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Abstract Finding the best spatial formation of

stationary gas sensors in detection of odor clues is the

first step of searching for olfactory targets in a given

space using a swarm of robots. Considering no

movement for a network of gas sensors, this paper

formulates the problem of odor plume detection and

analytically finds the optimal spatial configuration of

the sensors for plume detection, given a set of

assumptions. This solution was analyzed and verified

by simulations and finally experimentally validated in

a reduced scale realistic environment using a set of

Roomba-based mobile robots.

Keywords Odor Plume Finding, Olfactory Search,

Swarm Robotics Formation, Gas Sensor Coverage.

1 INTRODUCTION

Searching for olfactory targets with mobile robots has

received much attention in the recent years. This

problem finds applications in environmental

monitoring (Dunbabin and Marques, 2012), chemical

leak detection (Russell et al., 1995), pollution

monitoring (Fu et al., 2012), inspection of landfills

(Hernandez Bennetts et al., 2012), and search and

rescue operations (Wang et al., 2010). Some of these

tasks are done in scenarios extremely dangerous for

humans, being desirable to use robots instead.

The effort to design and develop robotic olfactory

search strategies faces the problem of understanding
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how the odor molecules disperse in the environments

under naturally turbulent flow. Odor patches released

by an odor source are mainly transported by the

airflow, forming an odor plume. As the plume travels

away from the source, it becomes more diluted due to

molecular diffusion and turbulence that mixes the

odor molecules with the clean air (Roberts and

Webster, 2002). Molecular diffusion is a slow process

whose effect on the plume shape can be neglected.

The dispersion of odor molecules is dominated by flow

turbulences in ventilated indoor or in outdoor

environments.The odor molecules move downwind due

to mean flow velocity U while their net motion is a

random walk due to the fluctuations. In large scale

environments, fluctuations happen also in the initial

direction of the plume that create undulating and

meandering patterns. The flow carries patches of odor

while the amplitude of the concentration within a

patch decreases away from the source, and the average

time between two successive patches increases. At

high Reynolds numbers, the instantaneous odor

concentration strongly fluctuates intermittently with

peaks above three orders of magnitude around the

average concentration value (Crimaldi et al., 2002).

Under these circumstances, a chemical sensor located

far enough downwind of the odor source, most of the

time measures no odor concentration. The probability

of encountering an odor patch at any given point is

determined by the relative location in between the

odor source and the sensor, the statistics of the flow

and the shape of the environment and the obstacles

(Sutton, 1947; Gifford, 1960). The velocity of the

airflow is set by the environmental conditions and

hence stays unchanged for long periods of time

compared with the time scale of odor fluctuations.
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Fig. 1 Distribution of odor patches in an environment with
obstacles when the wind direction is from left to right.
A: mean structure of odor distribution (measured by slow-
response gas sensors), B: instantaneous structure of a part of
the odor plume (measured by fast-response gas sensors), and
C: an instantaneous and a mean cross-wind slice of A and B
(measured by moving a fast and a slow gas sensor towards
cross-wind). Image is adapted from (Crimaldi et al., 2002).

Fig. 1 presents the nature of an odor plume from

different scales.

Finding the odor plume in environments with high

Reynolds numbers, i.e., searching the environment

randomly or systematically in order to find odor clues,

is the final goal of this study. This is the first phase in

search for odor sources (Hayes et al., 2003). The

second phase is plume tracking, that is, following the

plume toward the source, and final step is source

declaration, that is, accurately localizing the source in

close vicinity. Most of the works concerning olfactory

search have focused on odor plume tracking (Martinez

et al., 2006; Li et al., 2001; Lochmatter and Martinoli,

2009; Lytridis et al., 2006) whereas plume finding has

received little attention. Concentration gradient

climbing (chemotaxis (Russell et al., 2003; Grasso

et al., 1997)) and up-wind directed search (anemotaxis

(Marques and de Almeida, 2006; Marjovi and

Marques, 2011; Lochmatter et al., 2010)) are the most

common approaches to track odor plumes by mobile

robots. Several other methods have been proposed for

plume tracking using swarm robotic concepts, namely,

biasing expansion swarm approach (BESA) (Cui

et al., 2004), biased random walk (BRW) (Marques

et al., 2002), particle swarm optimization (PSO) (Li

et al., 2008; Marques et al., 2006), glowworm swarm

optimization (GSO) (Krishnanand and Ghose, 2008),

gradient climbing techniques (Marjovi et al., 2010b),

swarm spiral surge (Kazadi, 2003), and physics-based

swarming approach (Zarzhitsky et al., 2005). Most of

these studies (e.g. (Grasso et al., 1997; Kowadlo et al.,

2006; Vergassola et al., 2007)) assume that the robots

start their search within or very near the plume.

Plume finding problem is usually addressed through

general exploration methods (Marjovi et al., 2009;

Marjovi and Marques, 2012; Marjovi et al., 2010a),

mapping (Loutfi et al., 2008; Lilienthal and Duckett,

2004), or coverage techniques namely zig-zag

sweeping, casting (Pyk et al., 2006), random

wandering (Ishida et al., 2006), biased random walks

(Marques et al., 2002), lévy-taxis (Pasternak et al.,

2009), and spiral movements (Ferri et al., 2009), which

are also used for other spatial search tasks and are not

specifically designed for odor plume finding.

A mobile sensor network can be advantageous in

odor plume finding tasks, in comparison to a single

robot that can measure only the odor concentration

on its own place. The airflow that carries the odor

patches can be very irregular and chaotic, thus the

resulting distribution of odor concentration may be

also very irregular with large intermittency in the

region downwind an odor source. Additionally, the

search space may be much larger than the active area

of an odor source. In these conditions, using multiple

sensing nodes spread throughout the environment

improves the detection process, increasing the

probability of finding an odor plume in a given time.

A swarm of robots can establish a dynamic mobile

sensor network and move in the area of interest to find

the plume. To efficiently address the problem of odor

plume finding by a swarm of robots, one should

answer the following questions:

1. What is the best spatial formation for the swarm

robots in searching for an odor plume?

2. What is the best movement strategy for the swarm

in odor plume searching?

None of the works neither in the olfactory search area
nor in the swarm robotics field has ever answered

these questions. This paper addresses the first

challenge using a novel swarm approach in an

environment under turbulent airflow.

To state the problem, consider a swarm of N robots

that are able to communicate with each other over a

distance ∆d and are equipped with olfactory sensors

for sensing the odor concentration C̄ and airflow speed

U. There is no central controller for the system, so the

robots act independently. The problem is: “what is the

best spatial formation strategy for the swarm in search

for an odor plume in an area?”.

Recently, a few studies were reported that tackle

the problem of optimal gas sensor deployment mainly

for safety systems in process facilities. Legg et al.

(2012) presented a method that utilizes computational

fluid dynamics (CFD) simulations to optimize gas

sensor locations in order to maximize the likelihood of

early detection of gas clouds in specific facilities.

Miyata and Mori (2011) introduced another procedure



for optimization of gas detector locations by using gas

dispersion simulation tools in specific chemical plants.

However, in these studies, the gas source location (leak

point) and the map of environment were both a-priory

known, and simulations were run to find the best

sensors’ positions among a list of candidate locations.

A-priory knowing the source location and the map of

the environment and having a list of candidate

positions for the sensors are three assumptions that

we do not make in this paper. Moreover, instead of

CFD simulations, this paper provides analytical

results using gas dispersion models.

This paper presents an analytical method to find

the optimal spatial formation of swarm robots in

plume finding strategies (described in section 2).

Defining single and multiple gas sensors coverage and

finding the optimal configuration of N mobile sensors

in different environmental conditions are among the

main novelties of this paper. Moreover, based on the

results of optimizations, we present and design a set of

wind-biased virtual attractive/repulsive control forces

for the swarm robots such that their emergent

behavior converges to the optimal formations

(explained in section 3). None of the previously

designed control systems in olfactory robotics

community has ever biased the virtual forces by the

wind effect. The proposed method was validated and

evaluated by simulation and experimented in small

scale realistic environments (in section 4).

2 Optimal Coverage with Gas-Sensors

This section finds the best configuration of robots to

maximize their sensing coverage area and then section

3 designs swarming behaviors of individual robots to

reach to the found configurations.

2.1 Odor Dispersion Model

Probability density function of odor dispersion in a

turbulent medium is represented by the Gaussian

model for odor distribution in average-term exposure

(Sutton, 1947; Gifford, 1960; Roberts and Webster,

2002). The Gaussian plume models yield results that

match experimental results reasonably well (Jones,

1983). If an odor source is located in position (0, 0, 0),

its release rate is Q and the average wind speed is Ū

toward x-axis (Fig. 2), then, the mean concentration

of odor in position (x,y,z) is given by the following

probability density function:

C̄(x, y, z) =
Q

2πŪσy(x)σz(x)
exp{ −y

2

2σ2
y(x)

+
−z2

2σ2
z(x)
} (1)

Table 1 Standard deviations for an urban environment in
various environmental conditions (Briggs, 1973).

Env. σy(x) σz(x)

A-B 0.32x(1 + 0.0004x)−0.5 0.24x(1 + 0.001x)0.5

C 0.22x(1 + 0.0004x)−0.5 0.20x

D 0.16x(1 + 0.0004x)−0.5 0.14x(1 + 0.0003x)−0.5

E-F 0.11x(1 + 0.0004x)−0.5 0.08x(1 + 0.0015x)−0.5

Fig. 2 The mean concentration in the 2D plane of z = 0.1m.
source location:(0,0,0), release rate = 0.01 g/s and Ū = 1m/s.
Left: A-B conditions, right: E-F conditions.

where x, y, and z (here and throughout this article)

denote the downwind, crosswind, and vertical position

coordinates relative to the odor source with x positive

along the mean wind direction
−→
U .

The standard deviations σy(x) and σz(x) model

the horizontal and vertical dispersion of the plume.

These standard deviations are not constant. It was

found experimentally by Briggs (1973) that both

parameters are functions of the downwind distance

from the source (x) according to the environmental

conditions, as expressed in Table 1. In this table the

following environmental conditions are considered; A:

neutral, B: slightly stable, C: stable, D: isothermal, E:

moderate inversion, F: strong inversion.

Fig. 2 demonstrates the mean concentration in a 2-

D plane of z = 0.1m, generated from an odor source at

(0,0,0) when release rate is 0.01 g/s and wind speed is

1 m/s toward the x-axis direction, in neutral/slightly

stable (A-B) (left) and moderate/strong inversion (E-

F) (right) environmental conditions, based on equation

(1) and Table 1.

2.2 Gas Sensor Area Coverage

Most gas sensors show pseudo-linear responses to gas

concentrations (Arshak et al., 2004). Considering the

odor dispersion model in (1) at a fixed height (z =

constant = source height) this 3D phenomena can be

treated as a 2D problem. Similar to (Balkovsky and

Shraiman, 2002) and (Meng et al., 2011), we conclude

that if an odor source is at O(x0, y0), the conditional

probability of detecting odor patches by a stationary

gas sensor located in position (x, y) is given by:



Fig. 3 The probability of detecting odor patches by a sensor
at (0,0) if the odor source is located in various points in
the plane z = z0 = 0, when k = 105, source release
rate = 0.01 g/s and Ū = 0.5m/s in in A-B environmental
conditions (left), and E-F environmental conditions (right)
(Table 1).

P
(
Dxy|Ox0y0

)
=

kQ

2πŪσy(x)σz(x)
exp{− (y − y0)2

2σ2
y(x)

} (2)

where k is the sensitivity parameter of a gas sensor to

the odor concentration. In other words, if a sensor is

located in position (x, y), its probability of detecting

an odor patch released from a source located in

position (x0, y0) is given by P
(
Dxy|Ox0y0

)
in (2).

Equation (2) defines that the higher the concentration

of the odor, the higher the probability of detecting by

a sensor. It should be mentioned that the environment

in this model (and throughout this paper) is presented

by uniform grid maps, so any Cartesian (x,y) denotes

a grid cell with center at (x,y). Another point is that

since this equation presents a probability function, its

result is truncated to [0, 1]. Although this equation

has been simplified by considering z = constant = z0,

standard deviations of vertical direction (σz(x)) exists

and plays a significant role in this probability

function. From 2, if there is a gas sensor at a given

position (x, y), where (y − y0) >> σy(x), its

probability of finding an odor patch is very small.

Fig. 3 is an example that presents the distribution of

this probability when a sensor is located at (0, 0), Ū is

1 m/s, and the environmental is in moderate/strong

inversion conditions (E-F type). As it is shown in

Fig. 2 and Fig. 3, the odor plume emitted from a

source shapes toward the airflow direction, whereas,

the probability of detection of a gas sensor shapes in

the opposite direction of the airflow.

Given N independent sensors si located at (xi, yi),

i = 1...N , we compute the total probability

P
(
DN

∣∣O(xj , yj)
)
, due to the combined efforts of all

sensors, of detecting odor patches released from a

source in O(xj , yj). This probability is one minus the

probability that all sensors fail to detect:

P
(
DN

∣∣O(xj , yj)
)

= 1−
N∏
i=1

{
1− P

(
Dxiyi

|Oxjyj

)}
(3)

In other words, if an odor source is located at

O(xj , yj), the probability that at least one sensor

(from N applied sensors) detects odor patches is given

by P
(
DN

∣∣O(xj , yj)
)

in (3).

The probability functions (2) and (3) inherently

define a probabilistic coverage area for the sensors. To

obtain the area covered by the gas sensors, a

sensitivity threshold Sth for the probability of odor

patch detection should be considered. This is based on

the fact that most of the gas sensors show a sensitivity

threshold i.e. bellow a certain value of odor

concentration, the sensors do not detect any odor

patch. Thus, this paper defines the binary coverage

area of a gas sensor as following:

Definition 1 (Single Gas Sensor Binary

Coverage). Given a sensor si in position (xi, yi) and

a point of interest pj = (xj , yj) the coverage of the

sensor si to the point pj is defined as:

cover(si, pj) =

{
1, P

(
Dxiyi

|Oxjyj

)
> Sth

0, Otherwise
(4)

where P
(
Dxiyi

|Oxjyj

)
is given by (2). Fig. 4.A

presents the coverage area of one gas sensor when the

wind is toward up direction. Despite most of the

coverage areas of different types of sensors (e.g.

acoustic, thermal, vision) which are either circular or

directional sectors towards sensor’s heading, the

coverage are of gas sensors is ellipsoid shape biased

towards the wind direction.

With the knowledge of the coverage between sensor

si and all points of interest, the overall coverage by

sensor si can be defined by aggregation. If there are m

points of interest, then the total coverage by a sensor

si is defined as:

Definition 2 (Overall Coverage by a Sensor). The

overall coverage “cover(si)” by a sensor si over a region

with m points of interest in R2 is given by:

cover(si) =

m∑
j=1

cover(si, pj) (5)

In this paper, m is the total number of grid cells of

a region.

Given N sensors si located at (xi, yi), i = 1...N , we

define their combined coverage to the point pj as:

Definition 3 (N Gas Sensors Binary Coverage).

The combined binary coverage of N sensors si, i = 1...N

on a point pj is defined as:

cover(S, pj) =

{
1, P

(
DN

∣∣O(xj , yj)
)
> Sth

0, Otherwise
(6)
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Fig. 4 Arbitrary placement of sensors and their coverage area
when Sth = 0.3, k=105, Q=0.01 g/s, and U=0.2m/s in strong
inversion conditions. The red circles show the gas sensors and
the white regions represent the probabilistic coverage area.
Note: the coverage area in C is larger than in B.

A B C

Fig. 5 The optimized configuration of two, four and eight
gas sensors in an area when the wind-speed is 0.2m/s
(moderate/strong inversion (E-F) conditions). The coverage
area in B is larger than in Fig. 4.B and also Fig. 4.C and any
other configuration of 4 sensors.

P
(
DN

∣∣O(xj , yj)
)

is given by equation (3) and is

the combined probability of detection of odor patches

if the odor source is located at (xj , yj) by N sensors

and S denotes the set of (xi, yi) positions of the

sensors. Although the coverage is defined in binary

form, its nature is still probabilistic.

Finally, the overall coverage of N sensors over a

region is defined by:

Definition 4 (Overall Coverage by N Sensors).

The overall coverage “cover(S)” by N sensors si, i =

1...N over a region with m points of interest in R2 is

given by:

cover(S) =

m∑
j=1

cover(S, pj) (7)

This equation implies that the overall coverage is a

function of sensors’ positions, source release rate,

average wind speed, sensors sensitivity, and

distribution standard deviations related to

environmental conditions.

Using these equations, Fig. 4.B and Fig. 4.C

present the coverage area of four sensors in two

different configurations. It should be pointed out that,

the coverage area in Fig. 4.C is larger than the

coverage area in Fig. 4.B, meaning that the coverage

area of N sensors depends on their spatial topology.

Fig. 6 The optimized configuration of seven gas sensors in
an area when the wind speed is 0.2, 0.5, 2, and 4 m/s (from
left to right respectively) in moderate/strong inversion (E-F)
environmental conditions.

2.3 Optimal sensor deployment

Optimal sensor deployment aims to position the sensors

in a way that overall coverage is maximized. Thus, we

are looking for a series of sensors positions si = (xi, yi)

such that:

{s1, s2, ...sN} = arg max cover(S)

Optimal sensor positions are where the coverage area

of the sensors is maximized. Therefore maximizing the

area of sensor coverage, defined in (7), is used as the

criterion of our optimization. We optimize this criterion

with various number of sensors and different average

wind speeds in four environmental conditions. Without

loss of generality, we assume constant values for the

following parameters during the optimizations: Sth =

0.35, Q = 0.01g/s, k = 105 and the environment

size is 50 × 50m. These values are close to real world

experimental measurements (Cheng et al., 2011).

The Powell’s conjugate gradient descent method

(Press et al., 2002) was used (in Matlab) to optimize

this problem, since it does not need the derivative of

the function and its convergence is fast even in high

dimensional spaces. N sensors on a 2-D plane require
2N dimensional search space. For each combination of

sensors’ position, the coverage area is computed. The

solution is a set of positions for sensors that its

coverage area is the largest.

2.4 Optimization Results

Fig. 5 shows examples of optimized positions of two,

four and eight sensors and their maximum coverage

area in an environment under moderate/strong

inversion (E-F) conditions when the wind speed is

equal to 0.2 m/s. Different values of U , and N in

different environmental conditions result in similar

(but not equal) solutions. Fig. 6 shows another

example of optimized positions of seven sensors with

different values for the wind speed. The optimal

coverage area was measured for different number of

sensors from 3 to 16, and different wind speeds from

0.1 to 15 m/s in the four environmental conditions



Fig. 7 The optimal distance between the neighboring sensors
in the optimized configurations. Number of sensors (N) varies
from 3 to 16, environmental conditions (Env) is listed in Table
1, and the airflow is between 0.1 to 15 m/s.

listed in Table 1. The topological shape of the sensors

in the optimal solutions was analyzed in each case.

One interesting point from all of the optimized

solutions is that:

Conclusion 1 (Cross-wind Line Topology). The

topology of all of the optimal solutions is line
configuration towards cross wind direction, with equal

distance between each pair of neighboring sensors.

Fig. 7 is an example that shows the optimal

distance between the neighboring sensors in the

optimized configuration in neutral/slightly stable

(A-B) and moderate/strong inversion (E-F)

environmental conditions when the number of sensors

is 3 to 16. Although this chart only shows the optimal
results when the environmental conditions is A-B and

F-E types (see table 1, for the other environmental

conditions, the obtained results for the same number

of sensors were similar to this figure. By analyzing

these results of the optimizations, it can be seen than,

in constant wind speed, when the number of sensors

changes (from 3 to 16), the optimal distance between

the sensors changes only for a few centimeters and is

almost constant even in various environmental

conditions (see the examples in Fig. 5 and Fig. 7).

Therefore:

Conclusion 2 (Wind Dependent Distance). The

distance between neighboring pairs in optimal

configurations depends mainly on the wind speed,

whereas, the number of sensors and the environmental

conditions do not show significant impact on optimal

configurations.

These conclusions are drawn after the results

obtained from numerical simulations and are the most

Fig. 8 The average optimal distance between neighboring
sensors in different airflow speeds in different environmental
conditions.

Fig. 9 The maximum coverage area of 10 gas sensors in 4
different environmental conditions while the airflow varies
from 0.1 to 15 m/s.

significant contributions of this paper. The results in

Fig. 7 show that the higher wind speed, the

smaller the optimal distance. Therefore, as the

wind speed increases, the distance in-between the

sensing nodes should decrease in order to maintain

optimal coverage however, when the wind speed

decreases they should get apart and keep a larger

distance in order to maximize their coverage area.

Fig. 8 shows the average optimal distance between

neighboring sensors in different airflow speeds in

different environmental conditions.

Taking the results shown in Fig. 8 and using a

non-linear regression analysis, the following analytical

equation was obtained that describes the optimal

distance between the sensing nodes as a function of

the wind speed in E-F (inversion) environmental

conditions:

f(U) = 2.19e−2.81U − 0.03U + 0.53 (8)

Since the results of optimizations (in Fig. 7) is similar

for various environmental conditions, we consider the

average of optimal distances between neighboring

sensors in different airflow speeds in all environmental

conditions and obtain the following formula:

f(U) = 2.28e−2.3U − 0.03U + 0.52 (9)

The red line in Fig. 8 is the fitted function (9) and

the scattered blue circles are the results of the

optimizations. The mean square error of this

regression line is 7.3 × 10−3. This function is later

used by moving senor robot to estimate the optimal

distance based on the wind speed.



Fig. 9 presents the overall coverage area achieved

by 10 sensors in the optimal configurations in four

different environmental conditions. Similar results

were obtained considering other numbers of gas

sensors. Although the optimal distance for the

neighboring sensors is not dependent to the

environmental conditions or to the number of sensors,

Fig. 9 shows that when the environment is under

moderate/strong inversion conditions, the coverage

area of a group of gas sensors is larger than when the

environmental conditions is neutral/slightly stable. On

the other hand, in constant environmental conditions,

when the wind speed is lower the coverage area

increases. Therefore, in a windy environment more

sensors are required to cover a given area.

It should be mentioned that the obtained results

are valid for specific values of Sth, k and Q defined in

section 2.3, however, for other values the optimal

configuration for the sensors is the same (i.e. a

cross-wind line) and only the values of the optimal

distance between the sensors and regression function

(9) are changed. This process of optimization can be

repeated and optimal results can be achieved in other

conditions.

3 Wind-biased potential fields

From the optimization results, we conclude that, to

maximize the probability of detecting odor plumes by

a swarm, the robots should line-up cross-wind with

equal distances from each other. There is no central

node for swarm robots and the formation topology of

the swarm is the emergent result of individual robots

movements. Therefore, for the swarm to have a

desired formation topology, each robot should move in

the space with a correct and well-defined control

manner. To control the motion of the robots to reach

the optimal formations, this paper presents a novel

method based on the virtual attraction/repulsion

forces (Gazi and Passino, 2004). Despite previous

works on swarm formations, we take the wind

direction and the wind speed into account and bias

the attraction/repulsion forces by the wind to

implement the desired cross-wind line-up formation.

This method is a suitable control strategy for the

swarming robots since it does not need a central

control node and it is flexible to be modified to

impediment other robotic behaviors (e.g obstacle

avoidance). We define a behavior named “cross-wind

line-up” for the individual robots in order to

implement line formation for the swarm. This

behavior defines two types of virtual forces that are

applied to the robots; robot-to-robot and

robot-to-environment forces.

3.1 Robot-to-robot forces

To line-up the robots toward the cross-wind direction,

each robot measures the air-flow direction
−→
U and

assumes this direction as its internal X-axis coordinate

system and then it measures the relative distance to

its neighboring robots. Then, the robots try to

minimize their X-axis distances from their neighbors

and maintain a constant distance with them in their

Y-axis. Hence, we define a nonlinear bounded

potential between each pair of neighboring robots i

and j at time t:

<
−→
X axis > ≡ <

−→
U > (10)

−→
F ij

cr(t) =
−→
Fxijcr(t) +

−→
Fyijcr(t) (11)

−→
Fy

ij
cr(t) =


−µ1

( ‖−→Y ij‖−D1

‖pij(t)‖2

)[ −→
Y ij

‖
−→
Y ij‖

]
, 0 < ‖

−→
Y ij(t)‖ < D1

−µ2

( ‖−→Y ij‖−D1

‖pij(t)‖2

)[ −→
Y ij

‖
−→
Y ij‖

]
, D1 < ‖

−→
Y ij(t)‖ < D2

0 , ‖
−→
Y ij(t)‖ > D2

(12)

−→
Fxijcr(t) =

{
−µ3
−→
X ij

[
1

‖pij(t)‖2

]
, 0 < ‖

−→
X ij(t)‖ < D2

0 , ‖
−→
X ij(t)‖ > D2

(13)

D1 = 2.28e−2.3U − 0.03U + 0.52 (14)

where

–
−→
F ij

cr(t) is the force applied to robot i by robot j at

time t.
−→
Fxijcr(t) and

−→
Fyijcr(t) are respectively the x

and y components of
−→
F ij

cr(t).

– ‖pij(t)‖ is the distance between robots i and j.

The term
[

1
‖pij(t)‖2

]
correlates the force between

each pair of robots to their inverse square distance.

Therefore, the robots in close vicinity apply large

magnitude forces to each other while they do not

apply significant forces to the robots which locate

very far.

– Xij = xi− xj and Yij = yi− yj where (xi, yi) is the

relative position of robot i and (xj , yj) denotes the

relative position of robot j. It is obvious that ‖
−→
Y ij‖

denotes the magnitude and
[ −→

Y ij

‖
−→
Y ij‖

]
is the direction

of the vector
−→
Y ij (either +1 or -1).



– µ1, µ2 and µ3 are constant coefficients for tuning

acceleration of the robots. µ1 is the Y-component

repulsing coefficient and µ2 is the Y-component

attracting coefficient while µ3 is the X-component

attracting coefficient.

– D1 is a design parameter that specifies the desired

distance interval between the neighboring robots.

We defined D1 using the equation (9) to be equal to

the optimization results.

– D2 defines the margin of the area that a robot

applies forces to the other robots. Logically for line

formation D2 should be bigger than D1 and

smaller than 2D1. Moreover, it is necessary that

each robot be always located inside the detection

range of at least another robot in order to perform

swarm formation behaviors, thus D1 and D2

should always be smaller than ∆d,

(0 < D1 < D2 < ∆d).

The design of the above equations is inspired by the

Hooke’s law, thus the forces are similar to the forces in

the physical springs. Hence, the robots try to minimize

their X-component distance to zero and to maintain

a distance of D1 (that is the optimized distance) in

their Y-component distance (see Fig. 10). Since the X-

axis in the robots is selected to be toward the air-flow

direction
−→
U , the robots will line up cross-wind with

constant distance of D1 towards the Y-Axis.

Using the above equation, the total “cross-wind line-

up” force
−→
F i

cr(t) for robot i is determined as:

−→
F i

cr(t) =

N∑
j=1;j 6=i

−→
F ij

cr(t) (15)

It is worth to mention that, although the summation

of the force is over all the other robots (N), only those

within the detection range (∆d) of robot i which are

closer than D2 actually effect the value of
−→
F i

cr(t).

3.2 Robot-to-Environment Forces

The low level of autonomous navigation of a robot

relies on the ability of the robot to simultaneously

achieve its target goal and avoid the obstacles in the

environment. To avoid the obstacles, a reactive

potential field control method (Khatib, 1986) is used.

Fig. 10.B is an example that shows the virtual

potential forces applied to a robot in an environment.

Considering M range sensors, we define the forces

applied to robot i by its surrounding environment as:

−→
F i

obs(t) =

M∑
j=1

c1∣∣di(j)∣∣n−−−−−→(V ecij) (16)

A B

Fig. 10 A. Cross-wind line-up behavior; forces applied to the
robots based on equations (10-17). F1 demonstrate the total
forces applied to R1 from R2 and R3. F2 and F3 present the
total forces applied to R2 and R3 respectively.
B. Obstacle avoidance for a robot with five range sensors.
d1 to d5 correspond the distance measured by the sensors.
R1 to R5 are the artificial repulsive forces. “F1” represents
the artificial robot-to-robot force and “F2” illustrates the
summation forces of obstacle avoidance. Vector ‘F1+F2”
shows the total force applied to robot 1.

Since di(j) is simply the distance between robot i and

an obstacle that is reported by the range sensor j, the

force is an inverse function of the distance of the robot

to the surrounding obstacles.
−−−→
V ecij is a predefined

vector whose magnitude is set to one and its direction

is from sensor j toward the center of robot i. c1 is a

positive coefficient and n is an even integer parameter.

3.3 Swarm Movements

An unanswered question is that “what should the

swarm do if none of the robots detect any odor

patches after performing the cross-wind line-up

formation?” Implementing the virtual force in

equations (15) and (16) will converge to a steady-state

line topology for the robots. If none of the robots

detect any odor clue for a long time, it means that

with high probability there is no odor source in the

coverage area of the swarm. In this case the swarm

robots should move spatially and explore the

environment. Several different search and exploration

strategies namely zig-zag casting, spiral movements,

random or biased random walks, levy taxis, etc, can

be taken. As stated in the introduction, this challenge

is not in the scope of this paper; however, in any of

these strategies the best spatial formation for the

swarm is still the found cross-wind line-up

configuration that the distance between the robots is

proportional to the wind speed.

As an example of swarm movements, one tactic is

that if the swarm robots hold the desired formation

and still do not detect any odor plume, they move

up-wind while keeping their line formation. Hence,

they will sweep and cover the environment toward

up-wind. We do not claim that this movement

strategy is a perfect strategy (and it is not the goal of



this paper to show that), but this is only a sample

strategy that we use to show how the formation

configuration can be hold while the swarm moves. For

the swarm to have a desired movement trajectory,

each robot should move in the space in the correct

direction. To implement this movement strategy, we

define
−→
F i

G(t) that is a virtual force applied to robot i

at time t towards the swarm’s goal.
−→
F i

G(t), in this

example, is equal to an up-wind control virtual force,−→
F i

G(t) =
−→
F i

UpW (t) where:

−→
F i

UpW (t) =

{
0 , |

−→
F i

cr(t)| > Fth

−α
−→
U i(t) , |

−→
F i

cr(t)| ≤ Fth

(17)

Fth is a threshold value for the forces applied to a

robot, α is a constant positive coefficient and
−→
U i(t) is

the airflow vector that the robot i has measured at

time t. The above formula checks if |
−→
F i

cr(t)| is bigger

than a defined threshold or not. If |
−→
F i

cr(t)| is very

small it means that the resultant virtual forces applied

to robot i are near zero, i.e, the topology of the robot

and its neighbors is in the form of a cross-wind line

and it is in its steady state. In this case a force in the

opposite direction of the airflow is applied to the robot

(−α
−→
U i(t)) and robot moves toward up-wind direction.

3.4 The Total Force

The total force applied to a robot in “cross-wind line-

up” behavior is:

−→
F i

s =
−→
F i

cr +
−→
F i

obs +
−→
F i

G (18)

For a swarm of N individual robots in Euclidean

plane, denoting θi(t) as the steering angle of robot i

at time t, the desired direction of motion of robot i is

given by:

θid(t) = arctan
(−→
F i

y(t),
−→
F i

x(t)
)

(19)

where
−→
F i

y(t) and
−→
F i

x(t) represent the x and y

components of the force
−→
F i

s. Now, a proportional

controller is used for the orientation dynamics of the

robot:

wi(t) = −λ
(
mod

(
(θi(t)− θid(t)) + π, 2π

)
− π

)
(20)

where λ is a positive proportional gain. Finally, the

next velocity of the robot −→v i(t) is calculated based on

its last velocity −→v i(t−∆t) and the forces applied to it
−→
F i(t):

−→v i(t) = −→v i(t−∆t) + η
−→
F i

s(t)∆t (21)

while η is a constant coefficient multiplied to the

acceleration of the robot.

The robots maintain cross-wind line-up behavior

until one (or some) of them gets into an odor plume

by sensing odor concentrations higher than a defined

threshold. Plume tracking is not in the scope of this

paper, however, a robot which gets into the odor

plume can perform another behavior to inform the

other robots to get into the plume and track it.

4 Validation

The presented method was validated in both

simulations and realistic experiments.

4.1 Simulations

The method was tested in several different simulation

environments containing obstacles with different

number of robots. This section goes to the details of

these simulations and presents the results.

4.1.1 Testing environment

Models of several testing environments were given to

ANSYS Fluent CFD1 software to simulate odor

sources and provide odor concentration data. The

olfactory data generated by ANSYS Fluent was

exported to Matlab to be used in simulations. One of

the environments designed for these simulations is

depicted in Fig. 11. The dimension of designed arenas

for simulations was varied from 4×6 meters to 30×40
meters. The airflow was ventilated from the inlet side

(left) with different speeds from 0.5 to 20 m/s. In the

environments with obstacles, the flow velocity varies

in different parts of the arena. Fig. 12 shows several

3D snapshots of an odor plume propagation during

the time in one of the tested scenarios. As shown in

the simulation snapshots, the odor propagation is time

variant and under turbulent flow. Although the odor

plume was simulated in 3D, the robots move in the

floor with their gas sensors always at the same height,

so, only the odor concentration measured in the 2D

plane at the height of the sensors is relevant to the

robots’ decisions. We extracted the odor

concentrations and airflow velocities of 10 centimeters

height from the 3-D odor plumes and fed it to the

robots in the simulations. Fig. 13 presents some

snapshots of an extracted 2-D odor plumes in one

scenario.

1 ANSYS Fluent CFD, “FLUENT user’s manual” Software
Release, vol. 6, 2006.



Fig. 11 The model of a testing environment with 4 × 6m
dimensions.

Fig. 12 ANSYS Fluent three dimension simulations;
contours of mass fraction of ethanol propagated in the testing
environment of Fig. 11.

Fig. 13 Extracted 2-D odor contours of mass fraction of
ethanol propagated in the testing environment of Fig. 12
during the time.

Fig. 14 Virtual forces generated by a robot when the wind
direction is left to right. The X marks show the locations
that the virtual forces converge to. If another robot is added
to this system, it will move to one of the marked places.

Fig. 15 Virtual forces generated by two robots. Left: the
robots are already on a cross-wind line. Right: The robots
are not on a cross-wind line, thus, their configuration is not
stable.

1 2

3 4

Fig. 16 10 swarm robots performing cross-wind line
formation.

4.1.2 Robots

Robots were simulated in Matlab as independent

entities with no shared variables. The environmental

data including odor concentrations, wind speeds and

obstacles locations are shared with the robots such

that the robots can measure the odor concentration

and air-flow speed of their places. Robots are able to

measure their distances to the obstacles existing in the

neighborhood or to the other neighboring robot. The

neighborhood range is an adjustable parameter that

can be modified in different tests. The wind-biased

potential forces (explained in section 3) were

implemented for the movement control of the robots.

Figures 14 and 15 show the virtual forces that the

swarm robots generate in the “cross-wind line-up”

behavior in different configurations. Each arrow in a

place shows the magnitude and the direction of virtual

forces that would be applied to another robot if it was

located in that place. By adding (or removing) robots

to these scenarios the configuration of forces will

change, however, these figures only show the virtual

forces in the current setup of the figures before adding

another robot. These forces are obtained by

implementing the equations (10) to (14). As shown in

these figures, the wind direction affects the virtual

forces amplitudes. The red ”X” marks in each figure

show the locations that the virtual forces converge to.

4.1.3 Validation

Fig. 16 shows a series of snapshots during a simulation

that show the functionality of the method. The first

frame of this figure shows that 10 robots are released

randomly in one part of the environment. The next

frames demonstrate the cross-wind line-up behavior,
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Fig. 17 Eight swarm robots searching in an environment for
possible odor sources. The swarm dynamically changes its
topology to deal with environmental changes. There is no
odor source in the environment. The airflow is 10 m/s from
left to right, Fth = 0.01 and α = 0.1.

where they get apart from each other toward the

cross-wind direction. The last frame shows that a

robot (the red one) gets into the plume and detects it.

Since the wind speed was 5 m/s in this example, the

individual robots computed their desired distance

(D1) using equation (14) as 0.37m. Fig. 16 shows that

the robots tend to reach to the analytic optimal

configuration. In this test, the coefficient parameters

of the method were set as following: ∆d = 1m, i.e. the

range of communication between the robots is

considered to be 1 meters, µ1 = 2 and

µ2 = µ3 = 1, η = 0.2, λ = 0.1, c1 = 1, based on the

dynamics of simulated robots to achieve a maximum

speed of 0.1 m/s.

Since this paper has focused on swarm formation

strategies and swarm movement is not in the scope of

this paper, we do not evaluate this latter issue here,

however, one simulation that shows the functionality

of the method with considering the movement for the

swarm (described in section 3.3) is shown in Fig. 17.

In this test, we intentionally did not put any odor

source in the environment to better demonstrate this

behavior. The robots expand toward cross-wind in a

line and when they are stable they start to move

up-wind. The swarm’s topology changes with the

environmental changes dynamically. The robots cover

a large area towards up-wind, searching for any

possible odor plume. In the other simulations and

experiments, F i
UpW (t) in equation 18 is considered

zero to disable the up-wind movements of the swarm

and only evaluate the formation strategy.

4.1.4 Evaluation

The method was tested in a large environment

(30 × 40m) with 5 and 10 robots repeatedly. Fig. 18

shows a part of this environment that is 10× 15m and

includes an ethanol source. The release rate was set to

A B

C D

Fig. 18 A part of a 30×40m environment. A: line formation,
D1 = 0.5m. B: line formation, D1 = 1m. C: line formation,
D1 = 2m. D: hyperball formation, distance = 1m. The odor
plume is shown in yellow.

0.01 g/s and the wind speed was 0.5 m/s. To evaluate

the optimization results we measured the plume

detection ability of swarm robots in two different

formation strategies; 2-D hyperball formation (similar

to (Gazi and Passino, 2004)) and cross-wind line

formation strategy and we manually set the parameter

of distance between the robots (D1) to 0.5, 1 and 2

meters in different tests to find the best configuration.

Each test was repeated for 20 times for every

formation and value of D1. If at least one robot could

detect the odor plume in less than one minute after

the swarm formation was established, we consider a

success in plume detection. The number of

successfully detecting the odor plume was counted.

The results, in Fig. 19, show that the best

performance between tested configurations is the one

with cross-wind line up formation when D1 is 1 m. On

the other hand, using the results of sensor placement

optimization in section 2 (Fig. 7.A and equation (9)),

in the conditions of these simulations, the best

formation strategy is line formation with D1 = 1.22m.

The best configuration between the simulated ones is

very close to the found analytic formation. This

validates the optimization achievements.

4.2 Experimental Results

In addition to simulations, the method was

experimented with our currently available robotic

facilities.



Fig. 19 Odor plume detection success, during 20 tests in each
configuration.

4.2.1 The robots

A set of iRobot Roomba2 robots were upgraded with

small laptop computers (ASUS EeePC901) running

ROS3 to control the robots. The robots were equipped

with Laser range finders (Hokuyo URG-04LX) for

obstacles avoidance. Adaptive Monte Carlo

localization (AMCL4) libraries were used in ROS to

localize the robots in the environments. WifiComm5

was used in ROS that allows multiple robots to

communicate with each other peer to peer through an

ad-hoc network. Each robot was equipped with an e2v

MiCS-55216 and a Figaro7 TGS2620 gas sensor to

measure the odor concentration. The robots

repeatedly broadcasted their localization data, and

accordingly, they measured their x-axis and y-axis

distances. In these tests, the airflow was intentionally

ventilated and controlled towards the x-axis of the

robots and wind speed was manually provided

(broadcasted) to the robots. Fig. 21 presents one of

these developed robots.

4.2.2 Realistic Environment

The method was tested in the reduced scale

environment shown in Fig. 20. This arena, with

3 × 4 m2 area by 0.5 meters height, has controlled

ventilation through a manifold that extracts air from

the testing environment through a honeycomb mesh

integrated into one of the walls. The opposite surface

of the environment contains a similar mesh that allows

the entrance of clean air that flows through the

environment. A controlled ethanol gas source using

bubblers is pumped to arbitrary places of the

environment through a set of PVC tubes. The ethanol

2 http://www.irobot.com
3 http://www.ros.org
4 http://www.ros.org/wiki/amcl
5 http://www.ros.org/wiki/wifi comm
6 http://www.e2v.com
7 http://www.figarosensor.com

Fig. 20 The realistic testbed environment. 1,2,3: robots, 4:
ventilation system, 5: transparent Plexiglas ceiling, 6: odor
source.

Fig. 21 One of the developed robots containing gas sensors,
Laser range finder, and iRobot Roomba controlled by a
laptop.

Fig. 22 The output of e2v sensors of robots 1, 2 and 3 in
Fig. 20 from left to right in each row respectively. The wind
speed was 1± 0.1m/s in the first row and 0.5± 0.1m/s in the
second row.

release rate was about 0.01 g/s during the tests. The

ceiling of this testbed is covered by a sheet of

transparent Plexiglas to be visualized from the

outside.



Fig. 23 Successful detections rate against the distance
between the neighboring robots when the wind speed is
0.6± 0.1m/s. A. line formation, B. hyperball formation.

Fig. 24 Successful detections rate against the distance
between the neighboring robots when the wind speed is
1± 0.1m/s. A. line formation, B. hyperball formation.

4.2.3 Validation

Fig. 20 shows three robots maintaining cross-wind

line-up formation finding an odor plume. The robots

spatially construct a line formation in the cross wind

direction and maintain a specific distance. If one of

the robots moves toward a direction, regardless of the

cause of this movement, the other robots dynamically

move to maintain the line formation.

Similar to the presented simulations, for evaluating

the optimization results, the experiments were done

with manual values for D1 testing cross-wind line

formation and also hyperball (triangle) formation. The

wind speed was 0.6 ± 0.1m/s and we set D1 to 0.3,

0.5, 0.7, 0.9, 1.1 and 1.3m in different tests. Three

robots were released randomly 3 meters down-wind

the source and each test was repeated 15 times and

the plume detections were counted. The period of each

test was one minute. Fig. 22 is an example that shows

the output of the e2v sensors in two tests. Each row

shows three graphs that correspond to the three

robots of the Fig. 20. The first row was taken when

the wind speed was 1 ± 0.1m/s and the second row

was taken when the wind speed was 0.5 ± 0.1m/s. In

both cases the robot 3 (that was close to the center

line of the plume) has detected the odor plume

whereas robot 1 did not detect the plume. Robot 2,

whose distance to robot 3 is 0.7 m in this example,

has detected the plume when the wind speed was

0.5m/s but not when the wind speed was 1m/s. In

each test if at least one of the robots detects the odor

plume we consider a success in plume detection.

The results demonstrated in Fig. 23 show that line

formation provides more detections and the maximum

number of success is reported when the distance

between the robots is 0.9 and 1.1 meters. Using

equation (9), the optimal distance in this

configuration is 1.07 meters that agrees with the

results of the real experiments.

The experiments in the realistic test bed were

repeated by changing the wind-speed to 1 ± 0.1m/s.

Fig. 24 demonstrates the results and shows that when

the robots have line formation and their distance is

0.7, the maximum number of detections will be

achieved. Based on equation (9), the optimal distance

in this configuration is 0.71 meters that again agrees

with the results of these experiments.

5 Conclusions

Considering no movement for a network of robotic gas

sensors, their optimal spatial formation to maximize

the probability of detection of odor plumes was

studied. The topology of all of the optimal solutions

was line configuration toward cross wind direction,

with equal distance between each pair of neighboring

sensors. Regardless of number of sensors, the optimal

distance between neighboring pairs depends on the

wind speed. A mathematical function that can

accurately estimate the optimal distances based on

the wind speed was computed by nonlinear regression

estimation. Moreover, swarm robotics wind-biased

attractive/repulsive virtual forces were designed to

emerge to the optimal configurations. The method was

tested and validated in simulations and in a reduced

scale realistic environment. The results verify the

functionality of the swarming formation strategy and

also validate the obtained optimization results.
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