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ABSTRACT

3D image and video have become popular since they can en-
hance the Quality of Experience (QoE) by adding the depth
dimension to the traditional 2D media. In order to design
and optimize the human-centric 3D multimedia processing
techniques, it is important to understand the QoE perceived
by users for given contents, as well as ways 2D and 3D me-
dia affect them. The goal of this paper is twofold. First, to
investigate perceived QoE of 2D and 3D multimedia con-
tents based on subjective ratings, and second, to investigate
the way in which 2D and 3D multimedia technologies affect
physiological signals. In particular, we construct subject-
independent classification systems to predict 2D versus 3D
multimedia experiences based on electroencephalography
(EEG) and peripheral physiological signals including heart
rate and respiration, from which the potential of EEG for
this purpose is demonstrated.

1. INTRODUCTION

With the advances of the 3D imaging technologies, 3D
video contents have gained in popularity. Addition of depth
cues in 3D contents is supposed to enhance users’ multi-
media experience when compared to 2D. However, low 3D
quality may not only reduce the added value of the depth
dimension, but also cause adverse problems such as visual
fatigue or dizziness. Therefore, measuring and maximizing
users’ quality of experience (QoE) of 3D contents have been
considered critical in designing successful 3D applications.
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Traditionally, users’ perceived quality is measured via
subjective quality assessment, where perceived quality of
selected visual stimuli is obtained from a number of sub-
jects. The subjects have to explicitly rate the quality of each
stimulus in a pre-defined rating scale. In contrast, efforts
toward understanding perceived quality without users’ ex-
plicit response have been made recently. For example, it
was shown that 3D visual fatigue can be identified to some
extent by observing the electroencephalogram (EEG) re-
sponse [1] or cortical activities measured by fMRI [2]. Such
implicit, direct monitoring of subjects’ brain responses is
an interesting alternative to explicit rating, and also can ex-
clude subjective bias occurring during the rating activity.

While EEG monitoring techniques have been mainly
used for assessment of 3D visual fatigue, this paper explores
the feasibility of identifying difference in users’ experience
for 2D and 3D contents through EEG and peripheral physio-
logical signals including electrocardiogram (ECG) and res-
piration. We conduct subjective experiments, in which 2D
and 3D multimedia contents are presented to users, and both
explicit subjective ratings and implicit EEG and physiolog-
ical responses are captured. We first investigate influences
of different aspects of 2D and 3D media, such as the ren-
dering mode, image quality, and content, on depth percep-
tion by analyzing the subjective ratings. Then, we construct
subject-independent classification systems that can distin-
guish the type of media (i.e., 2D vs. 3D) based on EEG or
peripheral physiological signals. The performance of these
modalities is then presented and compared.

The rest of the paper is organized as follows. The next
section describes how we conducted experiments to collect
subjective ratings and physiological responses. Section 3
presents the results of subjective rating analysis and user-
independent physiological signal classification. Finally, con-
clusion is given in Section 4.



2. DATA COLLECTION

2.1. Participants

Sixteen naive subjects (5 females, 11 males) took part
in our experiments. They were between 19 and 30 years
old with an average of 23.8 years of age. All subjects were
screened for correct visual acuity (no errors on 20/30 line),
color vision and stereo vision using Snellen, Ishiara and
Randot charts, respectively. They all provided written con-
sent forms. Before each experiment, oral instructions were
provided to the participants to explain their tasks. Addition-
ally, a training session was organized to allow participants
to familiarize with the assessment procedure. The content
shown in the training session was selected by expert viewers
in order to include examples of all evaluated aspects.

2.2. Audio-visual stimuli

The dataset was composed of eight video contents: one
for the training and seven for the tests. All contents were
shot during the 2012 edition of the Montreux Jazz Festival
(MIJF) (protected by copyright), with two RED SCARLET-
X mounted on a Genus Hurricane Rig. All video sequences
were recorded in REDCODE RAW (R3D) format, DCI 4K
resolution (4096 x 2160 pixels), at 25 fps, and had a duration
of about one minute. Stereo audio was recorded in PCM
format, sampled at 48 kHz, 24 bits. Table 1 describes the
contents and their characteristics. The recorded video se-
quences were cropped and downsampled to Full HD resolu-
tion (1920 x 1080 pixels) and then compressed with H.264/
MPEG-4 AVC. Two different quantization parameters (QP)
were selected: QP=2 for high quality (HQ) and QP=35 for
low quality (LQ). For each content, four different versions
were considered: 2D HQ, 3D HQ, 2D LQ, and 3D LQ, lead-
ing to a total of 28 video sequences, 14 of which in 2D and
14 in 3D.

2.3. Monitor, sound system and environment

To display the video stimuli, a HD 46” Hyundai S465D
polarized stereoscopic monitor was used. The laboratory
setup was controlled in order to ensure the reproducibility
of results by avoiding involuntary influence of external fac-
tors. The test room was equipped with a controlled lighting
system with a 6500K color temperature and an ambient lu-
minance at 15% of the maximum screen luminance. For
the audio playback, the PSI A14-M professional studio full
range speakers were used.

2.4. Physiological signal acquisition

The EEG signals were recorded from 256 electrodes
placed at the standard positions on the scalp. An EGI’s

Geodesic EEG System (GES) 300 was used to record, am-
plify, and digitalize the EEG signals while the participants
were watching the stimuli. Additionally, two standard ECG
leads were placed on the lower left ribcage and on the upper
right clavicle, as well as two respiratory inductive plethys-
mography belts (thoracic and abdomen). All signals were
recorded at 250 Hz.

2.5. Experimental protocol

The participants were seated at a distance of 3.2 times
the picture height, corresponding to roughly 1.8 meters from
the stereoscopic monitor, as suggested in [3]. All video se-
quences were viewed with 3D glasses. The experiments
were conducted in three sessions. A fifteen-minute break
was given between two sessions in order to avoid subject
fatigue and lack of attention. Nine video sequences were
presented in the first and second sessions, and ten in the last
one, leading to a total of 28 video sequences, and thus, to a
total of 28 trials.

Each trial consisted of a ten-second baseline period and
a stimulus period. The biosignals recorded during the base-
line period were used to remove stimulus-unrelated varia-
tions from the signals obtained during the stimulus period.
During the baseline period, the subjects were instructed to
remain calm and focus on a 2D white cross on a black back-
ground presented on the screen in front of them. Once this
baseline period was over, a video sequence was randomly
selected and presented. After the video sequence was over,
the subjects were asked to provide their self-assessed ratings
for the particular video sequence without any restriction in
time, following the Absolute Category Rating (ACR) eval-
uation methodology [4].

Regarding the self-assessed ratings, subjects were asked
to evaluate the video sequences in terms of four different as-
pects, namely perceived overall quality, content preference,
sensation of reality, and perceived depth quantity. A 9-point
rating scale was used that ranged from 1 to 9, with 1 rep-
resenting the lowest value, and 9 the highest value of each
aspect. In particular, the two extremes (1 and 9) correspond
to "low” and high” for perceived overall quality and con-
tent preference, “no presence” and “’very strong presence”’
for sensation of reality”, and ’no depth” and “’a lot of depth”
for perceived depth quantity.

Once a trial was over, the next baseline period was recor-
ded and the next video sequence was randomly selected and
presented. The procedure was repeated until all 28 video
sequences were presented and rated, leading to 28 trials.
Although the experiments lasted for almost two hours, in-
cluding the training and set up, the subjects did not report
fatigue.



Table 1. Characteristics of the contents used in our experiments.

Content  Description and characteristics

Training  Rock band playing at the Auditorium Stravinski. Dark. Bright spots. Shot from the back of the auditorium.
Jazz Jazz band playing at the Funky Claude’s Lounge at the Opening Party. Wide shot.

Rock Rock band playing at the Auditorium Stravinski. Dark. Bright spots. Shot from the back of the auditorium.
Stage MIF general manager on stage introducing the next artist. Very dark. In French. Wide shot.

Speechl  MIJF general manager giving a speech at the Opening Party. In French. Mid shot.

Speech2  Speech at the Opening Party. In French. Mid shot.

Outdoor  Crowd walking on the street near the lake. Lot of depth. Wide shot.

Interview Interview of Quincy Jones. Medium close up.

3. ANALYSIS

To detect and remove subjects whose ratings appear to
deviate significantly from others, outlier detection was per-
formed. During the training session, examples of the lowest
and highest quality levels (LQ and HQ) were shown, in or-
der to guide subjects to bound their own perceived overall
quality ratings more or less similarly. Since quality was the
only factor in which subjects could be trained, the outlier
detection was performed only on the scale of the perceived
overall quality ratings. The outlier detection was applied ac-
cording to the guidelines described in Section 2.3.1 of An-
nex 2 of [5]. In this study, no outliers were detected.

3.1. Subjective rating analysis

The mean opinion score (MOS) and associated 95% con-
fidence interval (CI) were computed for each test stimulus,
assuming a Student’s #-distribution of the subjective ratings,
to represent explicit estimates of perceived depth quantity.
Figure 1 shows the resulting MOS and CI for perceived
depth quantity. As it can be observed, for a given qual-
ity level, perceived depth is higher for 3D stimuli when
compared to 2D stimuli. Similarly, high quality sequences
generally obtained higher ratings for perceived depth quan-
tity when compared to their corresponding low quality ver-
sions. However, the difference in terms of perceived depth
between 3D LQ stimuli and 2D HQ stimuli is not signifi-
cant as the CIs considerably overlap in all contents. This
observation shows that monocular depth cues are powerful
in high quality video sequences. As content Stage is very
dark, the perceived 3D effect was not very strong and the
perceived depth quantity was rated relatively low.

To investigate quantitatively whether the objective fac-
tors, such as the rendering mode, actual quality level, and
content have a significant influence on perceived depth, an
ANOVA analysis was performed on the subjective ratings.
In particular, the null hypothesis was that the rendering mode,
quality level, and content do not influence perceived depth
quantity. The null hypothesis was rejected for all cases,
p < 0.001, indicating that the effects of the rendering mode,

Depth quantity

Jazz Rock Stage Speech1 Speech2 Outdoor Interview

Fig. 1. Mean opinion scores: depth quantity.

actual quality level, and content on perceived depth quan-
tity were significant. However, the interactions among these
three different factors were not significant, p > 0.3.

Also, to understand the impact of the perceptual factors,
such as sensation of reality, content preference, and per-
ceived overall quality, on perceived depth quantity, the cor-
relation between the MOS for all four factors was measured
using the Pearson correlation coefficient. Table 2 reports
the correlation coefficients. The results show that there is
a strong correlation between perceived depth quantity and
sensation of reality (p > 0.88). On the other hand, the cor-
relation between perceived depth quantity and content pref-
erence (p < 0.16) is very weak. Thus, apparently content
per se impacts on depth perception, but content preference
does not. The correlation between perceived depth quan-
tity and perceived overall quality is rather low (p < 0.42),
but significantly different from zero, p = 0.027. Thus both
perceived and actual quality impact on perceived depth, ac-
cording to both the ANOVA and the correlation analyses.



Table 2. Pearson correlation coefficients between the rat-
ings of different perceptual aspects.

Content | Sensation | Depth
preference | of reality | quantity
Overall "1 43300 | 07308 | 04172
quality
Content . 03017 | 0.1527
preference
Sensan.on i i 0.8835
of reality

3.2. Physiological signal analysis

In this section, the pre-processing steps to remove the
artifacts, the feature extraction methods and the classifica-
tion results are presented.

3.2.1. Preprocessing

EEG electrodes in which muscle activity was discernible
were rejected manually, leading to a total 216 electrodes for
processing and analysis. EEG signals were filtered between
3-47 Hz using a third-order Butterworth filter, in order to re-
move electrooculogram (EOG) and electromyogram (EMG)
artifacts. Remaining artifacts were removed by cubic inter-
polation. All signals were visually inspected to make sure
they did not contain further artifacts. EEG signals were ini-
tially referenced to the Cz electrode and re-referenced to the
common average.

ECG signals were used to extract the heart rate variabil-
ity (HRV), which reflects the sympathetic/parasympathetic
modulation. HRV is the physiological measurement of vari-
ation in the time interval between consecutive heart beats.
In order to extract the HRV, the interval between two QRS
complexes defined as R-R interval (fp_pr) was estimated
using the real-time algorithm developed by Pan and Tomp-
kins [6]. Then the heart rate (HR, in beats per minute) was
estimated as:

HR = 60 .
lp—-R
The HRV is the variation of HR over time. As the HR is a
time-series of nonuniform R-R intervals, the HR was regu-
larly resampled at 4 Hz rate. Then, the respiration drift was
removed using a morphological operator.

Both respiratory signals (abdomen and thoracic) were
filtered by a second-order bandpass filter with cutoff fre-
quencies in a range of 0.1-1 Hz, approximated by a Butter-
worth polynomial.

Only the last 45 seconds of all signals were used in our
analysis, considering that stabilization and adaptation to 3D
contents may take some time.
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3.2.2. Feature extraction

Regarding the EEG signals, the frequency power of the
signals was extracted for frequencies between 4 and 47 Hz,
using the Welch’s method with windows of 128 samples.
The mean trial power was then divided by the mean baseline
power, in order to extract the power changes without consid-
ering the pre-stimulus period. These power changes were
captured for different frequency bands, namely theta band
(4-7 Hz), alpha band (8-13 Hz), beta band (14-29 Hz) and
gamma band (30-47 Hz). Apart from the power division,
a novel distance metric between trial and baseline power is
also used as a feature, namely the Wasserstein distance [7].
This metric is less sensitive to the location of the frequency
peaks, but provides instead, information about the global
structure of the frequency domain.

Physiological signals of living organisms, such as EEG
signals, appear to vary over time in a complex manner. These
temporal variations result from intrinsic disturbances and
actions, such as the activity of an organism. In physiolog-
ical signals these fluctuations are non-periodic. In the cur-
rent study, the normalized length density (NLD) [8] index
is extracted in order to capture the self-similarities of the
EEG, HRV and respiration signals during reality perception
processes.

Regarding the peripheral signals, mean, standard de-
viation, and mean absolute values of the first and second
derivatives were extracted for both HRV and respiration sig-
nals [9]. Regarding the frequency domain, the power of
the very low frequency (VLF, 0.0033-0.04 Hz), the low fre-
quency (LF, 0.04-0.15 Hz), high frequency (HF, 0.15-0.4
Hz), and the LF/HF ratio were extracted from HRV [10]. Fi-
nally, the power of three different bands was extracted from
the respiration signals (0.1-0.2 Hz, 0.2-0.3 Hz, 0.3-0.4 Hz).

3.2.3. Classification

A support vector machine (SVM) classifier with radial
basis function (RBF) kernel was trained, and was used to
predict 2D and 3D multimedia experiences, in a subject-
independent classification scheme. The RBF kernel was
used due to the fact that this kernel considers the possible
non-linear relationships between class labels and features.
The LIBSVM package was used for this study [11]. The
parameters of the classifier were optimized for each trial, us-
ing a grid search in a leave-one-subject-out cross-validation
scheme [11]. As a feature selection method, Fisher’s linear
discriminant, which is defined as

_ | — e
I =, @

was used to estimate the most significant features. In eq.
(2), i and o are the mean and standard deviation for each
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Fig. 2. ACC for EEG and peripheral physiological signals
for each subject.

feature f, respectively. The training and testing of the clas-
sifier were carried out in a leave-one-subject-out cross- val-
idation scheme. To evaluate the performance of the classi-
fiers the classification accuracy (ACC) was computed, due
to completely balanced classes. ACC is considered as an ac-
curate metric to assess the performance of a classifier with
balanced classes.

3.2.4. Results

The classification was performed on two balanced classes,
with 14 samples each, namely 2D and 3D. Figure 2 presents
the ACC both for the EEG and for the peripheral signals.
Regarding the EEG signals, the mean ACC is significantly
higher than random (mean ACC = 54.69, p < 0.05, a
t-test was applied to test the significance), indicating that
EEG-based classification is possible and can be used to au-
tomatically recognize 2D from 3D perception, in a subject-
independent classification framework, independently of the
video quality. In fact, a possible reason why the accuracy of
the classifier is low may be due to the difference in quality
levels among the sequences. Indeed, the subjective-score
analysis showed that the difference in terms of perceived
depth between 3D low quality and 2D high quality is not
significant (Section 3.1). Regarding the peripheral signals,
classifying automatically 2D versus 3D is not significantly
different from random guess. These results were expected
due to the fact that 2D versus 3D sequences are expected to
influence the brain in a subject-independent way and create
patterns, but are not expected to cause subject-independent
patterns and changes to respiration or heart rate signals.
Heart rate and respiration may convey rendering-related in-
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Fig. 3. Best EEG features for all subjects.

formation but in a more subjective way.

Figure 3 presents the most significant EEG features ac-
cording to the Fisher’s linear discriminant (eq. (2)). The
most significant features were estimated as follows; in the
leave-one-subject-out cross validation scheme, each time
the best feature set was selected based on the training sub-
jects. The overall most significant features were obtained
once all subjects were a test subject, and were based on how
frequently each feature belonged to the best feature set. The
results show that the Wasserstein distance between the high
beta power of a trial and a neutral baseline is the most sig-
nificant feature (almost 50% of the times belonged to the
best feature set).

It has been established that beta band is highly associ-
ated with cognition, and reflects emotional characteristics
[12]. Hence, cognitive and emotional processes seem to
take place and be responsible for the automatic discrimi-
nation between 3D and 2D video.

4. CONCLUSION

In this paper we presented the results of experiments in
which 2D and 3D sequences are presented to users, while
their subjective ratings on various aspects are captured, and
their EEG, ECG and respiration signals are recorded. Re-
garding the analysis on the subjective ratings, we showed
that for a given quality level the perceived depth is higher
for 3D that for 2D sequences, but for high 2D quality and
low 3D quality the perceived depth is not significantly dif-
ferent. We also showed that the actual and perceived quality
level, rendering mode, and content influence significantly
the perceived depth. Regarding 2D versus 3D automatic
classification from EEG and peripheral signals, EEG-based



classification is possible and can be used to automatically
recognize 2D from 3D perception, in a subject-independent
classification framework, independently of the video qual-
ity. However, classifying automatically 2D versus 3D using
peripheral signals is not significantly different from random.
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