τ k is integer valued, this implies that
there exists a j? ∈ N such that τ kj ≥ τ∞ + 1 for all j ≥ j?. We now use this to contradict
the strong convergence of xk to x∞ from Theorem 1. To this end, observe that x∞τ∞ ∈ intS
whereas xkjτ∞ /∈ intS for all j ≥ j?. By the definition of the interior there exists an ε > 0 such
that y ∈ intS for all y with ‖y − x∞τ∞‖2 < ε. Therefore ‖xkjτ∞ − x∞τ∞‖2 ≥ ε for all j ≥ j?, and
consequently

‖zkj − z∞‖Hz =

√√√√ ∞∑
i=0

w−i(‖xkji − x∞i ‖2
2 + ‖ukji − u∞i ‖2

2)

≥
√
w−τ∞‖xkjτ∞ − x∞τ∞‖2

2 ≥ w−τ
∞/2ε > 0

for all j ≥ j?, contradicting the strong convergence of zk to z∞ asserted by Theorem 1.
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VI. ACCELERATION

In this section we discuss how we can accelerate the convergence of Algorithm 2 by using
the fast version of AMA, called FAMA, accelerated through Nesterov’s optimal over-relaxation
sequence. For the particular case of AMA, the acceleration first appeared in [12]. The scheme
is very simple:

Algorithm 3 FAMA for Problem (3).

0: Initialize λ0 = λ̂
0
∈ Hσ and α0 = 1.

repeat
2: zk+1 = argmin

z∈Hz

{
h(z)−

〈
A?λ̂

k
, z
〉}

3: σk+1 =argmin
σ∈Hσ

{
g(σ)+

〈
λ̂
k
,σ
〉

+ ρ
2
‖Azk+1 − b− σ‖2

Hσ

}
4: λk+1 = λ̂

k
+ ρ(b−Azk+1 + σk+1)

5: αk+1 = (1 +
√

1 + 4(αk)2)/2

6: λ̂
k+1

= λk + αk−1
αk+1 (λk − λk−1)

until termination condition is satisfied

As demonstrated in the numerical examples in Section VII, the scheme can, depending on
the particular problem instance, lead to a significant performance improvement (i.e., reduce the
number of iteration needed for the algorithm to converge). On the other hand, currently there
is no proof of convergence of zk to z∞ in general Hilbert spaces, although the authors expect
that such a result should hold and are currently investigating it.

VII. EXAMPLES

For illustrative purposes, we run the algorithm on two systems, a small system with two states
and one input and a linearized model of a quadrocopter with 12 states and 4 inputs. We are
interesting in the generated times T k as k tends to infinity (denoted as T∞), as well as the
number of iterations that the algorithm needs for convergence. In order to do this, we sample
a set of feasible initial conditions and solve the corresponding problems. The stepsize is set to
the median of the allowed interval, i.e., at β as is computed in Proposition 1 in Appendix A.
The termination criterion is simply set as ‖xk − xk−1‖ ≤ 10−4.

A. Two states, one input system
Consider the following system defined as

A =

[
1.988 −0.998

1 0

]
, B =

[
1.125

0

]
,

xi+1 = Axi +Bui,

with constraints
‖x‖∞ ≤ 3, ‖u‖∞ ≤ 8

and Q = I , R = 10I .
The system is simulated for 862 different initial conditions x0. In Figure 1 the distribution of
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Fig. 1. Histogram of T∞ = maxk{T k} for 862 initial conditions of the 2 state system sampled from a normal
distribution centered around (1,−2) with standard deviation 0.5.
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Fig. 2. Number of iterations needed for convergence for 862 instances of the 2 state system using AMA. The mean
value of iterations is depicted with the black dashed line.

T∞ = maxk{T k} is depicted. We see that T∞ never exceeds 12. In Figure 2 the distribution of
the iterations needed from AMA to reach the specified accuracy is presented. Many problems
converge within less than 500 iterations, while a few need around 4000. The mean was computed
to be 1280 iterations. Although the iterations are cheap to compute, we can state that AMA does
not perform that well in terms of the number of iterations. The distribution of the iterations
needed in case we use FAMA is illustrated in Figure 3. The acceleration is significant, with
problems solved up to 17 times faster than when using AMA. The average speedup is 5.2 times.
An interesting observation is the existence of few problems for which FAMA is actually slower
than AMA. The reason for this is that the accelerated sequence might become too aggressive,
resulting to oscillatory behavior around the optimum.

B. Quadcopter system
The next system we consider is a quadcopter linearized in a hovering equilibrium. The system

has 12 states which correspond to position, angle and the corresponding velocities. There are
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Fig. 3. Number of iterations needed for convergence for 862 instances of the 2 state system using FAMA. The
mean value of iterations is depicted with the black dashed line.
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Fig. 4. Histogram of T∞ = maxk{T k} for 64 initial conditions sampled uniformly around the origin with standard
deviation 0.5.

4 inputs corresponding to the 4 propellers. There are box constraints in all states and inputs,
mainly ensuring the validity of the linearized model.

We simulate 64 different initial conditions sampled from a normal distribution centered around
the origin with standard deviation 0.5, which would roughly correspond to deviations of ≈ 30◦ in
terms of angles and angular velocities. A histogram of T∞ = maxk{T k} is in Figure 4. We can
observe that the values are significantly larger than those of the previous system. Accelerating
by means of FAMA was not particularly useful in this case due to the oscillatory behavior of
the method near the termination threshold. There are ways to remedy this behavior, e.g., the use
of an adaptive restarting scheme as suggested in [16]; this is a topic of further investigation.
Lastly, we would like to illustrate the time evolution of the sequence T k for a specific instance
of the problem, in Figure 5. It is worth mentioning that T k was updated in total 7 times in 322
iterations, which means that the KKT matrix was factorized only 7 times. For the rest of the
iterations, we only needed to perform a forward-backward substitution.
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Fig. 5. Evolution of the sequence T k defined in (8).

APPENDIX A
In this section we introduce some notation and definitions from monotone operator theory. We

further present the forward-backward algorithm and its connection with AMA. The subsequent
results hold for any general real Hilbert space, including the special case of l2w we consider.
We write variables in normal font, and we use the bold font to describe the infinite-dimensional
variables we are manipulating in our problem description.

Monotone Operators
An operator A : H1 → 2H2 is a point-to-set map, i.e., A maps every point x ∈ H1 to a set

A(x) ⊆ H2. The operator is characterized by its graph, graA = {(x, u) ∈ H1 ×H2 | u ∈ A(x)}.
The inverse A−1 of A is defined through its graph as
graA−1 = {(u, x) ∈ H2 ×H1 | (x, u) ∈ graA}. The set of zeros of A is defined as zerA =
{x ∈ H1 | 0 ∈ A(x)}. Composition, scalar multiplication and addition of operators are well-
defined operations (see, e.g., [5]).

Definition 1: [3, Definition 20.1] Let A : H → 2H. Then A is monotone if

〈x− y, u− v〉 ≥ 0 (∀(x, u) ∈ graA)(∀(y, v) ∈ graA) .

Definition 2: [3, Definition 20.20] Let A : H → 2H be monotone. Then A is maximally
monotone if there exists no monotone operator B : H → 2H such that graB properly contains
graA, i.e., for every (x, u) ∈ H ×H,

(x, u) ∈ graA⇔ (∀(y, v) ∈ graA) 〈x− y, u− v〉 ≥ 0 .

The best-known example of a maximally monotone operator is the subgradient mapping ∂f of
a closed proper convex function f : H → R ∪ {+∞}.

Definition 3: A linear operator (mapping) T : H1 → H2 between two Hilbert spaces is said
to be bounded if the operator norm ‖T‖ of T , defined as

‖T‖ := sup
‖x‖H1

=1

‖Tx‖H2 ,

satisfies ‖T‖ < ∞. Then, ∀x ∈ H1 we have ‖Tx‖ ≤ ‖T‖‖x‖. The set of bounded operators
between two Hilbert spaces H1 and H2 is denoted as B(H1,H2).
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Definition 4: Let H1,H2 be real Hilbert spaces and T ∈ B(H1,H2). The adjoint of T is the
unique operator T ? ∈ B(H2,H1) that satisfies

〈Tx, y〉 = 〈y, T ?x〉 (∀x ∈ H1)(∀y ∈ H2) .

Definition 5: [3, Definition 23.1] Let A : H → 2H. The resolvent of A is

JA = (I + A)−1 ,

and I stands for the identity operator defined by

gra I = {(x, x) ∈ H ×H | x ∈ A(x)} .

Definition 6: We define the range of an bounded operator T ∈ B(H1,H2) as ran(T ) = T (H2).
The kernel of the operator is defined as ker(T ) = {x ∈ H1 | Tx = 0}.
We say that ran(T ) is closed if and only if ran(T ?) is closed, which is equivalent to the
existence of an α > 0 such that (∀x ∈ (ker(T )⊥), Tx ≥ α‖x‖ [3, Fact 2.19].

Definition 7: [3, Example 28.14] Let the operator L ∈ B(H1,H2) be such that ran(L) is
closed, let y ∈ ran(L), let C = {x ∈ H1 | Lx = y}, and x ∈ H1. Under the assumption that
LL? is invertible, we define the projection onto the subspace C as

PC(x) = x− L?(LL?)−1(Lx− y) .

Subsequently, we introduce the notions of weak and strong convergence.
Definition 8: Let H be a Hilbert space. We say that

(
xk
)
k∈N covnerges weakly to x if ∀y ∈ H〈

y, xk
〉 k→∞−−−→ 〈y, x〉.

Definition 9: Let (xk)k∈N be a sequence in H. Then
(
xk
)
k∈N converges strongly to x if

‖xk − x‖ k→∞−−−→ 0.
The Baillon-Haddad Theorem (see [2]) shows the relationship between the Lipschitz continuity
and the cocoerciveness of the gradient of a convex differentiable function and is important for
enabling the computation of the permitted stepsize interval for AMA.

Theorem 3 (Baillon-Haddad): Let f : H → R be a convex differentiable function. The
following are equivalent:

(i) ∇f is Lipschitz continuous with constant β.
(ii) ∇f if 1/β-cocoercive, i.e., ∀x, y ∈ H,

〈∇f(y)−∇f(x), y − x〉 ≥ 1/β‖∇f(y)−∇f(x)‖2.

Finally, we are going to need the expression for the dual formulation of (3). If (3) is written
in the compact form

min
z∈Hz

{h(z) + g(Az − b)} , (P)

then the corresponding dual problem is4

min
λ∈Hσ

{h?(A?λ) + g?(−λ)− 〈λ, b〉} , (D)

where h?(·) and g?(·) denote the convex conjugates of h(·) and g(·).

4Derivation of the dual is presented in Appendix B.
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FBS and AMA
We are now ready to state the result on convergence of the forward-backward (FBS) algo-

rithm [3, Therorem 25.8].
Theorem 4: Let Ψ: H → 2H be maximally monotone, let β ∈ R++, let Φ: H → H be

β − cocoercive, let ρ ∈ (0, 2β) and set δ = min {1, β/ρ} + 1/2. Furthermore, let
(
µk
)
k∈N

be a sequence in [0, δ] such that
∑

k∈N µ
k(δ − µk) = +∞, and let λ0 ∈ H. Suppose that

zer(Ψ + Φ) 6= ∅ and set, for k = 0, 1, . . .

yk = λk − ρΦ(λk)

λk+1 = λk + µk(JρΨ(yk)− λk)

Then the following hold:
(i)
(
λk
)
k∈N converges weakly to a point in zer(Ψ + Φ).

(ii) Suppose that infk∈N µ
k > 0 and let λ∞ ∈ zer(Ψ+Φ). Then

(
Φ(λk)

)
k∈N converges strongly

to Φ(λ∞).
We will also need the following proposition on the relation between AMA and FBS.
Proposition 1: AMA, as given by Algorithm 1, is a special case of FBS when considering

the following:
(i) Ψ(λ) = −∂g?(−λ)− b, Φ(λ) = A∇h?(A?λ).

(ii) β = 1
τ‖Ā‖2 , where τ is the Lipschitz constant of ∇h? and ‖Ā‖2 = σmax(Ā).

(iii) µk = 1, ∀k ∈ N.
The proof is provided in Appendix B.

Based on Theorem 4 and Proposition 1 we get the following instrumental Lemma:
Lemma 1: The sequence Azk converges strongly to Az∞.
Proof 1: The result is proven in Appendix B.
Lemma 1 allows as to prove Theorem 1, one of our main results.

Proof of Theorem 1
Denoting ek := A(zk − z∞) ∈ Hσ, we have:

‖ek‖Hσ =

√√√√ ∞∑
i=0

w−i‖Ā(zki − z∞i )‖2
2

≥

√√√√ ∞∑
i=0

w−iσmin(Ā)2‖zki − z∞i ‖2
2

= σmin(Ā)‖zk − z∞‖Hz ,

where σmin(Ā) > 0 is the smallest singular value of Ā; the inequality holds by the assumption
that Ā is of full column rank. Thus, ‖zk − z∞‖Hz ≤ σmin(Ā)−1‖ek‖Hσ

k→∞−−−→ 0 since ek

converges strongly to zero by Lemma 1. Therefore zk
k→∞−−−→ z∞ strongly as desired.

APPENDIX B
The goal of this Appendix is to derive (D), prove Proposition 1, and Lemma 1.
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Derivation of (D)
Starting from

min
z
{h(z) + g(Az − b)} ,

we can express the Lagrange dual problem by using the slack variable σ = Az−b and the dual
variable λ as

max
λ

{
min
z,σ
{h(z) + g(σ) + 〈b−Az + σ,λ〉}

}
⇔

max
λ

{
−max

z
{〈A?λ, z〉 − h(z)} −max

σ
{〈−λ,σ〉 − g(σ)}+ 〈λ, b〉

}
.

Using Legendre-Fenchel duality (see, e.g., Chapter 7, [4]), we can rewrite as

max
λ
{−h?(A?λ)− g?(−λ) + 〈λ, b〉} ⇔

min
λ
{h?(A?λ) + g?(−λ)− 〈λ, b〉} , (12)

which is (D).

Proof of Proposition 1
For the sake of simplicity in the proof and without loss of generality, we assume that the

matrices Q,R are identities. This is a valid assumption since we can perform a change of basis
for optimization problem (1), by first diagonalizing Q and R, and then scale them such that they
become identities. Note that this is possible under Assumption 1, i.e., positive definiteness of
the matrices. This change of coordinates will result in new variables xi, ui, as well as new
matrices A,B,C,D (and consequently operators). The resulting operator Q∞ becomes the
identity operator, i.e., Q∞ = I. The operator A essentially has the same block diagonal structure
as before. The procedure can be carried out offline.

Looking at (12), one can define

Ψ(λ) = −∂g?(−λ)− b (13)

Φ(λ) = A∇h?(A?λ) . (14)

(Note that it is not immediately obvious that h? is differentiable, since the function is a restriction
of a quadratic form in a subspace, hence not necessarily smooth. We will prove in Appendix C
that smoothness indeed holds.) The two operators are maximally monotone (see Definition 2),
since Ψ(λ) is the subdifferential of a lower semicontinuous convex function, and Φ(λ) can
be written as the affine composition of h? with A?λ, with h? being again convex and lower
semicontinuous. Hence, (12) can be cast as the problem of finding the zeros of the maximally
monotone operator Φ(λ) + Ψ(λ), i.e.,

find λ ∈ H such that 0 ∈ Φ(λ) + Ψ(λ) .

Let us now take the optimality conditions for the first two steps of AMA (Algorithm 1).

The z minimization involves the computation of the convex conjugate of h(z) = (f +δD)(z),
in other words the conjugate of a quadratic function restricted to the subspace D := {z |
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Dz = d}, where D is the operator representing the dynamics equation. A way to construct the
operator D is to extend A21 from Section IV to infinity and, for the sequence d, to extend h2

with infinitely many zeros.
In order to restrict the function to the subspace, we introduce the orthogonal projection operator

PD(y) = ΠNy + πD? , y ∈ Hz (15)

where we have introduced the following:
• D† is the generalized inverse of the operator D defined as D† := D?(DD?)−1, where D?

is the adjoint operator of D, as stated in Definition 4.
• πD? := D†d.
• ΠD? := D†D is the projection operator onto the domain of D, ran(D?).
• ΠN := I − ΠD? is the projection operator onto the subspace N = ker(D), such that
DΠN = 0 holds.

Note that the projection operator PD(·) is well-defined according to Definition 7, since D is
bounded by 1+σmax([−A −B]) (using the triangle inequality) and is also of closed range since
it is a surjective operator (due to the identity blocks).

Using the above notation, the convex conjugate of h(z) is defined as

h?(p) =
1

2
〈p,ΠNp〉+ 〈p, πD?〉 − 1

2
〈πD? , πD?〉 . (16)

The formula is derived in Appendix C.
Writing the optimality condition for Step 1 of Algorithm 1, we have that:

∇h(zk+1)−A?λk = 0

A?λk = ∇h(zk+1)

zk+1 = ∇h?(A?λk)
Azk+1 = A∇h?(A?λk)
Azk+1 = Φ(λk) (17)

From the σ minimization we have:

∂g(σk+1) + λk − ρ(−σk+1 +Azk+1 − b) 3 0

∂g(σk+1) 3 (−λk + ρ(Azk+1 − σk+1 − b)

From the λk update of the algorithm we have:

∂g(σk+1) 3 −λk+1

σk+1 ∈ ∂g?(−λk+1)

−σk+1 − b ∈ −∂g?(−λk+1)− b
−σk+1 − b ∈ Ψ(λk+1) (18)

Finally, using again the λk update we have:

0 ∈ λk+1 − λk − ρ(b−Azk+1 + σk+1)

0 ∈ λk+1 − λk + ρΦ(λk) + ρΨ(λk+1)
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Hence, we get that

λk+1 + ρΨ(λk+1) = λk − ρΦ(λk)

(I + ρΨ)(λk+1) = (I − ρΦ)(λk)

From the above, we recover the FBS iteration

λk+1 = (I + ρΨ)−1(I − ρΦ)(λk) , (19)

or, using the resolvent definition (Definition 5), (19) can be written as

λk+1 = JρΨ(λk − ρΦ(λk)) ,

which is the scheme from Theorem 4 with µk = 1.
This proves points (i) and (iii) of the proposition.

It is now left to compute the β parameter as it appears in point (ii).
Note that from Theorem 3 and (13), computing the Lipschitz constant of Φ(λ) is sufficient in
order to recover the β-cocoercivity parameter.
It is known that if ∇h? is τ -Lipschitz, then A∇h?(A?λ) is τ‖A?‖2. Following the same steps as
in Theorem 1, we can prove that A? is a bounded operator, i.e., ‖A?‖ ≤ σmax(Ā). On the other
hand, we have from (16) and the fact that the orthogonal projection operator ΠN is bounded by
1 that

〈∇h?(p1)−∇h?(p2),p1 − p2〉 ≤ ‖p1 − p2‖Hz .

Consequently, Φ(λ) = A∇f ?(A?λ) is β-cocoercive with β = 1/‖Ā‖2
2.

Proof of Lemma 1
The proof follows directly from point (ii) of Theorem 4 along with the inclusion (17).

APPENDIX C
The goal of this Appendix is to derive the conjugate of h(z), as given in (16).

From [13, Proposition 1.3.2], we have that the Legendre-Fenchel conjugate of a convex
function f restricted to a subspace HD ⊂ Hz is given by

(f + δHD
)?(p) = (f ◦ PHD

)? ◦ PHD
(y)

= sup {〈p, z〉 − f(z) | z ∈ HD}
= sup {〈PHD

(p), y〉 − f(PHD
(y)) | y ∈ Hz} ,

where PHD
is the operator of orthogonal projection onto HD.

In our case, we can write that

h?(p) = sup {〈p, PD(y)〉 − f(PD(y)) | y ∈ Hz} .

The operator PD is defined in (15), and thus we have

h?(p) = sup
y

{
〈p,ΠNy + πD?〉 − 1

2
〈ΠNy + πD? ,ΠNy + πD?〉

}
.
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Since the orthogonal projection operators are self-adjoint, i.e., Π?
N = ΠN and ΠNΠN = ΠN , we

can write

h?(p) = sup
y

{
〈ΠNp, y〉+ 〈p, πD?〉

− 1

2
〈y,ΠNy〉

− 〈y,ΠNπD?〉

− 1

2
〈πD? , πD?〉

}
. (20)

The term ΠNπD? equals zero. Taking the gradient of the above expression, we have that

ΠNy = ΠNp .

A solution of the above equation is y = p. Then h?(p) can be uniquely defined by substituting
y = p in (20), since it is the optimal value of a concave function. Finally, the conjugate of h(z)
is given by

h?(p) =
1

2
〈p,ΠNp〉+ 〈p, πD?〉 − 1

2
〈πD? , πD?〉 .

VIII. CONCLUSION

We have presented a method to solve the infinite-time constrained LQR problem using the
alternating minimization method (AMA) and its accelerated version. Future work will investigate
another acceleration techniques (e.g., adaptive restarts, preconditioning), more efficient numerical
implementation, the use of other splitting techniques (e.g., ADMM), and extensions to broader
problem classes (e.g., tracking, soft constraints).
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