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Abstract

This paper addresses the problem of ad hoc microphone array calibration where only partial

information about the distances between microphones is available. We construct a matrix

consisting of the pairwise distances and propose to estimate the missing entries based on a novel

Euclidean distance matrix completion algorithm by alternative low-rank matrix completion and

projection onto the Euclidean distance space. This approach confines the recovered matrix to the

EDM cone at each iteration of the matrix completion algorithm. The theoretical guarantees of

the calibration performance are obtained considering the random and locally structured missing

entries as well as the measurement noise on the known distances. This study elucidates the links

between the calibration error and the number of microphones along with the noise level and the

ratio of missing distances. Thorough experiments on real data recordings and simulated setups

are conducted to demonstrate these theoretical insights. A significant improvement is achieved

by the proposed Euclidean distance matrix completion algorithm over the state-of-the-art

techniques for ad hoc microphone array calibration.

Keywords: Ad-hoc microphone array calibration, Diffuse noise coherence model, Cadzow

algorithm, EDM cone, Euclidean distance matrix completion.
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1. Introduction

Ad hoc microphone arrays consist of a set of sensor nodes spatially distributed over the acous-

tic field, in an ad hoc fashion. Processing of the data acquired with distributed sensors involves

challenges attributed to the issues such as asynchronous sampling and unknown microphone po-

sitions. In this paper, we assume that the recordings are synchronized and address the problem

of finding the microphone positions; this problem is referred to as microphone calibration. The

precise knowledge of the microphones positions is required for a plethora of multi-channel audio

processing applications such as distant speech recognition [1, 2, 3, 4, 5] and source localization

and separation [6, 7, 8, 9, 10].

Previous studies often consider activation of a (known) source signal in a specific configura-

tion to estimate the distances between the source and microphones. The pairwise distances are

then used to reconstruct the array geometry. This approach is referred to as self-calibration.

It may be noted that the knowledge of the source signal simplifies the estimation problems. If

the signal is known beforehand, the time of arrival (ToA) of the source signal for each individual

microphone is obtained through cross-correlation with the given signal. Hence, the negative ef-

fects of noise and reverberation are reduced as only one of the signals is noisy. On the other hand,

if the source signal is unknown, the time difference of arrival (TDoA) for a pair of microphones

is estimated through cross-correlation of the two microphone signals. Although TDoA-based

methods can alleviate the need for activating a specific source signal or prior knowledge on the

original signal, they may be more sensitive to noise and reverberation.

Sachar et al. [11] presented a set-up using a pulsed acoustic excitation generated by five

domed tweeters for measuring the transmit times and distances between speakers and micro-

phones. Raykar et al. [12] exploited a maximum length sequence or chirp signal in a distributed

computing platform. The time difference of arrival of microphone signals were computed by

cross-correlation and used for estimating the microphone locations. Since the original signal is

known, these techniques are robust to noise and reverberation.

Gaubitch et al. [13] proposed an auto-localization method exploiting the asynchronous time-

of-arrival measurements obtained from spatially distributed acoustic events. He developed an
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iterative rank reduction algorithm to correct for the time offsets without imposing any geometrical

constraint on the placement of the microphones and sound sources. These aligned time-of-arrival

measurements are then used to estimate the location of source and microphones using the bilinear

optimization approach proposed in [14]. This approach requires a minimum of five microphones

and thirteen sound source events.

In an alternative approach to alleviate the requirement for a specific source signal, Chen et

al. [15] formulated an energy-based method for maximum likelihood estimation of joint source-

sensor positions. These methods require several active sources and the pairwise distances are

used for a nonlinear optimization to extract the array geometry.

Pollefeys and Nistre proposed a method for direct joint source and microphone localization

which requires matrix factorization and solving linear equations [16]. Along that line, Kuang et

al. [17] exploited the rank constraints to determine the unknown time offset for time-of-arrival

measurements. The problem is then reduced to solving a system of polynomials for extracting

the location of source and microphones. The estimates are further refined using a non-linear least

squares optimization to find the correct position and time delays matching the measurements of

source-microphones distances. It has been shown that exploiting the structure underlying the

problem through rank and polynomial constraints enables direct recovery of source and micro-

phone positions using as few as three microphones and six sources, thus achieves a minimal case

for the self-calibration problem.

Recently, McCowan and Lincoln [18] exploited properties of a diffuse noise field model for

microphone calibration; this approach alleviates the need for activating several sources. A diffuse

noise field is characterized by noise signals that propagate with equal probability in all directions

and its coherence is defined by the sinc function of the distance of the two microphones. The

distances can thus be estimated by fitting the computed noise coherence with the sinc function in

the least squares sense. Once the pairwise distances are estimated, the classic multi-dimensional

scaling method is used to reconstruct the microphone array geometry [19]. Along similar lines,

Hennecke et al. [20] proposed a hierarchical approach where the compact sub-arrays are cali-

brated using the coherence model of a diffuse sound field. A sound signal is activated and the
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relative positions of the distributed arrays are determined using steered response power based

source localization.

In this paper, we use the coherence model of a diffuse field for pairwise distance estimation

due to its practical assumptions for distant audio applications in reverberant enclosures [7] and

no requirement for activating a specific source signal 1. Estimation of the pairwise distances

becomes unreliable as the distances between the microphones are increased. Hence, the goal of

this paper is to enable microphone calibration when some of the pairwise distances are missing.

The problem of missing data arises when the pairwise distance of only a subset of the sensors

can be measured. If a source event is activated, device malfunctioning or architectural barriers

(e.g. indoor calibration) may cause the signal of the emitted sounds to reach, or be acquired, by

only a subset of the sensors. Furthermore, some of sensors deployed far apart may fail to capture

the source energy leading to a locality constraint in distance estimation in ad hoc microphone

arrays [21]. In this paper, as an example use case, the local pairwise distances are measured based

on the diffuse sound field coherence model. However, the proposed algorithm and theoretical

results are applicable for calibration of a general ad hoc microphone array network. The approach

proposed in this paper imposes no constraint on the geometrical set up.

To address the problem of missing distances, we rely on the characteristics of a Euclidean

distance matrix. The matrix consisting of the squared pairwise distances has very low rank

(explained in Section 3.1). The low-rank property has been investigated in the past years to

devise efficient optimization schemes for matrix completion, i.e. recovering a low-rank matrix

from randomly known entries. Candès et al. [22] showed that a small random fraction of the

entries are sufficient to reconstruct a low-rank matrix exactly. Keshavan et al. proposed a matrix

completion algorithm known as OptSpace and showed its optimality [23]. Furthermore, they

proved that their algorithm is robust against noise [24]. Drineas et al. [25] exploited the low rank

property to recover the distance matrix. However, they assume a nonzero probability of obtaining

accurate distances for any pair of sensors regardless of their distance. This assumption severely

restricts the applicability of their result for the microphone array calibration problem.

1In fact, the ambient noise typical of many enclosures provides a sound field which enables microphone calibration
and no additional source signal is required to be played.
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In the present study, we first estimate the pairwise distances of the microphones in close

proximity using the coherence model of the signals of the two microphones in a diffuse noise

field using the improved method described in [26]; this approach implies a local connectivity

constraint as the pairwise distances of the further microphones can not be estimated. We con-

struct a matrix of all the pairwise distances with missing entries corresponding to the unknown

distances. We exploit the low-rank property of the square of this matrix to enable estimation of

all the pairwise distances using matrix completion approach.

The goal of this paper is to show that exploiting the combination of the rank condition of

Euclidean distance matrices (EDMs), similarity in the measured distances, and projection on the

EDM cone enables us to estimate the microphone array geometry accurately from only partial

measurements of the pairwise distances. To this end, we show that matrix completion is capable

of finding the missing entries in our scenario and provide theoretical guarantees to bound the

error for ad hoc microphone calibration considering the local connectivity of the noisy known

entries. To increase the accuracy, we incorporate the properties of EDMs in the matrix comple-

tion algorithm. We show that imposing EDM characteristics on matrix completion improves the

robustness and accuracy of extraction of the ad hoc microphone geometry.

The rest of the paper is organized as follows. In Section 2, we explain how pairwise dis-

tances of the microphones are estimated using the coherence model of the diffuse noise field as

an example use case of the proposed method. Section 3 describes the mathematical basis and the

model used for the calibration problem. The proposed Euclidean distance matrix completion al-

gorithm is elaborated in Section 4. Section 5 is dedicated to the theoretical guarantees for ad hoc

microphone array calibration based on matrix completion. The related methods are investigated

in Section 6 and the experimental analysis are presented in section 7. Finally, the conclusions are

drawn in Section 8.

2. Example Use Case

We consider N microphones located at random positions on a large circular table in a meet-

ing room with homogeneous reverberant acoustics. In the time intervals that there is no active
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speaker, diffuse noise is the dominant signal in the room. The table is located at the center of

the room, hence deviation from diffuseness near the walls can be neglected. Based on the the-

ory of the diffuse noise model, the distance of each two close microphones can be estimated by

computing the coherence of their signals Γ, and fitting a sinc function with the relation expressed

as

Γi j(ω) = sinc
(
ωdi j

c

)
, (1)

where ω is the frequency, di j is the distance between the two microphones i and j, and c is the

speed of sound [27]. Figure 1 represents an example of the coherence and the fitted sinc function.

In practice, if the distance between the sensors is large (e.g. greater than 73 cm [26, 28])

we observe deviations from the diffuse characteristics. The maximum distance that can be com-

puted by this method is assumed to be dmax. Therefore, pairwise distances greater than dmax are

missing implying a locality structure in the missing entries in the distance matrix consisting of

the pairwise distances. In addition, the computation algorithm can lead to deviation from the

model resulting in unreliable estimates of the short distances causing random missing entries in

the distance matrix; the random missing entries intend to model the distances which can not be

measured due to mismatch or violations of the underlying pairwise distance estimation model

pertained to the acoustic ambiguities. Furthermore, the known entries are noisy due to measure-

ment inaccuracies and variations of diffuseness [28].

3. Problem Formulation

3.1. Distance Matrix

Consider a distance matrix DN×N consisting of the distances between N microphones con-

structed as

D =
[
di j

]
, di j =

∥∥∥xi − x j

∥∥∥ , i, j ∈ {1, . . . ,N} , (2)

where di j is the Euclidean distance between microphones i and j located at xi and x j. Therefore,

D is a symmetric matrix and it is often full rank.
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Let XN×ζ denote the position matrix whose ith row, xT
i ∈ Rζ , is the position of microphone

i in ζ-dimensional Euclidean coordinate where microphones are deployed and .T denotes the

transpose operator. By squaring the elements of D, we construct a matrix MN×N which can be

written as

M = 1NΛ
T + Λ1N

T − 2XXT , (3)

where 1N ∈ RN is the all ones vector and Λ = (X ◦ X)1ζ ; ◦ denotes the Hadamard product. We

observe that M is the sum of three matrices of rank 1, 1 and at most ζ respectively. Therefore, the

rank of the squared distance matrix constructed of the elements Mi j =
[
d2

i j

]
is at most ζ + 2 [25].

For instance, if the microphones are located on a plane or shell of a sphere, M has rank 4 and if

they are placed on a line or circle, the rank is exactly 3. Hence, there is significant dependency

between the elements of M and exploiting this low-rank property is the core of the proposed

algorithm in this paper.

3.2. Objective

The noisy estimates of the pairwise distances are modeled as

d̃i j = di j + wi j ; D̃ = D + W , (4)

where wi j is the measurement noise for distance di j and W is the corresponding measurement

noise matrix. We introduce a noise matrix on the squared distance matrix as

Z = M̃ − M = D̃ ◦ D̃ − D ◦ D , (5)

where M̃ is the noisy squared distance matrix.

As described in Section 2, there are two kinds of missing entries. The first group consists of

the structured missing entries corresponding to the distances greater than dmax. We denote this

group by S defined as

S = {(i, j) : di j ≥ dmax} , (6)
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These structured missing entries are represented by a matrix

Ds
i j =


Di j if (i, j) ∈ S

0 otherwise
(7)

Hence, the noiseless recognized pairwise distance matrix is given by

Ds̄ = D − Ds , (8)

and we obtain the corresponding known squared distance matrix as

Ms = Ds ◦ Ds

M s̄ = Ds̄ ◦ Ds̄ = M − Ms .

(9)

Considering the noise on the known entries, we obtain

M̃ s̄ = M s̄ + Z s̄ , (10)

where Z s̄ denotes the noise on the known entries in the squared distance matrix.

To model the random missing entries, we assume that each entry is sampled with probability

p; sampling can be introduced by a projection operator on an arbitrary matrix QN×N , given by

ΨE(Q)i j =


Qi j if (i, j) ∈ E

0 otherwise
(11)

where E ⊆ [N]× [N] denotes the known entries after random erasing process and has cardinality

|E| ≈ pN2. Therefore, the final known squared distance matrix is given by

ME = ΨE(M̃ s̄) . (12)
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The goal of the matrix recovery algorithm is to find the missing entries and remove the noise,

given matrix ME .

3.3. Noise Model

The level of noise in extracting the pairwise distances, wi j in (4), increases as the distances

become larger [28]. We model this effect through

W = Υ ◦ D , (13)

where the normalized noise matrix ΥN×N consists of entries with sub-Gaussian distribution with

variance ς2, thus [24]

P(|Υi j| ≥ β) ≤ 2 e−
β2

2ς2 . (14)

Based on (10), Z s̄
i j = 2d2

i jΥi j + d2
i jΥ

2
i j; thereby Z s̄

i j is also a sub-Gaussian random variable with

a bounded constant 2ςd2
i j. The physical setup confines |Z s̄

i j| ≤ 4a2 where a is the radius of the

table2.

3.4. Evaluation Measure

Extracting the absolute position of the microphones deployed in ζ dimensional space requires

at least ζ + 1 anchor points in addition to the distance matrix. Therefore, in a scenario where the

only available information is pairwise distances, the evaluation measure must quantify the error

in estimation of the relative position of the microphones thus robust to the rigid transforma-

tions (translation, rotation and reflection). Hence, we quantify the distance between the actual

locations X and estimated locations X̂ as [29]

dist(X, X̂) =
1
N

∥∥∥JXXT J − JX̂X̂T J
∥∥∥

F ,

J = IN − (1/N)1N1T
N

(15)

2The sub-Gaussian assumption is exploited for the proof of Theorem 3 stated in Section 5. This model is not restrictive
in practice and a Gaussian noise is considered for the simulations conducted in Section 7.
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where ‖·‖F denotes the Frobenius norm and IN is the N × N identity matrix. The distance

measure stated in (15) is useful to compare the performance of different methods in terms of

microphone array geometry estimation.

Table 1 summarizes the set of important notation.

4. Euclidean Distance Matrix Completion Algorithm

The approach proposed in this paper exploits low-rank matrix completion and incorporates

the EDM properties for recovering the distance matrix.

4.1. Matrix Completion

We recall our problem of having N microphones distributed on a space of dimension ζ.

Hence, the squared distance matrix M has rank η = ζ + 2, but it is only partially known. The

objective is to recover MN×N of rank η � N from a sampling of its entries without having to as-

certain all the N2 entries, or collect N2 measurements about M. The approach proposed through

matrix completion relies on the fact that a low-rank data matrix carries much less information

than its ambient dimension implies. Intuitively, as the matrix M has (2N − η)η degrees of free-

dom3, we need to know at least ηN of the row entries as well as ηN of the column entries reduced

by η2 of the repeated values to recover the entire elements of M.

Given ME defined in (12), the matrix completion recovers an estimate of the distance matrix

M̂ through the following optimization

Minimize rank (M̂ )

subject to M̂i j = Mi j , (i, j) ∈ E
(16)

In this paper, we use the procedure of OptSpace proposed by Keshavan et al. [24] for es-

timating a matrix given the desired rank η. This algorithm is implemented in three steps: (1)

3The degrees of freedom can be estimated by counting the parameters in the singular value decomposition (the number
of degrees of freedom associated with the description of the singular values and of the left and right singular vectors).
When the rank is small, this is considerably smaller than N2 [30].
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Trimming, (2) Projection and (3) Minimizing the cost function.

In the trimming step, a row or a column is considered to be over-represented if it contains

more samples than twice the average number of non-zero samples per row or column. These

rows or columns can dominate the spectral characteristics of the observed matrix ME . Thus,

some of their entries are removed uniformly at random from the observed matrix. Let M̃E be the

resulting matrix of this trimming step.

In the projection step, we first compute the singular value decomposition (SVD) of M̃E thus

M̃E =

N∑
i=1

σi(M̃E)U.iVT
.i , (17)

where σi(·) denotes the ith singular value of the matrix and U.i and V.i designate the ith column of

the corresponding SVD matrices. Then, the rank-η projection, Pη(·) returns the matrix obtained

by setting to 0 all but the η largest singular values as

Pη(M̃E) = (N2/|E|)
η∑

i=1

σi(M̃E)U.iVT
.i = U0S0VT

0 . (18)

Starting from the initial guess provided by the rank-η projection Pη(M̃E), U = U0 , V = V0 and

S = S0, the final step solves a minimization problem stated as follows: Given U ∈ RN×η,V ∈

RN×η, find

F(U,V) = min
S∈Rη×η

F (U,V,S) ,

F (U,V,S) =
1
2

∑
(i, j)∈E

(Mi j − (USVT )i, j)2
(19)

F(U,V) is determined by minimizing the quadratic functionF over S, U, V estimated by gradient

decent with line search in each iteration. This last step tries to get us as close as possible to the

correct low-rank matrix M.
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4.2. Cadzow Projection to the Set of EDM Properties

The classic matrix completion algorithm as described above recovers a low-rank matrix with

elements as close as possible to the known entries. However, the recovered matrix does not nec-

essarily correspond to a Euclidean distance matrix; for example, EDMs are symmetric with zero

diagonal elements. These properties are not incorporated in the matrix completion algorithm.

Hence, we modify the aforementioned procedure to have, as output, matrices that are closer to

EDMs [26].

To this end, we apply a Cadzow-like method. The Cadzow algorithm [31] (also known as

Papoulis-Gershberg) is a method for finding a signal which satisfies a composite of properties

by iteratively projecting the signal into the property sets. We modify the matrix completion

algorithm by inserting an extra step at each iteration. In the classic version of this algorithm a

simple rank-η approximation is used as the starting point for the iterations using gradient descent

on (19). After each iteration of the gradient descent, we apply the transformation Pc : RN×N 7−→

SN
h on the obtained matrix where SN

h is the space of symmetric, positive hollow matrices, to make

sure that the output satisfies the following properties

M̂ ∈ SN
h ⇐⇒



di j = 0⇔ xi = x j

di j > 0, i , j

di j = d ji

(20)

for i, j ∈ [N]; nonnegativity and symmetry are achieved by setting all the negative elements to

zero and averaging the symmetric elements.

4.3. Matrix Completion with Projection onto the EDM cone

In section 4.2, three characteristics of EDMs are employed through the Cadzow projection

to reduce the reconstruction error of the distance matrix. In order to increase the accuracy even

further, we propose to project to the cone of Euclidean distance matrix, EDMN , at each iteration

of the algorithm. In other words, after one step of the gradient descent method on the Cartesian

product of two Grassmannian manifolds G, we apply a projection, Pe : RN×N 7−→ EDMN to
12



decrease the distance between the estimated matrix and the EDM cone. This is visualized in

Figure 2. Note that the illustration of the cone and the manifold are not mathematically accurate

and only serve as visualizations (The dimension of the cone and the manifold are too large to be

illustrated graphically).

The projected matrix must satisfy the following EDM properties [32]

M̂ ∈ EDMN
⇐⇒



−zT M̂z ≥ 0

1T z = 0

(∀‖z‖ = 1)

M̂ ∈ SN
h

(21)

The EDM properties include the triangle inequality, thus

di j ≤ dik + dk j, i , j , k , (22)

as well as the relative-angle inequality; ∀i, j, l , k ∈ [N], i < j < l, and for N ≥ 4 distinct points

{xk}, the inequalities

cos(τ jkl+τlk j) ≤ cos τik j ≤ cos(τikl − τlk j)

0 ≤ τikl, τlk j, τik j ≤ π

(23)

where τik j denotes the angle between vectors at xk and it is satisfied at each position xk.

The projection Pe must map the output of matrix completion to the closest matrix on EDMN

with the properties listed in (21). The projection onto SN
h is achieved by Pc implemented via

Cadzow; thereby, we define (Uc,Vc,Sc) = Pc(Uk+1/2,Vk+1/2,Sk+1/2). To achieve the full EDM

properties, we search in the EDM cone using a cost function defined as

H(X) =
∥∥∥1NΛ

T + Λ1N
T − 2XXT − UcScVT

c

∥∥∥2
F . (24)
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To minimize the cost function, we start from the vertex of the EDMN thus assume that all

microphones are located in the origin of the space Rζ . Denoting the location of microphone i

with xi = [xi1, ..., xiζ]T ,H(X) is a polynomial function of xi1 of degree 4. The minimum ofH(X)

with respect to xi1 can be computed by equating the partial derivation of equation (24) to zero to

obtain the new estimates, thus

X̂ = arg min
X
H(X)

(Uk+1,Vk+1,Sk+1) = SVD (1NΛ̂
T + Λ̂1N

T − 2X̂X̂T )

(25)

where Λ̂ = (X̂ ◦ X̂)1ζ . The stopping criteria is satisfied when the new estimates differ from the

old ones by less than a threshold.

The modified iterations can be summarized in two steps:

• iteration k + 1/2:

Uk+1/2 = Uk + ϑ
∂F(Uk,Vk)

∂U

Vk+1/2 = Vk + ϑ
∂F(Uk,Vk)

∂V

Sk+1/2 = arg min
S
F (Uk,Vk,S)

(26)

• iteration k + 1:

(Uk+1,Vk+1,Sk+1) = Pe(Uk+1/2,Vk+1/2,Sk+1/2) (27)

where ϑ is the step-size found using line search.

Once the distance matrix is recovered by either classic or Cadzow matrix completion al-

gorithms, MDS is used to find the coordinates of the microphones, X̂, whereas the proposed

Euclidean distance matrix completion algorithm directly yields the coordinates.
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5. Theoretical Guarantees for Microphone Calibration

In this section, we derive the error bounds on the reconstruction of the positions of N micro-

phones distributed randomly on a circular table of radius a using the matrix completion algorithm

and considering the locality constraint on the known entries, i.e. di j ≤ dmax, as well as the noise

model with the standard deviation ς di j as stated in (14). Based on the following theorem we

guarantee that there is an upper bound on the calibration error which decreases by the number of

microphones.

Theorem 1. There exist constants C1 and C2, such that the output X̂ satisfies

dist(X, X̂) ≤ C1
a2 log2 N

pN
+ C2ς

d2
max
√

pN
(28)

with probability greater than 1 − N−3, provided that the right-hand side is less than ση(M)/N.

5.1. Proof of Theorem 1

The squared distance matrix M ∈ RN×N with rank−η, singular values σk(M), k ∈ [η] and

singular value decomposition UΣUT is (µ1, µ2)-incoherent if the following conditions hold.

A1. For all i ∈ [N]:
∑η

k=1 U2
ik ≤ η µ1 .

A2. For all i, j ∈ [N]:
∣∣∣ ∑η

k=1 Uik(σk(M)/σ1(M))U jk

∣∣∣ ≤ √η µ2 .

where without loss of generality, UT U = NI.

For a (µ1, µ2)-incoherent matrix M, (29) is correct with probability greater than 1 − N−3;

cf. [24]-Theorem 1.2.

1
N
‖M − M̂‖F ≤

C′1 ‖ΨE(Ms)‖2 + C′2
∥∥∥ΨE(Z s̄)

∥∥∥
2

p N
, (29)

provided that

|E| ≥ C′1Nκ2
η(M) max

{
µ1η log N ; µ2

1η
2κ4
η(M) ; µ2

2η
2κ4
η(M)

}
, (30)
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and
C′1 ‖ΨE(Ms)‖2 + C′2

∥∥∥ΨE(Z s̄)
∥∥∥

2

p N
≤ ση(M)/N , (31)

where the condition number κη(M) = σ1(M)/ση(M).

To prove Theorem 1, in the first step, we show the correctness of the upper bound stated in

(28) based on the following Theorems 2 and 3. In the second step, conditions (30) and (31) are

shown to hold along with the (µ1, µ2)-incoherence property.

Theorem 2. There exists a constant C′′1 , such that with probability greater than 1 − N−3,

‖ΨE(Ms)‖2 ≤ C′′1 a2 log2 N . (32)

The proof of this theorem is explained in Appendix 1.

Theorem 3. There exists a constant C′′2 , such that with probability greater than 1 − N−3,

∥∥∥ΨE(Z s̄)
∥∥∥ ≤ C′′2 d2

maxς
√

pN . (33)

The proof of this theorem is explained in Appendix 2.

On the other hand, the following condition holds for any arbitrary network of micro-

phones [33]

dist(X, X̂) ≤
1
N
||M − M̂||F . (34)

Therefore, based on Theorem 2, Theorem 3 and the relations (29) and (34), the upper bound

stated in (28) is correct where C1 = C′1C′′1 and C2 = C′2C′′2 ; it is enough to investigate conditions

(30) and (31) and (µ1, µ2)-incoherency of M to prove Theorem 1.

To show the inequality stated in (30), we can equivalently show that

N p ≥ C′1µ
2η2κ6

η(M) log N , (35)
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where µ = max(µ1, µ2). In order to show that (35) holds with high probability for N ≥ C log N/p

and some constant C, we show that κη(M) and µ are bounded with high probability independent

of N.

The squared distance between xi and x j ∈ Rζ is given by

Mi j = ρ2
i + ρ2

j − 2xT
i x j , (36)

where ρi is the distance of microphone i from the center of the table. The squared distance matrix

can be expressed as

M = ASAT , (37)

where for a planar deployment of microphones, i.e., ζ = 2, η = 4, and xT
i = [xi, yi] ∈ R2, we

have

A =


a/2 x1 y1 −a2/4 + ρ2

1
...

...
...

...

a/2 xN yN −a2/4 + ρ2
N

 , (38)

and

S =



2 0 0 2/a

0 −2 0 0

0 0 −2 0

2/a 0 0 0


. (39)

Since S is nondefective, using eigendecomposition, there is a non-singular matrixW and diag-

onal matrix Γ such that

S =WΓW−1 , (40)

where

Γ = diag

−2,−2,
a +
√

4 + a2

a
,

a −
√

4 + a2

a

 . (41)
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The largest and smallest singular values of S are σ1(S) = a+
√

4+a2

a and σ4(S) = min
(
2,
√

4+a2−a
a

)
respectively. Based on (37), we have

σ1(M) ≤ σ1(S)σ1(AAT ) , (42)

σ4(M) ≥ σ4(S)σ4(AAT ) . (43)

Therefore, to bound κ4(M) = σ1(M)/σ4(M), we need to derive the bound for σ1(AAT ) and

σ4(AAT ). Assuming a uniform distribution of the microphones on the circular table, we have

the following distribution for ρ

Pρ(ρ) =
2ρ
a2 for 0 ≤ ρ ≤ a . (44)

Therefore, the expectation of the matrix AT A is

E[AT A] =



Na2/4 0 0 Na3/8

0 Na4/4 0 0

0 0 Na4/4 0

Na3/8 0 0 7Na4/48


. (45)

Hence, the largest and smallest singular values of E[AT A] are Nσmax(a) and

Nσmin(a) respectively with σmax(a) and σmin(a) independent of N. Moreover, σi(·) is a

Lipschitz continuous function of its arguments and based on the Chernoff bound [34], we get

P(σ1(AAT ) > 2Nσmax(a)) ≤ e−C
′N , (46)

P(σ1(AAT ) < (1/2)Nσmax(a)) ≤ e−C
′N , (47)

P(σ4(AAT ) < (1/2)Nσmin(a)) ≤ e−C
′N , (48)
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for a constant C′. Hence, with high probability, based on relations (42), (43), (46) and (48), we

have

κ4(M) ≤
4σmax(a)σ1(S)
σmin(a)σ4(S)

= fκ4 (a) . (49)

This bound is independent of N.

In the next step, we have to bound µ1 and µ2. The rank of matrix A is η, therefore there

are matrices B ∈ Rη×η and V ∈ RN×η such that A = VBT and VT V = NI. Given M = UΣUT

and (37), we have Σ = QT BTSBQ and U = VQ for an orthogonal matrix Q. To show the

incoherence propertyA1, we show that

‖Vi.‖
2 ≤ η µ1 ∀ i ∈ [N] , (50)

where Vi. denotes the transpose of ith row of the corresponding matrix. For η = 4, since Vi. =

B−1 Ai., we have ‖Vi.‖
2 ≤ σ4(B)−2‖Ai.‖

2 and σ4(A) =
√

N σ4(B), therefore

‖Vi.‖
2 ≤ σ4(A)−2‖Ai.‖

2 N . (51)

Moreover, ‖Ai.‖
2 = a2/4 + ρ2

i + (−a2/4 + ρ2
i )2 ≤ 5a2/4 + 9a4/16. Defining

fµ1 (a) =
5a2/2 + 9a4/8

σmin(a)
, (52)

and based on (48) and (51), with high probability we have

‖Ui.‖
2 ≤ fµ1 (a) ∀ i ∈ [N] . (53)

Therefore, the incoherence propertyA1 for µ1 = fµ1 (a)/η is correct; that is independent of N.

To prove the incoherence property A2, it is enough to prove that
∣∣∣Mi j/σ1(M)

∣∣∣ ≤ √η µ2/N

for all i, j ∈ [N]. The maximum value of Mi j is 4a2 and based on (43) and (48) we have

σ1(M) ≥ σ4(M) ≥
1
2

N σmin(a)σ4(S) , (54)
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Defining fµ2 (a) = 8a2/σmin(a)σ4(S), we have

∣∣∣Mi j/σ1(M)
∣∣∣ ≤ fµ2 (a)

N
∀ i, j ∈ [N] . (55)

Therefore, the incoherence property A2 for µ2 = fµ2 (a)/
√
η is correct; that is independent of N.

Since κ4(M), µ1 and µ2 are bounded independent of N, matrix M is (µ1, µ2)-incoherent and the

inequalities (30) and (35) are correct.

Further, (31) holds with high probability, if the right-hand side of (28) is less than

C3 σmin(a)σ4(S), since based on (48), ση(M)
N ≥ 1

2σmin(a)σ4(S). This finishes the proof of Theo-

rem 1.

�

The theoretical analysis elaborated in this section, elucidates a link between the performance

of microphone array calibration and the number of microphones, noise level and the ratio of miss-

ing pairwise distances. In Section 7, thorough evaluations are conducted that demonstrate these

theoretical insights. Furthermore, The theoretical error bounds of ad hoc microphone calibration

established above corresponds to the classic matrix completion algorithm. We will extend the

mathematical results to the completion of Euclidean distance matrices incorporating the Cadzow

and EDM projections through the experiments. As we will see in Section 7, this bound is not

tight for the Cadzow projection and the Euclidean distance matrix completion algorithm as we

achieve better results than matrix completion for microphone array calibration.

6. Related Methods

The objective is to extract the relative (up to a rigid transformation) microphone positions

xi, i ∈ {1, . . . ,N} from the measurements of pairwise distances. Some of the state-of-the-art

methods to achieve this goal are (1) Multi-Dimensional Scaling (MDS) [35], (2) Semi-Definite

Programming (SDP) [36] and S-Stress [29] discussed briefly in the following sections. We refer

the reader to the references for further details.
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6.1. Classic Multi-Dimensional Scaling Algorithm

MDS refers to a set of statistical techniques used in finding the configuration of objects in

a low dimensional space such that the measured pairwise distances are preserved [19]. Given

a distance matrix, finding the relative microphone positions is achieved by MDSLocalize [29].

In the ideal case where matrix M is complete and noiseless, this algorithm outputs the relative

positions of the microphones. At the first step, a double centering transformation is applied to

M to subtract the row and column means of the distance matrix via Ξ(M) = −1
2 J M J where

J = IN − 1/N1N1T
N . The ζ largest eigenvalues and the corresponding eigenvectors of Ξ(M)

denoted byΠ+ and U+ are calculated and the microphone positions are obtained as X = U+

√
Π+.

In a real scenario of missing distances, a modification called MDS-MAP [35] computes the

shortest paths between all pairs of nodes in the region of consideration. The shortest path between

microphones i and j is defined as the path between two nodes such that the sum of the estimated

distance measures of its constituent edges is minimized. By approximating the missing distances

with the shortest path and constructing the distance matrix, classical MDS is applied to estimate

the microphone array geometry.

6.2. Semidefinite Programming

Another efficient method that can be used for calibration is the semidefinite programming

approach formulated as

X̂ = arg min
X

∑
(i, j)∈E

wi j

∣∣∣∣∥∥∥xi − x j

∥∥∥2
− d̃2

i j

∣∣∣∣ , (56)

where wi j shows the reliability measure on the estimated pairwise distances. The basis vectors

in Euclidean space RN are denoted by {u1, u2, · · · , uN}. The optimization expressed in equation

(56) is not convex but can be relaxed as a convex minimization via

min
X,Y

∑
(i, j)∈E

wi j

∣∣∣(ui − u j)T [Y, X; XT , Iζ](ui − u j)T − d̃2
i j

∣∣∣
subject to [Y, X; XT , Iζ] � 0,

∥∥∥XT 1N

∥∥∥ = 0

(57)
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where YN×N is a positive semidefinite matrix and � is a generalized matrix inequality on the

positive semidefinite cone [37]. To further increase the accuracy, a gradient decent is applied on

the output of SDP minimization [36].

6.3. Algebraic S-Stress Method

The s-stress method for calibration extracts the topology of the ad hoc network by optimizing

the cost function stated as

X̂ = arg min
X

∑
(i, j)∈E

wi j

(∥∥∥xi − x j

∥∥∥2
− d̃2

i j

)2
. (58)

The reliability measure wi j controls the least square regression stated in equation (58) which can

be set according to the measure of d̃i j. If wi j = d̃−2
i j , we have elastic scaling that gives importance

to large and small distances. If wi j = 1, large distances are given more importance than the small

distances. In general, incorporation of wi j = d̃αi j, α ∈ {...,−2,−1, 0, 1, 2, ...} yields different loss

functions and depending on the structure of the problem, one of them may work better than the

other [38].

7. Experimental Analysis

7.1. A-priori Expectations

The simplest method that we discussed is the classical MDS algorithm. This method assumes

that all the pairwise distances are known and in the case of missing entries and noise, it does

not minimize a meaningful utility function. An extension of this method is MDS-MAP which

replaces the missing distances with the shortest path. In many scenarios, this is considered as a

coarse approximation of the true distances.

The SDP-based method on the other hand is known to perform fairly well with missing

distance information. Together with its final gradient descent phase, has been shown to find good

estimates of the location. However, since each distance information translates into a constraint in

the semi-definite program, this approach is not scalable and becomes intractable for large sensor

networks.
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The alternative approach is to minimize the non-convex s-stress function. Although it is

known to perform well in many conditions, in the case of missing distances, one cannot eliminate

the possibility of falling into local minima using this approach.

The approach that we proposed in this paper exploits a matrix completion algorithm to re-

cover the missing distances considering the low-rank as well as Euclidean properties of the dis-

tance matrix. The classic matrix completion does not take into account the EDM properties. By

integrating the Cadzow projection, the estimated matrix has partial EDM properties, and hence

we expect better reconstruction results. Further, by incorporating the full EDM structure, we

achieve a Euclidean distance matrix completion algorithm and expect more fidelity in the recon-

struction performance. In this section, we present thorough evaluation of ad hoc microphone

array calibration on simulated setups and real data recordings.

7.2. Simulated Data Evaluations

The simulated experiments are conducted to evaluate the performance of the proposed

method and compare and contrast it against the state-of-the-art alternative approaches in dif-

ferent scenarios with varying number of microphones, magnitude of the pairwise distance mea-

surements errors, percentage of missing distances as well as jitter.

The presented evaluation relies on a local connectivity assumption in pairwise distance mea-

surements. We do not assume a particular (e.g. diffuse noise) model for pairwise distance esti-

mation and the conclusions of this section hold for a general ad hoc array calibration framework

where the pairwise distances may be provided by any other means meeting the local connectivity

assumption.

7.2.1. Performance for Different Numbers of Microphones

In this section, we present the performance of ad hoc array calibration when the number of

microphones varies from 15 to 200. The microphones are uniformly distributed on a disc of

diameter 19 m. The maximum pairwise distance that can be measured is 7.5 m. In addition, 5%

of the distances are assumed to be randomly missing. Hence, the total missing entries vary from
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42% to 60%. The standard deviation of the noise on measured distances (expressed through (13)-

(14)) between two microphones i and j is ς di j where ς = 0.0167; the dependency of the noise

level on the distance is due to the limitation of the diffuse noise coherence model for pairwise

distance estimation as elaborated in [28].

The results for each number of microphones are averaged over 500 random configurations.

The calibration error is quantified using the metric defined in (15). Furthermore, the absolute

position of the microphones is estimated using the nonlinear optimization method [39] and the

mean position error as defined in (59) over all configurations is evaluated. Figures 3 and 4

illustrate the results; the error bars are shown for one standard deviation from the mean estimates.

The Cramér rao bound (CRB) is quantified using the method elaborated in [12, 14].

The results show that the performance improves as the number of microphones increases.

This observation is inline with the theoretical analysis provided in Section 5. The best results are

achieved by the proposed E-MC2 algorithm as it confines the search space to the Euclidean space

through iterative EDM projections. We can see that for the number of microphones above 45,

the error in position estimation is less than 6.2 cm and it reduces to 2.2 cm for 200 microphones.

Although the mathematical proof of the unbiasedness of the proposed estimator is not achieved

in this paper, we empirically found no evidence of bias. Therefore, CRB provides a reasonable

benchmark for our evaluation.

7.2.2. Performance for Different Noise Levels

To evaluate the effect of noise on calibration performance, similar (500) configurations of

45 microphones as generated in Section 7.2.1 are simulated. The level of white Gaussian noise

added to the measured pairwise distance di j are varying as ς di j where ς = {0.0056, . . . , 0.1}.

Figures 5 and 6 illustrate the results. We can see that the performance improves as the noise level

gets smaller.

Based on the theoretical analysis of Section 5 as expressed in (28), a linear relationship

between the calibration error of matrix completion and ς is expected. The empirical observations

are in line with this theoretical insight. As depicted in Figure 5, for ς < 0.0167, the second term

in (28) is getting too small so the first term becomes dominant as the slope of the error reduction
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is reduced.

7.2.3. Performance for Different Missing Ratios

To study the sensitivity of the proposed algorithm to different levels of missing distances, a

cubic room of unit dimensions (1 × 1 × 1 m3) is simulated and 60 microphones are distributed

uniformly at random positions. 300 random configurations are generated and the average mean

position error is evaluated. As an alternative approach, the self-calibration method proposed

by Crocco et al. [14] is implemented considering 30 sources and 30 sensors (thus 60 nodes in

total). It may be noted that the number of nodes for calibration is equal for both approaches.

The distances between all source and microphone pairs are known. Some of the distances are

assumed to be missing at random. In addition, white Gaussian noise with standard deviation 0.02

m is added to the known distances. The simulated scenario mimics the evaluation setups of [14]

and requires fixing the position of two microphones to derive the network position.

Figure 7 illustrates the errors in position estimation for different ratios of missing distances.

We can see that up to 50% missing are effectively handled by the proposed algorithm. The

rigorous analysis provided in Section 5 requires that N p � logN for the calibration error to be

bounded; when the ratio of random missing entries is 60% (i.e. p = 0.4), we have N p/logN =

5.85 (violating the condition �) so the error in calibration is expected to increase significantly.

The theoretical analysis is confirmed by this empirical observation.

7.2.4. Effect of Jitter on Calibration Performance

The study presented in this paper assumes that the microphones are synchronized prior to

calibration. If a pilot signal at sampling frequency f =16 kHz is used for synchronization, the

effect of jitter can be modeled by a uniform error in distance measures as [−c
2 f ,

c
2 f ] where c is the

speed of sound and set to 340 m/s. Hence, we can model the jitter as an additional uniform noise

on the distance measures within the range of [−1.065, 1.065] cm.

The effect of jitter is evaluated for different levels of noise on the distances. The number of

microphones is 45 distributed on a disc of diameter 19 m. 60% of distances are missing consisting

of 5% random and 55% structured. The experiments are repeated for 300 random configurations

25



and the average calibration error and position estimation error are quantified. Figure 8 illustrates

the results. We can see that the effect of jitter on position estimation increases from 3 mm to

8 mm and its effect on calibration error increases from 0.01 m2 to 0.09 m2 as the distances are

measured more accurately (smaller ς).

7.2.5. Distributed Array Calibration

To further study the performance of the proposed approach for distributed array calibration,

two scenarios are simulated. In the first scenario, a room of dimensions 11×8×5 m3 is considered

which yields dmax = 101 cm [28] 4. The reverberation time is about 430 ms. Two sets of 9-

channel circular uniform microphone array of diameter 20 cm are simulated where the center of

both compact arrays are 1 m apart. In the second scenario, a room of dimensions 8×5.5×3.5 m3

is considered which yields dmax = 73 cm [26]. The reverberation time is about 300 ms. A circular

9-channel microphone array of diameter 20 cm located inside another 6-channel circular array

of diameter 70 cm is simulated.

The standard deviation of the noise on distance measures is ς di j where ς = 0.06. There are

no random missing entries and all of the missing distances are due to the limitation of the diffuse

noise model in distance estimation thus around 25% of the distances are missing in the first

scenario (18-mic) and around 30% of the distances are missing in the second scenario (15-mic).

The results are listed in Table 2. We can see that the positions are estimated with less than 1.6

cm error. Furthermore, we repeated the same experiment 25 times and averaged the estimates of

the positions. We can see that the error after averaging is noticeably reduced.

7.3. Real Data Evaluation

The real data recordings are collected at Idiap’s smart meeting room [40].

4The maximum distance that can be estimated using the diffuse noise model depends on the size of the room and
acoustic parameters. A linear relation between the maximum measurable distance and the room dimension has been
shown rigorously [28]. Nevertheless, application of the diffuse noise method for pairwise distance estimation is just an
example use case of the proposed algorithm and many alternative approaches can be exploited.
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7.3.1. Recording Set-up

We consider a scenario in which eleven microphones are located on a planar area: Eight of

them are located on a circle with diameter 20 cm and one microphone is at the center. There are

two additional microphones at 70 cm distance from the central microphone. The microphones are

Sennheiser MKE-2-5-C omnidirectional miniature lapel type. Although the recording setup for

collecting data is regular, the uniform geometry of the microphone array provides no particular

constraint. Hence, without loss of generality, we rely on this available setup to evaluate the

performance of the proposed approach.

The floor of the room is covered with carpet and surrounded with plaster walls having two big

windows. The enclosure is a 8 × 5.5 × 3.5 m3 rectangular room and it is moderately reverberant;

the reverberation time is about 300 ms. It contains a centrally located 4.8 × 1.2 m2 rectangular

table. This scenario mimics the MONC database [40]. The sampling rate is 48 kHz while the

processing applied for microphone calibration is based on down-sampled signal of rate 16 kHz

to reduce the computational cost of pairwise distance estimation.

7.3.2. Pairwise Distance Estimation

In order to estimate the pairwise distances, we take two microphone signals of length 2.14

s, frame them into short windows of length 1024 samples using a Tukey function (parameter =

0.25) and apply Fourier transform. For each frame, we compute the coherence function. The

average of the coherence functions over 1000 frames are computed and used for estimation of

the pairwise distance by fitting a sinc function as stated in (1) using the algorithm described

in [26]. This algorithm is an improved version of the distance estimation using diffuse noise

coherence model which enables a reasonable estimate up to 73 cm. We empirically confirm that

the distances beyond that are not reliably estimated so they are regarded as missing. Thereby, the

following entries of the Euclidean distance matrix are missing: d10,11, d1,10, d7,10, d8,10, d5,11, d6,11,

d7,11 (see Figure 9).
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7.3.3. Geometry Estimation

In the scenario described above, microphone calibration is achieved in two steps. First, all

methods are used to find the nine close microphones in order to evaluate them for geometry

estimation when we have all distances. The geometry of these microphones is fixed and used

to calibrate the rest of the network. Figure 11 demonstrates the results of MDS-MAP, SDP, s-

stress and the proposed Euclidean distance matrix completion algorithm. The calibration error

is quantified based on (15). The best results are achieved by the proposed algorithm with error

5.85 cm2. The second place belongs to s-stress with error 6.14 cm2 followed by MDS-MAP and

SDP with errors 8.13 cm2 and 8.63 cm2 respectively.

Figure 12 provides a comparative illustration of the results of matrix completion (MC),

MC+Cadzow (MC2) and the proposed Euclidean distance matrix completion (E-MC2) algo-

rithm. We can see that MC2 yields better result with error 7.68 compared to MDS-MAP, SDP

and MC, but worse than s-stress. The proposed E-MC2 algorithm achieves the best performance.

The scenario using eleven channels of microphones addresses the problem of having partial

estimates of the distances for calibration of a microphone array. The experiments show that the

proposed method offers the best estimation of the geometry as illustrated in Figure 9 and 10

with an error of 49.6 cm2. As we can see, the proposed Euclidean distance matrix completion

algorithm achieves less than half the error of the best state-of-the-art alternative.

The worst result belongs to MDS-MAP with error 434.4 cm2 because the shortest path is a

poor estimation of missing entries. The s-stress and SDP search the Euclidean space correspond-

ing to the feasible positions hence, their performance are more reasonable with errors 141 cm2

and 125 cm2. The advantage of being constrained to a physically possible search space or close

to it is considered in extensions of matrix completion in MC+Cadzow (MC2) and the proposed

method (E-MC2) and achieves the best performance. These experimental evaluation confirm the

effectiveness of the proposed algorithm and demonstrate the hypothesis that incorporating the

EDM properties in matrix completion algorithm enables calibration of microphone arrays from

partial measurements of the pairwise distances.

The theoretical analysis provided in Section 5 elucidates a link between the calibration er-
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ror and the number of microphones. To demonstrate this relation, a calibration of a 8-channel

circular array when the distances are all measured is performed. In addition, an extra micro-

phone (#12) is also included which is located with a symmetry to microphone 10. Hence,

d12,11, d10,12, d3,12, d4,12, d5,12 are also missing. The calibration errors are listed in Table 3.

Furthermore, in addition to the calibration error expressed in (15), we apply the nonlinear

optimization proposed in [39] to find the best match between X̂ and X by considering various

rigid transformations and quantify the position error as

1
N

N∑
n=1

‖x̂n − xn‖2 . (59)

The position errors are listed in Table 4. The results show that considering further microphone

improves the calibration performance which is in line with the theoretical analysis of Section 5.

8. Conclusions

We proposed a Euclidean distance matrix completion algorithm for calibration of ad hoc mi-

crophone arrays from partially known pairwise distances. This approach exploits the low-rank

property of the distance matrix and recovers the missing entries based on a matrix completion

optimization scheme. To incorporate the properties of a Euclidean distance matrix, the estimated

matrix at each iteration of the matrix completion is projected onto the EDM cone. Furthermore,

we derived the theoretical bounds on the calibration error using matrix completion algorithm.

The experimental evaluations conducted on real data recordings demonstrate that the proposed

method outperforms the state-of-the-art techniques for ad hoc array calibration. This study con-

firmed that exploiting the combination of the rank condition of EDMs, similarity in the measured

distances, and iterative projection on the EDM cone leads to the best position reconstruction re-

sults. The proposed algorithm and the theoretical guarantees are applicable to the general frame-

work of ad hoc sensor networks calibration.
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Appendix 1. Proof of Theorem 2

The goal is to find the bound of the norm of the squared distance matrix with missing entries

according to structures indicated by E and S . Based on (6) and (11), we define matrix E as

Ei j =


1 if (i, j) ∈ E ∩ S

0 otherwise
(60)

Both E and S are symmetric matrices, hence E is also symmetric. Due to the physical setup, we

know that ΨE(M)i j ≤ 4a2 for all i, j ∈ [N] and from the norm definition we have

‖ΨE(Ms)‖2 ≤ 4a2 max
‖h‖=‖~~~‖=1

∑
i, j

|hi| |~ j| Ei j = 4a2‖E‖2 ,

where h = [h1, h2, ..., hN]T and ~~~ = [~1, ~2, ..., ~N]T are right and left eigenvectors of matrix E. In

order to bound ‖E‖2, we first define a binomial random variable vector ν = [ν1, ν2, ..., νN]T where

νi =
∑
j∈[N]

|Ei j| . (61)

Based on the Gershgorin circle theorem we have ‖E‖2 ≤ ‖ν‖∞. Each entry in matrix E is one

with probability p q where q is the probability that the entry is included in structured missing

entries or

q = P{|xi − x j| ≥ dmax} . (62)

Hence, we have

E[νi] = N pq , (63)

For bounding E[νi], it is necessary to bound q. Figure 13.I depicts the lowest probability of

missing distances if the microphone location with respect to the edge of the circular table has

a distance more than dmax and Figure 13.II depicts the highest probability if the microphone is

located right at the edge of the table.

The maximum of dmax is a. We denote the upper bound and lower bound with qmax(a, dmax)
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and qmin(a, dmax) respectively, therefore

qmin(a, dmax) ≤ q ≤ qmax(a, dmax) . (64)

As illustrated in Figure 13. qmin(a, dmax) = max{1 −
( dmax

a
)2
, 0} and qmax(a, dmax) = 1 − B

πa2 where

B is the intersection area between the two circles. By computing B, we obtain

qmax = 1 −
2γ
π

+
1

2π
sin 4γ +

2ξ2

π
[2γ + sin 2γ] − 2ξ2 , (65)

where ξ = dmax/2a and γ = sin−1 ξ. Based on (63) and (64) we have

N pqmin(a, dmax) ≤ E[νi] ≤ N pqmax(a, dmax) . (66)

By applying the Chernoff bound to νi we have

P
(
νi > (1 + ε)E[νi]

)
≤ 2−(1+ε)E[νi] , (67)

where ε is an arbitrary positive constant. Therefore, based on (66) we have

P
(
νi > (1 + ε)N p qmax

)
≤ 2−(1+ε)N p qmin . (68)

By applying the union bound we have

P
(

max
i∈[N]

νi > (1 + ε)N p qmax
)
≤ 2−(1+ε)N p qmin+log2 N . (69)

We assume that qmin and qmax grow as O( log2 N
N ); this assumption indicates that the ratio of the

structured missing entries with respect to N decreases as N grows5 or in other words, dmax in-

5This assumption can be dropped to achieve a tighter bound, but it increases the complexity of the proof.
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creases as the size of the network N grows. Therefore, we have

P
(

max
i∈[N]

νi > (1 + ε)N p qmax
)
≤ N−θ , (70)

where the positive parameter θ = (1 + ε)p − 1; by choosing ε ≥ 4/p − 1, with probability greater

than 1 − N−3, we have

‖ΨE(Ms)‖2 ≤ 4a2 max
i∈[N]

νi , (71)

and based on (70)

‖ΨE(Ms)‖2 ≤ 4a2(1 + θ)qmaxN . (72)

Therefore, we achieve

‖ΨE(Ms)‖2 ≤ C′′1 a2 log2 N . (73)

�

Appendix 2. Proof of Theorem 3

Based on the noise model described in Section 3.3, Z s̄
i j is obtained as

Z s̄
i j = d2

i jΥi j

(
2 + Υi j

)
≈ 2d2

i jΥi j, (74)

where di j ≤ dmax and based on concentration inequality for 1-Lipschitz function ‖.‖ on i.i.d

random variables ΨE(Z s̄) with zero mean and sub-Gaussian tail with parameter 4ς2d4
max(14),

(74) [41]

P
(∣∣∣∣ ∥∥∥ΨE(Z s̄)

∥∥∥ − E
(∥∥∥ΨE(Z s̄)

∥∥∥) ∣∣∣∣ > t
)
≤ exp

(
−t2

8 ς2d4
max

)
. (75)

By setting t = 2d2
max

√
6ς2 log N we have

∥∥∥ΨE(Z s̄)
∥∥∥ ≤ E

(∥∥∥ΨE(Z s̄)
∥∥∥) + 2d2

max

√
6ς2 log N (76)

with probability bigger than 1−N−3. So we need to extract bound for expectation of ΨE(Z s̄) that
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has symmetric random enties. By using Theorem 1.1 from [42],

E
(∥∥∥ΨE(Z s̄)

∥∥∥) ≤ C4 E
(
max
j∈[N]

∥∥∥ΨE(Z s̄
. j)

∥∥∥) (77)

Furthermore by using union bound and with apply Chernoff bound on the sum of independent

random variables [24]

E
(
max
j∈[N]

∥∥∥ΨE(Z s̄
. j)

∥∥∥2
)
≤ C5d4

max ς
2 pN (78)

Since

E
(
max
j∈[N]

∥∥∥ΨE(Z s̄
. j)

∥∥∥) ≤ √
E

(
max
j∈[N]

∥∥∥∥ΨE(Z s̄
. j)

∥∥∥∥2
)

(79)

Base on relations (77), (78) and (79)

E
(∥∥∥ΨE(Z s̄)

∥∥∥) ≤ C6d2
maxς

√
pN (80)

By using (80) and (76) for pN � log N we have

∥∥∥ΨE(Z s̄)
∥∥∥ ≤ C′′2 d2

maxς
√

pN (81)
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Table 1: Summary of the notation.

Symbol Meaning Symbol Meaning

N number of microphones D complete noiseless distance matrix
a radius of the circular table on which microphones are distributed M squared distance matrix
ς normalized standard deviation of noise M̃ noisy squared distance matrix
ΨE projection into matrices with entries on index set E M̂ estimated squared distance matrix
Pe projection to EDM cone Z noise matrix
p probability of having random missing entries ME observed matrix
dmax radius of the circle defining structured observed entries X positions matrix
Ms distance matrix with observed entries on index set S X̂ estimated positions matrix
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Figure 1: Coherence of the signal of two microphones at di j = 20 cm and the fitted sinc function
using real data recordings.

38



Figure 2: Matrix completion with projection onto the EDM cone.
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Figure 3: Calibration error (logarithmic scale) as defined in (15) versus the number of micro-
phones. The standard deviation of noise on measured distances is ς di j where ς = 0.0167. The
error bars correspond to one standard deviation from the mean estimates.
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Figure 4: Mean position error (logarithmic scale) as defined in (59) versus the number of micro-
phones. The standard deviation of the noise on measured distances is ς di j where ς = 0.0167.
The error bars correspond to one standard deviation from the mean estimates.
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Figure 5: Calibration error (logarithmic scale) as quantified in (15) versus ς. The error bars
correspond to one standard deviation from the mean estimates.
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Figure 6: Mean position error (logarithmic scale) as defined in (59) versus ς. The error bars
correspond to one standard deviation from the mean estimates.
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Table 2: Performance of microphone array calibration in two scenarios. (1) Scenario 18-mic:
two sets of 9-channel circular microphone array of diameter 20 cm; the center of both compact
arrays are 1 m apart, and (2) Scenario 15-mic: a circular 9-channel microphone array of diameter
20 cm is located inside another 6-channel circular array of diameter 70 cm. The mean position
error (cm) and the calibration error (cm2) as defined in (15) are evaluated for different methods .
The numbers in parenthesis corresponds to the error in position estimation if the experiments are
repeated and averaged over 25 trials.

Scenario 18-mic Scenario 15-mic
Position (cm) Calibration (cm2) Position (cm) Calibration (cm2)

MDS-MAP 3.3 (0.72) 175.8 3.18 (0.73) 170.5

SDP 2.1 (0.3) 96.3 4.64 (0.65) 258.8

S-Stress 6.8 (0.96) 265 7.05 (0.92) 281.5

MC 6.9 (1.35) 272 7.5 (1.55) 305

MC2 6.56 (0.91) 225.1 6.8 (0.94) 274

E-MC2 1.58 (0.37) 95.5 1.71 (0.41) 105.83
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Figure 9: Calibration of the eleven-element microphone array while several pairwise distances
are missing. The geometries are estimated using MDS-MAP, SDP, S-stress and the proposed
proposed algorithm E-MC2.
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Figure 10: Calibration of the eleven-element microphone array while several pairwise distances
are missing. The geometries are estimated using MC, MC+Cadzow (MC2), and the proposed
algorithm E-MC2.
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Figure 11: Calibration of the nine-element microphone array. The geometries are estimated using
MDS-MAP, S-stress, SDP and the proposed Euclidean distance matrix completion algorithm, E-
MC2.
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Figure 12: Calibration of the nine-element microphone array. The geometries are estimated using
MC, MC+Cadzow (MC2) and the proposed algorithm E-MC2.
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Table 3: Calibration errors (cm2) as defined in (15) for different methods of microphone array
calibration.

Known Missing
8-mic 9-mic 11-mic 12-mic

MDS-MAP 9 8.13 434.4 472

SDP 9.09 8.63 141 135

S-Stress 6.86 6.14 125 95

MC 10.6 9.75 133 115

MC2 9.2 7.68 119 52

E-MC2 6.5 5.85 49.6 46
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Table 4: Position estimation errors (cm) as defined in (59) for different methods of microphone
array calibration.

Known Missing
8-mic 9-mic 11-mic 12-mic

MDS-MAP 0.83 0.78 6.34 7.23

SDP 0.86 0.81 2.88 2.35

S-Stress 0.69 0.61 2.5 1.9

MC 1.1 0.97 2.6 2.1

MC2 0.91 0.74 2.16 1.7

E-MC2 0.64 0.97 1.06 1
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Figure 13: Scenario corresponding to the (I) lower bound and (II) upper bound of the probability
q of structured missing distances.
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