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A WEIGHTED EMPIRICAL INTERPOLATION METHOD: A PRIORI
CONVERGENCE ANALYSIS AND APPLICATIONS

PENG CHEN 1 · ALFIO QUARTERONI1 2 · GIANLUIGI ROZZA 3

Abstract: We extend the classical empirical interpolation method [1] to a weighted empirical
interpolation method in order to approximate nonlinear parametric functions with weighted parame-
ters, e.g. random variables obeying various probability distributions. A priori convergence analysis is
provided for the proposed method and the error bound by Kolmogorov N-width is improved from the
recent work [13]. We apply our method to geometric Brownian motion, exponential Karhunen-Loève
expansion and reduced basis approximation of non-affine stochastic elliptic equations. We demon-
strate its improved accuracy and efficiency over the empirical interpolation method, as well as sparse
grid stochastic collocation method.

Keywords: empirical interpolation method, a priori convergence analysis, greedy algorithm, Kol-
mogorov N-width, geometric Brownian motion, Karhunen-Loève expansion, reduced basis method

Mathematics Subject Classification. 65C20, 65D05, 97N50

1 Introduction

The empirical interpolation method [1] was originally developed to approximate the non-affine terms
of a partial differential equation in order to effectively decompose the reduced basis method into
offline construction and online evaluation procedure. Since its development, many applications and
extensions of this method have been considered [10, 13, 22, 20, 12, 4, 18]. In particular, we mention
its application and analysis in the context of reduced basis approximation for nonlinear elliptic and
parabolic equations [10] and, more recently, its extension to a general, multipurpose interpolation
procedure [13], in which a priori error estimate compared to Kolmogorov N-width was obtained.

The basic idea behind empirical interpolation for parametric function g(x, µ) is to choose the
parameter samples µ1, µ2, . . . and the interpolation nodes x1, x2, . . . recursively in a greedy approach
according to the criteria that µm and xm selected at each step m = 1, 2, . . . are the most representative
ones in L∞ norm or the ones where the function is worst approximated by the interpolation formula
constructed from the previous steps [1]. This is essentially different from the conventional interpolation
construction which requires the interpolation nodes to be chosen a priori according to a specific rule,
e.g. roots of orthogonal polynomials [19]. The so called “magic points” [13] (µm, xm),m = 1, 2, . . .
obtained by the goal-oriented or function-specified empirical interpolation procedure are supposed to
identify an interpolation formula by capturing some specific features (e.g. regularity, extreme values) of
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the given function, thus providing higher interpolation accuracy. Another superiority of the empirical
interpolation construction is attributed to the affine expansion of the function given in whatever form,
leading to the separation of the variable x and the parameter µ in the following expression [10]

g(x, µ) ≈ IM [g] =

M∑
j=1

Θj(µ)qj(x), (1.1)

which can be efficiently used in conducting mathematical manipulation, e.g. numerical integration,
reduced basis approximation [10]. By convention, one supposes that the parameter µ, if viewed as a
random variable, is uniformly distributed in a bounded space Γ.

However, in many applications, e.g. stochastic problems with parametrized random variables
obeying normal distribution, the request of the boundedness of the parameter space Γ and that of
the uniform distribution of the parameter µ is hard to fulfill. In this situation, the approximation to
some quantity of interest (e.g. weighted integral or statistics of the function) based on the parameter
samples and interpolation nodes selected by the empirical interpolation procedure would not lead to
results that are as accurate or efficient as those expected when taking distinct weights of the parameter
at different values into account. In this work we propose a weighted empirical interpolation method
(wEIM) by considering a weighted optimization problem and analyzing its convergence property by
improving the a priori error estimate obtained in [13]. To demonstrate numerically its effectiveness
and efficiency, we apply the wEIM to approximating nonlinear parametric functions, geometric Brow-
nian motion in one dimension, exponential Karhunen-Loève expansion in multi-dimension as well as
reduced basis approximation to non-affine stochastic elliptic problems, and compare it with the con-
ventional empirical interpolation method (EIM) and sparse grid stochastic collocation method. It is
worth mentioning that constructing a goal-oriented numerical method is a quite common procedure in
adaptive finite element methods [2, 9] and has also been applied to construct adaptive reduced basis
method [5].

The work is organized as follows: we present the weighted empirical interpolation method in
section 2. A priori convergence analysis is carried out in section 3, followed by section 4 where
different applications of this method are addressed. Some concluding remarks are drawn in section 5.

2 Weighted empirical interpolation method (wEIM)

For notational convenience, we introduce the spaces L∞(D) defined in a bounded physical domain
D ⊂ Rd, d ∈ N+ and C0

w(Γ) defined in a parameter space (not necessarily bounded) Γ ⊂ RK ,K ∈
N+, which are equipped with the following norms: ||g||L∞(D) = ess supx∈D |g(x)| and ||g||C0

w(Γ) =
maxµ∈Γ w(µ)|g(µ)| with a positive weight function w : Γ → R+. We also define the Bochner
space L∞(D;C0

w(Γ)) for a parameter dependent function equipped with the norm ||g||L∞(D;C0
w(Γ)) =

ess supx∈D(maxµ∈Γ w(µ)|g(x, µ)|) ≡ maxµ∈Γ w(µ)(ess supx∈D |g(x, µ)|). We note that L∞(D), as used
in [1, 10, 13], is usually replaced with C0(D) for conventional interpolation [19].

At the discrete level, the physical domain D is replaced by a series of vertices x ∈ Vx with
finite cardinality nx = |Vx| < ∞, for instance finite element nodes, and the parameter space Γ is
represented by a sample set µ ∈ Ξµ of finite cardinality nµ = |Ξµ| < ∞. We present the weighted
empirical interpolation method in the following generic Algorithm 1. We emphasize that the initial
sample µ1 is chosen such that the weighted function is maximized in L∞(Vx;C0

w(Ξµ)) norm:

µ1 = arg max
µ∈Ξµ

[
w(µ)

(
ess sup

x∈Vx
|g(x, µ)|

)]
. (2.1)

In the course of the construction procedure, the quasi-optimal samples µM+1,M ≥ 1 can be chosen
by greedy algorithm to minimize the weighted optimal approximation error (2.2) in the subspace WM

spanned by the “snapshots” WM := span{g(·, µi), 1 ≤ i ≤M}: find µM+1 ∈ Ξµ such that

µM+1 = arg max
µ∈Ξµ

[
w(µ)

(
inf

h∈WM

||g(µ)− h||L∞(Vx)

)]
. (2.2)
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However, the weighted L∞ optimization problem (2.2) is expensive to solve by linear programming
if |Vx| and |Ξµ| are large. In practice, it can be efficiently replaced by a weighted L2 optimization
problem [10] or by a surrogate weighted L∞ optimization problem (2.5) [13].

Algorithm 1 A weighted empirical interpolation method

1: procedure Initialization:
2: Given finite vertex set Vx ⊂ D, sample set Ξµ ⊂ Γ, weight w and function g ∈ L∞(Vx;C0

w(Ξµ));
3: find µ1 ∈ Ξµ such that µ1 = arg maxµ∈Ξµ w(µ)(ess supx∈Vx |g(x, µ)|); set W1 = span{g(x, µ1)};
4: find x1 ∈ Vx such that x1 = arg ess supx∈Vx |g(x, µ1)|;
5: define r1 = wg, q1(x) = r1(x, µ1)/r1(x1, µ1), B1

11 = 1, set M = 1, specify tolerance εtol;
6: end procedure
7: procedure Construction:
8: while M < Mmax & rM (xM , µM ) > εtol do
9: find ΘM (µM ) = (ΘM

1 (µM ), . . . ,ΘM
M (µM ))T by solving

M∑
j=1

ΘM
j (µM )qj(x

i) = g(xi, µM ) 1 ≤ i ≤M ; (2.3)

10: define rM+1 : D × Γ→ R as

rM+1(x, µ) = g(x, µ)−
M∑
j=1

ΘM
j (µ)qj(x); (2.4)

11: find µM+1 ∈ Ξµ such that

µM+1 = arg max
µ∈Ξµ

[
w(µ)

(
ess sup

x∈Vx
|rM+1(x, µ)|

)]
, (2.5)

12: find xM+1 ∈ Vx such that

xM+1 = arg ess sup
x∈Vx

|rM+1(x, µM+1)|; (2.6)

13: define qM+1 : D → R as

qM+1(x) =
rM+1(x, µM+1)

rM+1(xM+1, µM+1)
; (2.7)

14: update matrix BM+1 ∈ R(M+1)×(M+1) as

BM+1
ij = qj(x

i) 1 ≤ i, j ≤M + 1; (2.8)

15: end while
16: end procedure
17: procedure Evaluation:
18: For ∀µ ∈ Ξµ, construct approximation (1.1) by solving (2.3), then evaluate (1.1) at ∀x ∈ Vx.
19: end procedure

We state several properties of the wEIM in the following lemmas, whose proof is straightforward
by noting the fact that the weight function w : Γ→ R+ is positive and therefore omitted here, see for
instance [1, 10, 13] for details.

Lemma 2.1 For any M < Mmax, the subspace QM = span{qm, 1 ≤ m ≤ M} is of dimension M .

Moreover, the matrix BM formed in (2.8) is lower triangular with unity diagonal and thus invertible.

Lemma 2.2 For any function h ∈ QM , the empirical interpolation formula given by (2.3) is exact,
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i.e. rM+1(x, µ) = 0,∀x ∈ Vx, µ ∈ Ξµ. In general, for any function g ∈ L∞(D;C0
w(Γ)), we have

||g − IM [g]||L∞(D) ≤ (1 + ΛM ) inf
h∈QM

||g − h||L∞(D) with ΛM ≤ 2M − 1. (2.9)

3 A priori convergence analysis

The interpolation error obtained in (2.9) with the Lebesgue constant ΛM ≤ 2M − 1 (see proof
in [10]) by the empirical interpolation procedure is too pessimistic, far from the result for conven-
tional interpolation error based on certain prescribed interpolation nodes (e.g. Chebyshev nodes)
with ΛM ∼ log(M) [19]. An explicit a priori convergence rate of the weighted empirical interpolation
error is not available for generic functions. In order to measure the accuracy of the approximation by
wEIM, in the following theorem we compare it with the Kolmogorov N -width [17], which quantifies
the optimal approximation error of a subset F in a Banach space H by any possible N dimensional
subspace FN , defined as

dN (F ,H) := inf
FN

sup
g∈F

inf
f∈FN

||g − f ||H. (3.1)

When the subset F becomes the same as H, we denote dN (H) ≡ dN (F ,H) for simplicity.

Theorem 3.1 The error of wEIM can be bounded as follows

||g − IM [g]||L∞(Vx) ≤ Cw(M + 1)2MdM (L∞(Vx)) (3.2)

where the constant Cw depends on the weight function w but is independent of M .

Remark 3.1 In fact, the result (3.2) is obtained in the subspace L∞(Vx) for the constructive wEIM

and can be straightforwardly extended to L∞(D) when the vertex set Vx tends to D such that the points

outside the vertex set Vx can be sufficiently well represented by the points inside. To be rigorous, we

take the vertex set Vx such that for almost every x ∈ D, there exists y ∈ Vx satisfying

|g(x)− g(y)| ≤ ||g − IM [g]||L∞(Vx). (3.3)

Consequently, we have the error bound

||g − IM [g]||L∞(D) ≤ ||g − IM [g]||L∞(D\Vx) + ||g − IM [g]||L∞(Vx)

≤ 2||g − IM [g]||L∞(Vx)

≤ Cw(M + 1)2M+1dM (L∞(Vx))

≤ Cw(M + 1)2M+1dM (L∞(D)).

(3.4)

The proof of (3.2) adopts a constructive approach inspired from that for the greedy algorithm in
reduced basis approximation [3, 21]. Some preliminary results are needed, see the next two lemmas.

For simplicity, we use the shorthand notation rm(x) = rm(x, µm), 1 ≤ m ≤ M + 1 obtained in
Algorithm 1 and define the functions tj(x

i) = ri(x
j), 1 ≤ i, j ≤ M + 1 and tj(x

i) = 0, 1 ≤ j ≤
M + 1, i > M + 1.

Lemma 3.2 The matrix TM+1 defined by TM+1
ij = tj(x

i), 1 ≤ i, j ≤M+1 is upper triangular matrix

with dominating diagonal elements, i.e. tj(x
i) = 0, i > j and |tj(xi)| ≤ |tj(xj)|, i ≤ j.

Proof From the result of Lemma (2.1), we know that the matrix BM+1 is lower triangular with unity
diagonal. By the definition of qi, 1 ≤ i ≤ M + 1 in (2.7) and the definition of tj , 1 ≤ j ≤ M + 1, we
have tj(x

i) = qi(x
j)ri(x

i), so that tj(x
i) = qi(x

j) = 0, i > j and |tj(xi)| ≤ |tj(xj)| = |rj(xj)|, i ≤ j
due to (2.6). �
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Lemma 3.3 For any 1 ≤ m ≤M + 1, there exists a unique b = (b1, . . . , bm)T ∈ Rm such that

rm(x)em(x) =

m∑
j=1

bjtj(x) ∀x ∈ Vx, (3.5)

where em, 1 ≤ m ≤ M + 1 are unit vectors, i.e. em(xm) = 1 and em(xn) = 0 if n 6= m. In addition,

we have bm = 1 and the bound |bi| ≤ 2m−i−1, 1 ≤ i < m so that |b1|+ · · ·+ |bm| ≤ 2m−1.

Proof For any x = xi, i > M+1, we have em(x) = 0 and tj(x) = 0, so that both sides of the equation
vanish and we only need to verify the statement for x = xi, 1 ≤ i ≤M + 1, in which case the system
(3.5) becomes

s = Tb with s = (0, . . . , 0, rm(xm))T . (3.6)

Thanks to Lemma 3.2, we have that T is invertible and thus there exists a unique solution b. Moreover,
the last line of the system (3.6) rm(xm) = tm(xm)bm leads to the solution bm = 1 since rm(xm) =
tm(xm). For any other line i, 1 ≤ i < m, we have by the fact that T is an upper triangular matrix

0 =

m∑
j=i

bjtj(x
i). (3.7)

By recalling that |tj(xi)| ≤ |ti(xi)|, j > i, this yields the following bound for bi, 1 ≤ i < m

|bi| =

∣∣∣∣∣∣−
m∑

j=i+1

bj
tj(x

i)

ti(xi)

∣∣∣∣∣∣ ≤
m∑

j=i+1

|bj |, (3.8)

so that |bi| ≤ 2m−i−1, 1 ≤ i < m and |b1| + · · · + |bm| ≤ 2m−1 being bm = 1 and using a recursive
argument. �

We are now ready to prove Theorem 3.1 using the representation of the residual in Lemma 3.3.
Proof of Theorem 3.1. Suppose there exists a subspace HM ⊂ L∞(Vx) of dimension M achieving the
Kolmogorov M -width as defined in (3.1), then we have a series of elements hj ∈ HM , 1 ≤ j ≤M + 1
such that

||tj − hj ||L∞(Vx) ≤ dM (L∞(Vx)), 1 ≤ j ≤M + 1. (3.9)

We define the functions

sm(x) =

m∑
j=1

bjhj(x), 1 ≤ m ≤M + 1. (3.10)

Since all the elements hj , 1 ≤ j ≤M+1 belong to the M dimensional subspace HM and sm is a linear
combination of these elements for any m = 1, . . . ,M , there exists a vector α = (α1, . . . , αM+1)T with
|α1|+ · · ·+ |αM+1| = 1 such that

M+1∑
m=1

αmsm = 0. (3.11)

Thanks to the result in Lemma 3.3 together with bound (3.9) and representation (3.10) and (3.11),
we obtain the following bound for every x ∈ Vx
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∣∣∣∣∣
M+1∑
m=1

αmrm(x)em(x)

∣∣∣∣∣ =

∣∣∣∣∣
M+1∑
m=1

αm (rm(x)em(x)− sm(x))

∣∣∣∣∣
≤

(
M+1∑
m=1

|αm|

)
max

m=1,...,M+1
||rmem − sm||L∞(Vx)

≤ max
m=1,...,M+1

 m∑
j=1

|bj |

 max
j=1,...,m

||tj − hj ||L∞(Vx)

≤ 2MdM (L∞(Vx)).

(3.12)

Since |α1|+ · · ·+ |αM+1| = 1, there must exists αm such that |αm| ≥ 1/(M + 1). Setting x = xm in
(3.12), we have |αmrm(xm)| ≤ 2MdM (L∞(Vx)) and thus

|rm(xm)| ≤ (M + 1)2MdM (L∞(Vx)). (3.13)

By the construction of weighted empirical interpolation approximation in Algorithm 1, we have

ess sup
x∈Vx

|rM+1(x)| ≤ |rM+1(xM+1)| ≤ |rM (xM )| ≤ · · · ≤ |rm(xm)|. (3.14)

A combination of (3.13) and (3.14) leads to the following error bound

||g − IM [g]||L∞(Vx) ≤ ess sup
x∈Vx

|rM+1(x)| ≤ (M + 1)2MdM (L∞(Vx)). (3.15)

�

Corollary 3.4 Under the assumption dM (L∞(Vx)) ≤ ce−rM being r > log(2), we have the following

a priori error estimate of the wEIM: for ∀g ∈ L∞(Vx;C0
w(Ξµ))

||g − IM [g]||L∞(Vx) ≤ c(M + 1)e−(r−log(2))M . (3.16)

Remark 3.2 The result (3.16) is an improvement of that recently obtained in [13], in which r is

required to satisfy r > 2 log(2) and the exponential convergence rate becomes r − 2 log(2). In fact,

when the function g is analytic with respect to the parameter µ ∈ R, the Kolmogorov width is bounded

by the exponentially decaying error from the truncation of Fourier expansion of order M of g, see [8].

Remark 3.3 The result obtained in Theorem 3.1 can not be improved in the exponential growth

2M for a priori convergence analysis of general parametric functions. In fact, it can be proved that

||g − IM [g]||L∞(Vx) ≥ (1− ε)2MdM (L∞(Vx)) for arbitrary small ε > 0 under certain assumptions [3].

4 Applications

In this section, we study the accuracy and efficiency of the weighted empirical interpolation method
(wEIM) compared to the conventional empirical interpolation method (EIM) as well as the stochastic
collocation method (SCM) for one dimensional problem and sparse grid stochastic collocation method
(SG-SCM) [15] for multidimensional problem. Given a function g, we denote by gM its approximation
using M “elements” (either basis functions for wEIM and EIM, or interpolation nodes for SCM and
SG-SCM) and we define the error in the following two norms

||g − gM ||L∞(D;C0(Γ)) and ||E[g]− E[gM ]||L∞(D), (4.1)
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where the expectation E[g] is computed by Gauss quadrature formula specified when in need.

4.1 Parametric function in one dimension - geometric Brownian motion

We consider a geometric Brownian motion St satisfying a stochastic ordinary differential equation
dSt = kStdt+σStdBt (This is, e.g., the most widely used model of stock price St at time t with drift k,
volatility σ and standard Brown motion Bt [16]). The solution is given by St = exp(σBt+(k−σ2/2)t).
For simplicity, we set S0 = 1, σ = 1 and k = 1/2 so that St can be written as St = exp(

√
tB1), where

B1 is a standard Gauss random variable B1 ∼ N (0, 1). By denoting x ≡ t, µ ≡ B1 ∈ RK ,K = 1 and
g = St, we seek the following affine expansion by wEIM given in Algorithm 1

g(x, µ) = exp(
√
xµ) ≈ gM (x, µ) =

M∑
j=1

Θj(µ)qj(x) where µ ∼ N (0, 1). (4.2)

Moreover, we are interested in the expectation of g at time x, which can be approximated by Gauss-
Hermite quadrature with abscissas and weights (µn, wn), 1 ≤ n ≤ N

Eµ[g](x) ≈
M∑
j=1

(∫ ∞
−∞

Θj(µ)ρ(µ)dµ

)
qj(x) ≈

M∑
j=1

(
N∑
n=1

Θj(µn)wn

)
qj(x), (4.3)

where ρ is standard normal density function. The advantage of (4.3) is that we do not need to
compute the function g for µn, 1 ≤ n ≤ N at every x but only at the empirical interpolation nodes
xm, 1 ≤ m ≤M , which is attributed to solving a small linear system (2.3) for Θj(µn), 1 ≤ j ≤M, 1 ≤
n ≤ N . When the evaluation of the function itself at (x, µ) is expensive and we have a large number of
points x, the wEIM can be employed for efficient computation of the statistics. We set the tolerance
as εtol = 1 × 10−12, take 1000 equidistant points in the vertex set Vx and 1000 normal distributed
samples in the sample set Ξµ, we also take an independent 1000 normal distributed samples to test
different interpolation methods. The weight in Algorithm 1 is taken as the normalized Gauss density
function w(µ) = ρ(µ)/ρ(0). As for the evaluation of the expectation of E[gM ], we use 12 quadrature
abscissas in (4.3), which is sufficiently accurate for this example. We examine the convergence of
“EIM bound” and “wEIM bound” (rM (xM )), error by “EIM test” and “wEIM test” (error computed
from test samples) and test error by stochastic collocation method “SCM test”.
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Figure 4.1: Comparison of convergence property of EIM, wEIM and SCM in different norms. Left:
decreasing of the error ||g − gM ||L∞(D;C0(Γ)); Right decreasing of the error ||E[g]− E[gM ]||L∞(D).

The convergence property of different methods is displayed in Figure 4.1, from which we can see
that all the methods achieve exponential convergence rate and wEIM converges faster than both SCM
and EIM in L∞(D;C0(Γ)) norm. However, as for the expectation in L∞(D) norm, SCM is the best and
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wEIM is evidently better than EIM which does not take the weight into consideration. The reason for
these results is that wEIM and EIM select the samples by L∞w (Ξµ) and L∞(Ξµ) optimization, leading
to small error in L∞(D;C0(Γ)) norm and relatively large error for the evaluation of expectation.

4.2 Parametric function in multidimension - Karhunen-Loève expansion

For the case of multidimensional parameters, we consider the function g truncated from Karhunen-
Loève expansion of a Gaussian random field with correlation length L and eigenvalues λn, 1 ≤ n ≤ Nt,
written as [15]

g(x, µ)− g0(x) = C exp

((√
πL

2

) 1
2

µ1(ω) +

Nt∑
n=1

√
λn (sin(nπx)µ2n(ω) + cos(nπx)µ2n+1(ω))

)
(4.4)

where µi ∼ N (0, 1), 1 ≤ i ≤ 2Nt + 1 are standard Gauss random variables defined in sample space
Ω 3 ω. This function is widely used, e.g. in modelling the random property of porous medium in
material science, geophysics, etc. To compare the convergence properties of different methods, we
take g0 = 0, C = exp(5), Nt = 2, L = 1/8 and λ1 = 0.213, λ2 = 0.190; x ∈ [0, 1] is discretized by 1000
equidistant vertices. We set tolerance εtol = 1 × 10−12, and use 1000 five dimensional independent
normal distributed samples and another 1000 test samples. For the computation of E[g], we apply
SG-SCM based on Gauss-Hermite quadrature with the deepest interpolation level 4 in each dimension.
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Figure 4.2: Comparison of convergence property of EIM, wEIM and SG-SCM in different norms. Left:
decreasing of the error ||g − gM ||L∞(D;C0(Γ)); Right decreasing of the error ||E[g]− E[gM ]||L∞(D).

Figure 4.2 depicts the convergence rate of different methods, from which we can observe that
in multidimensional problems wEIM and EIM perform much better than SG-SCM in both ||g −
gM ||L∞(D;C0(Γ)) error and ||E[g]− E[gM ]||L∞(D) error. Both wEIM and EIM achieve fast exponential
convergence rate and considerably alleviate the “curse-of-dimensionality” suffered by SG-SCM. wEIM
uses only 29 samples while EIM needs 80 samples and thus 80 expansion terms, which is far less
efficient than the weighted type in practical applications, e.g., in approximating the non-affine terms
of reduced basis method.

4.3 Parametric equation - application in non-affine reduced basis method

As mentioned before, EIM was originally developed to deal with non-affine terms in reduced basis
discretization of partial differential equations in [1]. The efficiency of the reduced basis method depends
critically on the number of affine terms for both offline construction and online evaluation [10, 6, 11, 14].
Therefore, wEIM is more suitable for reduced basis approximation of non-affine parametric equation
with weighted parameters.
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We consider the following elliptic equation with random coefficient and homogeneous Dirichlet
boundary condition: find u : D̄ × Ω→ R such that

−∇(g(x, ω)∇u(x, ω)) = f(x) (x, ω) ∈ D × Ω, (4.5)

where the random coefficient g(x, ω) is a Gauss random field represented by a truncated Karhunen-
Loève expansion as in (4.4). We set D = (0, 1)2, f = 1, g0 = 0.1, C = exp(5), L = 1/16, Nt = 5,
λ1 = 0.110, λ2 = 0.107, λ3 = 0.101, λ4 = 0.095, λ5 = 0.087, and identify the eigenfunctions in (4.4)
as sin(nπx1) and cos(nπx2) with x1, x2 ∈ [0, 1]. The tolerance for weighted empirical interpolation
method is taken as εtol = 1×10−12. Note that the problem has 11 independent and normal distributed
random variables µK ∼ N (0, 1), 1 ≤ K ≤ 11 and all the random variables have relatively equivalent
importance due to very close eigenvalues. Therefore, we employ isotropic sparse grid stochastic collo-
cation method based on Gauss-Hermite quadrature [15] for the computation of statistics.

We first run wEIM and EIM with finite element vertices |Vx| = 185 and normal distributed
samples |Ξµ| = 10000 to build an affine expansion 1.1 for the coefficient g of problem (4.5). Another
independent 1000 normal distributed samples are used to test the accuracy of the two expansions.
The results are shown on the left of Figure 4.3, from which we can observe that wEIM is much more
efficient with only 31 affine terms than EIM requiring 94 terms to achieve the same approximation
accuracy in L∞(D;C0(Γ)) norm.
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Figure 4.3: Convergence property of wEIM in reduced basis approximation. Left: decreasing of the
error ||g − gM ||L∞(D;C0(Γ)) for EIM and wEIM; Right: decreasing of the error ||s− sN,M ||L∞(Γ).

We use the affine expansion constructed by wEIM to build a weighted reduced basis approximation
(introduced in [7] for stochastic problems) with finite element discretization in physical domain D to
the stochastic elliptic problem (4.5). The quantity of interest is the integral of the solution over the
physical domain D, s =

∫
D
udx, which is computed from the finite element solution. We denote sN,M

the approximation of s based on using N reduced bases and M affine terms. The convergence of
||s− sN,M ||L∞(Γ) is displayed on the right of Figure 4.3, which demonstrates that wEIM is efficient in
the application to reduced basis method resulting in only a few elements in the reduced basis space.
Moreover, we can see that the accuracy of wEIM, represented by different number of affine terms
M = 1, 11, 21, 31, is clearly influential to the accuracy of the reduced basis approximation.

Finally, we compare the proposed approach, a combination of weighted empirical interpolation with
weighted reduced basis approximation (wEIM-RBM), to one of the most efficient stochastic computa-
tional methods - SG-SCM [15] for their accuracy and efficiency. The result of this comparison, for the
||s− sN,M ||L∞(Γ) norm, is depicted on the left of Figure 4.4, from which the “curse-of-dimensionality”
of SG-SCM can be obviously observed. In contrast, wEIM-RBM effectively alleviates this computa-
tional burden, using merely 15 bases to accurately approximate the stochastic solution depending on
11 independent normal distributed random variables.

As for the approximation of expectation E[s], we only need to compute the quantity sN,M with
N = 15,M = 31 by online evaluation of reduced basis method at the sparse Gauss quadrature
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Figure 4.4: Comparison of the convergence property between methods wEIM-RBM and SG-SCM.
Left: decreasing of the error ||s− sN,M ||L∞(Γ); Right: decreasing of the error |E[s]− E[sN,M ]|.

abscissas and then E[sN,M ] by sparse grid Gauss quadrature formula.
The comparison of wEIM-RBM with SG-SCM on the right of Figure 4.4 shows that in order to

achieve the same accuracy, it takes 7 bases by reduced basis approximation while 2575 collocation
nodes for stochastic collocation approximation. It is worth to mention that the online evaluation of
the reduced basis method is independent of the degree of freedom (|Vx|) of the deterministic system.
Therefore, when solving the underlying deterministic system is computational demanding (with large
|Vx|) and the dimension of the stochastic space becomes high (with more random variables), wEIM-
RBM is much more efficient than SG-SCM for non-affine stochastic problems, see [6] for detailed
comparison of computational cost.

5 Concluding remarks

In order to approximate parametric functions with weighted parameters, e.g. random variables with
various probability distributions, we extended the empirical interpolation method by taking the weight
into account for the construction of interpolation formula. A priori convergence analysis of the
weighted empirical interpolation method was provided. We obtained a direct comparison of the
interpolation error to the Kolmogorov N-width, which improved the result obtained recently in [13].

By the applications in approximating geometric Brownian motion in one dimension and expo-
nential Karhunen-Loève expansion in multidimension, we demonstrated numerically the exponential
convergence rate of the weighted empirical interpolation method and its advantage in accuracy and
efficiency over the empirical interpolation method as well as over the sparse grid stochastic colloca-
tion method. We also applied the proposed method to the weighted reduced basis approximation [7]
for non-affine stochastic elliptic equation and illustrated its efficiency and especially its effectiveness
in alleviating the “curse-of-dimensionality” in comparison with the sparse grid stochastic collocation
method.

The weighted empirical interpolation method can be straightforwardly applied to nonlinear stochas-
tic partial differential equations with reduced basis approximation and can also be employed effectively
in various fields embracing weighted parameters or random variables, e.g. image science, geophysics,
mathematical finance, material science, bioengineering and uncertainty quantification at large.
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