Second Order Phase Transition Describes Maximally Informative Encoding in the Retina

David B. Kastner ${ }^{1,2,3}$, Stephen A. Baccus ${ }^{1}$, Tatyana O. Sharpee ${ }^{2}$
${ }^{1}$ Department of Neurobiology, Stanford University ${ }^{2}$ Computational Neurobiology Laboratory, The Salk Institute
${ }^{3}$ Present address: Laboratory of Computational Neuroscience, EPFL
Neurons have limited dynamic ranges. Theoretical studies have derived how a single neuron should place its dynamic range to optimize the information it transmits about the input. However, neural circuits encode with populations of neurons.

Two ganglion cell populations encode similar visual features, but have distinct sensitivity and plasticity
Receptive Fields

daptation
Sensitization
Only off cell types, in salamanders, split the encoding between distinc cell types. On cells do not split into multiple cell type

Std. dev. Steady state nonlinearities fo across multiple contrasts

Population Encoding Model Neurons modeled as having binary outputs

Response slope introduces noise

Mutual information
$I(x, r)=H(r)-H(r \mid x)$
$H(r)=-\sum p\left(r_{i}\right) \log _{2} p\left(r_{i}\right)$
$H(r \mid x)=-\int p(x) \sum p\left(r_{i} \mid x\right) \log _{2} p\left(r_{i} \mid x\right) d x$
$P($ spike $)=\int p($ spike $\mid x) p(x) d x$

$$
P(1) \equiv P(\text { spike })
$$

$$
P(0)=1-P(1)
$$

 for two neurons
$P(11), P(10), P(01), P(00)$

Rate limitation enforces sparse responses

Input (x)
Placement of response probabilities that maximizes
iformation given noise and $r=P_{1}(1)+P_{2}(1)$

Second order phase transition occurs with
increasing response function noise

Spacing (m)
The information provided by two response functions with the same slope
(v) as the spacing $\left(\mu_{2}-\mu_{1}\right)$ between the functions vary. Black line indicate the maximal information at a given ν.

The response function with less noise should have the lower threshold

The spacing that provides the maximal with the different slopes (v) across many different slopes and average rates.

Optimal dynamic range placement in the retina

Average fraction of the maximal information captured by 7 pairs of
simultaneous recorded adapting and sensitizing cells across different contrasts

All divergences and power-law scaling within the model are consistent with a second order phase transition

Retinal populations remain poised at a critical point

The differences in the model due to
different average rates (as occurs across contrasts), can be normalized, allowing for a comparison across

Data, placed onto the normalized model, and fit by equation $m=A\left|v-v_{c}\right|^{\alpha}+B(h)^{\gamma}$. Grey points indicate the spinodal line.

Mapping between maximally informative solutions in neural circuits and the Ising model of phase transitions in physics

	Magnetic systems (lsing model)	Maximally informative coding
Optimal states defined by:	minima of free energy	maxima of information
Transition occurs with respect to:	temperature	input noise (average slopes of input response functions)
Symmetry broken below critical temperature	gnetization direction	exchange symmetry between neurons
Order parameter	genetization	deviation of thresholds from the mean (difference for $\mathrm{n}=2$) across a neural population
Conjugate field	applied magnetic field	deviation of slopes from the mean (difference for $\mathrm{n}=2$) across a neural population
Exponent with respect to temperature for $h=0$	mean-field value: $1 / 2$ experiment: $0.316-0.327$	mean-field value: $1 / 2$ experiment: 0.39 ± 0.12
Critical isotherm exponent	mean-field value: $1 / 3$ experiment: $0.2-0.21$	mean-field value: $1 / 3$ experiment: 0.15 ± 0.08

Conclusions

- Coordinated fast-Off populations provide the optimal amount of information about their inputs given noise and an energy constraint
- The absence of multiple types of On cells in salamanders is predicted by optimal information transmission
- Maximal information transmission with populations of neurons has a direct parallel with second order phase transitions from physics
- fast-Off ganglion cells reside near a critical point

References:
Rastner D.B. Baccus, S.A. Coordinated dynamic encoding in the retina using opposing forms of plasticity. 2011). Nature Neuroscience.

OS supported by grants from the NEl, Searle Fund, Sloan Foundation, Keck Foundation, McKnight Foundation, and Ray Thomas Edward Career Award. SAB supported by grants from the NEI, MCKnight Foundation, and Zie
DBK supported by the Stanford MSTP, and the Center for Mind Brain and Computation (NSF IGERT).

