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We discuss projection based Padé-Jacobi approximants in general and

present in particular an exact rational approximation to the Sign function.

This serves as vehicle to analyze the behavior of Padé-Jacobi approximants

for discontinuous functions. The analysis shows that the Padé-Jacobi ap-

proximant is superior in several ways to classic polynomial approximations

of discontinuous functions, provided the parameters in the approximations

are chosen carefully. Guidelines for this is obtained through the analysis.

1. INTRODUCTION

The nonuniform pointwise convergence, known as the Gibbs phenomenon, of

polynomial approximations to discontinuous function is a well known and much

studied phenomenon, see e.g. [10] and references therein. Among the consequences

of the Gibbs phenomenon is the lack of convergence at the jump with an overshoot

of approximately 9% of the jump size, a global O(N−1) convergence rate in mean,

and a steepness of the approximation right at the jump being proportional to the

length, N , of the polynomial expansion.

The literature is rich with methods trying to reduce or even eliminate these prob-

lems. The perhaps simplest approach is that of modal filtering, essentially relying

on forcing the expansion to converge more rapidly [20, 10, 13]. An alternative ap-

proach is physical space filtering using mollifiers [11, 19], yielding similar behavior.

Both methods, however, do not overcome the lack of convergence at the point of dis-

continuity. To achieve this, information about the shock location is needed. With

this, the Gibbs phenomenon can be completely resolved [10], albeit this approach

has considerable practical problems.

In this work we shall discuss the use of rational functions, Padé-Jacobi approxi-

mants, for the representation of discontinuous functions. As rational functions are

richer than simple polynomial expansions, one can hope that the impact of the dis-

continuity will be less severe and, further, that one could use this as a postprocessing

tool to reduce the impact of the Gibbs phenomena in polynomial expansions.

To study the fundamental behavior of Padé-Jacobi approximants of discontinuous

functions, we present a family of exact rational approximations to the Sign function,

considered as a prototype of discontinuous functions. This enables a complete
1
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analysis of the behavior of this approximation as characterized by the maximum

size of the overshoot and the achievable steepness at the point of discontinuity. As

we shall show, the use of a rational approximation allows one to dramatically reduce

the overshoot and increase the steepness while recovering high order accuracy away

from the jump.

There has been some recent activity in the exploration of Padë-forms for the

reconstruction of Gibbs oscillations. In particular, work for the Fourier case can be

found in [8, 6, 4], for the Chebyshev in [16], and for the Legendre approximations

in [5, 12]. However, much of this has been of a qualitative character and for special

polynomial families only.

In Sec. 2, we recall some properties of the Jacobi polynomials and the Padé-

Jacobi problem. Section 3 is devoted to the derivation of an exact solution of the

Padé-Jacobi approximation problem for the Sign function. In Sec. 4, we consider

the optimization of the Padé-Jacobi solution by varying several of the free param-

eters. Section 5 contains a few remarks.

2. JACOBI POLYNOMIALS AND PADÉ-JACOBI

APPROXIMATIONS

In the following we shall recall various definitions and properties of Jacobi poly-

nomials and expansions, as well as define exactly what we mean by Padé-Jacobi

approximations in this work.

2.1. Jacobi Polynomials and Expansions

For α > −1, the symmetric Jacobi polynomials, P
(α)
n (x), also known as the

ultraspherical polynomials, are defined as the polynomial eigenfunctions to the

singular Strum-Liouville problem

AαP (α)
n (x) = λαnP

(α)
n (x) , x ∈ [−1, 1] , (1)

where

Aαϕ = − 1

ωα

(
ωα+1ϕ

′)′ ,
with the weight function

ωα = (1− x2)α ,

and the eigenvalue

λαn = n(n+ 2α+ 1) .

One easily proves that the Jacobi polynomials are the unique polynomial solution

[18] to Eq.(1), once a normalization is chosen. The standard choice, also used here,

is

P (α)
n (1) =

Γ(n+ α+ 1)

Γ(n+ 1)Γ(α+ 1)
,

where Γ(x), x ≥ 0 represents the classic Euler Gamma function. Recall that Γ(n+

1) = nΓ(n) = n!.
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We introduce the Pochhammer symbol

(z)n =
Γ(z + n)

Γ(z)
= (z + 1)(z + 2) . . . (z + n− 1) ,

and note that (1)n = n! and (z)1 = z. Recall also that for k ∈ N

∀n ≥ k + 1 : (−k)n = 0 . (2)

An important property of the Pochhammer symbol is expressed in the Saalchütz’s

formula [7]

3F2(−n, a, b; d, 1 + a+ b− d− n; 1) =
(d− a)n(d− b)n
(d)n(d− a− b)n

, (3)

with 3F2(−n, a, b; d, 1 + a+ b− d− n; 1) being the hypergeometric function defined

as

3F2(a, b, c; d, e; z) :=

∞∑
k=0

(a)k(b)k(c)k
(d)k(e)k

1

k!
zk .

Well known examples of ultraspherical polynomials are the Chebyshev polynomials

(α = −1/2) and the Legendre polynomials (α = 0). The ultraspherical polynomials

have a number of important properties which we shall exploit. In particular, all

the polynomials are mutually orthogonal in the inner product

(u, v)α =

∫ 1

−1

u(x)v(x)ωα dx, (4)

with the associated weighted L2
α norm

‖u‖2α = (u, u)α .

The normalization is given by

γαn =
(
P (α)
n , P (α)

n

)
α

=
22α+1

2n+ 2α+ 1

Γ(n+ α+ 1)2

Γ(n+ 1)Γ(n+ 2α+ 1)
. (5)

Another important property of the ultraspherical polynomials is their even-odd

characteristics

P (α)
n (x) = (−1)nP (α)

n (−x) . (6)

We also recall the special value at x = 0 as

P
(α)
2n (0) = (−1)n2−2n

(
2n+ α

n

)
(7)

and zero otherwise due to Eq.(6).

Finally we shall need the relation [18]
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d

dx
P (α)
n (x) =

1

2
(n+ 2α+ 1)P

(α+1)
n−1 (x) . (8)

If we now consider functions, u(x) ∈ L2
α, i.e., for which ‖u‖α < ∞, we can seek

polynomial approximations as

u(x) =

∞∑
n=0

ûnP
(α)
n (x) , ûn =

1

γαn

(
u, P (α)

n

)
α
,

by orthogonality.

Let us consider the truncated expansion

u
(α)
N (x) =

N∑
n=0

ûnP
(α)
n (x), (9)

i.e., u
(α)
N ∈ PN where PN is the space of algebraic polynomials of degree less than

or equal to N . The orthogonality of the Jacobi polynomials implies

∀p ∈ PN :
(
u− u(α)

N , p
)
α

= 0.

It is well known that the polynomial expansion is convergent in the mean but not

uniformly. In particular, if the smoothness is measured in the Sobolev space Hp
α

of functions u and their derivatives up to order p in L2
α, there exists a constant cp

such that

‖u− u(α)
N ‖α ≤ cpN

−p‖u‖Hpα .

For a smooth function, i.e., p large, this provides an accurate approximation and

the approximation error decreases rapidly to zero as N goes to infinity. This is one

of the main motivations for using spectral methods for solving partial differential

equations with regular solutions. We refer the reader to [1].

However, for problems with discontinuous solutions, the expansion exhibits non-

uniform convergence and a phenomenon known as the Gibbs phenomenon [14] as

illustrated in Fig. 1 where the truncated (N = 20 and N = 100) Legendre expan-

sion, i.e., for α = 0, of the Sign function is displayed. One observes the oscillations,

especially near the discontinuity. If the parameter N is increasing, the size of the os-

cillations decrease everywhere except near the discontinuity where O(1) oscillations

(overshoot/undershoot) remain. Furthermore, the global nature of the oscillations

limits the pointwise accuracy to first order away from x = 0.

One of the objectives of this work is to consider Padé-Jacobi approximations of

the Sign function and attempt to answer the question of which one among this

family would be best suited to approximate the Sign function. As measures of

success we shall consider

• the overshoot/undershoot of the approximation at the point of discontinuity

as characterized by the Gibbs constant of the expansion.
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FIG. 1. Legendre approximations of the Sign function: N = 20 (dashed) and N = 100
(solid).

• the ability to reproduce the discontinuity characterized by the steepness of the

approximation.

2.2. Padé-Jacobi Approximants

We shall consider the Padé-Jacobi approximation to u in a Galerkin sense, i.e.,

find P ∈ PN and Q ∈ PM such that

(Qu− P, p)α = 0, ∀p ∈ PK , (10)

with K ≤M+N . This shall be used to define the linear Galerkin type Padé-Jacobi

approximation of order (N,M) to u as the rational function

RN,M (x) =
P(x)

Q(x)
,

where (P,Q) satisfies Eq.(10).

Remark. For M = 0 and K = N , the pair (Q ≡ 1,P = u
(α)
N ) defined in (9) is

a solution of the Padé-Jacobi approximation problem.

It is important for practical purposes that the complete knowledge of u is not

needed to solve the problem (10), only u
(α)
N+M is required. In Eq. (10) we take

p = P
(α)
k with k = N + 1, . . .K, to get

̂(Qu)
(α)

k = 0, ∀k = N + 1, · · · ,K.

This is a linear system of K −N equations and M + 1 unknowns (the coefficients

of Q in a basis of PM ). Once a non trivial solution of this system is found (such a

solution always exists if K ≤ N +M), the numerator P ∈ PN is simply computed

by

P̂(α)
k = ̂(Qu)

(α)

k , ∀k = 0, · · · , N.
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Hence the main problem is the determination of the denominator.

3. ANALYSIS OF THE SIGN-FUNCTION

Let us now return to a more thorough analysis of the behavior of the Padé-Jacobi

approximation for the most basic discontinuous function – the Sign function

u(x) =

{
−1 x < 0

1 x > 0
. (11)

3.1. An Exact Solution

For the purpose of analysis, we shall seek the approximation to the Sign function

using

P(x) =

N∑
n=0

p̂α2n+1P
(α)
2n+1(x) ∈ P2N+1 ,

and

Q(x) =

M∑
m=0

q̂α2mx
2m ∈ P2M ,

where we have used the parity of the problem and Eq.(6) to reduce the complexity

of the problem.

We must now seek P ∈ P2N+1 and Q ∈ P2M to satisfy Eq.(10), i.e.,

(
Qu− P, P (α)

2k+1

)
α

= 0 , ∀k ≤ K ,

where we have again utilized the parity of the problem to reduce the complexity.

Orthogonality of the Jacobi basis immediately yields

(
Pu, P (α)

2k+1

)
α

=
(
Qu, P (α)

2k+1

)
α

= γα2k+1
̂(Qu)

α

2k+1 = 0 N < k ≤ K ,

which is a linear system of (K − N) × (M + 1), with the unknowns being the

coefficients of the denominator Q, i.e., q̂α2m. Clearly for K ≤ N + M this linear

system will always have at least one nontrivial solution. In what remains we shall

restrict ourselves to the special case

K = N +M .

To compute the numerator, we observe that

p̂α2k+1 − ̂(Qu)
α

2k+1 = 0 , 0 ≤ k ≤ N, (12)

i.e., once Q, and hence, Q̂u
α

2k+1 is computed, the numerator follows immediately.

Let us thus focus on the computation of the denominator, or rather its coefficients,

satisfying
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̂(Qu)
α

2k+1 =

M∑
m=0

q̂α2m
1

γα2k+1

(
x2mu, P

(α)
2k+1

)
α

= 0 .

We shall need the following results. Define for the integers k and m

Iαm,k =

∫ 1

0

x2mP
(α)
2k+1ωα dx and J αm,k =

∫ 1

0

x2m+1P
(α)
2k+1ωα dx, (13)

Lemma 3.1. For m ≥ 1 and k ≥ 0

Iαm,k = Iα0,k
m!(1/2)m

(−k + 1/2)m(k + α+ 2)m

with

Iα0,k =
k + α+ 1

λα2k+1

P
(α+1)
2k (0) =

(−1)k

2k + 1

1

22k+1

1

k!

Γ(2k + α+ 2)

Γ(k + α+ 2)
.

For m < k, J αm,k = 0 and

∀j ∈ N : J αk+j,k =
(k + 1)j

j!

(k + 3/2)j
(2k + α+ 5/2)j

J αk,k (14)

with

J αk,k =
1

2

γ
(α)
2k+1

θ
(α)
2k+1

and θαj the coefficient of xj in P
(α)
j (x).

Proof. Using Eq.(1) we have

λα2k+1Iαm,k =

∫ 1

0

x2mAαP (α)
2k+1ωα dx = −

∫ 1

0

x2m

(
ωα+1

(
P

(α)
2k+1

)′)′
dx.

Recalling the singular nature of ωα, integration by parts twice yields

λα2k+1Iαm,k = 2m

∫ 1

0

x2m−1ωα+1

(
P

(α)
2k+1

)′
(x) dx

= −2m

∫ 1

0

(
ωα+1x

2m−1
)′
P

(α)
2k+1 dx

= −2m(2m− 1)Iαm−1,k + 2m(2m+ 2α+ 1)Iαm,k.

From this, we recover the recurrence

Iαm,k =
−2m(2m− 1)

λα2k+1 − 2m(2m+ 2α+ 1)
Iαm−1,k =

−m(2m− 1)

(2k − 2m+ 1)(k +m+ α+ 1)
Iαm−1,k.

We finally note that

λα2k+1Iα0,k = −
∫ 1

0

(
ωα+1

(
P

(α)
2k+1

)′)′
dx = −

[
ωα+1

(
P

(α)
2k+1

)′]1

0

=
(
P

(α)
2k+1

)′
(0) = (k + α+ 1)Pα+1

2k (0).
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Combining Eq.(7) with the above result yields

Iαm,k =
m(m− 1/2)

(−k +m− 1/2)(k +m+ α+ 1)
Iαm−1,k

= Iα0,k
m!(1/2)m

(−k + 1/2)m(k + α+ 2)m
.

Concerning J αm,k, we observe that P
(α)
j (x) = θ

(α)
j xj + q

(α)
j with q

(α)
j ∈ Pj−1 :

J αk,k =
1

2

∫ 1

−1

P
(α)
2k+1 − q

(α)
2k+1

θ
(α)
2k+1

P
(α)
2k+1ωα dx =

1

2

γ
(α)
2k+1

θ
(α)
2k+1

, θαj =
1

2j
1

j!

Γ(2j + 2α+ 1)

Γ(j + 2α+ 1)
.

The proof of (14) follows the same lines.

Thus, to find a Padé-Jacobi approximant to the Sign function, we must seek a

solution to

M∑
m=0

q̂α2m
m!(1/2)m

(−k + 1/2)m(k + α+ 2)m
= 0. (15)

One non-unique solution is given in the following

Proposition 3.1. The coefficients, q̂α2m, defined for m ∈ [0,M ] as

q̂α2m =
(−M)m(A)m(−A+M + α+ 3/2)m

(m!)2(1/2)m
,

is a solution to Eq.(15) with

A = −(N + 1/2) .

Proof. Inserting the above result into Eq.(15) yields

M∑
m=0

(−M)m(A)m(−A+M + α+ 3/2)m
m!(−k + 1/2)m(k + α+ 2)m

.

Using Eq.(3) this can be written as

(k + α+ 2−A)M (k −M − 1/2 +A)M
(k + α+ 2)M (k −M − 1/2)M

.

Recalling Eq.(2) we immediately get two solutions to Eq.(15) from each of the two

terms in the numerator

A = M +N + α+ 2 , A = −N − 1/2 .

In both cases, we have (k−M−N)M which vanishes for all k ∈ (N+1,M+N).
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Thus, the denominator takes the form

Q(x) =

M∑
m=0

(−M)m(−N − 1/2)m(N +M + α+ 2)m
(m!)2(1/2)m

x2m

= 3F2(−M,−N − 1/2, N +M + α+ 2; 1, 1/2;x2) . (16)

Before we continue with the development of the Padé-Jacobi approximation, let

us consider a few properties of Q(x).

Lemma 3.2. Provided N + 3/2 > M we have

∀m ∈ [0,M ] : q̂2m > 0,

and, hence,

Q(x) ≥ Q(0) = q̂0 = 1 .

Proof. Consider

q̂2m =
(−M)m(−N − 1/2)m(N +M + α+ 2)m

(m!)2(1/2)m
.

Clearly,

(−M)m = −M(−M + 1)(−M + 2) . . . (−M +m− 1) = (−1)m
M !

(M −m)!
,

and

(−N − 1/2)m = (−N − 1/2)(−N + 1/2)(−N + 3/2) . . . (−N − 3/2 +m)

= (−1)m
Γ(N + 3/2)

Γ(N + 3/2−m)
.

As m ∈ [0,M ], (−M)m(−N−1/2)m > 0 provided only that N+3/2−M > 0, hence

completing the proof.

Thus all roots of Q(x) are complex, ensuring that the Padé-Jacobi approximation

to the Sign-function always exists.

The location of the roots can be specified a bit more

Lemma 3.3. Assume that N �M , α fixed, and z ∈ C be a root of Q(x). Then

1

2M
≤ N2|z|2 ≤M3.

For a proof of this Lemma, see Proposition 4.7 of [16]. As we shall see shortly, this

results also gives some indications of how well one can expect the to approximate
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the Sign function since there is a direct relation between the position of the poles

and the ability of the approximation to reproduce the discontinuity.

The sharpness in N can be realized by considering the limit of large N in which

case

(−N − 1/2)m(N +M + α+ 2)m ' (−1)mN2m ,

such that

Q(x) = 3F2(−M,−N−1/2, N+M+α+2; 1, 1/2;x2) ' 1F2(−M ; 1, 1/2;−N2x2) .

However, since the 1F2(a1; b1, b2; z) is independent of N , the roots of Q(x) can not

decay faster than N−1. It is worth emphasizing that this result assumes that M is

fixed, i.e., making M ∝ N and/or α ∝ N may yield qualitative differences in the

approximation as we shall indeed see shortly.

Let us now return to the determination of the numerator,

P (x) =

N∑
n=0

p̂2n+1P
(α)
2n+1(x). (17)

The coefficients of this polynomial are given in the following

Lemma 3.4. The coefficients p̂α2n+1 in (17) are defined for n ∈ [0, N ] as

p̂α2n+1 = 2
Iα0,n
γα2n+1

(N + n+ α+ 5/2)M (n−N −M)M
(n+ α+ 2)M (n+ 1/2−M)M

,

where Iα0,n is given in Lemma 3.1.

Proof. From the definition of the Padé-Jacobi approximation and the orthogo-

nality of the Jacobi polynomials, we immediately recover from (12)

γα2n+1p̂
α
2n+1 = 2

M∑
m=0

q̂2mIαm

= 2Iα0,n
M∑
m=0

(−M)m(−N − 1/2)m(N +M + α+ 2)m
m!(1/2− n)m(n+ α+ 2)m

= 2Iα0,n
(N + n+ α+ 5/2)M (n−N −M)M

(n+ α+ 2)M (n+ 1/2−M)M
,

where the last reduction follows from the Saalchütz’s formula (3).

Using the identity (n − N −M)M = (−1)M (N − n + M)!/(N − n)!, one can

express the coefficients p̂α2n+1 in the form

p̂α2n+1 = 2(−1)M
Iα0,n
γα2n+1

(N + n+ α+ 5/2)M (N − n+M)!

(n+ α+ 2)M (n+ 1/2−M)M (N − n)!
. (18)

In (16), the denominator was written in a geometric form. Now we seek the

numerator in the form : P(x) = xSαN,M 3F2(., ., .; ., .;x2), with SαN,M being the
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steepness, i.e., the value at x = 0 of the derivative of the rational approximation

R(x) = P(x)/Q(x). The following Proposition allows us to recover the numerator

on a hypergeometric form.

Proposition 3.2. The numerator, P(x), for the Padé-Jacobi approximation to

the Sign function, Eq.(11), takes the form

P(x) = xSαN,M 3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2;x2).

where the steepness, SαN,M is given as

SαN,M =
4√
π

M !

N !

Γ(N + 3/2)Γ(N +M + α+ 5/2)

Γ(M + 1/2)Γ(N +M + α+ 2)
.

Proof. Let us compute the Jacobi coefficients of T ∈ P2N+1 defined by

T (x) = xSαN,M 3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2;x2).

For n = 0 · · · , N

γα2n+1

SαN,M
t̂α2n+1 =

∫ 1

−1

x3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2;x2)P
(α)
2n+1(x)ωα(x)dx

= 2

N∑
k=0

(−N)k(−M + 1/2)k(N +M + α+ 5/2)k
(3/2)k(3/2)k

1

k!
Jk,n

with J αk,n defined in (13). Using Lemma 3.1, we get

γα2n+1

SαN,M
t̂α2n+1 = 2

N−n∑
p=0

(−N)n+p(−M + 1/2)n+p(N +M + α+ 5/2)n+p

(3/2)n+p(3/2)n+p(1)n+p

Jn+p,n.

By the identity (z)n+p = (z)n (z + n)p, we get

t̂α2n+1 = 2Xα
N,M,n

N−n∑
p=0

(−N + n)p(−M + 1/2 + n)p(N +M + α+ 5/2 + n)p
(3/2 + n)p(3/2 + n)p(1 + n)p

Jn+p,n

with

Xα
N,M,n =

SαN,M
γα2n+1

(−N)n(−M + 1/2)n(N +M + α+ 5/2)n
(3/2)n(3/2)n(1)n

.

Using (14), we get

t̂α2n+1 = Y αN,M,n

N−n∑
p=0

(−N + n)p(−M + 1/2 + n)p(N +M + α+ 5/2 + n)p
(3/2 + n)p(2n+ α+ 5/2)p

1

p!

with Y αN,M,n = 2Xα
N,M,nJ αn,n. By use of the Saalchütz’s formula (3), we obtain

t̂α2n+1 = Y αN,M,n

(M + 1)N−n(−N −M − α− 1)N−n
(3/2 + n)N−n(−N − n− α− 3/2)N−n

= Y αN,M,n

Γ(n+ 3/2)Γ(2n+ α+ 5/2)

Γ(N + 3/2)Γ(N + n+ α+ 5/2)

Γ(N +M − n+ 1)Γ(N +M + α+ 2)

Γ(M + 1)Γ(n+M + α+ 2)
.
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with

Y αN,M,n =
π

4θα2n+1

(−N)n(−M + 1/2)n(N +M + α+ 5/2)n
n!Γ(3/2 + n)2

SαN,M

=
√
π

(−1)n

θα2n+1

Γ(N + 3/2)

n!Γ(n+ 3/2)2 (N − n)!

= ×Γ(M + 1)Γ(−M + 1/2 + n)

Γ(M + 1/2)Γ(−M + 1/2)

Γ(N +M + n+ α+ 5/2)

Γ(N +M + α+ 2)

=
1√
π

(−1)n

θα2n+1

Γ(N + 3/2)

n!Γ(n+ 3/2)2 (N − n)!

× (−1)M
Γ(M + 1)Γ(−M + 1/2 + n)

Γ(N +M + α+ 2)
Γ(N +M + n+ α+ 5/2).

The last simplification follows from the reflection formula the reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
.

Finally

t̂α2n+1 =
1√
π

(−1)n

θα2n+1

Γ(2n+ α+ 5/2)

n!Γ(n+ 3/2)(N − n)!Γ(N + n+ α+ 5/2)

× (−1)MΓ(−M + 1/2 + n)Γ(N +M − n+ 1)Γ(N +M + n+ α+ 5/2)

Γ(n+M + α+ 2)

This is to be compared with the coefficients p̂α2n+1 given by Lemma 3.4 (see also

(18)):

p̂α2n+1 = 2
Iα0,n
γα2n+1

Γ(n+ α+ 2)

(N − n)!Γ(n+ 1/2)Γ(N + n+ α+ 5/2)

× (−1)M
Γ(N +M + n+ α+ 5/2)(N +M − n)!Γ(n+ 1/2−M)

Γ(n+M + α+ 2)

The ratio of the two coefficients is

t̂α2n+1

p̂α2n+1

=
1

2
√
π

(−1)nγα2n+1

Iα0,nθα2n+1

Γ(2n+ α+ 5/2)

n!Γ(n+ 3/2)

Γ(n+ 1/2)

Γ(n+ α+ 2)

=
1

2
√
π

(−1)nγα2n+1

Iα0,nθα2n+1

Γ(2n+ α+ 5/2)

n!(n+ 1/2)Γ(n+ α+ 2)
.

Straightforward computations give

γα2n+1

Iα0,nθα2n+1

= (−1)n24n+2α+3n!(2n+ 1)Γ(n+ α+ 2)
Γ(2n+ α+ 2)

Γ(4n+ 2α+ 4)

By the Legendre duplication formula1, we have

Γ(2n+ α+ 2)

Γ(4n+ 2α+ 4)
=

√
π

24n+2α+3

1

Γ(2n+ α+ 5/2)

1Legendre duplication formula:
√
πΓ(2z) = 22z−1Γ(z)Γ(z + 1/2)
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and

γα2n+1

Iα0,nθα2n+1

= (−1)n
√
πn!(2n+ 1)

Γ(n+ α+ 2)

Γ(2n+ α+ 5/2)
.

Hence t̂α2n+1 = p̂α2n+1, which means the equality of the two odd polynomials, T and

P.

Lemma 3.2 and Eq. (16) gives the main result in the form of a hypergeometric

representation of the Padé-Jacobi approximation of Eq.(11)

Theorem 3.1. For all integers N and M ,

RαN,M (x) = SαN,M x
3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2;x2)

3F2(−M,−N − 1/2, N +M + α+ 2; 1, 1/2;x2)
,

with the steepness SαN,M defined in Proposition 3.2, is a Padé-Jacobi approximation

of order (N,M) to the Sign function, Eq.(11).

Note in particular that for the special case of M = 0, this includes the Jacobi

polynomial approximation of a step function and, thus, enables the general analysis

of the Gibbs phenomenon for this case also.

Let us first consider two extremal cases: M = 0 (polynomial approximation) and

N = 0 (reciprocal polynomial approximation).

1. Polynomial (Jacobi) approximation.

RαN,0 = SαN,0x 3F2(−N, 1/2, N + α+ 5/2; 3/2, 3/2;x2)

RαN,0 is nothing but the orthogonal projection (with respect to the inner product

(4)) of the Sign function onto P2N+1 defined in (9). It has been shown in [15] that

for all Jacobi approximants SαN,0 ' 4N/π. We give here the precise value of the

steepness

SαN,0 =
4

π

Γ(N + 3/2)

N !

Γ(N + α+ 5/2)

Γ(N + α+ 2)
' 4

π
N.

2. Reciprocal polynomial approximation.

Rα0,M (x) = Sα0,Mx
1

3F2(−M,−1/2,M + α+ 2; 1, 1/2;x2)

with the steepness

Sα0,M = 2
M !

Γ(M + 1/2)

Γ(M + α+ 5/2)

Γ(M + α+ 2
' 2M.

4. OPTIMIZED APPROXIMATIONS

Let us consider in a bit more detail the question of the Gibbs phenomena and at-

tempt to understand whether it is better behaved in the Padé-Jacobi approximation

as compared to the classical polynomial approximations above.
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We shall in particular consider the questions of steepness of the Padé-Jacobi

approximation and the size of the overshoot as measured by the Gibbs constant,

GαN,M .

We consider five cases

1. Case 1. The classic polynomial case, M = 0, with the Gibbs constant denoted

Gα. ,0.

2. Case 2. The reciprocal polynomial case, N = 0, with the Gibbs constant

denoted Gα0, ..

3. Case 3. The case of M going to infinity with N , however constrained such

that M = cNs and fixed c > 0 and s > 0. In this case we shall denote the Gibbs

constant as Gα., c,s.

4. Case 4. The case of M fixed ( 6= 0) with the Gibbs constant denoted Gα. ,M .

5. Case 5. The case of N fixed ( 6= 0) with the Gibbs constant denoted GαN, ..

4.1. Optimize the steepness

If we first consider the steepness of the Padé-Jacobi approximation, then this is

defined as

d

dx
RN,M (0) = P ′N (0) = SαN,M ,

due to the symmetry of the problem, i.e., the steepness measures the ability to

reproduce the discontinuity.

Cases 1, 4. From Lemma 3.2 we immediately get for a fixed M

P ′N (0) = SαN,M '
4√
π

Γ(M + 1)

Γ(M + 1/2)

√
N(N +M + α) ' 4√

π

Γ(M + 1)

Γ(M + 1/2)
N ,

for large N and fixed M and α. Hence, in this case there is no qualitative difference

between the pure polynomial case (M = 0) and a fixed value of M . All polynomials

behave, asymptotically, as the Legendre case of α = 0.

Cases 2, 5. For a fixed N (and M → +∞), the steepness grows like

4√
π

Γ(N + 3/2)

N !
M.

Case 3. If M ∝ N , we get a more interesting result. For M = cN , with positive

constant c

SαN,cN '
4√
π

√
c(c+ 1)N3/2

which improve drastically the steepness in comparison with the polynomial case. It

is important to note that M = N is not needed to recover this improved steepness,

simply that M ∝ N . In the case M = cNs, the steepness is

SαN,cNs '
4√
π
csN

s+1/2,

with cs = c except for s = 1: c1 =
√
c(c+ 1).
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We remind the reader of Lemma 3.3 which reflects these steepness results in a

sligthly different way, i.e., for s = 1 we can not hope for better than SαN,cN ' N−3/2

as reflected in how quickly the poles approach zero.

4.2. Optimize the Gibbs constant

Let us now also consider the Gibbs constant, defined as the maximum overshoot

of the Padé-Jacobi approximation. We proceed as in [17] for the Chebyshev approx-

imation and seek an η > 0 such that the error function x ∈ [0, 1] 7→ RN,M (x) − 1

takes its maximum at the point x = η/Nβ as N goes to infinity (β is a fixed real

number to be made precise shortly). We shall call this limit the Gibbs constant,

GαN,M .

Case 1. (M = 0). We seek η > 0 such that the error function takes its maximum

at the point x = η/N as N goes to infinity. In this case, we have

1 +Gα. ,0 = lim
N→+∞

RN,0(
η

N
)

=
4

π
η lim
N→+∞

3F2(−N, 1/2, N + α+ 5/2; 3/2, 3/2; (
η

N
)2)

=
4

π
η 1F2(1/2; 3/2, 3/2;−η2).

η is determined as the smallest positive solution of

d

dη

η∑
k≥0

(1/2)k
(3/2)k(3/2)k

1

k!
(−η2)k

 = 0.

Using the identities (1/2)k = 1
22k

(2k)!
k! and (3/2)k = (2k + 1)(1/2)k, we obtain

0 =
d

dη

η∑
k≥0

22k

(2k + 1)2

(−η2)k

(2k)!

 =
1

2

d

dη

∑
k≥0

(−1)k

2k + 1

(2η)2k+1

(2k + 1)!


=

1

2η

∑
k≥0

(−1)k
(2η)2k+1

(2k + 1)!
=

sin(2η)

2η
.

Hence η = π/2 and the Gibbs constant is

Gα. ,0 = −1 +
4

π

∫ π/2

0

sin(2t)

2t
dt = −1 +

2

π
Si(π) ' 0.178 979 744

with Si(z) =
∫ z

0
sin s
s ds being the Sine integral. This is a classic result in Fourier

and Chebyshev approximations (see e.g. [9]). It has also been shown for general

Jacobi approximations in [15] using properties of orthogonal polynomials.

Case 2. (Case N = 0). The right scaling is x = η/M as M goes to infinity. Using

the same arguments as before, we obtain

1 +Gα0,. = lim
M→+∞

RM,0(
η

M
) = 2η

1

1F2(−1/2; 1, 1/2;−η2)
.
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η is determined as the smallest positive solution of the equation

d

dη

[
1

f(η)

]
= 0, f(η) =

1F2(−1/2; 1, 1/2;−η2)

η
.

We observe that f ′(η) = J0(2η)/η2 with J0(t) being the Bessel function of the first

kind of order 0. Thus, 2η equals j0,1, the first zero of J0, as

2η = j0,1 ' 2.404 825 557 8,

and the Gibbs constant

Gα0,. = −1 + j0,1
1

1F2(−1/2; 1, 1/2;−(j0,1/2)2)
' 0.051 356 067.

Here again all the Jacobi approximants give the same Gibbs constant, the one given

in [17] for the Chebyshev case, α = −1/2. An example of reciprocal polynomial

approximation in Fig.2.

–1

–0.5

0

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

FIG. 2. Padé-Jacobi approximations: N = 0, α = −1/2, M = 20 (dashed), M = 40 (solid).

Case 3. (M = cNs). Consider now the case M = cNs with fixed c > 0 and s > 0.

In this case the steepness grows like 4√
π
csN

s+1/2 and we seek η > 0 that maximizes

the error function x = η/Ns+1/2 as N goes to infinity. Defining GαN, c,s = GαN, cNs
we have

1 +Gα., c,s =
4√
π
csη

lim
N→+∞

3F2(−N,−cN + 1/2, (1 + c)N + α+ 5/2; 3/2, 3/2; ( η
Ns+1/2 )2)

3F2(−cM,−N − 1/2, (1 + c)N + α+ 2; 1, 1/2; ( η
Ns+1/2 )2)

= f∗(csη),

with f∗(z) =
4√
π
z

0F2(; 3/2, 3/2; z2)

0F2(; 1, 1/2; z2)
.

The unknown ηc,s is determined as the smallest positive solution of the equation
d
dη [f∗(csη)] = 0. This equation shows that ηc,s does not depend on the Jacobi
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parameter α and

ηc,s =
η∗

cs
,

with η∗ the first positive zero of f∗. The Gibbs constant Gα., c,s = −1 + f∗(η∗) is

independent of α, c > 0 and s.

Numerical experiments, finding the location of the first maximum of the analytic

expression, yields the approximations

ηc̃ ' 1.344 947, Gα., c,s ' 0.008 149 .

This is the value given in [17] for the special case α = 0, c = 1 and s = 1. Examples

of this type of approximation in shown in Fig.3 and Fig.4
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–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

FIG. 3. Padé-Jacobi approximations: N = 10, α = 0, M = 5 (dashed), M = 10 (solid).

Case 4. (M 6= 0). We seek η > 0 such that the error function takes its maximum

at the point x = η/N as N goes to infinity. In this case, we have

1 +Gα. ,M =
4√
π

Γ(M + 1)

Γ(M + 1/2)
η

× lim
N→+∞

3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2; ( ηN )2)

3F2(−M,−N − 1/2, N +M + α+ 2; 1, 1/2; ( ηN )2)

=
4√
π

Γ(M + 1)

Γ(M + 1/2)
η

1F2(−M + 1/2; 3/2, 3/2;−η2)

1F2(−M ; 1, 1/2;−η2)
.

ηM (independent of α) is determined as the smallest positive solution of the equa-

tion d
dz [fM (z)] = 0 with

fM (z) =
4√
π

Γ(M + 1)

Γ(M + 1/2)
z

1F2(−M + 1/2; 3/2, 3/2;−z2)

1F2(−M ; 1, 1/2;−z2)
.

The Gibbs constant Gα. ,M = −1 + fM (ηM ) is likewise independent of α.

We have not been able to complete the analysis of this function. In Table 1 we

show results for numerically finding, by seeking the position of the first maximum

of the analytic expression, ηM and Gα. ,M for fixed values of M .
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.
TABLE 1

Computational evidence for the scaling of the Gibbs constant for

values of fixed M

M 0 1 5 10 20 50 100 200

ηM 1.5708 1.0144 0.56 0.4098 0.2951 0.1888 0.134 0.095

Gα. ,M 0.1789 0.0302 0.012 0.01 0.009 0.00851 0.0083 0.00823

Based on these computations we conjecture that

lim
M→+∞

√
M ηM = η∗ = 1.344947

and

lim
M→+∞

Gα. ,M = −1 + lim
M→+∞

fM (ηM ) = −1 + f∗(η∗) = Gα. ,M ' 0.008 149

The effect of changing N for fixed M can be seen by comparing Fig.3 and Fig.4.

Case 5. (N 6= 0). In this case the steepness grows like 4√
π

Γ(N+3/2)
N ! M and

1 +GαN, . =
4√
π

Γ(N + 3/2)

N !
η

1F2(−N ; 3/2, 3/2;−η2)

1F2(−N − 1/2; 1, 1/2;−η2)
.

ηN (independent of α) is determined as the smallest positive solution of the equation
d
dz [gN (z)] = 0 with

gN (z) =
4√
π

Γ(N + 3/2)

N !
z

1F2(−N ; 3/2, 3/2;−z2)

1F2(−N − 1/2; 1, 1/2;−z2)
.

The Gibbs constant GαN, . = −1 + gN (ηN ) is also independent of α and

lim
N→+∞

gN (η/
√
N) = f∗(η∗) ,

based on computational experimentation as for Case 4.

5. CONCLUDING REMARKS

We have derived an exact rational Galerkin approximation RαN,M of the Sign

function based on Jacobi expansions and investigated its ability to reduce the Gibbs

phenomenon. The analysis contains the cases for M or N fixed, including the classic

polynomial results, the case where both go to infinity with M = cNs. The latter

case is superior in terms of the Gibbs constant and steepness.

• The steepness of the approximation grows, as N → +∞, like 4√
π
csN

s+1/2 (in

the case c > 0 and s > 0). Recall that in the polynomial case, the steepness is

' 4
πN .

• The Gibbs constant is about 22 times less than that of a polynomial approxi-

mation.
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FIG. 4. Padé-Jacobi approximations: α = 0, N = 30, M = 10.

One case we have not considered in detail is the one where α is a function of N

and/or M . Although the analysis indicates that this could be interesting, it is

less practical and unlikely to behave well numerically for high values of α as also

observed for Gibbs reconstruction methods based on Gegenbauer expansions [10, 2].

Nevertheless, we intend to consider this in more detail later. Furthermore, the

rate of convergence of RαN,M to the Sign function (the acceleration of convergence

problem) remains open, yet is important to understand the value of Padé-Jacobi

approximations for postprocessing. Some partial results on this can be found in [16]

for the Padé-Chebyshev case and we hope to generalize these in the near future.
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