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Abstract

Noniterative data-driven techniques are design methods that allow optimal feedback control laws to be derived from input-
output (I/O) data only, without the need of a model of the process. A drawback of these methods is that, in their standard
formulation, they are not statistically efficient. In this paper, it is shown that they can be reformulated as L2-regularized
optimization problems, by keeping the same assumptions and features, such that their statistical performance can be enhanced
using the same identification dataset. A convex optimization method is also introduced to find the regularization matrix. The
proposed strategy is finally tested on a benchmark example in digital control system design.
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1 INTRODUCTION

In the standard approach to controller design, a model of
the plant is identified from data or developed from first
principles. In fixed-order model reference control, this
model is then used to design a controller that minimizes
the model reference criterion and a controller-order re-
duction step is carried out before implementation [1].
Various controller design approaches are available for
the design of a high performance controller for the avail-
able model [2]. However, this controller is not necessar-
ily optimal when connected to the plant, as the control
performance is limited by modeling errors. Hence, sev-
eral data-driven controller tuning techniques have been
proposed to avoid the problem of undermodeling and
to facilitate the design of fixed-order controllers, both
iteratively e.g. [3], [4] and non-iteratively e.g. [5], [6]. In
all these approaches, only the final control cost is taken
into account and the controller is directly identified
from data, without first deriving a model of the process.
This paper will deal with the noniterative approaches,
whereof the most interesting features are that the in-
ternal stability can be guaranteed [6] and, since the
controller parameter estimation problem is convex, the
global optimum can be found. Specifically, two of the
most widespread techniques will be considered as exam-
ples of this approach, i.e. Virtual Reference Feedback
Tuning (VRFT [5]) and noniterative Correlation-based
Tuning (CbT [6]).

Various application examples have shown the effective-
ness of the above methods in simulation and real-world
systems, see e.g. [7], [8], [9], [10]. However, these meth-
ods suffer from the drawback that, being based on
errors-in-variables estimation [11], they are not statisti-
cally efficient, i.e. the Cramér-Rao lower bound cannot
be achieved in all the cases [12].
The aim of this paper is then two-fold. Firstly, it will
be shown how the above data-driven design techniques
can be reformulated as L2-regularized optimization
problems. By doing so, the statistical performance
of the methods will be significantly improved, as L2-
regularization is very suited to cope with high variance
estimation problems in system identification [13]. A
very important observation is that the bias introduced
by the penalty term used in the regularization proce-
dure is not meaningful itself, as the aim of data-driven
design is the maximization of the model-matching per-
formance for any length of the data-set.
The interest in regularization has been recently renewed
for linear system identification prompted by the new
Bayesian perspective given in [14] and its follow-up (see,
e.g. [15]). Specifically, the idea of the above papers is to
see the identification of the impulse response of a sys-
tem as an infinite-dimensional space learning problem,
instead of considering finite-dimensional parameter-
ization. In this framework, regularization techniques
correspond to impose certain prior distributions on the
impulse response parameters and the same philosophy
will be applied in this work (for the first time) for con-
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troller identification.
The second goal of this paper is to provide a method to
find the optimal kernel, or regularization matrix, for the
regularized estimate, using a Bayesian perspective to
employ the available preliminary knowledge on the sys-
tem. Unlike the method proposed in [16], this procedure
will not require assumptions on the spectra of input. A
data-driven solution using the same dataset for identi-
fication is proposed to infer the “a-priori” information
needed to derive the optimal kernel. Specifically, a high
order FIR is identified and used to compute the noisy
regressor and the a-priori covariance matrix of the con-
troller parameters. In simulation, it will be shown that
this approach is better than using a regularized FIR
model to design a model-reference controller.
It should be said herein that the problem of improv-
ing statistical performance of noniterative data-driven
approaches has been already dealt with in [17], where
optimal input design has been proposed as a solution.
Here, unlike [17], the improvement is obtained with-
out additional experiments. Nevertheless, since the
performance given by the method in this work is input-
dependent, results in [17] could still be used to further
improve the closed-loop model-matching, whenever new
experiments are possible.
The outline of the paper is as follows. In Section 2,
backgrounds on noniterative data-driven techniques are
briefly recalled. In Section 3, regularized estimate for
the above techniques will be introduced and analyzed,
while a convex optimization method for kernel selection
is formulated in Section 4. The regularized methods is
compared with the standard ones on the benchmark
example [18] in Section 5. Some concluding remarks end
the paper.

2 BACKGROUNDS

Consider the unknown LTI SISO stable plant G(q−1),
where q−1 denotes the backward shift operator. The ob-
jective of the model-reference control problem is to de-
sign a linear, fixed-order controller K(q−1, ρ), param-
eterized through ρ, for which the closed-loop system
matches a given stable strictly proper reference model
M(q−1). More specifically, let the controller parameter-
ization be

K(q−1, ρ) = βT (q−1)ρ,

where β(q−1) is a vector of linear discrete-time basis
functions

βT (q−1) = [β1(q
−1), β2(q

−1), . . . , βn(q
−1)]

Formally, the aim is to find the vector of parameters
that minimizes the (filtered) H2-norm of the difference
between the reference model and the achieved closed-
loop system:

Jmr(ρ) =

∥∥∥∥
(

GK(ρ)

1 +GK(ρ)
−M

)
W

∥∥∥∥
2

2

, (1)

where W (q−1) is a user-defined frequency-weighting fil-
ter. The goal can be interpreted as to find the minimizer
of the L2-norm of the matching error signal ε in Fig. 1,
when the reference signal is a white noise of unit vari-
ance and v(t) = 0, ∀t. From now on, the minimizer of
(1) will be referred to as “optimal controller” and will
be denoted by Ko(q

−1) = K(q−1, ρo) = βT (q−1)ρo .
Consider now that an open-loop collection of input-

Fig. 1. Model reference control problem.

output (I/O) data {u(t), y(t)}t=1,...,N is available and
let the output y(t) be affected by the additive noise

v(t) = H(q−1)d(t),

whereH(q−1) is an unknown stable LTI system and d(t)
is a zero mean white Gaussian noise with variance of σ2,
uncorrelated with u(t).
In standard “indirect data-driven” or “model-based” ap-
proaches, the above objective can be achieved by iden-
tifying from data a model Ĝ of the plant and designing

a model-based controller K(Ĝ) as

K(Ĝ) =
M

Ĝ(1−M)
. (2)

A comparison between the direct data-driven andmodel-
based approach for model reference control problem is
performed in [19].

2.1 Noniterative correlation-based Tuning

Let the ideal controller K∗ be defined as:

K∗ =
M

G(1 −M)
(3)

Note that with the assumption that M �= 1, this con-
troller exists but may be non causal or of very high order.
Based on this definition, the ideal sensitivity function
can be seen as:

1

1 +GK∗ = 1−M. (4)

and (1) can be rewritten as

Jmr(ρ) =

∥∥∥∥ GK∗ −GK(ρ)

(1 +GK(ρ)(1 +GK∗)
W

∥∥∥∥
2

2

. (5)
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Approximating (1 + GK(ρ))−1 by 1 − M leads to the
following convex approximation of the model reference
criterion:

J(ρ) = ‖(K(ρ)(1−M)G−M) (1 −M)W‖22 . (6)

Consider now the scheme in Fig. 2, in the case where
the signals are noiseless and r(t) = u(t). In the noiseless

Fig. 2. Tuning scheme for Correlation-based Tuning.

setting, the modelmatching error εc(t, ρ) defined in Fig.2
and its L2-norm can be directly computed from I/O data
(unlike ε(t, ρ)) as

εc(t, ρ) =WMr(t) −W (1−M)K(ρ)Gr(t)

=WMu(t)−W (1−M)K(ρ)y(t).

When data are collected in a noisy environment, the
method resorts to the correlation approach to identify
the controller. Specifically, an extended instrumental
variable ζ(t) correlated with u(t) and uncorrelated with
v(t) is introduced to decorrelate the error signal εc(t)
and u(t). ζ(t) is defined as

ζ(t) = [u(t+ l), . . . , u(t), . . . , u(t− l)]T , (7)

where l is a sufficiently large integer. The correlation
function and the correlation criterion are defined, re-
spectively, as

fN,l(ρ) =
1

N

N∑
t=1

ζL(t)εc(t, ρ), (8)

where ζL(t) = Lc(q
−1)ζ(t), and

JN,l(ρ) = fT
N,l(ρ)fN,l(ρ). (9)

In [6], it has been proven that

lim
N,l→∞,l/N→0

JN,l(ρ) = J(ρ). (10)

if Lc(q
−1) is chosen such that:

Lc(e
−jω) =

1−M(e−jω)

Φu(ω)
, (11)

where Φu(ω) denotes the spectral density of u(t).

2.2 Virtual Reference Feedback Tuning

The idea of Virtual Reference Feedback tuning was
first proposed in [20] with the name of Virtual Refer-
ence Direct Design (V RD2) and subsequently fixed and
extended in [5], [21] and [22] respectively for LTI, non-
linear and LPV systems.
The main idea to minimize (1) without identifying
G(q−1) is to build a “virtual” closed-loop system, where
the input and output signals are equal to u(t) and y(t)
and the closed-loop transfer function corresponds to
M(q−1). From such loop, the so-called “virtual refer-
ence” rv(t) and “virtual error” ev(t) signals can be com-
puted as rv(t) = M−1(q−1)y(t) and ev(t) = rv(t)−y(t).
The control design issue is then reduced to an identifi-
cation problem, where the optimal controller is the one
that generates u(t) when fed by ev(t). The criterion to
be minimized is then

JN
vr(ρ) =

1

N

N∑
t=1

(
uL(t)−K(q−1, ρ)eL(t)

)2
, (12)

where uL(t) = Lvr(q
−1)u(t), eL(t) = Lvr(q

−1)ev(t) and
Lvr(q

−1) is a suitable prefilter such that (12) is equal to
the second-order Taylor expansion of (1) in the neigh-
borhood of the minimum point [5]. More specifically, the
frequency response of Lvr(q

−1) must be such that

Lvr(e
−jω) =

M(e−jω)
(
1−M(e−jω)

)
W (e−jω)

Φ
1/2
u (ω)

, (13)

where Φ
1/2
u (ω) denotes a spectral factor of Φu(ω).

For the final limit estimate not to be biased, basic in-
strumental variables [23] are used to counteract the ef-
fect of noise. In this situation, the controller parameters
are computed as

ρ̂N = Sol

{
1

N

N∑
t=1

ϕ2(t)
(
ϕT (t)ρ− uL(t)

)
= 0

}
. (14)

3 EXPLOITING REGULARIZATION

From now on, it will be assumed that the given controller
class is flexible enough to achieve the user-defined ref-
erence model. In such a way, deterministic and stochas-
tic errors, due respectively to under-parameterization of
the controller structure and noise, will not be mixed and
the analysis of the statistical performance affected by
the output noise will be clearly delineated.
In their classical formulation, data-driven methods pro-
vide a consistent estimate of the optimal controller, us-
ing the instrumental variable (IV) techniques to cope
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with measurement noise. However, it is known that in
IV techniques the variance of the parameter estimate is
larger than the Cramér-Rao lower bound [12].
Since the final goal in practice is the minimization of (1)
for a given N and not to find an unbiased controller esti-
mate, L2-regularization can be used, analogously to [13],
to improve the quality of the estimates by introducing
an additional tuning-knob to balance bias and variance
effects.
Specifically, denote with the regularization matrix D ∈
Rn×n the above tuning knob. Then, the regularized es-
timation formulas for the methods in Section 2 are as
follows. For CbT, the new estimate is defined as

ρ̂N = argmin
ρ

[
JN,l(ρ) + ρTDρ

]
(15)

that is
ρ̂N = (QTQ+D)−1QT z, (16)

where

Q =
1

N

N∑
t=1

ζL(t)φ
T (t), z =

1

N

N∑
t=1

ζL(t)yd(t), (17)

φ(t) = β(1−M)y(t)

= β(1−M)Gu(t) + β(1−M)v(t)

= φo(t) + φ̃(t), (18)

and yd(t) = φT
o (t)ρo, as M is assumed to be achievable

with the given controller parameterization.
Analogously, for VRFT with basic instrumental vari-
ables, the new controller identification problem is the
following modification of (14)

ρ̂N = Sol

{
1

N

N∑
t=1

ϕ2(t)
(
ϕT (t)ρ− uL(t)

)
+Dρ = 0

}
,

(19)

that is
ρ̂N = (S +D)−1s, (20)

S =
1

N

N∑
t=1

ϕ2(t)ϕ
T (t), s =

1

N

N∑
t=1

ϕ2(t)uL(t), (21)

where

ϕ(t) = β(M−1 − 1)Ly(t)

= β(M−1 − 1)LGu(t) + β(M−1 − 1)Lv(t)

= ϕo(t) + ϕ̃(t), (22)

ϕ2(t) = β(M−1 − 1)Ly2(t), (23)

y2(t) is the output of a second experiment on the plant
G and u(t) = ϕT

o (t)ρo, asM is assumed to be achievable
with the given controller parameterization. According

to the theory in [5], the second experiment must be per-
formed using the same input sequence u(t) as the first
one, such that the only difference between y(t) and y2(t)
is that the latter is characterized by a different realiza-
tion of the noise v(t).
Notice that (16) and (20) generally provide an estimate
of Ko, with an additional bias due to D. Consider now
the second order Taylor expansion of (1) around the op-
timum ρo

Jmr(ρ̂N ) = (ρ̂N − ρo)
T ∂2Jmr

∂ρ2

∣∣∣∣
ρo

(ρ̂N − ρo)

+O2(ρ̂N − ρo), (24)

where O2(ρ̂N − ρo) collects all the terms of order higher
than 2. It should be noted that Jmr(ρ) shares the same
minimum and the same Hessian of (6) ifM is achievable,
i.e., K∗ ∈ {K(ρ)} or K∗ = K(ρo). As a matter of fact,
with this assumption the Hessian of J in ρo is

∆=
∂2J

∂ρ2

∣∣∣∣
ρo

=
1

π

∫ π

−π

|W |2 |1−M |2 |M |2
|K(ρo)|2

ββT dω

=
1

π

∫ π

−π

|W |2 |1−M |4 |G|2ββT dω, (25)

which is equal to the Hessian of Jmr

∂2Jmr

∂ρ2

∣∣∣∣
ρo

=
1

π

∫ π

−π

|W |2 |1−M |2 |G|2
|1 +GK(ρo)|2

ββT dω. (26)

Therefore, (24) is well approximated by the second order
Taylor expansion of (6), that is

J(ρ̂N ) = (ρ̂N − ρo)
T∆(ρ̂N − ρo), (27)

Since ρ̂N depends onD (see again (16) for CbT and (20)
for VRFT), the kernel can then be used to minimize the
total effect of bias and variance on the finite-sample error
Jmr(ρ̂N ) for given N . Theoretically, the optimal D ≥ 0
for assigned N could be defined as

D̂ = argmin
D

[
(ρ̂N (D)− ρo)

T∆(ρ̂N (D)− ρo)
]
, (28)

where ρ̂N is as in (16) or in (20) and the dependence of
ρ̂N onD has been highlighted. However, since in (28) the
best D fundamentally depends on the optimal parame-
ter vector ρo, the aforementioned optimization problem
cannot be solved in practice.
A realistic strategy is instead to define the optimalD ≥ 0
according to a Bayesian perspective, that is, as

D̂ = argmin
D

Eρo∈Θo

[
(ρ̂N (D)− ρo)

T∆(ρ̂N (D)− ρo)
]
,

(29)
where ρo is no longer a set of deterministic parameters,
but a random vector. The best D is then now computed
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inside a set of candidate optimal controllers Θo. Specif-
ically, still following the Bayesian approach, let assume
in this work that the prior distribution of ρo is Gaus-
sian where ρo ∼ N (0,Ξ), and that the “a-priori” covari-
ance Ξ = Eρo∈Θo

[
ρoρ

T
o

]
is given. Problem (29) will be

discussed in detail in the next Section, where a solution
based on convex optimization will be proposed.
Notice that such a regularization term is dependent on
the realization of the output noise v, as the only prior
information available for kernel selection is the set of
open-loop data. However, the so-found D̂ will be such
that the estimate is largely improved.

4 KERNEL SELECTION

Notice that the optimization problem (29) is nonlinear in
D. In [13] and [16], it has been shown that an analogous
problem in system identification (i.e. to find the kernel
minimizing the mean square error) can be solved ana-
lytically if the input sequence and the disturbances are
white noises. In the data-driven control framework, both
the input and the disturbance of the system to identify,
i.e. the controller, are generally not white, even if u(t)
and v(t) are white (see again Fig. 2 for CbT and the ex-
pression of the virtual error ev in Section 2 for VRFT).
The main results of this work concerning optimal kernel
selection are the two theorems presented next. To clearly
introduce the statements, first define the noisy part of
the regressors

F =
1

N

N∑
t=1

ζL(t)φ̃
T (t). (30)

R =
1

N

N∑
t=1

ϕ2(t)ϕ̃
T (t). (31)

for CbT and VRFT, respectively. Moreover, let Γ be a
Cholesky factor [24] of Ξ, i.e. a triangular matrix such
that Ξ = ΓΓT . From [5] and [6] it is known that, when
data are noiseless and prefilters Lc and Lvr are used,

lim
N→∞

∂2JN,l(ρ)

∂ρ2

∣∣∣∣
ρo

= lim
N→∞

∂2JN
vr(ρ)

∂ρ2

∣∣∣∣
ρo

= ∆ (32)

such that ∆ can be computed without relying on the
(unknown) controller parameters ρo. As a matter of fact,
not only the data-driven cost criteria do not depend on
G, but, since they are quadratic functions of ρ, their sec-
ond order derivatives in the optimum do not depend on
ρo either. Equation (32) will be used later on to compute
∆. The two theorems are as follows.

Theorem 1 Set D(0) as a preliminary estimate of D
and consider the iterative convex optimization problem

D̂
(i+1)
cb = argmin

D
γ (33)

s.t. γ − tr {Ωcb} > 0 , (34)[
Ωcb ΓT (DT + FTQ)

(QTF +D)Γ Zcb

]
> 0 , (35)

(QQT+D(i)T )∆−1(QTQ+D(i))+QQT∆−1(D−D(i))

+ ∆−1QTQ(D −D(i))− Zcb > 0, (36)

D ≥ 0 , (37)

where Zcb ∈ Rn×n and Ωcb ∈ Rn×n are slack matrices.
The solution of the above iterative algorithm converges to
a local minimum of the nonlinear optimization problem
in (29), where ρ̂N is computed via (16).

Proof 1 See the Appendix.

Theorem 2 Set D(0) as a preliminary estimate of D
and consider the iterative convex optimization problem

D̂(i+1)
vr = argmin

D
γ (38)

s.t. γ − tr {Ωvr} > 0 , (39)[
Ωvr ΓT (DT +RT )

(R+D)Γ Zvr

]
> 0 , (40)

(ST +D(i)T )∆−1(S +D(i)) + ST∆−1(D −D(i))

+ ∆−1S(D −D(i))− Zvr > 0, (41)

D ≥ 0 , (42)

where Zvr ∈ Rn×n and Ωvr ∈ Rn×n are slack matrices.
The solution of the above iterative algorithm converges to
a local minimum of the nonlinear optimization problem
in (29), where ρ̂N is computed via (20).

Proof 2 See the Appendix.

Like any regularization procedure, also the given algo-
rithm with the previous results can be interpreted as a
way to introduce some “a-priori” information inside the
optimization problem. This is done three times: while
using Ξ, when computing the noisy regressors and when
the Hessian of the cost function is numerically approxi-
mated as in (32).
Firstly, Ξ is used here because, according to the Bayesian
point of view, ρo can be seen as a random vector whose
“a-priori” density is N (0,Ξ) and “a-posteriori” density
is N (ρ̂N , (Ξ−1 + P−1)−1). Specifically, for CbT, ρ̂N is
given by (16) and P is the variance of the CbT estimate
[12]. Analogously, for VRFT, ρ̂N is given by (20) and P
is the variance of the VRFT estimate [12].
Secondly, preliminary information on the controller is
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used when computing F and R, because they depend on
the noise regressors φ̃(t) and ϕ̃(t). These can be com-
puted either if the time history of the noise signal can be
reconstructed or if a preliminary (“a-priori”) estimate of
ρ̂N is given (such that an estimate of φo(t) and ϕo(t) can

be assessed and φ̃(t) = φ(t)−φo(t), ϕ̃(t) = ϕ(t)−ϕo(t)).
Finally, the estimate of the noiseless regressors can also
be employed for computing ∆ as indicated in (32).
In practical situations, the needed preliminary knowl-
edge about the optimal controller could be derived in
different ways. In this paper, the following philosophy is
employed:
1) a high-order FIR model Ĝ is identified from I/O data
(notice that it is another convex procedure via PEM)
and an estimate of the noiseless output is computed as
ŷ = Ĝu;
2) CbT or VRFT formula, respectively (16) and (20),
can be used to find a preliminary estimate ρ̃ of the con-
troller parameters using u and ŷ; moreover, from ŷ, both
F , R and the approximated hessian in (32) can also be
derived;
3) the kernel Ξ for the optimization of the regularization
matrix DN can then be computed as ρ̃ρ̃T .

One could object that this procedure to find a suited
“a-priori” information about the controller makes the
method no longer data-driven but “model-based”, as Ĝ
is used. This is not completely true, because the model is
not directly used to compute the controller but it is only
employed to find the best penalty term in the regular-
ized cost. In the next section, it will be shown how this
fact is crucial to determine the closed-loop performance
and how the regularized controller identification leads to
better performance than model-based design even where
a regularized FIR model is employed. Notice also that
the whole controller identification procedure is convex
(whereas regularized FIR identification is not) and does

not require to select a model structure for Ĝ.
Remark. The difference between standard and regular-
ized estimate becomes more evident as the signal-to-noise
ratio (SNR) decreases. At limit, for noiseless data, the
best regularized estimate is equal to the standard one, i.e.
DN = 0, as the estimate is unbiased and the variance
is zero. For noisy data of large variance, regularization
provides an additional bias but with better overall model-
matching performance, as illustrated in the next section.

5 SIMULATION EXAMPLE

Consider the flexible transmission system introduced as
a benchmark for digital control design in [18]. The plant
is described by the discrete-time model

G(q−1) =
0.28261q−3 + 0.50666q−4

A(q−1)
(43)

where A(q−1) = 1 − 1.41833q−1 + 1.58939q−2 −
1.31608q−3+0.88642q−4. Let a pseudo-random-binary-
signal (PRBS) of number of samples N = 1000 be used
to feed the system. Let also the measurement be white
and such that the signal-to-noise ratio is 5, that is, let
H(q−1) = 1 and the variance of v be var[yo(t)]/5

2,
where var[yo(t)] is the variance of the noiseless out-
put yo(t). Finally, the frequency-weighting function
W (q−1) = 1, the set of available controllers is

K(ρ) =
ρ0 + ρ1q

−1 + ρ2q
−2 + ρ3q

−3 + ρ4q
−4 + ρ5q

−5

1− q−1

and the control objective is defined as a reference model
that allows the perfect matching to be achieved, i.e.

M(q−1) =
G(q−1)K(q−1, ρo)

1 +G(q−1)K(q−1, ρo)
, (44)

where the optimal controller is in the controller set and
its parameters are

ρo = [0.2045,−0.2715, 0.2931,−0.2396, 0.1643, 0.0084]T.

AMonte-Carlo simulationwith 100 running experiments
is performed, using a different noise realization for each
experiment, and the corresponding CbT and VRFT con-
trollers are computed. For CbT, the length of the instru-
mental variable vector is l = 35, which corresponds to
the approximate length of the impulse response of M .
Concerning VRFT, since it requires two sets of data for
building the instrumental variable, each experiment is
made of 500 samples for a fair comparison between the
methods. To assess the final closed-loop performance, an
estimate of E [Jmr(ρ̂N )] in the minimum ρ̂N is computed
by sample mean. The same test has been done for the
regularized estimation method presented in this work,
where D is found via the procedure in Section 4 using
only one iteration after the trivial initialization D0 = 0.
The model used to devise the priors for the control de-
sign task is a FIR of order 200, that is flexible enough to
accurately fit the impulse response of (43).
The final model-matching results are illustrated in Ta-
ble I, where standard estimation, regularized estimation
with model-based kernel and ideal regularized estima-
tion (i.e. regularized estimation with the kernel using
ρo) are compared with FIR model-based control design.
As an example, Fig. 3 and 4 show the accuracy of the
magnitude Bode plots and the maximum improvement
achievable with regularization.
The main findings for this example from the above tests
can be summarized as follow:

• the performance achievable by ideal regularization is
always better than standard data-driven tuning;

• the achievable regularized estimate (i.e., the one with
the MB kernel) is far from the ideal one, however it
enhances in any case the statistical performance of the
methods;
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• in case of CbT, the achievable estimate is only slightly
better than the standard method, however, at this
stage, the result is important as this solution repre-
sents the best achievable statistical performance in the
CbT design framework among the existing ones;

• it is better to use the FIR model of the system to pro-
vide the kernel of the regularized controller estimation
than using it to design a model-based controller; no-
tice also that by using regularization directly in con-
trol design, the whole procedure is convex, whereas
the marginal likelihood approach in [16] is not;

• the method proves very effective when the variance
is large, i.e. in VRFT estimate where basic instru-
mental variable are used (not only the mean cost de-
creases, but also all the controllers given by the reg-
ularized estimate are stabilizing, without adding any
additional constraint). Notice that using the standard
VRFTmethod, 5/100 controllers turn out to be desta-
bilizing. In these cases, it is always possible to add the
stability constraint introduced in [6], but the results
would become more conservative;

• from a user perspective, the best performance among
all the solutions is given by the regularized CbT
method.

6 CONCLUSIONS

In this paper, the noniterative direct techniques in-
troduced in [5] and [6] have been reformulated as
L2-regularized optimization problems, where the bias-
variance trade-off can be suitably optimized. In the
paper, the regularization matrix has been fully param-
eterized and a convex optimization problem has been
proposed for its design. Results on the benchmark ex-
ample proposed in [18] show that the statistical perfor-
mance is significantly improved in both the methods.
Future work will focus on data-driven estimation of the
prior information without using FIR modeling.
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APPENDIX

In the proofs, the symbol Eρo∈Θo will be replaced by E

for the sake of space.

Proof of Theorem 1 : To start with, consider a single
iteration. Take (16) and rewrite z as

z =
1

N

N∑
t=1

ζL(t)φ
T
o (t)ρo (45)

=
1

N

N∑
t=1

ζL(t)φ
T (t)ρo − 1

N

N∑
t=1

ζL(t)φ̃
T (t)ρo (46)

=Qρo − Fρo (47)
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with obvious definition for F . The estimate (16) then
becomes:

ρ̂N = (QTQ+D)−1QTQρo − (QTQ+D)−1QTFρo,

= ρo − (QTQ+D)−1QT (D + F )ρo. (48)

Notice that ρo − ρ̂N is not zero for the presence of two
additional random terms. The first term

ρ̂b1,N = (QTQ+D)−1Dρo (49)

is zero if D = 0, while the second term

ρ̂b2,N = (QTQ+D)−1QTFρo (50)

is zero only if data are noiseless or as N → ∞. By defin-
ing Xcb = QTQ+D, Problem (29) is reformulated as

D̂cb = argmin
D

γ, (51)

s.t. D ≥ 0, and V (D) < γ, (52)

where V (D) is defined as

V (D) = E
[
ρTo

(
DT + FTQ

)
X−1

cb ∆X−1
cb

(
QTF +D

)
ρo
]
.

The above optimization problem is nonlinear and ρo-
dependent. However, since V (D) is a scalar, it can be
rewritten as

tr
{
E
[
ρTo

(
DT + FTQ

)
X−1

cb ∆X−1
cb

(
QTF +D

)
ρo
]}

,

or, using the cyclic property of the trace, as

tr
{
E
[
ρTo ρo

] (
DT + FTQ

)
X−1

cb ∆X−1
cb

(
QTF +D

)}
=

tr
{
Ξ
(
DT + FTQ

)
X−1

cb ∆X−1
cb

(
QTF +D

)}
. (53)

Now, since Ξ is known and definite positive, a Cholesky
factor, i.e. a matrix Γ such that Ξ = ΓΓT [24], can be
easily computed and V (D) can finally be written as

V (D) = tr
{
ΓT

(
DT + FTQ

)
X−1

cb ∆X−1
cb

(
QTF +D

)
Γ
}
.

The constraint V (D) < γ now depends only on the “a-
priori” variance of ρo, that is supposed known. Then,
using the Schur Lemma [24], V (D) < γ is equivalent to
tr {Ωcb} < γ where Ωcb ∈ Rn×n is a slack variable such
that [

Ωcb ΓT (DT + FTQ)

(QTF +D)Γ Xcb∆
−1Xcb

]
> 0 , (54)

Now, define another slack variableZcb ∈ Rn×n such that

Zcb < Xcb∆
−1XT

cb (55)

and replace Xcb∆
−1XT

cb with it to make (54) convex.
By doing this, the concave constraint in (55) appears.
However, such a constraint can be replaced by an in-
ner convex approximation, by rewriting the first order
expansion of Xcb∆

−1XT
cb with respect to D around the

given previous estimateD(i), thus obtaining (36). Start-
ing fromD(0) and updating each estimate by solving the
above convex optimization problem, the overall iterative
algorithm can be seen as a so-called “convex-concave”
procedure. As proven in [25], such a procedure converges
to a local minimum of the original problem, that is, the
problem in (29).

Proof of Theorem 2: This proof follows the same line
of the previous one. Consider the single iteration first.
Take (20) and rewrite s as

s=
1

N

N∑
t=1

ϕ2(t)ϕo(t)ρo (56)

=
1

N

N∑
t=1

ϕ2(t)ϕ
T (t)ρo − 1

N

N∑
t=1

ϕ2(t)ϕ̃
T (t)ρo (57)

= Sρo −Rρo, (58)

with obvious definition for R. The estimate (20) then
becomes

ρ̂N = ρo − (S +D)−1(D +R)ρo (59)

and, defining now Xvr = S + D, Problem (29) can be
rewritten, for VRFT, as

D̂vr = argmin
D

γ, (60)

s.t. D ≥ 0, and Ψ(D) < γ, (61)

where

Ψ(D) = E
[
ρTo

(
DT +RT

)
X−1

vr ∆X−1
vr (R+D) ρo

]
.

Now, by considering the same Cholesky factor Γ of the
definite positive matrix Ξ and following the same ratio-
nale of the previous proof, it can be proved that (6) can
be reformulated as

Ψ(D) = tr
{
ΓT

(
DT +RT

)
X−1

vr ∆X−1
vr (R+D) Γ

}
.

Denoting the argument of the trace with the slackmatrix
Ωvr, the Schur Lemma and another slack matrix Zvr <
Xvr∆

−1XT
vr can be used to introduce an inner convex

approximation of the original problem, analogously to
the CbT case. The overall algorithm is a concave-convex
procedure and therefore it converges to a local minimum
of the original problem in (29).
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