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Abstract

The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and
trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to
measure how participants corrected their trajectories for perturbed feedback and how participants’ awareness of such
perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target
locations in a VR environment while their movements were tracked and played back in real-time on a large projection
screen. In 75% of all trials we introduced angular deviations of 65u to 630u between the veridical walking trajectory and the
visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-
balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance
(end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the
veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed
stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing
cognitive resources did not affect trajectory formation and deviations although it interfered with the participants’
movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired
by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our
findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-
directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and
rehabilitation.
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Introduction

Dual tasking (DT) paradigms have provided compelling

evidence in favour of cortical involvement in the sensorimotor

control of balance and locomotion in humans [1,2]. Cognitive

tasks such as verbal fluency [3], fine-motor movements (e.g.

buttoning up [4]) and arithmetic [5] have been shown to alter gait

characteristics ranging from walking velocity, over stride-variabil-

ity to stride-asymmetry during over-ground and treadmill walking.

Such gait changes during dual tasking are more pronounced in

elderly with fall risk and are used as a marker for age-related

decline in gait control [6,7]. While the effects of cognitive loading

on movement kinematics are well documented, little is known

about its influence on goal-directed walking behaviour. Notably,

the vast majority of everyday tasks, such as picking up the morning

paper, involve a series of goal-directed movements. We visually

scan the room for the paper; we reach for the paper and, if it is on

the other side of the room, we walk towards the paper, avoiding

the sleeping dog. Striking similarities have been reported between

the trajectories made for saccadic eye and arm movements [8] but

also between arm movements in the sagittal plane and vertical

whole-body movements [9]. Pham and Hicheur [10,11] reported

stereotypical trajectories during goal-directed walking similar to

those reported for upper-limb reaching movements. Based on

these data it has been suggested that the central nervous system

(CNS) may employ a common strategy to govern goal-directed

behaviour, for example by minimising the variance in the final

position [8]. For goal-directed walking any such strategy appears

to be linked to the formation of whole-body trajectories rather

than the co-ordination of a sequence of steps [12] and it is

currently not known how this (strategy) is affected by taxing

cognitive resources.

We have previously reported participants’ walking performance

but also awareness of their motor performance in a goal-directed
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walking paradigm in a virtual reality (VR) environment [13].

These results showed that participants compensated for introduced

visual angular deviations of up to 15u without becoming aware of

either the sensorimotor mismatch or their corrective movements.

With deviations upwards of 15u participants reported a switch as

they consciously compensated for the introduced angular devia-

tions. The goal of the current study was to extend this paradigm to

investigate the role of cognition (using the serial 7 subtraction task)

in the execution of goal-directed locomotion, as illustrated by the

participants’ walking trajectories, the motor implementation, as

measured through the movement kinematics, as well as its

influence on motor awareness. We investigated this by employing

techniques from VR including full-body motion capture and real-

time visual movement feedback.

Methods

Participants
Fourteen healthy, adult participants volunteered for the study (7

male, 7 female, mean age = 2366 years, height = 173610 cm,

weight = 64613 kg). Participants had normal or corrected to

normal vision.

Ethics Statement
The study was conducted according to the principles expressed

in the Declaration of Helsinki and approved by the local ethics

committee – La commission d’éthiqe de la recherche Clinique de

la Faculté de Biologie et de Médecine at the University of

Lausanne, Switzerland. All participants provided written informed

consent for the collection of data and subsequent analysis.

Anonymized data is available upon individual request and in

accordance with the local ethical committee’s guidelines.

Materials
Participants’ movements were tracked and recorded by an

active optical motion capture system (20 IR markers, ReActor2,

Ascension Technology Corp., Burlington, VT, USA) at a sampling

frequency of 30 Hz. A schematic of the setup and task is illustrated

in Figure 1. Target positions and marker placements are indicated

in Figure 2 A and B. Participants received visual feedback of their

movements by way of a 3.20 m62.35 m back-projection screen

(width6height, 128061024 pixels, 60 Hz), with the screen itself

forming part of the back-wall of the 4.1164.11 m tracking arena

(projector: JVC DLA-SX21 projector, JVC U.S.A., Wayne, NJ,

USA). In each of the 176 trials (2 blocks of 88trials), participants

viewed an individually mapped, life-size virtual body perform their

movements in real-time (intrinsic delay 75 ms).

Experimental Procedure
Participants performed two experimental blocks, a single task

session (ST) and a dual task session (DT), counterbalanced across

participants. The experimental procedure is illustrated in Figure

S1. Each trial started from a predefined location in the motion

capture area. A semi-transparent target cylinder was shown in the

virtual room at one of four randomised locations (see Figure 2A) as

shown on a rear-projection screen. Participants were asked to walk

through the virtual target with their virtual body by walking in the

motion capture area. In some trials, in randomized order and

beyond a distance of 30 cm from the start location, the walking

trajectory of the virtual body was systematically deviated towards

either the left or the right (by 5u, 10u, 15u or 30u) [13]. The

deviation of the virtual trajectory was calculated relative to the

straight line between the participants’ current position and the

position of deviation onset. Direction and amplitude were

randomized on a trial-by-trial basis. A trial ended as soon as the

participant reached the target distance of 180 cm, independent of

reaching the centre of the target cylinder. Subsequently, partic-

ipants indicated using a joystick whether the feedback shown on

the screen corresponded to the movement they had just performed

[14]. In the dual task experimental block participants performed

the same walking task while performing an articulated arithmetic

task (serial-7 subtractions, counterbalanced design, 88 trials per

block, including 24 control trials, i.e. no deviation, and 16 trials

per deviation, randomized but evenly distributed across direction

and targets). Participants were instructed to continuously count

and only stop while responding to the agency attribution question.

They started counting from 200 and continued counting

backwards throughout the entire block, ensuring that the cognitive

load commenced before and lasted throughout each trial. We

chose the serial-7 subtraction task, as it has been reported to cause

gait changes such as a decrease in velocity in young healthy

participants as well as patient populations [15], an increase in

stride-length and stride-time in healthy elderly [5] and patients

and increased gait variability in neurological patients with

Parkinson’s disease [16,17].

Gait Analysis
The biomechanical model used for gait analysis is derived from

the Plugin Gait Markers set. The hip joint centres were

determined by using regressions equation [18]. The pose of the

segmental frames for the head, the trunk and the pelvis during the

dynamic acquisition were determined by a point clouds fitting

Figure 1. Experimental Setup. Participant movements were
recorded using an optical motion capture system, mapped to a life-
size avatar and played back in real-time on a rear-projection screen. In
each trial a participant walked from a fixed start position to one of four
randomized target positions set along a 1.8 m perimeter. In some trials
an angular deviation of 65u to 630u (red line) was introduced between
the participant’s veridical walking trajectory (green line, solid and
dotted) and the feedback trajectory (dashed black line). At the end of
each trial participants further judged whether the movement feedback
they received corresponded to their actual movement. Participants
performed one block each with or without cognitive loading.
doi:10.1371/journal.pone.0085560.g001

Gait and Cognition in a VR Envrionment
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method [19] using as reference the registered position of the

markers affixed on each segment and measured during a static

calibration. The 3D joint angles for the neck (head relative to the

trunk) as well as for the thorax (trunk relative to the pelvis) were

decomposed using the Cardan sequence ZX9Y0. The global angles

for the head, trunk and the pelvis were determined by the global

sequence YXZ. The angles for the knees (shank relative to the

thigh) were determined in the plane built by the two segments

used. The same method was used for the angle of the elbows

(forearm relative to the upper arm) yielding the flexion-extension

angles for these joints. For each subject, an additional baseline

correction was performed.

Motor Performance. We described the total angle compen-

sated by the participant taking into account the endpoint of each

of their movement trajectories and measured from the onset of

deviation at a distance of 30 cm to the start location as indicated in

Figure S2A.

Motor Performance [u]:

MPa~
1

N
S
N

i~1
(ci)

c = compensation; a = angular deviation; N = number of trials

The mean position of the four hip markers was used to analyse

all walking trajectories. Trials that were longer in duration than 10

seconds and trials that were corrupted through marker occlusions

were omitted. All trajectories were interpolated over both time and

space to 300 samples each. Furthermore the trajectories were

rotated from their four target locations at b= (230u, 210u, 10u,
30u) and overlapped onto a single target by transforming their

samples into polar coordinates, rotating them, and returning them

into the Cartesian coordinate format.

Cartesian to Polar:

R~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi(t)

2zzi(t)
2

q
; h~tan{1 zi(t)

xi(t)

� �

x = x-coordinate; z = z-coordinate; i = trial index; t = sample;

R = radial coordinate; h = angular coordinate

Polar to Cartesian:

x~R cos(hzb); z~R sin(hzb)

b = target location

Mean Walking Trajectory. The mean trajectory was

obtained by taking the arithmetic mean of the x and z coordinates

at each sample across all trials with the same angular deviation:

Mean Trajectory:

�xx(t)~
1

N

XN

i~1

xi(t); �zz(t)~
1

N

XN

i~1

zi(t)

N = number of trials

The average trajectory deviation (ATD), Figure S2B, was

determined by averaging across the distance between each

coordinate-pair of the single and the mean trajectory for the same

angular deviation. As the ATD is calculated sample by sample it

takes participants’ timing into account. In other words the

trajectory deviation increases both for differences in the x-z plane

as well as in the timing or velocity of each walking trajectory. The

maximum trajectory deviation (MTD) was obtained by keeping

only the value of the maximal deviation for each trial. We

Figure 2. Target Positions and Marker Placement. A Motion capture area as seen from above. The four targets are placed at a distance of
180 cm to the start position at 610u (inside) and 630u (outside). The start position was indicated in the real room but the final position of the target
was recalculated using the exact location at button-press. B Participants wore 20 infrared markers: One each on the sternoclavicular joint and the
lower sternum, *2 on left-right heel, lateral knee and elbow, dorsal hand and acromioclavicular (AC) joint, **4 on left-right, anterior-posterior superior
iliac spine (SIS) and head. Walking trajectories were determined by the average SIS marker position.
doi:10.1371/journal.pone.0085560.g002
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additionally defined an ideal trajectory for each angular deviation

in order to have an objective and time-independent measure as

explained in detail below. Samples that were two standard

deviations above or below the average were removed from the

calculation of mean and maximum deviation.

Coefficient of Variance. The coefficient of Variance (CV)

was defined as the ratio of the standard deviation (s) of a given

variable to its mean (m):

CV~
s

m

Ideal Trajectory. Furthermore, an ideal trajectory was

defined for each angular deviation (a) as an overall, objective

reference, independent of walking speed. Each ideal trajectory was

composed by a set of two linear functions; first, the straight line

towards the target, second, a line that took into account the

angular deviation introduced (Figure S2c). The ideal trajectory

had to exactly compensate for the deviation, which was introduced

at a distance of 30 cm from the trial’s starting point. An error

signal was then obtained to determine average and maximum

trajectory deviations. The point on the ideal trajectory whose

orthogonal crosses the sample was used to determine the shortest

distance between ideal and actual trajectories, which in turn was

used as the error signal.

Ideal Trajectory:

videal(t)~(xideal(t),zideal(t))

videal(t)~
x(t)~0,

z(t)~mtzb,

�
dw(t)ƒb

dw(t)wb

m = tan(90+a);b = 30; dw(t) = Walking Distance (see below)

Sample Distance:

ds
(i)(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi(t){xi(t{1))2z(zi(t){zi(t{1))2

q

Walking Distance:

dw(ts)~
XS

k~2

ds(tk)

S = Number of samples (300)

The ideal trajectories were used to calculate the average

trajectory error for the individual angular deviations.

Deviation (Sample Error):

es(t)~(vi(t){videal(t)):n̂nideal

nideal = unit normal vector of videal

Average Trajectory Error:

ATEi~
1

S

XS

t~1

es(t)

Time to Target and Velocity. The time and exact location

of the participant at the press of the start button is used as the trial

coordinate origin and start-time. Time to target is therefore the

difference between the time-stamp of the first motion-capture

sample that is further than 180 cm away from the start position

and the trial start-time. The distance of the x-z location from this

sample to the origin describes the exact distance the participant

walked. The average walking velocity is determined by their ratio:

distance over time in meters per second. Similarly, the velocities

and durations for the start, middle, and end of the trial are

calculated using the motion-capture coordinates and time-stamps

as participants cross 30, 150, and 180 cms.

Motor Awareness Analysis
Motor Awareness (MA) was expressed by the number of yes-

responses out of all valid trials, grouped by angular deviation [13].

Correct MA or self-attribution was a ‘‘yes’’ response for non-

deviated, a ‘‘no’’ response for a deviated trial. Additionally, MA

thresholds were determined psychometrically, by fitting a cumu-

lative Gaussian to the participants’ responses using the published

psignifit toolbox [20,21] for Matlab. All thresholds reported here

reflect the 50% point of subjective equality.

Motor Awareness [%]:

MAa~
1

N

XN

i~1

f (r)~
1,

0,

r~00Yes00

r~00No00

� �

r = response

Statistical Analysis
Motor awareness and gait characteristics were recorded

throughout the entire study and processed offline using R [22]

and Matlab (MathWorks, Natick, Massachusetts, USA).

To investigate the overall effects of Task and Deviation in-line

with our previous studies, we first collapsed all trials into a single

target location and included both control trials and (absolute)

deviated trials. This resulted in a 265 repeated measures ANOVA

with factors Task and Deviation and levels ST, DT and 0u, 5u, 10u,
15u, 30u respectively. In a second step, we separated the 0u control

trials from the (signed) deviated trials in order to investigate

possible laterality effects of deviation and target, target positions,

and possible interactions. This resulted in a 2626262 rmA-

NOVA with factors Task (ST/DT), Target Side (l/r), Target Position

(in/out), and Deviation Side (l/r). As factor Task was included in the

first set of ANOVAs these results were not included. RM

ANOVAs and post-hoc comparisons, Fisher’s LSD, were per-

formed in Statistica (StatSoft, Tulsa, Oklahoma). The psychomet-

ric data were compared using Student’s t-test. One participants’

neck yaw data was omitted from analysis due to a corrupt head

marker.

Results

Of 88 trials per condition, 84.75 were included in the analysis

(on average per person and condition). Slightly, but significantly

Gait and Cognition in a VR Envrionment
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more trials were rejected in the DT condition 84.0+/23.0 (DT)

versus 85.5+/21.7 (ST, paired t-test p = 0.041). A summary of the

main results is provided in table 1.

Motor Performance
Motor Compensation at Trajectory Endpoint. Overall, as

illustrated in Figure 3A, participants correctly performed the

walking task as motor compensation increased proportionally to

the introduced angular deviation (main effect of Deviation: F(4,

52) = 110.10, p,0.001, cf. Table S1 for post-hoc comparisons).

Cognitive loading had no significant effect on this motor

compensation (average compensation ST: 7.6u6.5, DT: 7.7u6.5,

main effect of Task p.0.64; interaction: p.0.79). On average

participants compensated for 5462% of the introduced deviation.

In the non-deviated (0u) control trials, participants accurately

walked to within 1.0u60.3u of the centre of the target in the ST

and 1.1u60.2u in the DT condition. Motor performance was very

stable in control trials and was not influenced by the independent

factors Target Side and Target Position (p..39 and p..18

respectively, all interactions p..26).

Table 1. Results Overview.

Angular Deviation Condition Statistics

06 56 106 156 306 ST DT Task Deviation
Task by
Deviation

Walking
Trajectories
(mean6SEM)

MP [u] 1.046.25 3.336.14 5.186.33 7.666.54 14.4761.23 7.606.55 7.726.56 p..64 p,.001*** p..79

ATD [cm] 8.626.59 9.656.71 10.1661.00 9.646.61 11.486.86 9.276.56 10.556.95 p..06 p,.001*** p..54

MTD [cm] 45.1563.80 46.0164.33 48.8064.24 46.5164.96 52.0563.89 43.2863.19 52.1364.56 p = .032* p..41 p..14

ATE [cm] 6.336.51 6.856.52 8.316.43 9.956.46 19.426.72 10.256.42 10.096.50 p..54 p,.001*** p = .039

Kinematics WT [sec] 3.616.10 4.136.43 4.146.33 4.196.19 4.386.67 3.846.89 4.346.92 p = .016* p,.001*** p = .124

Neck [rel. u] 7.536.52 7.606.59 7.706.60 7.796.54 8.606.78 7.846.64 7.856.72 p..98 p,.001*** p..08

Neck CV 0.796.05 0.776.05 0.806.05 0.796.04 0.836.05 0.806.04 0.796.06 p..69 p..19 p..31

Knee [rel. u] 7.306.31 7.006.27 7.206.27 7.346.37 7.116.29 7.326.27 7.066.34 p..21 p..09 p..05

Knee CV 1.206.06 1.166.05 1.186.06 1.216.06 1.206.06 1.226.06 1.166.06 p..31 p..63 p..70

Motor
Awareness

MA [%yes] 95.861.1 92.361.9 73.564.9 46.566.5 7.462.4 61.262.8 65.162.9 p..06 p,.001*** p = .01*

RT [sec] 1.366.13 1.516.15 1.586.17 1.5861.46 1.466.13 1.486.14 1.526.15 p..64 p..25 p..16

Walking trajectories were not significantly impacted by the cognitive load and clearly dependent on the introduced angular deviations in both experimental conditions.
The main effect of Task on maximum trajectory deviations is due to the fact that the timing of the trials is integrated in these calculations. Walking time (WT), i.e. velocity
was significantly affected in the DT condition as participants systematically slowed down. Motor awareness strongly depended on the angular deviations and, in trials
around the perceptual threshold, significantly declined in the DT condition.

mean over deviated trials only;
Motor Awareness significantly affected by the Dual Task for angular deviations of 10u and 15u.

(* p,.05, ** p,.01, *** p,.001).
doi:10.1371/journal.pone.0085560.t001

Figure 3. Motor Performance Overview. A Motor Compensation – Participants consistently compensated for the introduced angular
deviation as MP monotonously increased with the deviation. The secondary task had no effect on this compensation, even in trials corresponding to
the highest perceptual uncertainty (10u and 15u). B Time to Target – Participants were significantly slower in the dual task condition than in the
single task condition. Independent of cognitive loading participants were significantly faster in the 0u control trials. C Average Velocity Profile.
The velocity profile shown here is averaged across all trials and participants. Participants slowed down significantly as a result of the secondary
cognitive task, articulated serial-7 subtraction. We did not observe an initial freezing-like behaviour as there was no change in the time participants
took to cross the first 30 cm of each trial, as indicated by the dotted black lines. Instead, walking velocity was lower over the entire trial. Error bars are
standard error of the mean (SEM).
doi:10.1371/journal.pone.0085560.g003
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As observed in the control trials, Motor Performance in

deviated trials was not affected by Task or Target Side (p.0.57

and p.0.75 respectively). However, motor performance did

depend on Target Position (F(1, 13) = 6.5548, p = .02373).

Participants compensated more accurately when walking towards

the inside targets (7.660.5u) than when walking towards the

outside targets (7.060.5u). Moreover, we observed a three-way

interaction between factors Target Side6Target Position6Devia-

tion Side (F(1, 13) = 11.035, p = .00551). Participants were more

accurate when walking towards the outside targets, if the

compensation was towards the inside or midline, i.e. when

walking towards the leftmost (rightmost) target with a deviation

to the left (right). This relationship was flipped for the inside

targets. Here participants were more accurate, if the deviation was

towards the centre of the tracking arena and they compensated

outwards.

We further observed an interaction between factors Task and

Target Side (F(1, 13) = 5.3147, p = .03828); MP was increased for

the targets on the left-hand side when walking under cognitive

load but decreased for targets on the right-hand side (all post-hoc

comparisons: p.0.12). Finally, there was an interaction between

factors Task, Target Position, and Deviation Side (F(1,

13) = 5.2380, p = .03948).

Time to Target and Velocity Profiles. The average

walking time to reach the target significantly increased from

3.860.09 seconds in the ST condition to 4.360.09 seconds in the

DT condition when considering all trials (nST = 0.4660.07 m/s

and nDT = 0.4060.08 m/s from a standing start, see Figure 3B

and C). This was confirmed in the rmANOVA that yielded main

effects of Task (F(1, 13) = 7.5503, p = 0.016) and Deviation F(4,

52) = 18.212, p,0.001). The latter effect resulted from signifi-

cantly faster walking times in the 0u control trials as well as

significantly slower times for 630u trials, see Table S2. Target

Position (p.0.92) and Target Side (p.0.55) did not affect walking

times. There was no significant interaction between factors Task

and Deviation (p = 0.124).

We further analysed the deviated trials separately in order to

check for laterality effects. While there was no main effect of

Deviation Side (p.0.08), we observed an interaction between

Target Side and Deviation Side (F(1, 13) = 5.7145, p = .03266).

Participants took longer to complete trials to targets on the left

hand side when the deviation was also towards the left hand side

and vice versa.

We additionally analysed the first 30 cm of the walking

trajectories to exclude an initial hesitation or ‘‘freezing’’ as cause

for changes in MA. As illustrated in Figure 3C, there was no

significant difference in mean velocity for this segment between the

two conditions and hence no significant difference in time to reach

30 cm (ST: 1614670 ms, DT: 1684662 ms, paired t-test: p.0.2).

Participants were significantly faster in the ST condition than in

the DT condition for the middle segment (31–150 cm, p,0.001)

and end segment (151–180 cm, p,0.001).

Average Trajectories, Deviations and Errors. Figure 4

shows the average trajectories of a single participant for the five

angular deviations. The average trajectory deviation (ATD) across

all participants was 9.360.6 cm in the ST condition and slightly

increased to 10.660.9 cm under cognitive loading (main effect of

Task: F(1, 13) = 4.1358, p = .06292 not significant). There was a

main effect of Deviation (F(4, 52) = 9.4949, p = .00001) as ATD

was lowest for control trials (8.660.6 cm) and highest for trials

with 630u deviations (11.560.9 cm). There was no interaction

between factors Task and Deviation (p.0.55). Maximum trajec-

tory deviation (MTD) increased from 43.363.2 cm in the ST

condition to 52.164.6 cm in the DT condition (main effect of

Task: F(1, 13) = 5.8044, p = .03154). MTD was again lowest for

control trials (ST: 36.963.5, DT: 53.466.1 cm). There was no

main effect of Deviation on MTD (p.0.41, cf. table 1).

Our results from the average trajectory error (ATE) illustrate

that walking trajectories, measured with respect to an ideally

compensatory trajectory, were not significantly affected by

cognitive loading (p.0.54). However, the ATE significantly

depended on the angular deviation, reflecting the constant gain

observed for the motor compensation (main effect of Deviation:

F(4, 52) = 254.30, p = 0.0000). The average trajectory error thus

increased from 6.360.5 cm in control trials to 19.460.7 cm in

trials with 30u deviation. We further observed an interaction

between factors Task and Deviation (F(4, 52) = 2.7346,

p = .03856); ATE was slightly higher in the DT condition for

deviations of 0u, 5u, and 10u, but lower for deviations of 15u and

30u.
Neck Yaw. In the current paradigm we were especially

interested in the relative axial rotation angles between the head

and torso (neck yaw), which describes the heading direction.

Overall, neck yaw was strongly affected by the magnitude of the

deviation as participants turned their heads more pronouncedly

with increasing deviation (main effect of Deviation: F(4,

48) = 6.3773, p = .00034). Neck yaw thus monotonously increased

from 7.53u60.52 to 8.60u60.80 and post-hoc comparisons

illustrated that neck yaw was significantly higher for the 630u
deviations (all comparisons to 630u p,0.016, all others p = 1,

Bonferroni corrected, cf. Table S3). The secondary task had no

significant effect on neck axial rotations (main effect of Task:

p = 0.98) and there was no significant interaction between factors

Task and Deviation (p.0.089).

Neck yaw in control trials did not depend on the side of the

target (main effect of Target Side: p.0.4). In-line with the absolute

position of the virtual target with respect to the feedback screen,

we observed a significant effect of target position (main effect of

Target Position: F(1, 12) = 50.816, p = .00001). Participants turned

their head more when walking towards the outside targets (yaw:

9.4u60.7) than the inside targets (yaw: 5.6u60.3).

Similarly, neck yaw in deviated trials illustrated a strong main

effect of Target Position (F(1, 12) = 52.524, p = .00001) as yaw was

significantly higher when walking towards the outside targets and

turning towards the midline than when walking towards the inside

targets. This was similar for left and right targets (main effect of

Target Side: p.0.52 n.s.). We further observed a strong

interaction between factors Target Side and Deviation Side

(Current effect: F(1, 12) = 21.723, p = .00055): participants turned

their head less when leftwards deviations coincided with targets on

the left (so they compensated towards the midline) and vice versa.

We observed small but significant interactions between factors

Target Position and Deviation Side (F(1, 12) = 5.0137, p = .04487)

as well as factors Task, Target Position and Deviation Side (F(1,

12) = 6.8266, p = .02268). None of the other interactions were

significant (all p.0.05).

Summary Motor Performance. In summary, participants

were able to accurately perform the goal-directed walking task.

Motor compensation, as measured at the trajectory endpoint, was

very accurate for 0u control trials and unaffected by the Task,

Target Side or Target Position. Accordingly, motor compensation

increased relative to the introduced deviation. In deviated trials,

MP was more accurate for inside than for outside targets but still

unaffected by cognitive loading. In-line with the dual tasking

literature, cognitive loading had a main effect on the walking

velocity as participants significantly slowed down in the dual task

condition. Importantly, this strong influence of taxing cognitive

resources was not reflected in motor compensation or the walking
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trajectories as described by the trajectory deviations and the

trajectory error. The trajectory deviations recorded in a virtual

environment were comparable to those previously reported in a

natural environment. Trajectory deviations significantly increased

with the introduced deviation. Furthermore, neck yaw, indicating

heading, was susceptible to the position of the target and the side

of the target in combination with the side of the deviation, but

again unaffected by cognitive loading.

Motor Awareness
As illustrated in Figure 5A participants correctly judged

95.762.0% (mean 6 SEM) of non-deviated trials to be self-

generated. This percentage monotonously dropped with increas-

ing angular deviations (main effect of Deviation: F(4, 52) = 129.92,

p,0.001, cf. Table S4). Self-attribution was lowest for 630u
deviations at 6.062.0%. The mean subjective threshold was at

14.761.1u corroborating our previous data in an independent

participant pool. Motor awareness thresholds tended to be higher

in the DT condition (16.761.6u; main effect of Task: (F(1,

13) = 4.1304, p = .063) and there was a significant interaction

between factors Task and Deviation (F(4, 52) = 3.5567, p = .012).

Post-hoc analysis revealed that this interaction was driven by a

significant increase in erroneous self-attributions for angular

deviations of 610u and 615u corresponding to the point of

highest uncertainty (t-tests, p,0.001 and p,0.01 respectively, cf.

Table S5).

Motor awareness during non-deviated trials was not significant-

ly affected by the independent variables (Target Side (p.0.75),

Target Position (p.0.53), all interactions p.0.11).

MA for deviated trials was sensitive to the position of the target.

MA was more accurate when walking towards the inside than

when walking towards the outside targets (main effect of Target

Position: F(1, 13) = 16.185, p = .00145).

Unlike for the control trials, we observed a small but significant

effect of deviation side on participants’ MA. Participants had a

higher error rate when deviations were to the left of the target,

forcing participants to compensate towards the right (main effect

of Deviation Side: F(1, 13) = 6.7930, p = .02174). Target Side did

not have a significant effect (p.0.23).

Furthermore, there was an interaction between factors Target

Side, Target Position, and Deviation Side (F(1, 13) = 32.632,

p = .00007). Participants made more attribution errors when

walking towards the outside targets, if the compensation was

towards the inside, i.e. when walking towards the leftmost

(rightmost) target with a deviation to the left (right). This

relationship was flipped for the inside targets. Here participants

reported higher attribution, if the deviation was towards the centre

of the screen and they compensated outwards. This interaction

resembles the one observed for MP and illustrates that participants

made more MA errors, if MP was more accurate, minimizing the

error in the visual feedback.

Response Time. Response Times were recorded but the

emphasis was placed on response accuracy. Trials with RTs larger

than 10 seconds and trials more than 3SD from the mean were

excluded. RTs were not significantly affected by the main

independent variables of Task (p.0.64) and Deviation (p.0.26).

Average RT was 14766142 ms (ST) and 15216145 ms (DT).

There was also no interaction between the two factors (p.0.16).

In control trials, RTs for the inside targets were significantly

lower than for the outside targets (main effect of Target Position:

F(1, 13) = 20.262, p = .0006) as they increased from 12766113 ms

(inside) to 15496154 ms (outside). RTs did not depend on the

Target Side (p.0.39, all interaction p.0.37).

Figure 4. Walking Trajectories. Mean walking trajectories are illustrated for a single subject, averaged for each angular deviation; dotted lines
indicate standard deviations. Participants’ compensation for introduced angular deviations resulted in stereotypical walking trajectories. Importantly,
these trajectories were not significantly affected by the introduction of a cognitive load even though the average walking velocity significantly
decreased.
doi:10.1371/journal.pone.0085560.g004
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Response Times in deviated trials were not affected by the

Target Side (p.0.24) or the side of the deviation (p.0.70). RTs

for deviated trials showed a similar main effect of Target Position

(F(1, 13) = 6.6187, p = 0.02318) as the control trials. RTs were

lower for the inside targets compared to the outside targets (RT-

inside: 14846142 ms, RT-outside: 16036144 ms). Furthermore

there was a significant interaction between factors Target Side and

Deviation Side (F(1, 13) = 10.950, p = 0.00565). Participants

responded faster when both target and deviation were on the

same side and participants compensated by walking towards the

midline. No other significant interactions were observed (all

p.0.019).

Summary Motor Awareness. In summary, participants

reliably recognised feedback in non-deviated control trials to be

self-generated. This identification with the movement of the virtual

body was not affected by cognitive loading or by the position and

side of the target. Self-attribution decreased with increasing

angular deviations and was lowest for deviations of 30u, confirming

the participants’ ability to correctly reject strongly deviated trials.

Motor awareness thresholds (at the 50% level) increased under

cognitive loading. MA for deviations around the threshold (10u
and 15u) reflect the highest uncertainty and MA in these trials was

significantly affected by cognitive loading. Participants thus judged

significantly more deviated feedback to be non-deviated. MA in

deviated trials was further susceptible to the position of the target

as participants made less erroneous self-attributions when walking

towards the inside targets than when walking towards the outside

targets.

Discussion

The purpose of our study was to investigate how cognitive

loading affects goal-directed walking and motor awareness in

healthy participants in a VR environment. Our results illustrate

that the participants’ walking accuracy and their walking

trajectories were not affected by the secondary task even though

taxing cognitive resources significantly decreased their walking

velocity. In the DT condition, these changes were accompanied by

impairments in motor awareness in trials with 10u–15u angular

deviation, corresponding to the stimuli with the highest perceptual

uncertainty. In the following we discuss our findings with respect

to cognitive control of locomotion, common mechanisms under-

lying different forms of goal-directed behaviour and the use of

visual movement feedback in neurorehabilitation.

Sensorimotor and cognitive aspects of goal-directed
walking

The trajectory deviations of ,10 cm for goal-directed walking

in a VR environment correspond to the range of deviation, i.e. 10–

15 cm, previously reported for goal-directed walking in a natural

environment [10,11]. This suggests that our participants used

similar stereotyped trajectories in order to reach the different

target locations in control trials but also when they compensated

for the range of angular deviations. Our data extend previous

findings as they illustrate that adding a secondary task did not

significantly affect the participants’ trajectory deviations with

respect to their own average trajectory (average deviation) in either

case. The significant effect of cognitive loading on the maximum

trajectory deviation is due to the fact that the calculation takes the

timing of the average trajectory into account, which significantly

changed with the walking velocity. This is supported by our

findings on the trajectory error (ATE), which is calculated with

respect to an ideal compensatory and time-independent trajectory.

The ATE was not affected by cognitive loading. The stable results

observed for the motor compensation and its accuracy, corrob-

orate the above points suggesting that the mechanisms underlying

goal-directed behaviour [12] are highly automated and require

little cognition, at least during movement execution. This is inline

with existing literature stating that locomotor trajectories may be

predictively controlled [23,24], i.e. planned in a feed-forward

manner, and overlaid on an automated locomotor pattern [25].

The current paradigm highlights that this process was not affected

by the cognitive load, even when participants had to make reactive

changes [26] to their planned trajectories by incorporating on-

going visual feedback.

Unlike for walking trajectories, cognitive loading had a strong

impact on walking kinematics. Participants significantly slowed

Figure 5. Motor Awareness and Response Times. A Participants correctly judged feedback in 0u control trials to be true. This self-attribution
significantly decreased with increasing angular deviations. In case of the largest deviations of 630u participants correctly rejected almost all trials as
deviated. Cognitive loading significantly impaired motor awareness for trials with deviations of 610u to 615u as participants judged significantly
more trials to be non-deviated than in the single task condition. B Response times (RT) were recorded for all trials. Participants were instructed to
respond promptly but the priority was placed on completing the task correctly. In the single task condition participants replied fastest for the 0u
control trials, with RTs increasing almost linearly with increasing deviation. RTs decreased for trials with the largest deviations of 30u in both the ST
and DT condition. All error bars are SEM.
doi:10.1371/journal.pone.0085560.g005
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down while performing the secondary task, in-line with previous

findings [15]. Further analysis revealed that this was not an effect

of initial hesitation or freezing of gait, but that velocity was lower

throughout the entire trial. Cognitive loading interfered with

cortical mechanisms involved in maintaining the sequential

locomotion pattern. We propose that these mechanisms are

separate from the spatial aspects of the trajectory formation, which

were not affected by taxing cognitive resources. The decrease in

velocity could also reflect a task prioritisation, in which the

participants favoured walking accuracy over maintaining walking

velocity even though participants were instructed to walk at the

same pace in both conditions. One limitation in the current

paradigm was that the walking trajectories were limited to 1.8 m

and came from a standing start. Future experiments should for one

include longer walking trajectories to address if cognitive loading

affects other spatiotemporal gait parameters cf. [12] and, for

another, investigate other secondary tasks, such as a visuospatial

processing task. Parameters such as head and trunk rotation

deserve further examination as the decline of axial rotation

presents a marker of early Parkinson’s disease [27].

Motor awareness and rehabilitation using virtual reality
technologies

VR methods are becoming increasingly important tools for

research, ranging from motor performance to neuroscience [28],

as well as for therapy and rehabilitation. These methods can offer

naturalistic scenarios while providing the therapist with high levels

of adaptability and control [29,30]. The use of real-time

multimodal feedback may present an important opportunity as

one can monitor and improve one’s movements in real-time, but

also from a neuroscience and neuro-rehabilitation perspective.

Observing an action facilitates the brain’s motor circuits involved

in performing the same action [31] and this has been reported to

depend on the familiarity with the observed action [32] and

whether one attributes that action to oneself or another [33]. It is

therefore important to understand under what conditions one

recognizes one’s own movements as self-generated during VR

exposure and maintains a feeling of being in control of one’s avatar

(relating to the sense of agency [13,34] and the concept of presence in a

virtual environment [35]).

Our results are important as they illustrate the limits of self-

attribution for deviated feedback and show that self-attribution for

veridical feedback (0u deviation) and for strongly deviated feedback

(30u) was not affected by cognitive load. However, motor

awareness was more strongly impaired for selective deviated

feedback-trials (around the threshold of 610u to 615u) when our

participants were performing a cognitive task [36]. In case of

perceptual uncertainty about the feedback, cognitive loading not

only impaired motor control but also motor awareness for one’s

on-going movements.

Motor Performance and Motor Awareness in Goal-
directed Movements

As outlined in the introduction, striking similarities have been

reported between the trajectories for saccadic eye-, arm-, and

whole-body movements [8,9]. Both control of such goal-directed

actions, here MP, and conscious monitoring thereof [37], here

MA, are understood to rely on a central monitoring framework

[38]. This framework comprises of a comparator mechanism

between internal representations and predictions about our

movements, using the efference copy, along with the feedback

we continuously receive about those movements [39]. Dating back

to the physiological mechanisms of corollary discharge introduced

by Sperry [40], von Holst and Mittelstaedt [41] and previously

Helmholtz [42], these mechanisms form the basis for currently

applied frameworks for sensorimotor control [43].

Our current results for goal-directed walking are comparable to

studies performed for upper-limb movements [14,37] in that

participants automatically corrected for introduced angular

deviations yet were not aware of these mismatches unless they

were above ,15u. This is important for two reasons. For one,

these findings favour a general control strategy employed by the

CNS to generate goal-directed behaviour, both predictive (control

trials) and reactive (deviated trials), in an effector-independent

manner. According to the comparator mechanism, the error

resulting from the visually deviated feedback is automatically

integrated and used to correct one’s movement trajectory as

evidenced by the motor compensation. For another, the results

obtained for MA, suggest that motor awareness may similarly rely

on an effector-independent and supramodal mechanism [34] as

comparable paradigms have now been conducted for movements

of fingers [44–47], hands [48–50] and arms [51–53] using both

visual and auditory feedback. Our current findings along with

[13], and recent findings on temporally delayed auditory [54] and

visual feedback [36] during over ground and treadmill walking

respectively have extended these paradigms to movements of the

entire body.

The selective effects of cognitive loading on specific aspects of

motor performance, i.e. walking velocity but not trajectories, as

well as its strong modulation of motor awareness in threshold trials

is further important as they point to distinct cortical and

subcortical mechanisms involved in these tasks. With respect to

motor awareness and action attribution, imaging studies have

revealed a widespread neural network. There is a sensorimotor

component including supplementary motor areas (pre-SMA and

SMA), ventral pre-motor cortex (PMC) and the Cerebellum (CB)

as well as a second component comprising of the posterior parietal

cortex (PPC), temporo-parietal junction (TPJ), extrastriate body

area, insula, anterior cingulate (ACC) and dorso-lateral pre-frontal

cortex (PFC) [55]. In particular, the PFC, along with TPJ, SMA,

PMC and ACC, has been linked to increased activation during the

perception of spatiotemporal sensorimotor conflicts [56,57], and

error monitoring in general [58], and is most likely additionally

burdened by the secondary task [59]. Our findings that motor

awareness was selectively affected by cognitive loading in trials

with 10u to 15u deviations indicate that the arithmetic task

competed for these resources and interfered with the motor

awareness task only in trials corresponding to the highest

perceptual ambiguity.

Human locomotion is controlled by a hierarchical supraspinal

locomotor network encompassing cortical regions including PFC,

SMA and PMC, overlapping with the network described above, as

well as subcortical regions such as the basal ganglia (BG),

cerebellum and brainstem [28]. Importantly, these cortical regions

that are affected by the dual task have been identified to control

volitional aspects of locomotion such as gait initiation, termination

and changes in direction or velocity during treadmill walking [60–

63], and form part of the basal ganglia thalamo-cortical loop

[64,65]. The reduced walking velocities we report here are in-line

with the dual tasking literature and indicate that cognitive loading

interfered with the highly automated locomotor pattern, indepen-

dent of the introduced angular deviations and the generation of

the goal-directed walking trajectories.

Conclusion
In conclusion, our data propose that goal-directed aspects of

locomotion, the underlying kinematics and the conscious aware-
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ness thereof, all involve separable cortical (and subcortical)

mechanisms. This is evidenced by the differential effects of

cognitive loading: movement kinematics were uniformly affected

by the secondary task, motor awareness only in trials with high

perceptual uncertainty, whereas trajectory formation was not

affected at all, at least in our participant pool. In the current study

no singular gait parameter directly reflected the changes observed

in motor awareness. More data are therefore needed to grasp how

these different levels of sensorimotor control interact. One

approach will be to extend the current paradigm to elderly

subjects more strongly affected by dual tasking. The changes in

walking trajectories, kinematics and movement awareness could

potentially be used to separate frail and fit elderly participants and

lead to a better understanding of sensorimotor control and

awareness for locomotion. This will be central to developing

complex intervention and rehabilitation strategies and could

potentially shed light on cognitive markers of risk of falling in an

elderly population.
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