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Introduction

When on the 30th may 1832, the night before the duel that was about to put an end to his life,
Evariste Galois (1811-1832) summarized his notes, he was certainly not imagining how many
books and articles of the twentieth and the twenty-first centuries would associate his name
to such a variety of topics that are so far from his original work. Since antiquity, up to the
nineteenth century, no one has been in position to solve the problem of polynomial equations of
degree (strictly) greater than 4. It is only in the nineteenth century that mathematicians reached
the answer: It is impossible to solve by radicals a general polynomial equation of degree greater
or equal to 5, while few formulas where found for particular equations. What is interesting
about this quest to solve such equations is not the set of formulas itself, but all mathematical
theory needed to solve the problem. Many of the fundamental notions of modern algebra that
Galois initiated, such as groups, rings, fields or complex numbers, had to be developed. It is
this theoretical machinery, rather than the few formulas to solve specific cubic or quadratic
equations, that has continued to grow up to this day. The seed that Galois planted then has
now become a forest.

This paper is an attempt to give rise to yet another tree, using the branches of mathematics
that are homotopy theory and category theory. The problem is as follow: Let f : A ↪→ B be an
extension of commutative rings and let G be a finite subgroup of

{g : S → S | g is an R-algebra automorphism},

where B has the A-algebra structure induced by f . This gives rise to two maps

• i : A ↪→ BG defined to be the inclusion of A into the ring BG of fixed elements of B under
all elements of G, and

• h : B ⊗A B →
∏

G B defined to be the commutative ring homomorphism specified by
h(x ⊗ y) := (x · g(y))g∈G, where

∏
G B is the set of all sequences (xg)g∈G in B,

which, according to S.U. Chase, D.K. Harrison and A. Rosenberg (cf. [4]), are such that f : A ↪→
B becomes a G-Galois extension of commutative rings if and only if i and h are bijective. We want
to extend this fact to the case where f : A → B becomes a morphism of commutative monoids
in a closed symmetric monoidal model category (C,⊗, 1), and where the group G becomes a
commutative Hopf monoid in C. The first difficulty is to know what the induced maps i and h
become in this context, and how the monoid G must act on A and B. Using the model category
structure of C, we may then generalize the notion of Galois extension to the case where i and
h are weak equivalences, in order to obtain an appropriate definition of homotopic Hopf-Galois
extensions. The strategy is then to establish different properties related to homotopic Hopf-
Galois extensions which generalize some of the results found in the articles [4] and [19] of S.U.
Chase and J. Rognes respectively, and this, while moving toward the goal of establishing an
homotopic Hopf-Galois correspondence theorem which encompasses the corresponding theorem
for the special case of commutative rings.
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6 Introduction

Before being in position to solve this problem, we first have to establish the needed theory
on closed symmetric monoidal model categories and on Galois extensions of commutative rings.
We start in chapter 1 by studying model categories in general. We shall provide the definition
and some examples of a model category, before moving on to the study of the induced homotopy
category and its left and right derived functors. We shall finally introduce Quillen pairs and
Quillen equivalences, and terminate with an important theorem that explains how these two
notions induce adjoint pairs and categorical equivalences respectively.

In chapter 2, we shall restrict our attention to monoidal model categories and cofibrantly
generated model categories, for which we shall need to generalize the notions of monoids, modules
and algebras to specific objects of a monoidal category. We end the chapter with a theorem
that provides a condition under which the structure of a cofibrantly generated monoidal model
category is preserved when we restrict our attention to its underlying categories of modules and
algebras.

Chapter 3 establishes Quillen equivalences between some specific monoidal categories. This
requires in particular a study on simplicial and cosimplicial objects which we shall need for the
rest of the paper.

In chapter 4, we introduce the Galois theory of commutative rings based on the classical
Galois theory of field. This will involve a reinterpretation of what is usually meant by a Galois
extension in terms of morphisms i and h, followed by their generalization to commutative rings.
We end the chapter by providing a Galois correspondence theorem for this context.

It is only at this stage that we may begin the study, in chapter 5, of the above question on
the generalization of Galois extensions to homotopic Hopf-Galois extensions.

For full comprehension of the text, the reader is expected to have a solid knowledge of
general topology, algebraic topology, as well as graduate level algebra which encompasses rings
and modules theory, basic homological algebra, and the Galois theory of finite extension of fields.
A previous knowledge of basic category theory is highly recommended but not essential in the
sense that most of the necessary notions are summarized in the first section; the beginner with
the appropriate mathematical maturity should be able to follow the text with the help of a book
to complement the theory.

I would like to thank Kathryn Hess Bellwald for her guidance, support and availability; and
without whom this project would not have reached its present form.



Chapter 1

Model categories

This chapter is an introduction to the theory of model categories, which was first developed by
D.G. Quillen. Model categories are categories endowed with a supplementary structure given by
three classes of morphisms and a set of five axioms. This provides enough structure to develop
a generalized homotopy theory on the level of categories. It of course encompasses traditional
homotopy theory on the category of topological spaces and can be applied to any of the more
algebraic categories that satisfy the supplementary axioms.

After a concise reminder of the basic theory of category theory needed for this paper in
section 1.1, we will provide, in section 1.2, the definition of a model category followed by some
standard examples such as topological spaces or chain complexes of modules. Proving that a
particular category has a model structure is usually long and very technical. For this reason,
we won’t be detailing these examples. We will instead proceed, in section 1.3, to the study of
the homotopy relations in model categories. These are the relations of right homotopy and left
homotopy. We will see under which conditions these two relations form equivalence relations and
coincide to give rise to a generalized general notion of homotopy. From this homotopic relation,
it then becomes possible to derive another category, the homotopy category, whose objects are
the same as in the original model category, but whose morphisms become the equivalent classes
of the original morphisms under the homotopic equivalence relation; this is done in 1.4. We will
end this chapter, in section 1.5, by introducing derived functors. These functors are the direct
generalization of the left and right derived functors used in traditional homological algebra. They
will provide us with a final important result (cf. theorem 1.5.12) which establishes categorical
equivalences between the homotopy categories of two model categories via the notion of Quillen
equivalences.

1.1 Reminder on category theory

In this section we review the necessary notions and constructions we will need for the rest of
the paper. For reference and notational purposes, we briefly state the fundamental definitions
of category theory.

Definition 1.1.1. A (large) category C consists of a pair (ObC,MorC), where C = ObC is the
class of objects of C and MorC the class of morphisms, arrows or maps of C, such that:

• For every morphism f ∈ MorC, there exists a domain X ∈ C and a codomain Y ∈ C
associated to it. We note f : X → Y and denote by C(X,Y ) = MorC(X,Y ) the class of
all morphisms having X as domain and Y as codomain.

7



8 1. Model categories

• For every objects X,Y, Z ∈ C, there exists a composition map

C(X,Y ) × C(Y,Z) → C(X,Z) : (f, g) 7→ g ◦ f

which is associative and such that for every object X ∈ C there is an identity morphism
idX : X → X satisfying f ◦ idX = f for every f ∈ C(X,Y ) and idX ◦ g = g for all
g ∈ C(Y,X).

We call small categories those categories which exist within the context of set theory, ie. in
which the class of objects, as well as the class of morphisms between any two given objects, form
sets. Furthermore, we say that a category C is finite if ObC is a finite set and C(X,Y ) is a finite
set for any objects X,Y in C.

Notations 1.1.2. The most frequently encountered categories are denoted

• Set for the category whose objects are sets and whose morphisms are set maps,

• T op for the category whose objects are topological spaces and whose morphisms are con-
tinuous functions,

• T op∗ for the category whose objects are pointed topological spaces and whose morphisms
are pointed continuous functions,

• Gr for the category whose objects are groups and whose morphisms are group homomor-
phisms,

• Ab for the category whose objects are abelian groups and whose morphisms are abelian
group homomorphisms,

• Rng for the category whose objects are rings and whose morphisms are ring homomor-
phisms,

• F ld for the category whose objects are fields and whose morphisms are field homomor-
phisms,

• RMod (resp. ModR) for the category whose objects are left (resp. right) R-modules and
whose morphisms are left (resp. right) R-modules homomorphisms,

• Ch (resp. Ch+) for the category of chain complexes (resp. N-graded chain complexes) of
abelian groups whose morphisms are the obvious collections of abelian group homomor-
phisms in each dimension that make the appropriate squares commute,

• Chk (resp. Ch+
k ) for the category of chain complexes (resp. N-graded chain complexes) of

k-modules for a commutative ring k.

Furthermore, for a given category C and an object A in C, we note

• Cop the opposite category whose objects are the same as C and whose morphisms are the
reversed arrows of C,

• A ↓ C the under category whose objects are all morphisms A → X in C with X ∈ C and
whose morphisms from a given object f : A → X to a given object g : A → Y are the
morphisms h : X → Y in C which satisfy hf = g,

• C ↓ A the over category whose objects are all morphisms X → A in C with X ∈ C and
whose morphisms from a given object f : X → A to a given object g : Y → A are the
morphisms h : X → Y in C which satisfy gh = f .
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• C→ the arrow category whose objects are the morphisms of C and whose morphisms be-
tween any two objects f, g in C→ are the commutative squares of the form

•

f

²²

// •

g

²²
• // •

in C.

Definition 1.1.3. A functor F : C → D is a pair of mappings

F = Fob : ObC → ObD and F = Fmor : MorC → MorD,

such that

• if g ◦ f is defined in C, then F (g) ◦ F (f) is defined in D and F (g ◦ f) = F (g) ◦ F (f),

• for each object X in C we have F (idX) = idF (X).

Definitions 1.1.4. Let F,G : C → D be two functors. A natural transformation from F to G is
a map τ : ObC → MorD such that for every X ∈ ObC and every morphism (f : X → Y ) ∈ MorC
the diagram

F (X)
F (f) //

τX

²²

F (Y )

τY

²²
G(X)

G(f) // G(Y ),

with τX := τ(X) and τY := τ(Y ), commutes.
If in addition τX is an isomorphism, that is if there exists a morphism g : G(X) → F (X) in

C such that g ◦ τX = idG(X) and τX ◦ g = idF (X), we say that τ is a natural isomorphism.
Moreover, we say that F is an equivalence of categories if there exists a functor F ′ : D → C

such that the composites FF ′ and F ′F are related to the appropriate identity functors by natural
isomorphisms.

Notation 1.1.5. For two categories C and D, we denote by CD the category whose objects
are the functors from D to C and whose morphisms are all the natural transformations between
these functors.

Definitions 1.1.6. A morphism f : X → Y in a category C is an epimorphism if for every
morphisms g, g′ : Y → Z in C with gf = g′f we have g = g′. On the other hand, f is a
monomorphism if for every morphisms g, g′ : Z → X in C with fg = fg′ we have g = g′.

Furthermore, a functor F : C → D is said to be full (respectively faithful), if for each pair
(X,Y ) of objects of C the map

C(X,Y ) → D(F (X), F (Y ))

induced by F is an epimorphism (respectively a monomorphism). We then say that a subcategory
C′ of C is full if the inclusion functor i : C′ → C is full (the functor i is always faithful).

Definition 1.1.7. Let F : C → D and G : D → C be two functors between categories C and D.
The functors F and G are said to be adjoints or to form an adjoint pair if there is a natural
isomorphism ϕ from

D(F (−),−) : Cop ×D → Set to C(−, G(−)) : Cop ×D → Set;
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in other words if for any object X ∈ C and for any object Y ∈ D there is an isomorphism
D(F (X), Y ) ∼= C(X,G(Y )) such that the diagram

(f : F (X) → Y ) ∼=

ϕX,Y //

²²

(f ] : X → G(Y ))

²²
(g[ : F (X ′) → Y ′) ∼=

ϕX′,Y ′
// (g : X ′ → G(Y ′)).

commutes for any given morphisms f ∈ D(F (X), Y ) and g ∈ C(X ′, G(Y ′)). We denote this

F : C ⇐⇒ D : G

and say that F is the left adjoint of G and G the right adjoint of F . Since any two left adjoints
of G (respectively any two right adjoints of F ) are canonically naturally isomorphic, we then
speak of the left adjoint or the right adjoint of a functor (provided they exist). In addition, the
adjoint pair F : C ⇐⇒ D : G induces two natural transformations

η : IdC → GF and ε : FG → IdD

which are respectively called unit and counit of the adjunction. The adjunction (F,G, ϕ) is
uniquely determined by (F,G, η, ε) via the components

ηX = ϕ(idF (X)) and εY = ϕ−1(idG(Y )).

It can equally well be described by the two identities

F

EE
EE

EE
EE

EE

EE
EE

EE
EE

EE
Fη // FGF

εF

²²

GFG

Gε

²²

G

yy
yy

yy
yy

yy

yy
yy

yy
yy

yy
ηGoo

F G

(cf. [17] section IV.1 for more details).

Definition 1.1.8. Let C be a category and D a small category. We consider the diagonal functor

∆ C → CD : X 7→ ∆(X), f 7→ ∆(f),

where ∆(X) ∈ CD is the functor defined by

∆(X)(D) = X for every D ∈ ObD and ∆(X)(g) = idX for every g ∈ MorD,

and where ∆(f), with f ∈ C(X,X ′), is a natural transformation from ∆(X) to ∆(X ′).

Definition 1.1.9. Let C be a category, D a small category, and F ∈ CD. A limit for F is an
object limF = limD of C with a natural transformation τ : ∆(limF ) → F such that for any
object X ∈ C and any natural transformation σ : ∆(X) → F there exists a unique morphism
f ∈ C(X, limF ) whose natural transformation ∆(f) makes the following diagram commute.

∆(X)

σ

²²

∃!∆(f)

zzt t t t t t

∆(limF )
τ

// F

If limF exists for every functor F ∈ CD, we say that C has all small limits or that C is complete;
in this case lim(−) : CD → C becomes a functor. If in addition D is finite, we say that C has all
finite limits.



1.1. Reminder on category theory 11

Examples 1.1.10. (1) If D = {Xi}i∈I is a set of objects without any other arrows than the
required identity morphisms, then the limit limF =

∏
i∈I Xi is the product of the Xi’s.

(2) If D = {A → B ← C}, then limF is the pullback of the diagram

limF
i′ //___

j′

²²Â
Â
Â F (C)

j

²²
F (A)

i
// F (B).

We denote it limF = F (A) ×F (B) F (C) and say that i′ (resp. j′) is the base change of i (resp.
j) along j (resp. i).

(3) If D = ∅, then limF (if it exists) is a terminal object of C.
(4) If D = {. . . → n → . . . → 2 → 1 → 0}, so that F : D → C is a tower in C, then limF is

the inverse limit of the tower F .

Definition 1.1.11. Let C be a category, D a small category, and F ∈ CD. A colimit for F is an
object colimF = colimD of C with a natural transformation τ : F → ∆(limF ) such that for any
object X ∈ C and any natural transformation σ : F → ∆(X) there exists a unique morphism
f ∈ C(colimF,X) whose natural transformation ∆(f) makes the following diagram commute.

F

τ

²²

σ // ∆(X)

∆(colimF )

∃!∆(f)

99ssssss

If colimF exists for every functor F ∈ CD, we say that C has all small colimits or that C is
cocomplete; in this case colim(−) : CD → C becomes a functor. If in addition D is finite, we
say that C has all finite limits. A category that is both complete and cocomplete is sometimes
called bicomplete.

Examples 1.1.12. (1) If D = {Xi}i∈I is a set of objects without any other arrows than the
required identity morphisms, then the colimit colimF =

∐
i∈I Xi is the coproduct of the Xi’s.

(2) If D = {A ← B → C}, then colimF is the pushout of the diagram

F (B) i //

j

²²

F (C)

j′

²²Â
Â
Â

F (A)
i′

//___ colimF.

We denote it colimF = F (A) ∨F (B) F (C) and say that i′ (resp. j′) is the cobase change of i
(resp. j) along j (resp. i).

(3) If D = ∅, then colimF (if it exists) is a initial object of C.
(4) If D = {0 → 1 → 2 → . . . → n → . . .}, so that F : D → C is a telescope in C, then

colimF is the direct limit of the telescope F .

The following results of general category theory will be needed for later. However their proofs
are out of the scope of this paper and will not be given here (cf. [17] and [1] for proofs).

Proposition 1.1.13. Let C be a category, D a small category. If C is bicomplete, then CD too
and we have adjoint pairs

∆ : C ⇐⇒ CD : lim and colim : CD ⇐⇒ C : ∆.
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Proposition 1.1.14. Let F : C ⇐⇒ C′ : G be a pair of adjoint functors. Then

(1) F preserves colimits; that is for any functor ϕ ∈ CD, the existence of colimϕ implies the
existence of colim(F ◦ ϕ), and F (colimϕ) ∼= colim(F ◦ ϕ).

(2) G preserves limits; that is for any functor ϕ ∈ C′D, the existence of limϕ implies the
existence of lim(G ◦ ϕ), and G(limϕ) ∼= lim(G ◦ ϕ).

1.2 Model categories: definition and examples

We now enter the core of the subject. In this section we define what a model category is and
give few common examples. Showing that a category is actually a model category is not trivial
at all; it is usually long and very technical. For these reasons, and for the sake of continuity in
the theory development, the proofs will not be given here.

Before establishing the notion of model category, we first need to define what lifts, in a more
general context than those used for the definitions of Hurewicz fibrations and cofibrations, are.
We also need the notion of a retract in a category, from which we shall establish a useful result
called "the retract argument".

Definitions 1.2.1. Let C be a category and L a set of morphisms in C. A morphism f : A → B
in C satisfies the left lifting property with respect to L, a fact we denote f ∈ LLP (L), if for
every commutative diagram

A

f

²²

h // C

g

²²
B

k //

∃k̂

>>~
~

~
~

~
D

in C with g ∈ L, there exists a morphism k̂ : B → C such that gk̂ = k and k̂f = h.
Dually, f satisfies the right lifting property with respect to L, a fact we denote f ∈ RLP (L),

if for every commutative diagram

C

g

²²

h // A

f

²²
D

k //

∃k̂

>>~
~

~
~

~
B

in C with g ∈ L, there exists a morphism k̂ : D → A such that fk̂ = k and k̂g = h.
More generally, we say that a commutative square diagram

A

f

²²

h // C

g

²²
B

k // D

has a lift, or satisfies the lifting property, if there is a morphism k̂ : B → C, called the lift, such
that h = k̂f and k = gk̂.
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Definition 1.2.2. A morphism f : A → B in a category C is a retract of a morphism g : C →
D ∈ MorC if there is in C a commutative diagram

A
i //

f

²²

C
r //

g

²²

A

f

²²
B

j
// D s

// B

such that ri = idA and sj = idB .

Proposition 1.2.3 (the retract argument). Let C be a category and let f = pi be a factorization
in C.

• If i has the left lifting property with respect to f , then f is a retract of p.

• If p has the right lifting property with respect to f , then f is a retract of i.

Proof. Suppose that f has the left lifting property with respect to p with

f : A
i // B

p // C.

Then, the commutative square

A
i //

f

²²

B

p

²²
C C

has a lift r : C → B which fits into the commutative diagram

A

f

²²

A

i

²²

A

f

²²
C r

// B p
// C,

so that f is a retract of i. The proof of the second assertion is dual. ¤

We may now define what suitable structure we need on a category in order to develop
homotopy theory.

Definition 1.2.4. A model category is a category C with three classes of morphisms

WE = WEC , F ib = FibC and Cof = CofC in MorC,

each of them being closed under composition and containing all identity morphisms, such that
the following axioms are satisfied:

(M1) C has all finite limits and colimits.

(M2) If f, g ∈ MorC such that g◦f is defined in C and such that two of the morphisms f, g, g◦f
are in WE, then the third one also is.

(M3) If f is a retract of g and g is in WE (resp. Fib and Cof), then f also belongs to WE
(resp. Fib and Cof).
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(M4) Any commutative square diagram of the form

• //

i

²²

•

p

²²
• // •

in C has a lift if either i ∈ Cof and p ∈ Fib ∩ WE, or i ∈ Cof ∩ WE and p ∈ Fib.

(M5) Each morphism f ∈ MorC can be factored in two ways:

• f = pi with i ∈ Cof and p ∈ Fib ∩ WE,
• f = p′i′ with i′ ∈ Cof ∩ WE and p′ ∈ Fib.

All morphisms in WE are called weak equivalences and are denoted with an arrow ∼→, all mor-
phisms in Fib are called fibrations and are denoted with an arrow ³, and all morphisms in Cof
are called cofibrations and are denoted with an arrow ↪→. Finally, the fibrations (resp. cofibra-
tions) that are also weak equivalences are called acyclic fibrations (resp. acyclic cofibrations).

Remarks 1.2.5. (1) Since WE,Fib and Cof are closed under composition and contain all
identity morphisms, we may also view them as subcategories of C.

(2) Axiom (M1) implies the existence of an initial object ∅ and a terminal object ∗ in C.
We say that an object A in C is fibrant if A → ∗ is a fibration, and dually that A is cofibrant is
∅ → A is a cofibration.

(3) The factorizations of morphisms provided by (M5) are not always functorial; being
functorial meaning that there is a functor

(p, i) : C→ → C→ × C→ : f 7→ (p, i)(f) = (p(f), i(f)),

where C→ denotes the category of morphisms in C, such that f = p(f) ◦ i(f) for any f ∈ ObC→.
(4) The set of axioms (M1) − (M5) is not minimal since Fib,WE determine Cof and

Cof,WE determine Fib.

Let’s now provide few important examples:

Example 1.2.6. The category T op can be provided with a model category structure by defining
a morphism f : X → Y to be

• a weak equivalence if it is a weak homotopy equivalence, ie. πn(f) : πn(X)
∼=→ πn(Y ) is an

isomorphism for every n ∈ N,

• a fibration if it is a Serre fibration, ie. any diagram of the form

Sn //

i0

²²

X

f

²²
Sn × I // Y,

with n ∈ N, has the lifting property,

• a cofibration if f : X → Y is a retract of a morphism g : X → Y ′, where Y ′ is obtained
from X by attaching cells.

The above model category is the one that comes up the most frequently in everyday algebraic
topology. However, in a topological situation where we require that weak equivalences correspond
to homotopy equivalences, we rather use the following model category structure.
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Example 1.2.7. The category T op can be provided with another model category structure by
defining a morphism f : X → Y to be

• a weak equivalence if it is a homotopy equivalence,

• a fibration if it is a Hurewicz fibration, ie. any diagram of the form

Z //

i0

²²

X

f

²²
Z × I // Y,

with n ∈ N and Z ∈ ObT op, has the lifting property,

• a cofibration if f : X → Y is a closed Hurewicz cofibration, ie. f : X → Y is an injection
that satisfies the homotopic extension property with f(X) closed in Y .

As one might expect, it turns out that other strictly algebraic categories are model categories
as in the following example.

Example 1.2.8. Let R be a unitary associative ring and consider RMod the category of left R-
modules. Let RCh+ be the category of non negatively graded chain complexes of left R-modules,
in which an object M is a collection {Mn}n∈N of R-modules together with boundary mappings
∂n : Mn → Mn−1 satisfying ∂n−1 ◦ ∂n = 0, and in which a morphism f : M → N is a collection
of morphisms fn : Mn → Nn in RMod such that fn−1∂

M
n = ∂N

n fn for each n ≥ 1. The category
RCh+ can be provided with a model category structure by defining a morphism f : M → N to
be

• a weak equivalence if it induces an equivalence in homology,

• a fibration if for each n ≥ 1 the map fn : Mn → Nn is an epimorphism of RMod,

• a cofibration if for each n ≥ 0 the map fn : Mn → Nn is a monomorphism of RMod which
has a projective R-module as its cokernel.

Based on any given model category, it is also possible to construct many other model cate-
gories. The most basic examples of such model structures are build, from a given model category
C, on the opposite category Cop, the under category A↓C and the upper category C ↓A.

Example 1.2.9. Given a model category C, the opposed category Cop (cf. 1.1.2) can be provided
with a model category structure by defining a morphism fop : Y → X to be

• a weak equivalence if the corresponding morphism f : X → Y is a weak equivalence in C,

• a fibration if the corresponding morphism f : X → Y is a cofibration in C,

• a cofibration if the corresponding morphism f : X → Y is a fibration in C.

This shows in particular that the five axioms (M1) − (M5) are self-dual in the sense that for
any given statement S about model categories and its dual S∗, obtained by reversing all arrows
and permuting the words "fibration" and "cofibration", we have that S is true for all model
categories if and only if S∗ is.

Example 1.2.10. Given a model category C, the under category A ↓ C (cf. 1.1.2) can be
provided with a model category structure by defining a morphism h : (A → X) → (A → Y ) to
be
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• a weak equivalence if the corresponding morphism h : X → Y is a weak equivalence in C,

• a fibration if the corresponding morphism h : X → Y is a fibration in C,

• a cofibration if the corresponding morphism h : X → Y is a cofibration in C.

We can provide a model category structure on C ↓A in a similar way.

We end this section by establishing the following basic properties.

Proposition 1.2.11. Let C be a model category. Then

(1) Fib = RLP (Cof ∩ WE) and Fib ∩ WE = RLP (Cof),

(2) Cof = LLP (Fib ∩ WE) and Cof ∩ WE = LLP (Fib),

(3) Fib and Fib ∩ WE are stable under base change,

(4) Cof and Cof ∩ WE are stable under cobase change.

Proof. (1-2) Axiom (M4) implies that all (acyclic) fibrations and all (acyclic) cofibrations in C
already have the desired lifting property, so that all four inclusions "⊆" are satisfied. Since the
argument for the four reversed inclusions are similar, we only prove

Cof ⊇ LLP (Fib ∩ WE).

Suppose that f : A → B has the left lifting property with respect to all acyclic fibrations. By
(M5) we can factor f as

f : A Â Ä

i
// C p

∼ // // B.

By assumption, the square diagram

A

f

²²

Â Ä i // C

p ∼
²²²²

B
idB // B

has a lift g : B → C. This implies, by the commutative diagram

A
id //

f

²²

A
id //

i

²²

A

f

²²
B

g // C
p // B,

that f is a retract of i, so that f is a cofibration by (M3).
(3-4) Since the four assertions use the same argument, we only have to prove one, say Cof is

stable under cobase change. Let i : A ↪→ B be a cofibration. We choose a morphism f : A → A′

in C and construct a pushout diagram

AÄ _

i

²²

f // A′

j

²²
B

g // B′.
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We need to prove that j is a cofibration. In order to do that, since Cof = LLP (Fib∩WE) it is
enough to show that j ∈ LLP (Fib ∩ WE). Let p : C

∼³ D be an acyclic fibration and consider
the commutative diagram

A′

j

²²

a // C

p ∼
²²²²

B′ b // D,

(∗)

where a, b ∈ MorC, which we can enlarge to the commutative diagram

AÄ _

i

²²

f // A′

j

²²

a // C

p ∼
²²²²

B
g // B′ b // D.

(∗∗)

Since i is a cofibration, the diagram (∗∗) has a lift h : B → C. Finally, the universal property
of pushouts implies that the morphisms h : B → C and a : A′ → C induce the desired lift in
diagram (∗). ¤

Remark 1.2.12. The first two properties imply that if, for a given model category, we choose
Cof and WE, then Fib is pinned down by 1.2.11.(1) Similarly, if we choose Fib and WE, then
Cof is pinned down by 1.2.11.(2) This shows that the five model category axioms (M1)− (M5)
are overdetermined.

1.3 Homotopy relation in model categories
Now that a more general context has been established for homotopy theory, we need to define
what the actual homotopy relation is for a model category. In the special case of topological
spaces, the homotopy relation can be defined in two ways. If we consider two homotopic contin-
uous functions f, g : A → X between topological spaces, a homotopy is a continuous mapping
H : A × I → X which fits into the commutative diagram

A
Â Ä i0 //

f
""EE

EE
EE

EE
EE

A × I

H

²²

A?
_i1oo

g
||yy

yy
yy

yy
yy

X ,

where I denotes the interval [0, 1] ⊆ R, A × I the cylinder on A, and it(a) = (a, t). Another
way to do this is to use the path space XI = {λ : I → X | λ is continuous}, endowed with
the compact-open topology, and to define a homotopy K : A → XI between f and g to be a
continuous map that fits into the commutative diagram

X XI
p0oooo p1 // // X

A

f

``BBBBBBBBB
g

>>|||||||||
K

OO

,
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where pt(λ) = λ(t). It is clear that both way are equivalent in this context. We want to define
homotopy relations in model categories in an appropriate way, ie. so as to generalize the above
two definitions. However, the two approaches will not always coincide so as the necessity to
study in which cases they will.

Throughout this section, we fix a model category C = (C,WE,F ib, Cof) and two objects A
and X in C. We start with the first approach, by establishing the notion of cylinder object in
our model category C.

Definition 1.3.1. Consider the pushout of ∅ → A with itself.

∅ //

²²

A

i′0

²²
idA

±±

A
i′1

//

idA
22

A ∨ A

∇

""EE
EE

EE
EE

EE

A,

where ∇ : A∨A → A is the folding map. A cylinder object on A is an object A∧ I of C together
with a factorization

A ∨ A
i //

∇

99A ∧ I
p

∼
// A

of ∇, where p is a weak equivalence. We define

i0 := i ◦ i′0 and i1 := i ◦ i′1.

A cylinder object A ∧ I is good if i ∈ Cof , and is very good if in addition p ∈ Fib ∩ WE.

Remark 1.3.2. By (M5) there exists at least one very good cylinder object on A.

Property 1.3.3. If A is cofibrant and A∧I is a good cylinder object on A, then i0, i1 : A → A∧I
are acyclic cofibrations.

Proof. Let’s check this for i0. Since the identity morphism idA factors as A
i0→ A ∧ I

p→
∼

A, it
follows from (M2) that i0 is a weak equivalence. Since A ∨ A is defined by the diagram

∅ //
Ä _

cof
²²

A

i′0

²²
A

i′1

// A ∨ A,

it follows from 1.2.11.(4) that i′0 is a cofibration. By assumption, i : A ∨ A ↪→ A ∧ I is a
cofibration, so that the composition i0 = i ◦ i′0 is also a cofibration. The argument is the same
for i1. ¤

From this, we may define the first type of homotopy relation in C.
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Definition 1.3.4. Let f, g : A → X be two morphisms in C. A left homotopy from f to g is a
morphism H : A ∧ I → X which makes the diagram

A
Â Ä i0 //

f
""EE

EE
EE

EE
EE A ∧ I

H

²²

A?
_i1oo

g
||yy

yy
yy

yy
yy

X

commute, where A ∨ A
i→ A ∧ I

p→
∼

A is a cylinder object on A. We say that H is good (resp.
very good) if A ∧ I is. We denote the existence of a left homotopy from f to g by f ∼l g, we
say that f and g are left homotopic and we write πl(A, X) for the set of left homotopy classes
in C(A,X).

Example 1.3.5. If C is the model category of 1.2.6, then a possible choice of cylinder object
for a topological space A is the usual cylinder A × I. In that case, the notion of left homotopy
related to this particular cylinder object coincide with the usual notion of homotopy.

Remark 1.3.6. If f ∼l g via H, then (M2) implies the equivalence f ∈ WE ⇔ g ∈ WE.
Indeed, we saw above that i0 and i1 are weak equivalences. Then if f = Hi0 ∈ WE, we have
H ∈ WE, so that g = Hi1 ∈ WE.

We shall now establish the main results on the relation of left homotopy.

Proposition 1.3.7. If f ∼l g : A → X, then there is a good left homotopy from f to g. If in
addition X is fibrant, then there is a very good left homotopy from f to g.

Proof. We can apply (M5) to the morphism A ∨ A → A ∧ I, where A ∧ I is the cylinder object
of some homotopy, in order to obtain a factorization

A ∨ A ↪→ A ∧ I ′
∼→ A ∧ I

∼→ A,

so that A ∧ I ′ is a cylinder of a good homotopy. Now choose a good homotopy H : A ∧ I → X
from f to g. Applying (M5) and (M2) to the morphism A ∧ I

∼→ A we obtain a factorization

A ∧ I
∼
↪→ A ∧ I ′

∼³ A.

From this, since X is fibrant, we get a diagram

A ∧ I
H //

Ä _

∼

²²

X

²²²²
A ∧ I ′ // ∗

which by (M4) induces the desired very good left homotopy H ′ : A ∧ I ′ → X. ¤

Proposition 1.3.8.

(1) If A is cofibrant, then ∼l is an equivalence relation on C(A, X) for any X ∈ C, ie. πl(A,X)
is the set of equivalence classes of C(A,X) induced by ∼l.

(2) If A is cofibrant and p : X
∼³ Y is an acyclic fibration, then p induces a bijection

p∗ : πl(A,X) → πl(A, Y ) : [f ] 7→ [pf ].
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(3) If X is fibrant, then

h ∼l k : A → B and f ∼l g : B → X imply fh ∼l gk : A → X.

This induces a map

πl(A, B) × πl(B,X) → πl(A,X) : ([h], [f ]) 7→ [fh].

Proof. (1) Since we can take A itself as a cylinder object for A, it is clear that f is a left
homotopy from f to itself; this proves reflexivity. Consider now the morphism s : A∨A → A∨A
that switches components. The obvious identity g ∨ f = (f ∨ g)s implies that if f ∼l g, then
g ∼l f ; this proves symmetry. Assume now that we have f ∼l g ∼l h. We can choose a good
left homotopy H : A ∧ I → X from f to g with Hi0 = f,Hi1 = g, and a good left homotopy
H ′ : A ∧ I ′ → X from g to h with H ′i′0 = g,H ′i′1 = h. Let A ∧ I ′′ be the pushout

A
Â Ä i′0

∼
//

Ä _

i1 ∼

²²

A ∧ I ′

²²
A ∧ I // A ∧ I ′′,

where, since A is cofibrant, i1 and i′0 are acyclic cofibration (cf. 1.3.3). By 1.2.11.(4) and the
universal property of pushouts, it follows that A ∧ I ′′ is a cylinder object for A. We can then
apply the universal property of pushouts again to H : A∧ I → X and H ′ : A∧ I ′ → X in order
to obtain the desired left homotopy H ′′ : A ∧ I ′′ → X; this proves transitivity.

(2) The map p∗ is well defined since if f, g : A → X are two morphisms and H is a left
homotopy from f to g, then pH is a left homotopy from pf to pg. Let’s show that p∗ is
surjective. Let [f ] ∈ πl(A, Y ). Since A is cofibrant, we have a diagram

∅Ä _

²²

// X

p ∼
²²²²

A
f // Y

which, by (M4), has a lift g : A → X. We clearly have p∗[g] = [pg] = [f ], so that the surjectivity
of p∗ is proven. Let’s now show that p∗ is injective. Let f, g : A → X and suppose that
pf ∼l pg : A → Y . By 1.3.7, we can choose a good left homotopy H : A∧ I → Y from pf to pg.
By (M4), the diagram

A ∨ A
f∨g //

Ä _

²²

X

∼p

²²²²
A ∧ I

H // Y

has a lift H ′, which is none other than the desired left homotopy from f to g.
(3) It is enough to show that if h ∼l k : A → B and f ∼l g : B → X, then fh and gk

represent the same element of πl(A,X). For this, we only have to check that fh ∼l gh : A → X
and that gh ∼l gk : A → X. The second left homotopy is obtained by composing the left
homotopy between h and k with g. It remains to prove the first one. Since X is fibrant, by
1.3.7 there exists very good left homotopy H : B ∧ I → X between f and g. We choose a good
cylinder object for A:

A ∨ A
j

↪→ A ∧ I
∼→ A.
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By (M4), the diagram

A ∨ A
h∨h //

Ä _

j

²²

B ∨ B
i // B ∧ I

∼
²²²²

A ∧ I
∼ // A

h // B

has a lift k : A ∧ I → B ∧ I. The desired left homotopy is none other than Hk. ¤

We now get to the second approach. The following definitions and results are essentially dual
to what we saw above.

Definition 1.3.9. Consider the pullback of X → ∗ with itself:

X

∆

##FFFFFFFFFF
idX

¾¾

idX

))

X × X
q′
1

//

q′
0

²²

X

²²
X // ∗,

where ∆ : X → X × X is the diagonal map. A path object on X is an object XI of C together
with a factorization

X
j

∼
//

∆

99XI
q // X × X

of ∆, where j is a weak equivalence. We define

q0 := q′0 ◦ q and q1 := q′1 ◦ q.

A path object XI is good if q ∈ Fib, and is very good if in addition j ∈ Cof ∩ WE.

Remark 1.3.10. By (M5) there exists at least one very good path object on X.

Property 1.3.11. If X is fibrant and XI is a good cylinder object on X, then q0, q1 : XI → X
are acyclic fibrations.

Proof. The argument is strictly dual to 1.3.3. ¤

Definition 1.3.12. Let f, g : A → X be two morphisms in C. A right homotopy from f to g is
a morphism H : A → XI which makes the diagram

X XI
q0oooo q1 // // X

A

f

``BBBBBBBBB
g

>>|||||||||
H

OO

commute, where X
j→
∼

XI q→ X × X is a path object on X. We say that H is good (resp. very

good) if XI is. We denote the existence of a right homotopy from f to g by f ∼r g, we say
that f and g are right homotopic, and we write πr(A,X) for the set of right homotopy classes
in C(A,X).
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Example 1.3.13. If C is the model category of 1.2.6, then a possible choice of path object of
a topological space X is the topological space XI of all paths in X endowed with the compact-
open topology. In that case, the notion of right homotopy related to this particular path object
coincide with the usual notion of homotopy.

Proposition 1.3.14. If f ∼r g : A → X, then there is a good right homotopy from f to g. If
in addition A is cofibrant, then there is a very good right homotopy from f to g.

Proof. Strictly dual to 1.3.7. ¤

Proposition 1.3.15.

(1) If X is fibrant, then ∼r is an equivalence relation on C(A,X) for any A ∈ C, ie. πr(A,X)
is the set of equivalence classes of C(A,X) induced by ∼r.

(2) If X is fibrant and i : A
∼
↪→ B is an acyclic cofibration, then i induces a bijection

i∗ : πr(B,X) → πr(A, X) : [f ] 7→ [fi].

(3) If A is cofibrant, then

f ∼r g : A → X and h ∼r k : X → Y imply hf ∼r kg : A → Y.

This induces a map

πr(A,X) × πr(X,Y ) → πr(A, Y ) : ([f ], [h]) 7→ [hf ].

Proof. Strictly dual to 1.3.8. ¤

We are now able to establish in which case the left and right homotopic relations coincide.

Theorem 1.3.16. Let f, g : A −→ X be two morphisms in C.

(1) If A is cofibrant and f ∼l g, then f ∼r g.

(2) If X is fibrant and f ∼r g, then f ∼l g.

(3) If both A is cofibrant and X is fibrant, there is an equivalence relation ∼ on C such that

f ∼l g ⇔ f ∼ g ⇔ f ∼r g

We then say that f and g are homotopic and we denote by π(A,X) the set of homotopy
classes in C.

Proof. (1) By 1.3.7, there is a good cylinder object

A ∨ A
Â Ä i0∨i1 // A ∧ I

p

∼
// A

for A, where by 1.3.3 i0 and i1 are acyclic cofibrations, as well as a good homotopy H : A∧I → X
from f to g. Consider a good path object

X
j

∼
// XI

(q0,q1)// // X × X
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for X (cf. 1.3.10). By (M4), the diagram

A
jf //

Ä _

i0 ∼

²²

XI

(q0,q1)

²²²²
A ∧ I

(fp,H) // X × X

has a lift K : A∧ I → XI , which composed with i1 is the desired right homotopy Ki1 : A → XI

from f to g.
(2) The proof is dual to (1).
(3) This is simply a consequence of (1) and (2). ¤

Corollary 1.3.17. If A is cofibrant, X is fibrant and cofibrant, and Y is fibrant, then

f ∼ g : A → X and h ∼ k : X → Y imply hf ∼ kg : A → Y.

Proof. This is an easy consequence of theorem 1.3.16 and propositions 1.3.8 and 1.3.15. ¤

Theorem 1.3.16 allows to establish a more general notion of homotopy equivalence, which in
fact coincides with the notion of weak equivalence as the following theorem states.

Definition 1.3.18. If A and X are both fibrant and cofibrant, then a morphism f : A → X is a
homotopy equivalence if there exists a morphism g : X → A such that gf ∼ idA and fg ∼ idX .
In that case we say that g is an homotopy inverse of f .

Theorem 1.3.19. Let f : A → X be a morphism in C with A and X both fibrant and cofibrant.
Then f is a weak equivalence if and only if it is a homotopy equivalence.

Proof. (⇒) Suppose that f : A → X is a weak equivalence. Applying (M5) to f we obtain a
composite

A
Â Ä

∼
q // C ∼

p // // X,

in which by (M2), the morphism p is also a weak equivalence. Since q is an acyclic cofibration
and A is fibrant, the diagram

AÄ _

q ∼

²²

idA // A

²²²²
C // ∗

has by (M4) a lift r : C → A such that rq = idA. By 1.3.15.(2), q induces a bijection

q∗ : πr(C,C) → πr(A,C) : [g] 7→ [gq].

We then have q∗([qr]) = [qrq] = [q], so that qr ∼r idC which shows that r and q are homotopy
equivalences inverse to each other. We can use the dual argument to show that p is also a
homotopy equivalence, so that f = pq is itself a homotopy equivalence.

(⇐) Suppose now that f : A → X is a homotopy equivalence, in other words that f has a
homotopic inverse g : X → A. Applying (M5) to f we obtain a composite

A
Â Ä

∼
q // C

p // // X,
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in which C is both fibrant and cofibrant. By (M2), in order to prove that f is a weak equivalence,
it is enough to show that p is a weak equivalence. Let H : X ∧ I → X be a homotopy from fg
to idX . By (M4) the diagram

X
qg //

Ä _

i0 ∼

²²

C

p

²²²²
X ∧ I

H // X

has a lift H ′ : X∧I → C. Let s := H ′i1, so that ps = idX . We know that q is a weak equivalence,
so that by the above argument q has a homotopy inverse r. Composing the established equality
pq = f on the right with r gives p ∼ fr (cf. 1.3.8.(3)). Since in addition we have s ∼ qg via the
homotopy H ′, it follows from 1.3.8.(3) and 1.3.15.(3) that

sp ∼ qgp ∼ qgfr ∼ qr ∼ idC ,

so that by 1.3.6, sp is a weak equivalence. The commutative diagram

C
idC //

p

²²

C
idC //

sp

²²

C

p

²²
X

s // C
p // X

shows that p is a retract of sp (cf. 1.2.2), so that by (M3) the morphism p is a weak equivalence;
and so is f . ¤

1.4 The homotopy category of a model category
We fix a model category C = (C, WE,F ib, Cof). The next step is to construct an induced
model category Ho(C) whose objects are the same as C, but whose morphisms are homotopy
equivalences of morphisms in C in the case where left and right homotopy relations coincide,
that is when the domain and codomain of a morphism are both fibrant and cofibrant.

The following categories will be used as tools for defining Ho(C) and constructing a canonical
functor γ : C → Ho(C).

Notations 1.4.1. We define:

• Cc to be the full subcategory of C generated by the cofibrant objects of C.

• Cf to be the full subcategory of C generated by the fibrant objects of C.

• Ccf to be the full subcategory of C generated by the objects of C that are both fibrant and
cofibrant.

• πCc to be the category of cofibrant objects of C whose morphisms are the right homotopy
classes of C.

• πCf to be the category of fibrant objects of C whose morphisms are the left homotopy
classes of C.

• πCcf to be the category of both fibrant and cofibrant objects of C whose morphisms are
the homotopy classes of C.
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The next step is to define fibrant and cofibrant replacements of an object C. These notions
give rise to two functors Q and R which, by restriction to πCf and πCc, allow to define the
functor γ : C → Ho(C).

Construction 1.4.2. For each object X in C, we apply (M5) to the morphism ∅ → X in order
to obtain a factorization

∅ Â Ä // QX
pX

∼
// // X,

on which we impose that if X is itself cofibrant then QX = X; such a factorization is a cofibrant
model, or cofibrant replacement, of X. Dually, we apply (M5) to the morphism X → ∗ in order
to obtain a factorization

X
Â Ä iX

∼
// RX // // ∗,

on which we impose that if X is itself fibrant then RX = X; such a factorization is a fibrant
model, or fibrant replacement, of X.

Proposition 1.4.3. For any morphisms f : X → Y in C, there is a morphism f̃ : QX → QY
that makes the following diagram commutative:

QX
f̃ //

pX ∼
²²²²

QY

pY ∼
²²²²

X
f // Y

The induced morphism f̃ depends, up to left homotopy or up to right homotopy, only on f , and
is a weak equivalence if and only if f is. In addition if Y is fibrant, then f̃ depends, up to left
homotopy or up to right homotopy, only on the left homotopy class of f .

Proof. The induced morphism f̃ is obtained by applying (M4) to the diagram

∅ //
Ä _

²²

QY

∼ pY

²²²²
QX

fpX // Y,

in other words f̃ is a lift in the above diagram. This, with 1.3.8.(2), imply that f̃ is uniquely
determined up to left homotopy by f . In addition, since QX is cofibrant, 1.3.16.(1) implies
that two morphisms which are left homotopic are also right homotopic. It follows that f̃ is
uniquely determined up to right homotopy by f . The assertion about weak equivalences is an
easy consequence of (M2). Finally, if Y is fibrant, then so is QY and we only have to apply
1.3.8.(3) to obtain the final assertion. ¤

Remark 1.4.4. From the uniqueness statements of 1.4.3 it follows that if f = idX , then
f̃ ∼r idQX . In addition, this also implies that if we consider two morphisms f : X → Y and
g : Y → Z we have g̃f ∼r g̃f̃ . We therefore have a functor

Q : C → πCc : X 7→ QX , (f : X → Y ) 7→ ([f̃ ]r : QX → QY ).

Proposition 1.4.5. For any morphism f : X → Y in C, there is a morphism f̄ : RX → RY
that makes the following diagram commutative:

X
f //

Ä _

iX ∼

²²

Y Ä _

iY ∼

²²
RX

f̄ // RY
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The induced morphism f̄ depends, up to left homotopy or up to right homotopy, only on f , and
is a weak equivalence if and only if f is. In addition if X is cofibrant, then f̄ depends, up to left
homotopy or up to right homotopy, only on the right homotopy class of f .

Proof. Strictly dual to 1.4.3. ¤

Remark 1.4.6. From the uniqueness statements of 1.4.5 it follows that if f = idX , then
f̄ ∼l idRX . In addition, this also implies that if we consider two morphisms f : X → Y and
g : Y → Z we have gf ∼l ḡf̄ . We therefore have a functor

R : C → πCf : X 7→ RX , (f : X → Y ) 7→ ([f̄ ]l : RX → RY ).

Proposition 1.4.7. The restriction to Cf of the functor Q : C → πCc induces a functor

Q′ : πCf → πCcf : X 7→ QX , ([f ]g : X → Y ) 7→ ([f̃ ] : QX → QY ).

Dually, the restriction to Cc of the functor R : C → πCf induces a functor

R′ : πCc → πCcf : X 7→ RX , ([f ]r : X → Y ) 7→ ([f̄ ] : RX → RY ).

Proof. Since the two statements are dual to one another, we only have to prove one, say the
second one. If we suppose that f, g : X → Y are two morphisms in C between two cofibrant
objects and that they represent the same morphisms in πCc, we must show that Rf = Rg in
πCcf . It is sufficient to prove this for the special case where f and g are directly related by a
right homotopy, ie. f ∼r g. This, however, is a direct consequence of 1.4.5. ¤

Definition 1.4.8. The homotopy category Ho(C) = HoC of a model category C is the category
defined by {

ObHo(C) = ObC,

Ho(C)(X,Y ) = πCcf (R′QX,R′QY ) = π(RQX,RQY ).

There is then a functor

γ = γC : C → Ho(C) : X 7→ X , (f : X → Y ) 7→ [RQ(f) : RQX → RQY ].

Remark 1.4.9. In the case where X and Y are both fibrant and cofibrant, by construction the
map γ : C(X,Y ) → Ho(C)(X,Y ) is surjective. This induces a bijection

π(X,Y ) ∼= Ho(C)(X,Y ).

Example 1.4.10. The homology category Ho(T op) of the model category T op as given in
1.2.7 is equivalent to the usual homotopy category of topological spaces which has homotopy
equivalence classes of continuous functions as morphisms.

The next proposition help us understand, via the functor γ, what the morphisms in Ho(C)
are with respect to MorC. This will provide a useful corollary.

Proposition 1.4.11. For any morphism f in a model category C, γ(f) is an isomorphism in
Ho(C) if and only if f is a weak equivalence in C. Furthermore, the class of all morphisms of
Ho(C) is generated by the class

{γ(f) ∈ MorHo(C) | f ∈ MorC} ∪ {γ(f)−1 ∈ MorHo(C) | f ∈ WEC ⊆ MorC}.



1.4. The homotopy category of a model category 27

Proof. Let f : X → Y be a weak equivalence in C. Then by construction RQ(f) can be
represented by a morphism f ′ : RQX → RQY which is also a weak equivalence in C. By 1.3.19,
f ′ has an inverse up to left or right homotopy, and represents an isomorphism in πCcf which is
none other than γ(f). Inversely, if γ(f) is an isomorphism in Ho(C), then f ′ has an inverse up
to homotopy and is therefore a weak equivalence by 1.3.19. It follows by construction that f is
a weak equivalence.

For any object X of C the morphism iQXp−1
X : X → RQX (cf. 1.4.2) is a weak equivalence

in C. It follows from the above statement that the morphism

γ(iQX)γ(pX)−1 = γ(iQXp−1
X ) in Ho(C)

is an isomorphism from X to RQX in Ho(C). Furthermore, for any two objects X and Y in C
the functor γ induces an epimorphism (cf. 1.4.9)

C(RQX,RQY ) → Ho(C)(RQX,RQY ).

Consequently, any morphism f : X → Y in Ho(C) can be represented as

f = γ(pY )γ(iQY )−1γ(f ′)γ(iQX)γ(pX)−1

for some morphism f ′ : RQX → RQY in C. ¤

Corollary 1.4.12. Let D be a category and C a model category. If F,G : Ho(C) → D are two
functors and τ : Fγ → Gγ is a natural transformation, then τ , with the obvious appropriate
identifications, also gives a natural transformation from F to G.

Proof. We need to check that for any given morphism h : X → Y in Ho(C), the appropriate
diagram D(h)

F (X)
τX //

F (h)

²²

G(X)

G(h)

²²
F (Y )

τY // G(Y )

commutes. By assumption D(h) commutes if h = γ(f) for some morphism f in C or if h = γ(g)−1

for some weak equivalence in C. If we write h = h1h2, it is clear that D(h) commutes if both
D(h1) and D(h2) commute. This fact proves the desired result, since by 1.4.11 any morphism
in Ho(C) is a composite of morphisms of the form γ(f) and γ(g)−1. ¤

An even stronger result than proposition 1.4.11 can be established (cf. 1.4.15) via the notion
of localization. This provides the functor γ with a universal property with respect to WEC .

Definition 1.4.13. Let C, D be categories and W ⊆ MorC a class of morphisms in C. A functor
F : C → D is a localization of C with respect to W if

(1) F (f) is an isomorphism for any f ∈ W , and

(2) for any functor G : C → D′ which sends elements of W on isomorphisms of D′, there exists
a unique functor G′ : D → D′ such that G′F = G.

C F //

∀G
ÂÂ@

@@
@@

@@
@@

D

∃!G′

²²Â
Â
Â

D′
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The second condition implies that D ∼= D′ and that all localizations of C with respect to W , if
they exist, are canonically isomorphic.

Lemma 1.4.14. Let D be a category, C a model category, and F : C → D a functor sending
weak equivalences in C to isomorphisms in D. If f, g : A → X are are left or right homotopic in
C, then F (f) = F (g) in D.

Proof. Since the other case is dual, we only need to assume that f and g are left homotopic.
We choose (cf. 1.3.7) a good left homotopy H : A ∧ I → X from f to g, so that A ∧ I is a good
cylinder object for A.

A ∨ A
Â Ä i0∨i1 // A ∧ I

w
∼

// A

By construction, wi0 = wi1 = idA so that F (w)F (i0) = F (w)F (i1). By assumption, since w is
a weak equivalence, F (w) is an isomorphism. It follows that F (i0) = F (i1), so that

F (f) = F (H)F (i0) = F (H)F (i1) = F (g).

¤

Theorem 1.4.15. If C is a model category and WE the class of weak equivalences of C, then
the functor γ : C → Ho(C) is a localization of C with respect to WE.

Proof. We need to verify the two conditions of 1.4.13. The first one has already been proven in
1.4.11. For the second one, let’s consider a functor G : C → D which sends weak equivalences
in C to isomorphisms in D. We must construct a unique functor G′ : Ho(C) → D that verifies
G′γ = G. Since the objects of Ho(C) are the same as the objects of C, the effect of G′ on objects
is clear. Let’s now pick a morphism f : X → Y in Ho(C) which is well defined up to homotopy
(cf. 1.3.16) and represented by a morphism f ′ : RQX → RQY in C. By 1.4.14 G(f ′) only
depends on the homotopy class of f ′. Letting G′(f) be

G′(f) := G(pY )G(iQY )−1G(f ′)G(iQX)G(pX)−1,

clearly defines a functor from Ho(C) to D. If f is the image by γ of a morphism h : X → Y in
C, then, after an appropriate altering of f ′ up to right homotopy (cf. 1.4.3 and 1.4.5), we obtain
a commutative diagram

X

h

²²

QX
pXoo iQX //

h̃

²²

RQX

f ′

²²
Y QY

pYoo iQY // RQY,

on which we may apply G to see that G′(f) = G(h), so that G′γ = G. The uniqueness of G′ is
simply a consequence of 1.4.11. ¤

This result allows to interpret Ho(C) in a more conceptual way which, surprisingly enough,
only depends on WE. This shows the importance of the class of weak equivalences as it carries
all the homotopic information of a model category.

1.5 Derived functors
In this section, for any given functor F : C → D from a model category C to a category D, we
study its left and right derived functors LF,RF : Ho(C) → D, and its total left and right derived
functors LF, RF : Ho(C) → Ho(D). This will lead to the notions of Quillen pairs and Quillen
equivalences, and will provide a criteria for two homotopy categories to be equivalent.
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Definition 1.5.1. Let D be a category, C a model category, and F : C → D a functor. A left
derived functor for F is a pair (LF, τ) which consists of a functor LF : Ho(C) → D and natural
transformation τ : LF ◦ γ → F such that for any pair

(G : Ho(C) → D, σ : G ◦ γ → F ),

there exists a unique natural transformation σ′ : G → LF such that τσ′γ = σ.

LFγ

τ

²²
Gγ

∀σ
//

∃!σ′γ

<<z
z

z
z

z
F

Dually, a right derived functor for F is a pair (RF, τ) which consists of a functor RF : Ho(C) → D
and natural transformation τ : F → RF ◦ γ such that for any pair

(G : Ho(C) → D, σ : F → G ◦ γ),

there exists a unique natural transformation σ′ : RF → G such that σ′γτ = σ.

F

τ

²²

∀σ // Gγ

RFγ

∃!σ′γ

<<z
z

z
z

z

Remarks 1.5.2. (1) By the universal property of the above definition, two left (resp. right)
derived functors for F are canonically naturally isomorphic; we will then talk about the left
(resp. right) derived functor of F .

(2) If F : C → D is a functor from a model category C to a category D that sends weak
equivalences to isomorphisms, then by 1.4.15 there exists a unique functor F ′ : Ho(C) → D such
that F = F ′γ.

C
γ //

F
!!DD

DD
DD

DD
DD

Ho(C)

∃!F ′

²²Â
Â
Â

D

In this case it is clear that (F ′, τ), with the identity natural transformation τ : F ′γ → F , is a
left and right derived functor of F , ie. RF = F ′ = LF .

We now give a result (cf. 1.5.4 below) that generalizes this last remark; for this we need the
following lemma.

Lemma 1.5.3. Let C be a model category, D a category, and let F : Cc → D (cf. 1.4.1) be a
functor such that F (f) is an isomorphism whenever f is an acyclic cofibration between objects
of Cc. If f, g : A → B are morphisms in Cc such that f ∼r g in C, then F (f) = F (g).

Proof. By 1.3.14, we may choose a right homotopy H : A → BI from f to g such that BI is a
very good path object for B; in other words we have

B
Â Ä j

∼
// BI

q // // B × B.
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Since the above morphism j : B → BI is an acyclic cofibration and since B is by assumption
cofibrant, the path object BI is itself cofibrant. By assumption, it follows that F (j) is defined
and is an isomorphism. By construction we have

F (q0)F (j) = F (q1)F (j) = F (idB),

so that F (q0) = F (q1). Finally, the relations f = q0H and g = q1H give

F (f) = F (q0)F (H) = F (q1)F (H) = F (g),

which is none other than the desired equality. ¤

Proposition 1.5.4. Let C be a model category, D a category, and let F : C → D be a functor
such that F (f) is an isomorphism whenever f is a weak equivalence between cofibrant objects in
C. Then the left derived functor (LF, τ) of F exists, and for each cofibrant object X of C the
morphism

τX : LF (X) → F (X)

is an isomorphism in D.
Dually, if F is such that F (f) is an isomorphism whenever f is a weak equivalence between

fibrant objects in C. Then the right derived functor (RF, τ ′) of F exists, and for each fibrant
object X of C the morphism

τ ′
X : F (X) → RF (X)

is an isomorphism in D.

Proof. Since both assertions are dual to each other, we only have to prove the first one. By
1.5.3 the functor F identifies right homotopic morphisms between cofibrant objects of C; this
fact induces a functor F ′ : πCc → D (cf. 1.4.1). By assumption, if g is a morphism in πCc which
is represented by a weak equivalence in C, then F ′(g) is an isomorphism in D. We saw earlier
that there is a functor Q : C → πCc that sends any weak equivalence f in C to a right homotopy
class g = Q(f) which is represented by a weak equivalence in C (cf. 1.4.3 and 1.4.4). From this,
it follows that the composite functor F ′Q sends weak equivalences in C to isomorphisms in D.
By the universal property of Ho(C) (cf. 1.5.2.(2)), F ′Q induces a functor

LF : Ho(C) → D,

and we have a natural transformation

τ : (LF )γ → F : (X ∈ C) 7→ (F (pX) : LF (X) = F (QX) → F (X)).

If X is cofibrant then QX = X and the morphism τX becomes the identity idX ; in particular
τX is an isomorphism.

What remains to prove is that the pair (LF, τ) is universal in the sense of 1.5.1. So we
consider a functor G : Ho(C) → D, a natural transformation σ : Gγ → F , an hypothetical
natural transformation σ′ : G → LF , as well as for each object X of C the following commutative
diagram:

G(QX)
σ′

QX //

Gγ(pX)

²²

LF (QX)
τQX=id //

LFγ(pX)=id

²²

F (QX)

F (pX)

²²
G(X)

σ′
X // LF (X)

τX=F (pX )// F (QX)

If σ′ is to satisfy 1.5.1 we must have

τQX ◦ σ′
QX = σQX so that σ′

X = σQXG(γpX)−1,
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which proves that there is at most one natural transformation σ′ satisfying the required universal
property of 1.5.1; in other words, if such a natural transformation exists it is unique. Now if we
define σ′

X to be
σ′

X = σQXG(γpX)−1 for every object X ∈ C,

we obtain a natural transformation σ′ : G → LF , so that its existence is proven. ¤

Conclusion 1.5.5. The left derived functor LF : Ho(C) → D of the above proposition is defined

• on objects by LF (X) = F (QX), where QX
∼³ X is a fixed cofibrant model,

• on morphisms by LF (f) = F (Qf), where Qf = f̃ is as in 1.4.3.

Dually, the right derived functor RF : Ho(C) → D of the above proposition is defined

• on objects by RF (X) = F (RX), where X
∼
↪→ RX is a fixed fibrant model,

• on morphisms by RF (f) = F (Rf), where Rf = f̄ is as in 1.4.5.

We shall now consider the left and right derived functors of a particular kind of functor.

Definition 1.5.6. Let F : C → D be a functor between model categories. The total left derived
functor of F , denoted LF : Ho(C) → Ho(D), is the left derived functor of the composite

γDF : C → Ho(D),

where γD : D → Ho(D) is the canonical functor for D (cf. 1.4.8).
Dually, the total right derived functor of F , denoted RF : Ho(C) → Ho(D), is the right

derived functor of the same composite γDF .

Remark 1.5.7. Again, these functors are unique up to canonical natural isomorphism.

Example 1.5.8. Let R be a unitary associative ring, and RCh+ the model category of chain
complexes given in 1.2.8. Consider a right R-module M , a left R-module N and its corresponding
chain complex K(N, 0) ∈ RCh+ whose only nontrivial module is N in degree 0. The functor
M ⊗ − : RMod → Ab = ZMod induces a functor F : RCh+ → ZCh+ for which a total left
derived functor LF exists. We then have natural isomorphisms

Hn(LF (K(N, 0))) ∼= TorR
n (M,N) for each n ∈ N,

where TorR
n (M,−) is the usual n’th left derived functor of M ⊗− from homological algebra.

After strengthening the notion of adjoint pairs to Quillen pairs and Quillen equivalences, we
shall study what relations these pairs induce on the level of homotopy categories. These relations
are in fact given by the total left and right derived functors of the given pair (cf. 1.5.12).

Definition 1.5.9. Let C = (C,WEC , F ibC , CofC) and D = (D,WED, F ibD, CofD) be model
categories. A pair of adjoint functors

F : C ⇐⇒ D : G

is a Quillen pair if one of the following three equivalent conditions is satisfied:

i) F preserves cofibrations and G preserves fibrations.

i′) G preserves fibrations and acyclic fibrations.

i′′) F preserves cofibrations and acyclic cofibrations.
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If in addition we have

ii) (f : F (A) → B) ∈ WED if and only if its adjoint f ] : A → G(B) ∈ WEC for all A ∈ ObC
and B ∈ ObD,

then we say that F : C ⇐⇒ D : G is a Quillen equivalence.

Let’s first prove the above equivalences:

Proof. (i ⇔ i′′) Suppose that F preserves cofibrations and acyclic cofibrations. Let f : A → B
be an acyclic cofibration in C and g : C → D be a fibration in D, and consider the adjoint
commutative diagrams

A
u //

Ä _

f ∼

²²

G(C)

G(g)

²²

F (A)

F (f)

²²

u[
// C

g

²²²²
B

v // G(D) F (B) v[
// D.

The fact that F preserves acyclic cofibrations implies the existence of a lift w : F (B) → C in
the right-hand diagram whose adjoint w] : B → G(C) is a lift in the left-hand diagram. This
means that

G(g) ∈ RLP (WEC ∩ CofC) = FibC (cf. 1.2.11),

so that G preserves fibrations. To prove the converse, we only have to follow the steps of the
above argument in reverse order and remember that WE ∩ Cof = LLP (Fib) (cf. 1.2.11).

(i ⇔ i′) It is simply dual to (i ⇔ i′′). ¤

Example 1.5.10. The adjoint pair

W : C × C ⇐⇒ C : ∆,

where W (A×B) = A∨B and ∆(A) = (A,A), is a Quillen pair (the three distinct classes WE,Fib
and Cof of the model category C × C are are simply the products WEC × WEC , F ibC × FibC
and CofC × CofC respectively).

Before getting to theorem 1.5.12 below, we need the following lemma.

Lemma 1.5.11. If F : C → D is a functor between model categories that sends all acyclic
cofibrations between cofibrant objects to weak equivalences, then F preserves all weak equivalences
between cofibrant objects.

Proof. Consider a weak equivalence f : A → B in C between cofibrant objects. Applying (M5)
to the morphism f ∨ idB : A ∨ B → B, we get

A ∨ B
Â Ä i // C

p

∼
// // B.

Since A and B are cofibrant the morphisms

i0 = i ◦ inc0 : A → C and i1 = i ◦ inc1 : B → C

are cofibrations in C (cf. 1.3.3). Since pi0 and pi1 are weak equivalences and p is a weak
equivalence, it follows from (M2) that i0 and i1 are also weak equivalences. By assumption
F (i0), F (i1) and F (pi1) = F (idB) = idF (B) are then weak equivalences in D, so that F (p) is a
weak equivalence as well. It follows that

F (pi0) = F (pi ◦ inc0) = F (f)

is a weak equivalence in D. ¤
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Theorem 1.5.12. Let C and D be model categories.

(1) A Quillen pair F : C ⇐⇒ D : G induces an adjoint pair

LF : Ho(C) ⇐⇒ Ho(D) : RG.

(2) A Quillen equivalence F : C ⇐⇒ D : G induces a category equivalence

LF : Ho(C) ∼= Ho(D) : RG.

Proof. (1) Since F preserves acyclic cofibrations (cf. 1.5.9), lemma 1.5.11 tells us that F pre-
serves all weak equivalences between cofibrant objects. In addition, the functor γD : D → Ho(D)
is a localization with respect to WED (cf. 1.4.15), so that

F ′ := γD ◦ F : C → Ho(D)

sends weak equivalences in C to isomorphisms in Ho(D). This, by 1.5.4, guaranties the existence
of LF ′ = LF : Ho(C) → Ho(D). The dual argument demonstrate the existence of RG : Ho(D) →
Ho(C), so that the total derived functors LF and RG exist.

Furthermore, since F is a left adjoint, it preserves colimits (cf. 1.1.14) and therefore initial
objects. On the other hand, since G is a right adjoint, it preserves limits and therefore terminal
objects. It then follows that F sends cofibrant objects in C to cofibrant objects in D and that
G sends fibrant objects in D to fibrant objects in C.

Now, let’s choose a cofibrant object A in C and a fibrant object X in D, and show that the
adjunction isomorphism C(A,G(X)) ∼= D(F (A), X) preserves the homotopy equivalence relation
(cf. 1.3.16) and gives a bijection

π(A,G(X)) ∼= π(F (A), X). (∗)

If f, g : A → G(X) represent the same class in π(A, G(X)), then f ∼l g via a left homotopy
H : A∧ I → G(X) in which the cylinder object A∧ I is good (cf. 1.3.7) and therefore cofibrant
by 1.3.3. It then follow, using the fact that F preserves cofibrations and acyclic cofibrations,
that F (A ∧ I) is a cylinder object for F (A), so that

H[ : F (A ∧ I) → X

is a left homotopy between f [ and g[. Since X is fibrant we obtain f [ ∼ g[, and a dual argument
with right homotopies shows that f [ ∼ g[ implies f ∼ g and proves (∗).

Let the functor Q : C → πCc be as in 1.4.4 and the functor S : D → πDf be as in 1.4.6.
It follows from the construction of LF given in the proof of 1.5.4 and its dual for RG that the
isomorphism (∗) gives a bijection

Ho(C)(A, RG(X))
(γpA)∗

∼=
// Ho(C)(QA,G(SX))

OO

∼=
²²

Ho(D)(F (QA), SX)
(γiX)−1

∗

∼=
// Ho(D)(LF (A), X),

(∗∗)

for any object A of C and any object X of D. This bijection gives a natural isomorphism of
functors from Cop ×D to Set, and by 1.4.12 a natural isomorphism of functors from Ho(C)op ×
Ho(D) to Set which is none other than the desired adjunction between LF and RG.

(2) Let A be a cofibrant object of C. Since the morphism iF (A) : F (A) → SF (A) is a weak
equivalence in D (cf. 1.4.2), its adjoint i]F (A) : A → GSF (A) in C is also a weak equivalence by
assumption. Let

εA := id]
LF (A) : A −→ RG(LF (A)) ∈ Ho(C)
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be the adjoint of the identity morphism idLF (A) in Ho(D). It follows from (∗∗) that εA is an
isomorphism. Now since every object of Ho(C) is isomorphic to a cofibrant object of C, it follows
that εA is an isomorphism for any object A of Ho(C). This fact implies that the functor RGLF
is naturally isomorphic to the identity functor of Ho(C). Finally, a dual argument shows that
LFRG is naturally isomorphic to the identity functor of Ho(D) so that the desired result is
proven. ¤

We shall apply the above theorem to the construction of the homotopy pushout and the
homotopy pullback functors.

Example 1.5.13. Let C be a model category and D the small category {a ← b → c}. In the
category CD of functors D → C, an object X is pushout data

X(a) X(b)oo // X(c)

in C, and a morphism f : X → Y is a commutative diagram

X(a)

fa

²²

X(b)

fb

²²

oo // X(c)

fc

²²
Y (a) Y (b)oo // Y (c).

(∗)

Given a morphism f : X → Y in CD, let ∂b(f) := X(b) and define objects ∂a(f) and ∂c(f) of C
by the respective pushout diagrams

X(b)

fb

²²

// X(a)

²²

X(b)

fb

²²

// X(c)

²²
Y (b) // ∂a(f) Y (b) // ∂c(f).

(∗∗)

The commutative diagram (∗) induces morphisms

ia(f) : ∂a(f) → Y (a), ib(f) : ∂b(f) → Y (b) and ic(f) : ∂c(f) → Y (c).

We then have the following result:

We can define a morphism f : X → Y in CD to be

• a weak equivalence if the morphisms fa, fb and fc are weak equivalences in C,

• a fibration if the morphisms fa, fb and fc are fibrations in C,

• a cofibration if the morphisms ia(f), ib(f) and ic(f) are cofibrations in C,

in order to provide CD with the structure of a model category. In this case the adjoint functors

colim : CD ⇐⇒ C : ∆ (cf. 1.1.13)

form a Quillen pair, so that the total derived functors Lcolim and R∆ exist and form an adjoint
pair

Lcolim : Ho(CD) ⇐⇒ Ho(C) : R∆. (cf. 1.5.12)
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Proof. Axiom (M1) is a consequence of 1.1.13. Axioms (M2) and (M3) follow from the corre-
sponding axioms for C. Let’s prove the cofibration-acyclic fibration part of (M4). Consider the
commutative diagram

(A(a) ← A(b) → A(c))Ä _

f

²²

// (X(a) ← X(b) → X(c))

p∼
²²²²

(B(a) ← B(b) → B(c)) // (Y (a) ← Y (b) → Y (c))

in CD, where f is a cofibration and p an acyclic cofibration. This diagram consists of three
commutative squares

A(a) //

fa

²²

X(a)

pa

²²

A(b) //

fb

²²

X(b)

pb

²²

A(c) //

fc

²²

X(c)

pc

²²
B(a) // Y (a) B(b) // Y (b) B(c) // Y (c).

(∗ ∗ ∗)

The facts that f is a fibration and p an acyclic cofibration respectively imply that fb is a
fibration and ib(p) = pb is an acyclic cofibration in C, so that by axiom (M4) in C the middle
square diagram (∗ ∗ ∗) has a lift. This in turn induces morphisms

u : ∂a(f) → X(a) and v : ∂c(f) → X(c).

We now have two commutative diagrams

∂a(f) u //

ia(f)

²²

X(a)

pa

²²

∂c(f) v //

ic(f)

²²

X(c)

pc

²²
B(a) // Y (a) B(c) // Y (c)

which, by (M4) in C, have lifts that induce the two remaining lifts in (∗ ∗ ∗). The proof of the
acyclic cofibration-fibration part of (M4) is similar.

Let’s now prove the acyclic cofibration-fibration part of (M5). Consider a morphism f : A →
B in CD. We may use axiom (M5) in C to factor the morphism fb : A(b) → B(b) as

A(b) Â Ä ∼ // Y // // B(b).

Define X and Z to be respectively the pushouts of

A(a) ← A(b) → Y and Y ← A(b) → A(c),

so that we have a commutative diagram

A(a)Ä _
∼

²²

A(b)Ä _
∼

²²

oo // A(c)Ä _
∼

²²
X

k

²²

Y

²²²²

oo // Z

l

²²
B(a) B(b)oo // B(c)
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in which the lower outside vertical arrows k and l are constructed using the universal property
of pushouts. We can now use (M5) in C in order to factor k and l as respectively

X
∼
↪→ X ′ ³ B(a) and Z

∼
↪→ Z ′ ³ B(c),

and thus obtain an object X ′ ← Y → Z ′ of CD which is an intermediate object for the desired
factorization of f . A similar argument establishes the second part of (M5), so that CD has the
desired model category structure.

What remains to show is a direct application of 1.1.13 and 1.5.12 with the fact that the
functor ∆ preserves both fibrations and acyclic fibrations. ¤

The functor Lcolim thus constructed is the homotopy pushout functor. It follows from 1.5.4
that Lcolim(X) is isomorphic to colim(X) if X is a cofibrant object of CD.

Dually, it is possible to construct the functor Rlim as in the following example.

Example 1.5.14. Let C be a model category and D the small category {a → b ← c}. Given a
morphism f : X → Y in CD, ie.

X(a) //

fa

²²

X(b)

fb

²²

X(c)

fc

²²

oo

Y (a) // Y (b) Y (c),oo

(∗)

let δb(f) := X(b) and define objects δa(f) and δc(f) of C by the respective pullback diagrams

δa(f)

²²

// X(b)

fb

²²

δc(f)

²²

// X(b)

fb

²²
Y (a) // Y (b) Y (c) // Y (b).

The commutative diagram (∗) induces morphisms

pa(f) : X(a) → δa(f), pb(f) : X(b) → δb(f) and pc(f) : X(c) → δc(f).

We then have the following result:

We can define a morphism f : X → Y in CD to be

• a weak equivalence if the morphisms fa, fb and fc are weak equivalences in C,

• a fibration if the morphisms pa(f), pb(f) and pc(f) are fibrations in C,

• a cofibration if the morphisms fa, fb and fc are cofibrations in C,

in order to provide CD with the structure of a model category. In this case the adjoint functors

∆ : C ⇐⇒ CD : lim (cf. 1.1.13)

form a Quillen pair, so that the total derived functors Rlim and L∆ exist and form an adjoint
pair

L∆ : Ho(C) ⇐⇒ Ho(CD) : Rlim. (cf. 1.5.12)

Proof. Strictly dual to the proof given in 1.5.13. ¤

The functor Rlim thus constructed is the homotopy pullback functor. It follows from 1.5.4
that Rlim is isomorphic to lim(X) if X is a cofibrant object of CD.



Chapter 2

Monoidal model categories

Now that the desired context for homotopy theory has been established, the next step is to add
some algebraic structure to it: the structure of a closed symmetric monoidal category. This
monoidal structure, appropriately combined with the homotopy theory of model categories, will
give rise to the theoretical context in which we shall develop the general notion of homotopic
Hopf-Galois extensions.

In order to do this, we are first going to study, in section 2.1, the closed symmetric monoidal
structure of a monoidal category. This will allow to generalize the classical notions of modules
and algebras over a ring without the need to stay within the restricting context of sets, using
instead commutative diagrams to define the appropriate laws of compositions. In section 2.2, we
shall treat an important special case of model categories, namely cofibrantly generated model
categories. In section 2.3, we will combine model and closed symmetric monoidal structures
to give rise to monoidal model categories. We will end the chapter by showing, in section 2.4,
that the subcategories of modules and algebras of a given monoidal model category are actually
cofibrantly generated, and by giving enough conditions under which the homotopy categories of
these subcategories are equivalent.

2.1 Monoidal categories

We start by defining what a monoidal category is; it is a category endowed with a law of
composition, the tensor product, which acts both on the objects and the morphisms of the
category. For this reason, it can be defined as a functor which takes two objects (or morphisms)
into another one modulo some appropriate conditions of compatibility.

Definition 2.1.1. Let C be a category, 1 = 1C an object of C and ⊗ = ⊗C : C × C −→ C a
bifunctor for which we write

⊗Ob(A,B) = A ⊗ B ∈ ObC, for every objects A,B ∈ C,

⊗Mor(f, g) = f ⊗ g ∈ MorC, for every morphisms f, g ∈ MorC.

The triple (C,⊗, 1) is a monoidal category if the following conditions hold:

• The product ⊗ is associative up to isomorphism; ie. there is a family of isomorphisms

{αA,B,C : A ⊗ (B ⊗ C) −→ (A ⊗ B) ⊗ C | A,B,C ∈ C}

37
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which make the diagram

A ⊗ (B ⊗ C)
αA,B,C //

f⊗(g⊗h)

²²

(A ⊗ B) ⊗ C

(f⊗g)⊗h

²²
A′ ⊗ (B′ ⊗ C ′)

αA′,B′,C′
// (A′ ⊗ B′) ⊗ C ′

commute for each morphisms f ∈ C(A, A′), g ∈ C(B,B′) and h ∈ C(C,C ′).

• There is in C a family of natural isomorphisms

{ρA : A ⊗ 1 −→ A and λA : 1 ⊗ A −→ A | A ∈ C}

which make the diagram

A ⊗ 1
ρA //

f⊗id1

²²

A

f

²²

1 ⊗ A
λAoo

id1⊗f

²²
A′ ⊗ 1

ρA′ // A′ 1 ⊗ A′λA′oo

commute for each morphism f ∈ C(A,A′).

• We have coherence of isomorphisms α, ρ and λ in the sense that λ1 = ρ1 and that the
diagrams

A ⊗ (B ⊗ (C ⊗ D))
αA,B,C⊗D//

idA⊗αB,C,D

²²

(A ⊗ B) ⊗ (C ⊗ D)
αA⊗B,C,D// ((A ⊗ B) ⊗ C) ⊗ D

αA,B,C⊗idD

²²
A ⊗ ((B ⊗ C) ⊗ D)

αA,B⊗C,D // (A ⊗ (B ⊗ C)) ⊗ D

and
A ⊗ (1 ⊗ B)

αA,1,B //

idA⊗λB

²²

(A ⊗ 1) ⊗ B

ρA⊗idB

²²
A ⊗ B A ⊗ B

commute for any choice of objects A,B,C,D in C.

The operation ⊗ is then a tensor product on C and the object 1 a unit for (C,⊗).
In addition, we say that the monoidal category (C,⊗, 1) is symmetric if for every objects

A,B ∈ C we have isomorphisms
γA,B : A ⊗ B ∼= B ⊗ A

which make the following diagrams commute:

γB,A ◦ γA,B = id λA ◦ γA,1 : A ⊗ 1 ∼= A

A ⊗ (B ⊗ C)
αA,B,C //

idA⊗γB,C

²²

(A ⊗ B) ⊗ C
γA⊗B,C // C ⊗ (A ⊗ B)

αC,A,B

²²
A ⊗ (C ⊗ B)

αA,C,B // (A ⊗ C) ⊗ B
γA,C⊗idB// (C ⊗ A) ⊗ B.
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Finally, we say that a symmetric monoidal category (C,⊗, 1) is closed if every functor of the
form

−⊗ B : C −→ C with B ∈ ObC

is the left adjoint of an endofunctor

(−)B : C −→ C.

This latter functor induces an internal Hom functor

[−,−] : Cop × C → C

defined by [B,C] := CB on objects of C, and by

[−,−](fop : B′ → B, g : C → C ′) = gf : CB → C ′B′
: h 7→ g ◦ h ◦ f,

on morphisms of C.

Remark 2.1.2. In a monoidal category (C,⊗, 1), the functoriality of ⊗ implies that

• idA⊗B = idA ⊗ idB for every objects A,B in C,

• (f ⊗ g) ◦ (f ′ ⊗ g′) = (f ◦ f ′) ⊗ (g ◦ g′) whenever these compositions are defined in C.

The structure of a monoidal category can be found in numerous situations encountered in
classical mathematics. Instead of stating a great number of them, we shall restrict ourselves to
the fundamental cases of sets and modules, and briefly mention how braids also fits into this
model.

Examples 2.1.3. (1) The category Set has a closed symmetric monoidal structure where
⊗ : Set × Set → Set is given on objects and on morphisms by

⊗(A, B) = A ⊗ B := A × B and ⊗ (f, g) = f ⊗ g := f × g

respectively, where f × g : A × B → A′ × B′ is defined by (f × g)(a, b) = (f(a), g(b)), and the
unit object is a singleton 1 = {∗}. Furthermore, for any given object B in Set the right adjoint
functor (−)B : Set → Set is simply given by

(−)B(C) = CB = Set(B,C).

(2) For a given unitary ring R, the category RModR of R-bimodules is endowed with a
closed symmetric monoidal structure given by (RModR,⊗R, A), where ⊗R denotes the usual
tensor product on R-modules. Again, the right adjoint functor (−)N : RModR → RModR is
given for an R-bimodule N by

(−)N (M) = MN = RModR(N,M),

which of course correspond to the closed symmetric monoidal structure given above on Set. In
particular, for R = Z we have a closed symmetric monoidal category (Ab,⊗Z, Z).

(3) Another example of monoidal category is the n-strand braid group. An n-strand braid
consists of a permutation τ ∈ Sn and a sequence (α1, . . . , αn) of paths

αi : I −→ R × I × I, with I = [0, 1] ⊆ R,

the strands, such that

• αi(0) = (i, 0, 1) (begining of a strand i).
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• αi(1) = (τ(i), 0, 0) (end of a strand i).

• If αi = (α1
i , α

2
i , α

3
i ), then s < t imply α3

i (s) > α3
i (t)

(any strand of the braid is decreasing in its third variable).

• If i 6= j, then αi(I) ∩ αj(I) = ∅ (the strands do not intersect).

Two n-strand braids α = (τ ;α1, . . . , αn) and β = (σ;β1, . . . , βn) are said to be isotopic if there
exists a continuous function

H : (R × I × I) × I −→ R × I × I

such that

• H(−, 0) = idR×I×I ,

• H(−, t) is an homeomorphism for every t ∈ I,

• (τ ;H(−, t) ◦ α1, . . . ,H(−, t) ◦ αn) is a braid for every t ∈ I,

• H(−, 1) ◦ αi = βi for every i ≤ n;

in other words if α can be continuously transformed into β in such a way that each stage of the
transformation is always a braid. We denote by [α] the isotopy class of a braid α, and we define

Bn := { [α] | α is an n-strand braid },

as well as
B :=

⋃
n∈N

Bn.

For two n-strand braids α = (τ ;α1, . . . , αn) and β = (σ;β1, . . . , βn), we define the braid

α ? β := (σ ◦ τ ; α1 ∗ βτ(1), . . . , αn ∗ βτ(n)),

by concatenation of each strand of α with the corresponding strand of β. Since

[α] = [α′] and [β] = [β′] ⇒ [α ? β] = [α′ ? β′],

we may define for each n a law of composition · on Bn by

[α] · [β] := [α ? β],

with which (Bn, ·) becomes a group whose unit element is the isotopy class of the braid

εn = (idSn ; {1} × {0} × I, . . . , {n} × {0} × I).

We may then view B as a category by defining

ObB = N and B(n,m) =

{
Bn if n = m,

∅ if n 6= m,

where the composition of two morphisms is given by the product · of the corresponding braid
classes. From this, we may consider the tensor product ⊗ on B defined by

⊗Ob : N × N −→ N with ⊗Ob (m,n) = m ⊗ n := m + n.

and ⊗Mor : Bm × Bn −→ Bm+n with ⊗Mor (f, g) = f ⊗ g,

where f ⊗ g is the braid class obtained by juxtaposing a braid in g on the right of a braid in f .
The unit of ⊗ is 0 ∈ N = B, and the category (B,⊗, 0) is clearly monoidal but not symmetric.
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The most fundamental generalized algebraic object to be defined within the context of a
monoidal category is certainly the notion of monoid.

Definition 2.1.4. Let (C,⊗, 1) be a monoidal category. A monoid in C is an object M ∈ ObC
together with a multiplication morphism µ : M ⊗ M → M and a unit morphism η : 1 → M
which make the two following diagrams commute:

(M ⊗ M) ⊗ M
µ⊗idM //

αM,M,M

²²

M ⊗ M
µ // M

M ⊗ (M ⊗ M)
idM⊗µ // M ⊗ M

µ // M

(associative law)

1 ⊗ M
η⊗idM //

λM

%%KKKKKKKKKKK M ⊗ M

µ

²²

M ⊗ 1
idM⊗ηoo

ρM

yysssssssssss

M

(unit law)

If in addition we have µ ◦ sym = µ, where sym : M ⊗ M → M ⊗ M is the map that permutes
components, we say that M is commutative.

We can turn the class MonC of all monoids in C into a category by defining a morphism
of monoids f : (M,µ, η) → (M ′, µ′, η′) to be a morphism f : M → M ′ in C such that both
diagrams

M ⊗ M

µ

²²

f⊗f // M ′ ⊗ M ′

µ′

²²
M

f
// M ′

and 1

η

²²

1

η′

²²
M

f
// M ′

commute. An object of MonC is sometimes called C-monoid.

Example 2.1.5. A monoid, in the traditional sense of the term, is obviously a monoid in the
monoidal category (Set,×, {∗}). With the more general definition given above, the monoid
structure of a monoid M = (M,µ, η) is given by the multiplication

µ(x, y) = xy for every x, y ∈ M

with unit η({∗}) ∈ M . The associative and unit laws then become

(xy)z = x(yz) and η({∗})x = x = xη({∗})

respectively, for all x, y, z ∈ M . In particular, this is true for groups, rings and fields.

The example above shows how a (generalized) monoid extends the notion of a traditional
ring. Following this line of thought, we may also extend the notion of a module over a given
ring.

Definition 2.1.6. Let (C,⊗, 1) be a monoidal category and (R,µ, η) a C-monoid. A left R-
module in C is an object N ∈ ObC together with a morphism l : R ⊗ N → N which makes the
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diagram

(R ⊗ R) ⊗ N
µ⊗idN //

αR,R,N

²²

R ⊗ N
l // N

R ⊗ (R ⊗ N)
idR⊗l // R ⊗ N

l // N

1 ⊗ N

η⊗idN

OO

λN

<<yyyyyyyyyy

commute; if that is the case we say that l is a left R-action on N . The class RMod of left
R-modules in C forms a category by defining a morphism f : (N, l) → (N ′, l′) of left R-modules
to be a morphism f : N → N ′ in C which fits into the commutative diagram

R ⊗ N

l

²²

idR⊗f // R ⊗ N ′

l′

²²
N

f
// N ′;

in which case we say that the left R-actions l and l′ are R-equivariant.
Dually, a right R-module in C is an object M ∈ ObC together with a morphism r : M⊗R → M

which makes the diagram

(M ⊗ R) ⊗ R
r⊗idR //

αM,R,R

²²

M ⊗ R
r // M

M ⊗ (R ⊗ R)
idM⊗µ // M ⊗ R

r // M

M ⊗ 1

idM⊗η

OO

ρM

<<xxxxxxxxxx

commute; if that is the case we say that r is a right R-action on N . Again, the class ModR of
right R-modules in C forms a category by defining a morphism f : (M, r) → (M ′, r′) of right
R-modules to be a morphism f : M → M ′ in C which fits into the commutative diagram

M ⊗ R

r

²²

f⊗idR // M ′ ⊗ R

r′

²²
M

f
// M ′;

in which case we say that the right R-actions r and r′ are R-equivariant.
For another monoid S in C we denote by RModS the category of (R,S)-bimodules consisting

of all objects of C that are both left R-modules and right S-modules with the obvious appropriate
morphisms. In case the monoid R is commutative, we have an isomorphism of categories

RMod ∼= ModR
∼= RModR;

we then speak of the category of R-modules (in C) that we denote by any of the three forms
above.
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Example 2.1.7. As the above definition generalizes the traditional notion of R-module for
a (commutative) ring R, such an R-module is simply an R-module in the monoidal category
(Ab,×, 0) where R is seen as a (commutative) monoid in Ab.

From this, a natural generalization of the tensor product and the hom functor over a given
ring, as encountered in homological algebra, follows.

Construction 2.1.8. Let (C,⊗, 1) be a monoidal category and (R,µ, η) a monoid in C. Similarly
to the definition of the traditional tensor product, we may define another tensor product, denoted
⊗R, of a right R-module and a left R-module

−⊗R − : ModR ×R Mod → C

using a universal property. This is done via the notion of coequalizer.
Given a pair f, g : A → B of morphisms in C having the same domain and codomain, we call

coequalizer of (f, g) a morphism u : B → E such that

• uf = ug,

• for any morphism h : B → C such that hf = hg, there exists in C a unique morphism
h′ : E → C such that h = h′u.

A

f

%%

g

99 B
u //

∀h
ÂÂ@

@@
@@

@@
@@

E

∃!h′

²²Â
Â
Â

C

In this case we also say that E is the coequalizer of f and g. We say that C has coequalizers if
a coequalizer exits for each pair f, g : A → B in C.

Dually, given a pair f, g : A → B of morphisms in C having the same domain and codomain,
we call equalizer of (f, g) a morphism u : E → A such that

• fu = gu,

• for any morphism h : C → A such that fh = gh, there exists in C a unique morphism
h′ : C → E such that uh′ = h.

C

∃!h′

²²Â
Â
Â

∀h

ÂÂ@
@@

@@
@@

@@

E u
// A

f

%%

g

99 B

In this case we also say that E is the equalizer of f and g. We say that C has equalizers if an
equalizer exits for each pair f, g : A → B in C.

Now if C has coequalizers, we define M ⊗R N to be the coequalizer in C of the two maps
M ⊗ R ⊗ N → M ⊗ N induced by the right action of R on M and the left action of R on N .
This new tensor product ⊗R has R as unit. In case the monoid R is commutative, the categories
RMod and ModR are equivalent, so that tensoring over R, ie. using ⊗R, turns ModR into a
symmetric monoidal category with unit R.
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If in addition C has equalizers, there is also a Hom object of R-modules, denoted [M,N ]R,
which is defined to be the equalizer of the two morphisms [M,N ] → [R ⊗ M,N ], the first of
them being induced by the action of R on M and the second as the composition

[M,N ]
R⊗− // [R ⊗ M,R ⊗ N ] α // [R ⊗ M,N ],

with α induced by the action of R on N . From now on, we shall always assume that the main
monoidal category in which we are working has equalizers and coequalizers.

We can also provide an R-module with some additional structure to obtain an R-algebra.

Definition 2.1.9. If (C,⊗, 1) is a monoidal category and R a commutative monoid in C, an
R-algebra A ∈ ObC is defined to be a monoid in the category ModR of R-modules. This is
equivalent to giving the object A a monoid structure (A, µA, ηA) together with an R-action
given by a morphism f : R → A which makes the following diagram commute:

R ⊗ A
f⊗idA //

sym

²²

A ⊗ A
µA // A

A ⊗ R
idA⊗f // A ⊗ A

µA // A

From 2.1.4 and 2.1.6, we obviously have a category MonModR of R-algebras that we more
concisely denote by AlgR.

Example 2.1.10. This new notion obviously generalizes the more traditional notion of a k-
algebra for a commutative ring k: The ring k and a k-algebra A are clearly monoids in the
category (Set,×, {∗}) (cf. 2.1.5), and the action of k on A is given by the scalar multiplication
of the ring k on the k-algebra A.

Another important notion of category theory we are going to be using is the notion of
monad. It consists of an endofunctor which pocesses the structure of a monoid in the category
of endofunctors of a given category. It leads to the notion of T -algebra which we are going to
use within the context of cofibrantly generated model categories.

Definition 2.1.11. Let C be a category. An endofunctor T : C → C has composites

T 2 = T ◦ T : C → C and T 3 = T ◦ T 2 : C → C.

For a natural transformation µ : T 2 → T with components µx : T 2x → Tx for every x ∈ C, we
denote by Tµ : T 3 → T 2 the natural transformation with components (Tµ)x := T (µx), and by
µT : T 3 → T 2 the natural transformation with components (µT )x := µTx.

A monad or a triple T = (T, µ, η) in C consists in an endofunctor T : C → C together with
two natural transformations

µ : T 2 → T and η : IdC → T

which make the two diagrams below commute:

T 3
Tµ //

µT

²²

T 2

µ

²²

IdT
ηT // T 2

µ

²²

TId
Tηoo

T 2
µ // T T

CCCCCCCCCC

CCCCCCCCCC

{{{{{{{{{{

{{{{{{{{{{
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We refer to the first diagram as the associative law and to the second as the unit law. we call µ
the multiplication and η the unit of the monad T . This is equivalent to saying that the monad
T is a monoid in the category of endofunctors of C with the product being the composition of
endofunctors and the unit the identity functor IdC .

Remark 2.1.12. Every adjunction

(F,G, η, ε) = (F : C ⇐⇒ D : G),

where η is the unit and ε the counit, gives rise to a monad (GF,GεF, η) in C (cf. [17] section
VI.1).

Definition 2.1.13. Let T = (T, µ, η) be a monad in a category C. A T -algebra is a pair (x, h)
consisting of an object x in C, the underlying object of the algebra, and a morphism h : Tx → x
in C, the structure map of the algebra, which make both diagrams below commute:

T 2x
Th //

µx

²²

Tx

h

²²

x
ηx //

idx

ÃÃ@
@@

@@
@@

@@
@ Tx

h

²²
Tx

h // x x

We refer to the first diagram as the associative law and to the second as the unit law. We obtain
the category CT of all T -algebras in C by defining a morphism of T -algebras f : (x, h) → (x′, h′)
to be a morphism f : x → x′ in C such that the diagram

Tx
h //

Tf

²²

x

f

²²
Tx′ h′

// x′

commutes.

The following result provides an adjoint pair of canonical functors between a category C and
its corresponding category CT for any monad T in C.

Proposition 2.1.14. Let C be a category and (T, µ, η) a monad in C. We have an adjoint pair

(F,U, δ, ε) = (F : C ⇐⇒ CT : U),

where U is the forgetful functor and F the free functor defined respectively by the commutative
squares

(x, h)

f

²²

Â U // x

f

²²
(x′, h′) Â U // x′

and x

f

²²

Â F // (Tx, µx)

F (f)

²²
x′ Â F // (Tx′, µx′),

with δ = η and ε(x, h) = h for each T -algebra (x, h). In addition, the monad defined in C by the
adjunction (cf. 2.1.12) is the given monad (T, µ, η).

Proof. It is clear that U is a functor and that the pair (Tx, µx : T (Tx) → Tx) is a T -algebra,
by the associative and unit laws of the monad T , so that F is indeed a functor. We then have

UFx = U(Tx, µx) = Tx, so that UF = T.
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The unit η of the given monad T is therefore the natural transformation η = δ : IdC → UF = T .
On the other hand we have

FU(x, h) = F (x) = (Tx, µx),

while the associative law of a T -algebra (x, h) states that the structure map h : Tx → x is in
fact a morphism (Tx, µx) → (x, h) in CT . The resulting transformation

ε(x,h) = h : (Tx, µx) = FU(x, h) → (x, h)

is natural by definition of a morphism of T -algebras. From the unit law for the monad T and
the unit law for a T -algebra, we respectively obtain both commutative diagrams

Tx

EE
EE

EE
EE

EE

EE
EE

EE
EE

EE
Tηx // TTx

µx

²²

x

AA
AA

AA
AA

A

AA
AA

AA
AA

A
ηx // Tx

h

²²
Tx x,

so that by 1.1.7, δ and ε define an adjunction. This adjunction determines a monad in C: its
endofunctor UF is the original T , its unit δ the original unit η, and since its multiplication
µ′ = UεF is such that

µ′
x = Uε(Tx, µx) = Uµx = µx,

it follows that µ′ = µ is the original multiplication of T . ¤

2.2 Cofibrantly generated model categories
We are now going to treat a particular kind of model category, namely cofibrantly generated
categories. As its name suggests, a cofibrantly generated model category is a category whose
model structure is completely determined by a set of cofibrations and a set of acyclic cofibrations.
From Quillen’s small object argument, that we shall establish in details, a cofibrantly generated
model category has the convenience that the factorizations of axiom (M5) become functorial.
Another advantage of such a model category is that a property which holds for its sets of
generating cofibrations and generating acyclic cofibrations usually holds for every morphisms in
that category. Most of model categories found in the literature, such as topological spaces and
simplicial sets (cf. section 3.1), are cofibrantly generated. The difficult part of the definition of
a cofibrantly generated model category is to formulate the notion of relative smallness. For this
we need to consider the following set-theoretic concepts.

Definition 2.2.1. An ordinal γ is an ordered isomorphism class of well ordered sets; it can be
identified with the well ordered set of all preceding ordinals. We use the same symbol to denote
its associated category

γ = {0 = ∅ → 1 → 2 → . . . → α → . . .} with α < γ,

where ∅ denotes its initial ordinal. A limit ordinal is an ordinal which is not a successor of
another ordinal. Furthermore, an ordinal κ is a cardinal if its cardinality, ie. the smallest
ordinal, denoted |κ|, which is in bijection with κ, is strictly larger than that of any preceding
ordinal. For a cardinal κ and a limit ordinal β, we say that β is κ-filtered if

A ⊆ β and |A| ≤ κ =⇒ SupA < β.

As an example, for any κ < ∞ the limit ordinal ω = ℵ0 = |N| is always κ-filtered. It is worth
noting that if λ is a limit ordinal, then colimα<λ = λ.
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From this, we may define relative smallness, which involves the notion of transfinite compo-
sition of a γ-sequence for an ordinal γ.

Definition 2.2.2. Let C be a cocomplete category and γ an ordinal. A γ-sequence in C is a
functor X : γ → C, ie. a diagram

X(∅) → X(1) → X(2) → . . . → X(α) → . . . in C with α < γ,

which preserves colimits; in other words it is a functor X such that for every limit ordinal
β < γ the induced morphism colimα<βX(α) → X(β) = X(colimα<β) is an isomorphism. The
composed morphism

X(∅) → colimα<γX(α)

is called the transfinite composition of the maps of the γ-sequence.
Moreover, a morphism class I ⊆ MorC is said to be closed under transfinite composition if

for every ordinal γ and every γ-sequence X : γ → C with maps X(α) → X(α + 1) in I for all
α < γ, the induced morphism X(∅) → colimγX is also in I. In this case, and for a cardinal κ,
an object A in C is said to be κ-small relative to I if for every κ-filtered ordinal γ and every
γ-sequence X : γ → I, the induced set map

colimα<γC(A,X(α)) // C(A, colimγX)

is a bijection, ie. an isomorphism in Set (we can effectively speak of sets here since C is cocom-
plete (cf. 1.1.11)). Finally, an object B in C is said to be small relative to I if there exists a
cardinal κ such that B is κ-small relative to I. In the special case where I = MorC, we simply
say that B is small in C.

Example 2.2.3. Any set is small relative to the category Set; in particular, a set A ∈ ObSet
is |A|-small relative to MorSet.

To see this, let γ be an |A|-filtered ordinal, X : γ → Set a γ-sequence in Set, and denote
jα : Xα → Xα+1 the morphisms composing that sequence. We need to check that the set map

ϕA : colimα<γC(A, Xα) // C(A, colimα<γXα)

is bijective. Let f : A → colimα<γXα. We know that

colimα<γXα = (
∐
α

Xα)/ ∼,

where the equivalence relation ∼ is given by

x ∼ jα(x) for every α < γ and every x ∈ Xα.

Then, for every a in A there is an ordinal β(a) < γ such that f(a) ∈ colimα<γXα is represented
by an element in Xβ(a), since{

|{β(a)}a∈A| ≤ |A|
γ is |A|-filtered

imply that sup
a∈A

β(a) < γ.

Define β := supa∈A β(a) < γ. Then for every a in A, f(a) is represented by an element in Xβ ,
so that there exists a map f ′ : A → Xβ which fits into the commutative diagram

A
f ′

//

f
$$JJJJJJJJJJJJ Xβ

²²
colimα<γXα.
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It follows that ϕA is surjective.
It remains to check the injectivity. Let g and g′ be two elements of colimα<γC(A,Xα) with

ϕA(g) = ϕA(g′) ∈ C(A, colimα<γXα).

By the same argument as above, there exists a β < γ such that every ϕA(g)(a) = ϕA(g′)(a)
is represented by the same element of Xβ . This leads to the existence of a map g′′ : A → Xβ

which fits into the commutative diagram

A
g′′

//

ϕA(g)
$$JJJJJJJJJJJJ Xβ

²²

A
g′′

oo

ϕA(g′)zzuuuuuuuuuuuu

colimα<γXα
,

so that g = g′′ in colimα<γC(A,Xα).

The next step is to define, related to any set I of morphisms of a cocomplete category C,
three classes of morphisms I−inj, I−cof and I−cell in C. From this, we shall establish the
transfinite version of Quillen’s small object argument.

Definition 2.2.4. Let C be a cocomplete category and I ⊆ MorC a class of morphisms in C.
We define:

• I−inj := RLP (I) to be the class of I-injectives,

• I−cof := LLP (I−inj) to be the class of I-cofibrations,

• I − cell to be the class of the (possibly transfinite) compositions of cobase changes of
morphisms in I; in other words it is the class of morphisms f : A → B in C for which there
exist an ordinal γ and a γ-sequence X : γ → C such that X(∅) = A, each X(α) → X(α+1)
is a cobase change of a morphism in I, and the composition X(∅) → colimα<γX(α) is
isomorphic to f . The morphisms in I−cell are called regular I-cofibrations.

Remarks 2.2.5. (1) We have

I ⊆ I−cell ⊆ I−cof.

Indeed, it is clear that I ⊆ I−cof and I ⊆ I−cell; and to verify the inclusion I−cell ⊆ I−cof ,
let X : γ → C be a γ-sequence composed of morphisms fα : Xα → Xα+1 such that for every
α < γ we have a pushout square

Wα
//

gα

²²

Xα

fα

²²
Zα

// Xα+1,

with gα ∈ I. Then gα ∈ I−cof = LLP (I−inj) for every α < γ. Applying the same argument
used to prove 1.2.11.(4), we obtain that fα is in I−cof for every α < γ. This means that every
commutative square

Xα
iα //

fα

²²

W

g

²²
Xα+1

jα // Z,
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with g ∈ I−inj, has a lift iα+1 : Xα+1 → W . This lift fits into the commutative square

Xα+1
iα+1 //

fα+1

²²

W

g

²²
Xα+2

jα+1 // Z,

with fα+1 ∈ I−cof = LLP (I− inj). Since g ∈ I− inj, the above diagram has a lift iα+2 :
Xα+2 → W which fits into the commutative diagram

Xα
iα //

fα

²²

W

g

²²

Xα+1

fα+1

²²
Xα+2

jα+1

//

iα+2

EĒ
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
Z,

so that fα+1fα is in I−cof as well. By induction, the transfinite composition X0 → colimα<γXα

is in I−cof and the desired inclusion is verified. In particular, I−cof is closed under transfinite
composition.

(2) Since by 1.2.11 we have

Cof = LLP (Fib ∩ WE) and Cof ∩ WE = LLP (Fib),

the argument used in (1) imply that these two morphism classes are closed under transfinite
composition as well.

Proposition 2.2.6 (the small object argument). Let C be a cocomplete category and I a set of
morphisms in C whose domains are small relative to I−cell.

(1) Any morphism f in C has a functorial factorization f = qj with q ∈ I−inj and j ∈ I−cell;
in other words there is a functor

(q, j) : C→ → C→ × C→ : f 7→ (q, j)(f) = (q(f), j(f)), (cf. 1.1.2)

such that f = q(f) ◦ j(f) for any f ∈ ObC→.

(2) Every I-cofibration is a retract of a regular I-cofibration.

Proof. (1) Let f : A → B be a morphism in C. Choose for each morphism i in I a cardinal κi

such that the domain of i is κi-small with respect to I−cell. Let κ be the smallest cardinal
which is strictly greater than every {κi}i∈I , and let γ be a κ-filtered ordinal. We are going to
define a γ-sequence X : γ → C such that Xα → Xα+1 is in I−cell for every α < γ, so that the
transfinite composition X0 → colimγX is in I−cell as well by definition.

Let X0 = A and S0 be the class of all pairs of morphisms (g : W → X0 = A, h : Z → B) in
C which make the square

W
g //

i

²²

A = X0

f

²²
Z

h // B
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commute for a morphism i : W → Z in I. We then define X1 ∈ ObC to be the pushout, and q1

the induced morphism, of

∐
S0

W

‘

S0
g

//

‘

S0
i

²²

A = X0

f0

²²
f=q0

²²

∐
S0

Z

‘

S0
h 11

// X1

q1

""F
F

F
F

F

B,

with f = q0 ∈ I−cell and
∐

S0
i ∈ I−cell. Now suppose given

B

X0

q0

==|||||||||
X1

q1

OO

. . . Xα.

qα

hhQQQQQQQQQQQQQQQQQ

We define Sα to be the class of all pairs (g : W → Xα, h : Z → B) of morphisms in C which
make the square

W
g //

i

²²

Xα

qα

²²
Z

h // B

commute for a morphism i : W → Z in I, and we define Xα+1 to be the pushout, with induced
morphism qα+1, of ∐

Sα
W

‘

Sα
g

//

‘

Sα
i

²²

Xα

fα

²² qα

±±

∐
Sα

Z

‘

Sα
h 11

// Xα+1

qα+1

!!D
D

D
D

D

B,

with fα ∈ I−cell and
∐

Sα
i ∈ I−cell. For a limit ordinal β, we let Xβ := colimα<βXα and

qβ : Xβ → B be the morphisms induced by all qα’s such that α < β. We define j(f) to be
the transfinite composition A = X0 → colimα<γXα and q(f) : colimα<γXα → B to be the
morphism induced by the qα’s. We then have f = q(f) ◦ j(f) since the triangle

A = X0

j(f) //

f=q0
##FFFFFFFFFF colimα<γXα

q(f)
yytttttttttttt

B

commutes by construction. In addition, since Xα → Xα+1 is in I−cell for every α < γ, we know
that j(f) also is. It remains to show that q(f) is I-injective.
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In order to do this, let’s consider the commutative diagram

W

i

²²

// colimα<γXα

²²
Z // B

with i ∈ I. Since γ is κ-filtered and W is κi-small with respect to I−cell, we have a bijection

colimα<γC(W,Xα)
∼= // C(W, colimα<γXα),

so that there is a β < γ with a factorization

W
g′

//

g
%%JJJJJJJJJJJJ Xβ

yytttttttttttt

colimα<γXα .

Finally, we obtain by construction the commutative diagram

W
g′

//

i

²²

Xβ

²²yyrrrrrrrrrrrr

qβ

yy

Xβ+1 //

&&MMMMMMMMMMMMM
colimα<γXα

²²
Z

<<yyyyyyyyyy

h
// B ,

which induces the commutative diagram

W
g //

i

²²

colimα<γXα

q(f)

²²

Xβ+1

99rrrrrrrrrrrr

Z

<<yyyyyyyyyy

h
// B ,

so that q(f) ∈ I−inj as desired.
(2) Let f be a morphism in I−cof . From what we just proved, we have a factorization

•

f
ÂÂ?

??
??

??
??
j(f) // •

q(f)

²²
•
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with j(f) ∈ I−cell and q(f) ∈ I−inj. Since I−cof = LLP (I−inj) by definition, f has the left
lifting property with respect to q(f), so that we have a commutative diagram

•

f

²²

j(f) // •

q(f)

²²
• id // •

which has a lift s with q(f)s = id and sf = j(f). It follows that we have a commutative diagram

• id //

f

²²

• id //

j(f)

²²

•

f

²²
•

s
//

id

<<•
q(f)

// •,

and consequently f is a retract of j(f) ∈ I−cell as desired. ¤

The idea of a cofibrantly generated model category is to have two sets I and J of cofibrations
and acyclic cofibrations which contain all the necessary information to characterize the model
structure of the category via their related injectives, cofibrations and regular cofibrations. Note
that in order to be able to apply the small object argument to such a model category, we require
I and J to be sets, and not just classes of maps as in definition 2.2.4.

Definition 2.2.7. A model category (C,WE,F ib, Cof) is said to be cofibrantly generated if it
is complete and cocomplete (ie. bicomplete), and if there exists a set of cofibrations I and a set
of acyclic cofibrations J such that

• Fib = J−inj,

• Fib ∩ WE = I−inj,

• the domain of each morphism in I (resp. J) is small relative to I−cell (resp. J−cell).

The morphisms in I are the generating cofibrations and the ones in J the generating acyclic
cofibrations.

Remarks 2.2.8. (1) By 1.2.11, it is clear that Cof = I−cof and Cof ∩ WE = J−cof .
(2) According to the small object argument, any morphism f of a cofibrantly generated category
may be functorially factored as f = pi with

p ∈ Fib, i ∈ Cof ∩ WE and also p ∈ Fib ∩ WE, i ∈ Cof.

Definition 2.2.9. Let C be a cofibrantly generated model category and T a monad in C. We
want to provide CT with a model category structure. In order to do this we define a morphism
in CT to be

• a weak equivalence if the underlying morphism in C is a weak equivalence,

• a fibration if the underlying morphism in C is a fibration,

• a cofibration if it has the left lifting property with respect to the class of acyclic fibrations
in CT .
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We shall now establish under which conditions the free T -algebra functor C → CT for a given
monad T in a cofibrantly generated model category C preserves the model structure of C on CT ,
ie. when the model structure on CT induced from the model structure of C via the free T -algebra
functor coincide with the model structure given in 2.2.9.

Proposition 2.2.10. Let C be a cofibrantly generated model category and T a monad in C such
that its underlying functor commutes with direct limits. Let I be a set of generating cofibrations
and J a set of generating acyclic cofibrations for C. Denote by IT and JT the respective images of
I and J under the free T -algebra functor C → CT , and assume that the domains of all morphisms
in IT and JT are small relative to IT−cell and JT−cell respectively. If one of the two following
conditions is satisfied:

(1) every morphism in JT −cell is a weak equivalence,

(2) every object in C is fibrant and every T -algebra X in C has a good path object XI in CT ,

then CT is a cofibrantly generated model category with IT as a set of generating cofibrations and
JT as a set of generating acyclic cofibrations for CT .

Proof. The fact that all limits and colimits existing in C also exist in CT is a consequence of
commutativity of the underlying functor T with direct limits, a fact about limits and colimits
we shall take for granted for the sake of continuity, so that (M1) is satisfied for CT . Axioms
(M2) and (M3) are clearly satisfied by definition 2.2.9. The half of (M4) which requires that
cofibrations have the left lifting property with respect to acyclic fibrations is given by definition
of a cofibration in CT (cf. 2.2.9). Let’s now show (M5).

By 2.2.9, the adjunction
U : CT ⇐⇒ C : F,

where U is the forgetful functor and F the free T -algebra functor, preserves fibrations and acyclic
fibrations, so that all morphisms in IT or JT is a cofibration in CT . This implies that

(IT −cof ∪ JT −cof) ⊆ CofCT . (∗)

Since I is a set of generating cofibrations in C and the adjunction preserves fibrations and acyclic
fibrations, a morphism is in IT −inj precisely when it is in FibC ∩ WEC , and consequently in
FibCT ∩ WECT by definition, so that

IT −inj = FibCT ∩ WECT .

By assumption, we may now apply the small object argument to obtain a (functorial) factoriza-
tion

f = pi with p ∈ IT −inj = (FibCT ∩ WECT )

and i ∈ IT −cell ⊆ IT −cof ⊆ CofCT ,

which establishes the cofibration-acyclic fibration part of axiom (M5).
The acyclic cofibration-fibration part of (M5) needs hypothesis (1) or (2). Applying the small

object argument to JT gives a functorial factorization of any morphism f in CT as

f = pi with i ∈ JT −cell and p ∈ JT −inj. (∗∗)

By preservation of fibrations and acyclic fibrations, and since J is a set of generating acyclic
cofibrations in C, from the same argument as above we obtain

JT −inj = FibCT .
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If we assume hypothesis (1); by (∗) we have

JT −cell ⊆ (WECT ∩ IT −cof) ⊆ (WECT ∩ CofCT ),

so that i ∈ WECT ∩ CofCT and p ∈ FibCT in factorization (∗∗). If we now assume hypothesis
(2) and let the morphism i : X → Y of (∗∗) be in JT −cof , what remains to show is that i is
a weak equivalence in CT , or equivalently that i is a weak equivalence in C. Since X is fibrant
and FibCT = JT −inj, we obtain a retraction r of i by lifting in the commutative square

X
idX //

i

²²

X

²²²²
Y //

r

>>}
}

}
}

}
∗.

By hypothesis (2), Y possesses a good path object Y I , and since i ∈ LLP (IT −inj = FibCT ),
the commutative square

X
i //

i

²²

Y // Y I

²²
Y

(idY ,ir)
//

H

66mmmmmmmmm
Y × Y

has a lift H, so that idY is right homotopic to i◦r via H. Therefore, idY = i◦r in the homotopy
category Ho(C). Finally, since a morphism in C is a weak equivalence if and only if it is sent
by γ on an isomorphisms in Ho(C) (cf. 1.4.11), this shows that i is a weak equivalence in C, or
equivalently in CT , so that axiom (M5) is proven.

It remains to prove the other half of (M4), ie. that any acyclic cofibration f : A
∼
↪→ B has

the left lifting property with respect to FibCT , or equivalently that

FibCT ∩ WECT ⊆ JT −cof since FibCT = JT −inj.

The small object argument provides a factorization

A
i
∼

// W
p // B, of f with i ∈ JT −cell ⊆ WECT ∩ (IT −cof)

and p ∈ JT −inj = FibCT .

In addition, p is a weak equivalence since f is. It follows that the commutative square

A
i //

Ä _

f ∼

²²

W

p ∼
²²²²

B
idB

// B

has a lift, so that f ∈ JT −cof as desired. ¤
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2.3 Monoidal model categories
We are now going to combine the structure of a model category with the algebraic structure
of a closed symmetric monoidal category. These two structures have to be compatible in a
way expressed by the pushout product axiom and the unit axiom. The pushout product axiom
guarantees that for cofibrant objects the tensor product is an invariant of the weak equivalences,
so that it becomes a product in the homotopy category. The unit axiom is especially impor-
tant when dealing with the homotopy category of a monoidal model category. It ensures that
the monoidal structure on the model category induces a monoidal structure on the homotopy
category.

In certain situations, a third axiom, namely the monoid axiom, may also be required. This
third axiom is a crucial ingredient for lifting the model category structure to monoids, modules
and algebras.

Definition 2.3.1. A model category C is a monoidal model category if it is a closed symmetric
monoidal category (C,⊗, 1) which satisfies the following axioms:

• (pushout product axiom): If f : A → B and g : X → Y are cofibrations, then the induced
morphism

A ⊗ Y
∨

A⊗X

B ⊗ X −→ B ⊗ Y

is also a cofibration. If in addition f or g is a weak equivalence, then so is the induced
morphism.

• (unit axiom): If q : 1c ∼→ 1 is a cofibrant replacement of the unit object, ie. 1c is cofibrant
and q ∈ WE, then for any cofibrant object A the morphism

q ⊗ idA : 1c ⊗ A −→ 1 ⊗ A ∼= A

is a weak equivalence.

Definition 2.3.2. If (C,⊗, 1) is a monoidal model category and I a class of morphisms in C,
we denote by I ⊗ C the class

I ⊗ C := {A ⊗ Z → B ⊗ Z ∈ MorC | (A → B) ∈ I, Z ∈ ObC}.

Then C satisfies the monoid axiom if

[(WE ∩ Cof) ⊗ C]−cell ⊆ WE.

Remark 2.3.3. In the special case where every object in C is cofibrant, the monoid axiom is a
direct consequence of the pushout product axiom: The fact that ⊗ preserves colimits in each of
its variables implies that the initial object ∅ ∈ ObC acts like a zero for the tensor product in the
sense that

A ⊗ ∅ ∼= ∅ ∼= ∅ ⊗ B.

With this, the pushout product axiom says that for any acyclic cofibration A → B and for any
object Z in C (which is cofibrant), the induced morphism A ⊗ Z → B ⊗ Z is also an acyclic
cofibration, so that

[(WE ∩ Cof) ⊗ C] ⊆ WE ∩ Cof ⊆ WE.

Since the class WE ∩ Cof is closed under cobase change and transfinite composition (cf.
1.2.11.(4) and 2.2.5.(2)), we obtain

[(WE ∩ Cof) ⊗ C]−cell ⊆ (WE ∩ Cof)−cell = WE ∩ Cof ⊆ WE,

so that the monoid axiom is verified.
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In case a monoidal model category is cofibrantly generated, we saw that the fibrations can
be detected by checking the right lifting property against a set of maps (the set of generating
acyclic cofibrations) as opposed to the whole class of cofibrations. A similar idea holds for the
pushout product and the monoid axioms as well.

Proposition 2.3.4. Let (C,⊗, 1) be a cofibrantly generated model category endowed with a closed
symmetric monoidal structure.

(1) If the pushout product axiom holds for a set of generating cofibrations and a set of gener-
ating acyclic cofibrations, then it holds in general.

(2) If (J ⊗ C)−cell ⊆ WE for a set of generating acyclic cofibrations J , then the monoid
axiom holds in general.

Proof. (1) Let’s consider a morphism i : A → B in C, and denote by G(i) the class of all
morphisms j : K → L in C for which the pushout product

p : (A ⊗ L) ∨A⊗K (B ⊗ K) // B ⊗ L

is a cofibration. From the adjunction between the tensor product functor Z ⊗− and the Hom
functor [Z,−] for any object Z in C, p has the left lifting property with respect to a morphism
f : X → Y if and only if j has the left lifting property with respect to the morphism

q : [B,X] // [B, Y ] ×[A,Y ] [A,X].

Therefore, a morphism is in G(i) if and only if it has the left lifting property with respect to q
for every morphism f : X → Y in WE ∩ Fib. By 2.2.5.(1) and an argument as in 1.2.11.(4),
this implies that G(i) is closed under cobase change, transfinite composition and retracts. If
i : A → B is a generating cofibration, G(i) contains by assumption all generating cofibrations,
so that

Cof ⊆ G(i)

by the closure properties and the small object argument. If again we use the same argument
after reversing the roles of i and an arbitrary cofibration j : K → L, we obtain

Cof ⊆ G(j),

so that the pushout product axiom is proven for two arbitrary cofibrations. The same argu-
ment can be used to show that the pushout product is an acyclic cofibration when one of its
constituents is.

(2) By the small object argument, every morphism in WE ∩Cof is a morphisms in J−cell.
Thus every morphism in

[(WE ∩ Cof) ⊗ C] − cell

is a retract of a morphism in (J ⊗C)−cell, ie. of a weak equivalence, so that the monoid axiom
is satisfied by axiom (M3). ¤

2.4 Algebras and modules in monoidal model categories
In this section, we establish the main two results of the chapter. The first one shows under which
conditions the subcategories of modules and algebras of a cofibrantly generated monoidal cate-
gory are cofibrantly generated, while the second result establishes some categorical equivalences
between their homotopy categories. In order to do this, we first need to state how the three
classes of morphisms that are fibrations, cofibrations and weak equivalences must be defined for
the model structures to be preserved. This is done in the following way.
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Definition 2.4.1. Let C be a monoidal model category. In the category MonC , the categories
RMod and ModR for a fixed monoid R in C, and the category AlgR for a fixed commutative
monoid in C, a morphism is defined to be:

• a weak equivalence if it is a weak equivalence in the underlying category C,

• a fibration if it is a fibration in the underlying category C,

• a cofibration if it has the left lifting property with respect to the set of all acyclic fibrations.
In particular, a morphism which happen to be a cofibration in the underlying category C
is a cofibration.

With this structure, the categories mentioned in 2.4.1 are model categories according to the
following result.

Theorem 2.4.2. Let (C,⊗, 1) be a cofibrantly generated monoidal model category. Suppose that
every object in C is small relative to the whole category and that the monoid axiom is satisfied.

(1) For a fixed monoid R in C, the categories RMod and ModR are cofibrantly generated
model categories.

(2) For a fixed commutative monoid R in C, the category (RMod,⊗R, R) ∼= (ModR,⊗R, R)
is a cofibrantly generated monoidal model category satisfying the monoid axiom.

(3) For a fixed commutative monoid R in C, the category AlgR is a cofibrantly generated model
category.

Proof. (1) By 2.4.1, the unit axiom is trivially verified for RMod and ModR. Consider the
endofunctor TR : C → C defined on objects by TR(M) = M ⊗ R and on morphisms by TR(f) =
f ⊗ idR. This functor has a monad structure

TR = (TR, µR, ηR)

whose multiplication and unit morphisms µR and ηR are induced by the multiplication µ and
the unit η of the given monoid R. After unrolling the definitions, it becomes clear that the
category ModR of right R-modules is precisely the category CTR of TR-algebras. Defining I to
be a set of generating cofibrations, J a set of generating acyclic cofibrations for C, and IT , JT

their respective images under the free algebra functor TR, we obtain from the assumed monoid
axiom for C that

JT −cof ⊆ WEC = WEModR
, so that JT −cell ⊆ WEC = WEModR

.

This allows to apply 2.2.10 and obtain the desired result for the category ModR of right R-
modules. The same argument using the functor RT : C → C defined by

RT (M) = R ⊗ M and RT (f) = idR ⊗ f

establishes the corresponding result for left R-modules.
(2) From (1) we know that ModR is a cofibrantly generated model category, and from 2.1.8

that (ModR,⊗R, R) has a closed symmetric monoidal structure. The unit axiom is trivially
satisfied by definition 2.4.1. By 2.3.4, it remains to check the pushout product axiom and the
monoid axiom for a set of generating cofibrations IR and a set of generating acyclic cofibrations
JR for ModR. Let IR = IT and JR = JT as in (1). Then every generating cofibration in IR is
of the form

idR ⊗ f : R ⊗ A −→ R ⊗ B
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for a cofibration f : A → B in C (in fact for f in the set of generating cofibrations I of C by
2.2.10). For the pushout product of two such maps, let’s say

idR ⊗ f : R ⊗ A −→ R ⊗ B and idR ⊗ g : R ⊗ X −→ R ⊗ Y,

we obtain

(R ⊗ A) ⊗R (R ⊗ Y )
∨

(R⊗A)⊗R(R⊗X)(R ⊗ B) ⊗R (R ⊗ X) // (R ⊗ B) ⊗R (R ⊗ Y ),

which is in fact a generating cofibration

R ⊗ (A ⊗ Y )
∨

R⊗(A⊗X) R ⊗ (B ⊗ X) // R ⊗ (B ⊗ Y ) in IR,

induced by the cofibration

A ⊗ Y
∨

A⊗X B ⊗ X // B ⊗ Y in C

(the latter being the pushout product of the cofibrations f and g in C). This, together with
the same argument applied to the set of generating acyclic cofibrations JR, verifies the pushout
product axiom for IR, JR, and consequently for ModR.

Let’s now check the monoid axiom. As J is the arbitrary set of generating acyclic cofibrations
in C chosen in (1) as above, JR consists of morphisms

f ⊗ idR : A ⊗ R −→ B ⊗ R

for morphisms f : A → B in J , so that we have the inclusion

JR ⊗R ModR ⊆ J ⊗ C.

From the fact that the forgetful functor U : ModR → C preserves colimits, we obtain

(JR ⊗R ModR)−cell ⊆ (J ⊗ C)−cell ⊆ WEC = WEModR
,

so that the monoid axiom is verified for ModR.
(3) From (2) we know that (ModR,⊗R, R) is a cofibrantly generated monoidal model cate-

gory satisfying the monoid axiom. If 1 is cofibrant in C, the morphism f : ∅ → 1 is a cofibration
in C so that the induced morphism

idR ⊗ f : R ⊗ ∅ = ∅ // R ⊗ 1 = R

is a cofibration in ModR, and consequently R, the unit for ⊗R, is cofibrant in ModR. From this
observation, and for the sake of simplifying the notations, we may identify the category AlgR of
R-algebras (ie. of monoids in ModR) with the category MonC of monoids in C.

Let’s consider the free monoid functor TC : C → MonC defined by

TC(X) :=
∐
n∈N

X⊗n = 1
∐

X
∐

(X ⊗ X)
∐

(X ⊗ X ⊗ X)
∐

. . . ,

with multiplication given by juxtaposition, ie. by

TC(X) ⊗ TC(X) ∼=
∐

m≥0 X⊗m ⊗
∐

n≥0 X⊗n ∼=
∐

m,n≥0 X⊗m ⊗ X⊗n mult //
∐

k≥0 X⊗n,

with
mult[(x1 ⊗ . . . ⊗ xm) ⊗ (y1 ⊗ . . . ⊗ yn)] := x1 ⊗ . . . ⊗ xm ⊗ y1 ⊗ . . . ⊗ yn.
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Since TC is left adjoint to the forgetful functor UC : MonC → C (cf. [17] Chap.VII Thm.2), TC
is a monad in CTC with CTC = MonC .

We now want to check the conditions of 2.2.10 in order to prove that the category CTC =
MonC is a cofibrantly generated model category. Because the monoidal product ⊗ is closed
symmetric, ⊗ commutes with colimits, so that the underlying functor of the monad TC commutes
with colimits as required for 2.2.10. Since every object in C is small relative to MorC, it follows
that every object in MonC is small relative to MorMonC . What remains to show is condition
(1) of 2.2.10 that every regular TC(J)-cofibration, for a set of generating acyclic cofibrations of
C, is a weak equivalence. This however is a direct consequence of lemma 6.2 in [20]. ¤

Definition 2.4.3. Let f : R → S be a morphism of monoids in a monoidal category (C,⊗, 1).
The restriction of scalars of f is the functor

Resf : ModS → ModR : M 7→ Resf (M), g 7→ Resf (g)

which sends an S-module M to itself viewed as an R-module via the multiplication

m · r := m · f(r),

and consequently a morphism g of S-modules to its obvious restriction to R-modules.
Moreover, the extension of scalars of f is the functor

Extf : ModR → ModS : M 7→ Extf (M) = M ⊗R S, g 7→ Extf (g)

which sends an R-module M to the S-module M ⊗R S with multiplication

(m ⊗ s) · s′ := m ⊗ ss′,

and consequently a morphism g of R-modules to its obvious extension to S-modules.
It turns out that these two functors form an adjoint pair

Extf : ModR ⇐⇒ ModS : Resf .

This holds for right modules as well (with the appropriate side modifications).

Theorem 2.4.4. Let (C,⊗, 1) be a monoidal model category and R a monoid in C.

(1) Suppose that for any cofibrant left R-module N the functor −⊗R N : ModR → C preserves
weak equivalences. Then, for a weak equivalence R

∼→ S in MonC, the total derived
functors of restriction and extension of scalars induce equivalences of categories

Ho(ModR) ∼= Ho(ModS).

(2) Dually, suppose that for any cofibrant right R-module M the functor M⊗R− : RMod → C
preserves weak equivalences. Then, for a weak equivalence R

∼→ S in MonC, the total
derived functors of restriction and extension of scalars induce equivalences of categories

Ho(RMod) ∼= Ho(SMod).

(3) Suppose that R is commutative, that 1 is cofibrant in C and that for any cofibrant left
R-module N the functor − ⊗R N : ModR → C preserves weak equivalences. Then, for a
weak equivalence of commutative monoids R

∼→ S, the total derived functors of restriction
and extension of scalars induce an equivalence of categories

Ho(AlgR) ∼= Ho(AlgS).
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Proof. (1) For the weak equivalence f : R
∼→ S, we have an adjoint pair

Extf : ModR ⇐⇒ ModS : Resf . (∗)

Since all weak equivalences and fibrations are defined in the underlying category C, it follows that
Resf preserves fibrations and acyclic fibrations. By assumption, for the cofibrant left R-module
N , the morphism

N ∼= R ⊗R N
f⊗RidN // S ⊗R N

is a weak equivalence. Thus, for a fibrant left S-module Y which fits into

∅ Â Ä // N ∼= R ⊗R N
∼ // S ⊗R N // Y // // ∗,

a R-module morphism N → Y is by (M2) a weak equivalence if and only if its adjoint S-module
morphism

S ⊗R N // Y

is a weak equivalence. The pair (∗) is therefore a Quillen equivalence and an application of
theorem 1.5.12 yields the desired result.

(2) The argument is the same as above.
(3) Using the fact that cofibrant R-algebras are also cofibrant as R-modules by 2.4.2, the

same argument shows the desired result. ¤



Chapter 3

Equivalences of monoidal model
categories

In chapter 2, we saw under which conditions it is possible to extend the model structure of a
cofibrantly generated monoidal model category to the underlying categories of monoids, modules
and algebras. The goal here is to construct functors between these categories, and to use them
in order to establish Quillen equivalences between the categories of N-graded rings, modules
and algebras with their corresponding simplicial categories. This motivates the introduction of
simplicial and cosimplicial categories, as well as the study of the correspondence there is between
simplicial abelian groups and chain complexes of abelian groups.

In section 3.1, we start by providing a brief introduction to simplicial categories, of which
simplicial set and simplicial abelian groups are special cases. This will lead, in section 3.2, to the
study of the relation there is between simplicial abelian groups and N-graded chain complexes
via the normalizing functor N : sAb → Ch+. We shall then introduce monoidal functors and
monoidal natural transformations, before studying the particular examples that are the shuffle
and the Alexander-Whitney maps. In section 3.3, we proceed to the construction of various left
adjoint functors to the right adjoint of a weak Quillen equivalence. We will use these functors
to establish the desired Quillen equivalences.

3.1 Simplicial categories

We give here the definition of simplicial and cosimplicial categories and state few fundamental
examples we will be using later. For any given category C, we may form its simplicial category
sC and its cosimplicial category cosC of all the contravariant, respectively covariant, functors
from a fixed small category, namely the delta category ∆, to C. We first need define the delta
category.

Definition 3.1.1. Let [n] denote the ordered sequence (0, 1, . . . , n) for every n ∈ N = {0, 1, . . .}.
The ∆ category is the category whose objects are every [n] with n ∈ N, and whose morphisms
are given by

∆([m], [n]) := {f : [m] → [n] | i < j ⇒ f(i) ≤ f(j)} for every m,n ∈ N.

61
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Among them we define the maps

δi : [n − 1] → [n] by δi(j) =

{
j if j < i,

j + 1 if j ≥ i,
for 0 ≤ i ≤ n,

σi : [n + 1] → [n] by σi(j) =

{
j if j ≤ i,

j − 1 if j > i,
for 0 ≤ i ≤ n.

Remarks 3.1.2. (1) The above δi’s and σi’s satisfy the following conditions:

δjδi = δiδj−1 for i < j,

σjσi = σiσj+1 for i ≤ j,

σjδi = δiσj−1 for i < j,

σjδi = δi−1σj for i > j + 1,

σiδi = id = σiδi+1 for all i ≥ 0.

(2) We can see that for f ∈ ∆([m], [n]) with f 6= id[m], for every elements 0 ≤ is < . . . < i1 ≤ n
in [n] which are not in Im(f) = f([m]), and for every elements 0 ≤ j1 < . . . < jt < m of [m]
which satisfy f(jtk

) = f(jtk
+ 1), we have a unique factorization

f = δi1 . . . δisσj1 . . . σjt with n − t + s = m.

In particular, the set
{δi | 0 ≤ i ≤ n} ∪ {σj | 0 ≤ j ≤ m}

generates ∆([m], [n]).

These generating maps are essentials to consider, as they determine the structure of each
object in simplicial and cosimplicial categories.

Definition 3.1.3. Let C be a category, and consider the category C∆op

(cf. 1.1.2 and 1.1.5) of
all functors ∆op → C whose morphisms are all the natural transformations between them. For
a given functor F : ∆op → C, we define the faces di := F (δi) and the degeneracies sj := F (σj),
which by 3.1.2 satisfy the following conditions:

didj = dj−1di for i < j,

sisj = sj+1si for i ≤ j,

disj = sj−1di for i < j,

disj = sjdi−1 for i > j + 1,
disi = id = di+1si for all i ≥ 0.

We call sC := C∆op

the simplicial category of C; its objects are of the form

F = F• : F0

s0

88 F1

d0,d1
xx

s0,s1

88 F2

d0,d1,d2
xx

s0,s1,s2

88 F3

d0,d1,d2,d3
xx

.........
,
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in C with Fn = F ([n]), they are called simplicial objects of C in sC; and its morphisms f :
F → F ′ are collections {fk}k∈N of morphisms fk : Fk → F ′

k in C commuting with the faces and
degeneracies, ie

fkdi = difk+1 and fksi = sifk−1,

they are called simplicial morphisms of C in sC. Furthermore,

• the elements of Fk for k ≥ 0 are the k-simplices or the simplices of F of dimension k,

• the simplices x of F which can be written as x = siy for a simplex y and a degeneracy si

are said to be degenerated ; all others simplices are non-degenerated.

Dually, we may consider the category C∆ of all functors ∆ → C whose morphisms are all the
natural transformations between them. For a given functor G : ∆ → C, we define the cofaces
di := G(δi) and the codegeneracies sj := G(σj), which by 3.1.2 satisfy the following conditions:

djdi = didj−1 for i < j,

sjsi = sisj+1 for i ≤ j,

sjdi = disj−1 for i < j,

sjdi = di−1sj for i > j + 1,

sidi = id = sidi+1 for all i ≥ 0.

We call cosC := C∆ the cosimplicial category of C; its objects are of the form

G = G• : G0

d0,d1

77 G
1

s0

ww

d0,d1,d2

77 G
2

s0,s1

ww

d0,d1,d2,d3

77 G
3

s0,s1,s2

ww
.........

,

in C with Gn = G([n]), they are called cosimplicial objects of C in cosC; and its morphisms
g : G → G′ are simply collections {gk}k∈N of morphisms gk : Gk → G′k in C commuting with
the cofaces and codegeneracies, they are called cosimplicial morphisms of C in cosC. Finally,

• the elements of Gk for k ≥ 0 are the k-cosimplices or the cosimplices of G of codimension
k,

• the cosimplices x of G which can be written as x = diy for a cosimplex y and a coface di

are said to be codegenerated ; all others cosimplices are non-codegenerated.

Remarks 3.1.4. (1) From remark 3.1.2.(2) above, it is clear that for any morphism f in ∆op

we have
F (f) = sjt . . . sj1dis . . . di1 ;

and dually for any f in ∆
G(f) = di1 . . . dissj1 . . . sjt .

(2) Any simplex x in F can be written uniquely as

x = sjr
. . . sj1y,

with a non-degenerated simplex y and degeneracies indexed by 0 ≤ j1 < . . . < jr, and dually for
a cosimplex x in G.

This directly leads to the definitions of simplicial and cosimplicial sets.
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Example 3.1.5. We may of course apply the definitions of simplicial and cosimplicial categories
to the most usual categories such as

• Set whose simplicial category sSet is the category of simplicial sets and whose cosimplicial
category cosSet is the category of cosimplicial sets,

• Ab whose simplicial category sAb is the category of simplicial abelian groups and whose
cosimplicial category cosAb is the category of cosimplicial abelian groups.

A fundamental example of a simplicial set is ∆[n]. It is often used in the construction of
other simplicial or cosimplicial sets, such as the nerve of a category defined below.

Example 3.1.6. Let n ∈ N. We define the simplicial set ∆[n] ∈ ObsSet to be the functor
∆[n] : ∆op → Set defined on objects of ∆op by

∆[n]([m]) = ∆([m], [n]) = (∆[n])m,

and on morphisms f : [m] → [m′] in ∆op by

∆[n](f) : ∆([m′], [n]) → ∆([m], [n]) : g 7→ g ◦ f.

The faces and degeneracies are explicitly given by

di = ∆[n](δi) : ∆[n]m → ∆[n]m−1 : f 7→ f ◦ δi,

and si = ∆[n](σi) : ∆[n]m → ∆[n]m+1 : f 7→ f ◦ σi.

Moreover, we can identify each morphism f ∈ ∆([m], [n]) = (∆[n]m) with its image Im(f) =
f([m]) in order to see an m-simplexe of ∆[n] as a sequence

f = (a0, . . . , am) with ai = f(i) and 0 ≤ a1 ≤ . . . ≤ am ≤ n,

so that the faces and degeneracies act on simplices by

di(a0, . . . , am) = (a0, . . . , ai−1, ai+1, . . . , am),
and si(a0, . . . , am) = (a0, . . . , ai, ai, ai+1, . . . , am).

Consequently,

∆[n]m = {(a0, . . . , am) | 0 ≤ a1 ≤ . . . ≤ am ≤ n with ai ∈ N},

where the non-degenerated simplices are given by the sequences without repetitions. Since every
element of ∆[n] can be obtained after applying faces and degeneracies to [n] = {0, . . . , n} ∈
∆[n]n, we refer to ∆[n] as the free simplicial set generated by [n].

Example 3.1.7. We can see [n] ∈ ∆[n]n as a category whose objects and morphisms are given
by

Ob[n] = {0, 1, . . . , n} and [n](i, j) = {ti,j : i → j | i ≤ j and ti,i = idi}

respectively. For any small category C, we define the nerve of C to be the simplicial set N (C) :
∆op → Set defined on objects and morphisms by

N (C)([n]) = Cat([n], C),
N (C)(fop) : Cat([n′], C) → Cat([n], C) : g 7→ g ◦ f,

where Cat denotes the category of small categories and functors between them. Consequently,
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• N (C)0 = Cat([0], C) ∼= ObC,

• N (C)1 = Cat([1], C) ∼= MorC,

• N (C)2 = Cat([2], C) ∼= {• f→ • g→ • | f, g ∈ MorC}, etc.

In particular, if C is cocomplete, we may see each N (C)n as an n-sequence in C.

We end this section with a fact that will be used to define the Γ functor in the next section
(cf. 3.2.2.(2)).

Remark 3.1.8. Any functor F : C → D induces a functor

sF : sC → sD : A• = {An}n∈N 7→ sF (A•) = {F (An)}n∈N

(di : An → An−1) 7→ (F (di) : F (An) → F (An−1))
(si : An → An+1) 7→ (F (si) : F (An) → F (An+1)),

which acts the obvious way on MorsC.

Examples 3.1.9. (1) For the forgetful functor U : Gr → Set, sU is simply the functor that
forgets the group structure in each level, and similarly for U : Ab → Set or other common
algebraic structures.

(2) We define the functor

<−>: Set → Ab : X 7→<X > =
⊕
x∈X

Zx

to be the functor which to each set X associates the free abelian group it generates. In that case

s <−> : sSet → sAb : K• 7→ s <K•>,

where s <K•>n =
⊕

x∈Kn
Zx = <Kn >.

3.2 Chain complexes and simplicial abelian groups
We are now going study the correspondence between chain complexes and simplicial abelian
groups. The goal here is not to enter too much into the details of the results given, but rather to
understand the constructions (any good book on simplicial categories, such as [7], will provide
the reader with proofs). There is in fact a categorical equivalence between the category sAb of
simplicial abelian groups and the category Ch+ of N-graded chain complexes of abelian groups.
It is given by the functors N : sAb → Ch+ and Γ : Ch+ → sAb as defined below.

Definition 3.2.1. Let A ∈ ObsAb be a simplicial abelian group with faces di and degeneracies
si. The (ordinary) chain complex CA of A is the non-negative chain complex (A∗, d∗) defined
in each degree by (CA)n = An with differentials being the alternative sums of the faces, ie.

d = dn :=
n∑

i=0

(−1)idi : (CA)n → (CA)n−1.

This chain complex has a canonic subchain complex DA, called the complex of degenerate sim-
plices, defined in each degree (DA)n to be the (abelian) subgroup of An = (CA)n generated by
all degenerate n-simplices in An. From this, we define the normalized chain complex NA to be
the quotient chain complex of CA with DA, given in each degree as the abelian group

(NA)n = (CA)n/(DA)n

with the obvious quotiented differencial maps.
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The category of differential non-negatively graded (or N-graded) chain complexes of abelian
groups will be denoted Ch+.

Remarks 3.2.2. (1) It is clear by definition that DA is acyclic, so that the canonical projection
CA → NA is a quasi-isomorphism, ie. an isomorphism in homology.

(2) From the above definition, we have a normalization functor N : sAb → Ch+, between the
category of simplicial abelian groups and the category of non-negatively graded chain complexes
of abelian groups. It is an equivalence of categories whose inverse Γ : Ch+ → sAb can be defined
on a complex C in Ch+ by

(ΓC)n = Ch+(N∆n, C) with N∆n := N(s <∆[n]>).

The corresponding isomorphisms ηA : A → ΓNA and εC : NΓC → C are defined by

An 3 a 7→ (Nā : N∆n 7→ NA) ∈ (ΓNA)n

and Γ(εC) = η−1
ΓC : ΓNΓC → ΓC

respectively, where ā : ∆[n] → A is the unique morphism of simplicial sets which sends the
generating n-simplex of ∆[n] (cf. 3.1.6) to a ∈ An.

In addition, from the usual tensor product ⊗Z for abelian groups, we may define symmetric
tensor products on the categories Ch+ and sAb.

Definition 3.2.3. The tensor product of two positive chain complexes of abelian groups C and
D is defined from the usual tensor product of abelian groups by

(C ⊗ D)n :=
⊕

p+q=n

Cq ⊗ Dp,

with differentials given on homogeneous elements by the formula

d(x ⊗ y) = dx ⊗ y + (−1)|x|x ⊗ dy,

where |x| denotes the dimension of x. On the other hand, the tensor product of simplicial abelian
groups is defined dimensionwise, ie.

(A ⊗ B)n := An ⊗ Bn and d(x ⊗ y) := dx ⊗ dy.

Remarks 3.2.4. (1) Both tensor products are symmetric monoidal. Their symmetry is clear,
the respective unit objects are

• the free abelian group of rank one (ie. Z) viewed as a complex concentrated in degree zero
Z[0] : 0 → Z → 0,

• the free abelian group of rank one (ie. Z) viewed as a constant simplicial abelian group,
ie. the simplicial abelian group which is isomorphic to Z in each level and whose faces and
degeneracies are the identity morphism of Z in Ab,

the associativity and unit morphisms for Ch+ and sAb are the obvious ones, the commutativity
isomorphism for sAb is the obvious one, and the commutativity isomorphism for Ch+ is given
by the formula

τC,D : C ⊗ D → D ⊗ C : x ⊗ y 7→ (−1)|x||y|y ⊗ x.

(2) The unit objects of the categories sAb and Ch+ are preserved under the normalization
functor N and its inverse Γ. However, the equivalence of categories given above by N and Γ
does not send one tensor product to the other.
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Before introducing the shuffle and the Alexander-Whitney maps, it is worth knowing what
a monoidal functor is. We then provide few remarks that will be useful for understanding the
constructions of the next section.

Definition 3.2.5. A (lax) monoidal functor F = (F,ϕ, µ) : (C,⊗, 1) → (D,∧, 1′) between
monoidal categories (C,⊗, 1) and (D,∧, 1′) is an ordinary functor F : C → D equipped with a
unit morphism µ : 1′ → F (1) and natural morphisms

ϕA,B : FA ∧ FB → F (A ⊗ B) in D for every objects A,B in C,

which make the following three diagrams commute for every objects A,B,C in C:

(FA ∧ FB) ∧ FC
α′

//

ϕ∧id

²²

FA ∧ (FB ∧ FC)

id∧ϕ

²²
F (A ⊗ B) ∧ FC

ϕ

²²

FA ∧ F (B ⊗ C)

ϕ

²²
F ((A ⊗ B) ⊗ C)

F (α) // F (A ⊗ (B ⊗ C))

1′ ∧ FA
λ //

µ∧id

²²

FA

Fλ

²²

FA ∧ 1′
ρ //

id∧µ

²²

FA

Fρ

²²
F1 ∧ FA

ϕ // F (1 ⊗ A) FA ∧ F1
ϕ // F (A ⊗ 1).

A monoidal functor (F,ϕ, µ) is strong monoidal (resp. strict monoidal) if the morphisms µ and
ϕA,B are isomorphisms (resp. identities). It is clear that the composite of monoidal functors is
monoidal.

Moreover, for a monoidal functor (R,ϕ, µ) : (C,⊗, 1) → (D,∧, 1′) between monoidal cate-
gories, and assuming R has a left adjoint L : D → C, we consider the adjoint µ̃ : L(1′) → 1 of µ
and the canonic morphism ϕ̃A,B : L(A ∧ B) → LA ⊗ LB adjoint to the composite

A ∧ B
ηA∧ηB// RLA ∧ RLB

ϕLA,LB// R(LA ⊗ LB),

which can equivalently be defined as the composition

ϕ̃A,B : L(A ∧ B)
L(ηA∧ηB)// L(RLA ∧ RLB)

L(ϕLA,LB)// LR(LA ⊗ LB)
εLA⊗LB // LA ⊗ LB,

where η and ε respectively denote the unit and counit of the adjunction. In this case, R is said
to be a (lax) comonoidal functor.

Furthermore, a (lax) monoidal natural transformation

τ : (F,ϕ, µ) → (G, ψ, ν) : (C,⊗, 1) → (D,∧, 1′)

between two monoidal functors is a natural transformation τ : F → G between the underlying
ordinary functors F and G such that the diagrams

FA ∧ FB
ϕ //

τA∧τB

²²

F (A ⊗ B)

τA∧B

²²

1′
µ // F (1)

τ1

²²
GA ∧ GB

ψ // G(A ⊗ B) 1′
ν // G(1),
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for every objects A,B in C, commute in D. The composite of monoidal natural transformations
is natural as well.

Finally, in the dual case of natural transformations between comonoidal functors, we talk
about (lax) comonoidal natural transformations.

Example 3.2.6. If (C,⊗, 1) is a symmetrical monoidal category, the endofunctors X ⊗ − and
−⊗X for any monoid (X,µX , ηX) in C are monoidal. To see why, it suffices to define the maps
ϕA,B as the composites

(X ⊗ A) ⊗ (X ⊗ B)
∼= // (X ⊗ X) ⊗ (A ⊗ B)

µX⊗id // X ⊗ (A ⊗ B),

and similarly for − ⊗ X. The required diagrams effectively commute from the associativity of
µX . In particular, if the monoid X is commutative, the endofunctors

M ⊗X − : (ModX ,⊗X , X) −→ (ModX ,⊗X , X)
and −⊗XM : (ModX ,⊗X , X) −→ (ModX ,⊗X , X)

are monoidal for any X-module M .

Definitions 3.2.7. Let A and B be simplicial abelian groups. We call shuffle maps the mor-
phisms in Ch+ defined by

∇ = ∇A,B : CA ⊗ CB → C(A ⊗ B) : a ⊗ b 7→ ∇(a, b) =
∑
µ,ν

sgn(µ, ν) · sνa ⊗ sµb

on simplices a ∈ Ap and b ∈ Bq whose image ∇(a⊗ b) is in Cp+q(A⊗B) = Ap+q ⊗Bp+q, where
the sum is taken over all (p, q)-shuffles, that is, permutations of the set

{0, . . . , p + q − 1}

which leave the first p elements and the last q elements in their original order, ie. a (p, q)-shuffle
is of the form

(µ, ν) = (µ1, . . . , µp, ν1, . . . , νq) with µ1 < . . . < µq

and ν1 < . . . < νq,

and the associated degeneracies are given by

sµb = sµp . . . sµ1b and sνa = sνq . . . sν1a.

On the other hand, we define the Alexander-Whitney maps to be the morphisms in Ch+ defined
by

AW = AWA,B : C(A ⊗ B) → CA ⊗ CB : a ⊗ b 7→
⊕

p+q=n

d̃p(a) ⊗ dq
0(b)

on n-simplices a ∈ An and b ∈ Bn, where the front face d̃p : Ap+q → Ap is induced by the
injective monotone morphism

δ̃p : [p] → [p + q] : i 7→ i in ∆op,

and the back face dq
0 : Bp+q → Bq is induced by the injective monotone morphism

δp
0 : [q] → [p + q] : i 7→ p + i in ∆op.
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If we consider all ∇A,B and AWA,B for every objects A and B in sAb, we obtain natural
transformations

∇ : sAb × sAb → MorCh+ : C(−) ⊗ C(−) → C(−⊗−),

and AW : sAb × sAb → MorCh+ : C(−⊗−) → C(−) ⊗ C(−),

that we call shuffle map and Alexander-Whitney map as well.
Finally, for the inverse functor Γ : Ch+ → sAb of N (cf. 3.2.2), and for every objects C, D

in Ch+, we will denote the morphism

ϕ = ϕC,D : ΓC ⊗ ΓD → Γ(C ⊗ D) in sAb

to be the composite

ΓC ⊗ ΓD η(ΓC⊗ΓD)
// ΓN(ΓC ⊗ ΓD)

Γ(AWΓC,ΓD)
// Γ[N(ΓC) ⊗ N(ΓD)]

Γ(εC⊗εD)
// Γ(C ⊗ D),

where η and ε are respectively the unit and counit of the adjoint pair

N : sAb ⇐⇒ Ch+ : Γ.

Remarks 3.2.8. (1) The shuffle map is a monoidal natural transformation whose unit map is
the unique chain complex morphism

η : Z[0] → C(Z)

which is the identity in dimension 0. Consequently, the Alexander-Whitney map is its corre-
sponding comonoidal transformation whose unit is η−1.

(2) Both ∇ and AW preserve the subcomplexes of degenerate simplices, so that they induce
maps

∇N = ∇N
A,B : NA ⊗ NB → N(A ⊗ B)

and AWN = AWN
A,B : N(A ⊗ B) → NA ⊗ NB,

on objects A, B in sAb, for which we shall also use the same names if the context is clear.
These restricted natural transformations are again monoidal and comonoidal respectively, and
the corresponding restricted unit morphisms are isomorphisms.

(3) For each simplicial abelian groups A and B, the composite morphism

AWA,B ◦ ∇A,B : CA ⊗ CB → CA ⊗ CB

differs from id(CA⊗CB) only by degenerate simplices, so that

AWN
A,B ◦ ∇N

A,B = id(NA⊗NB) : NA ⊗ NB → NA ⊗ NB.

The other composites

∇A,B ◦ AWA,B : C(A ⊗ B) → C(A ⊗ B) and ∇N
A,B ◦ AWN

A,B : N(A ⊗ B) → N(A ⊗ B)

are naturally chain homotopic to the identities idC(A⊗B) and idN(A⊗B) respectively. In partic-
ular, all four morphisms

AWA,B ◦ ∇A,B , AWN
A,B ◦ ∇N

A,B , ∇A,B ◦ AWA,B and ∇N
A,B ◦ AWN

A,B

are quasi-isomorphisms of chain complexes.
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(4) The shuffle maps ∇ and ∇N are also symmetric in the sense that for any objects A and
B in sAb, the square diagrams

CA ⊗ CB
sym //

∇A,B

²²

CB ⊗ CA

∇A,B

²²

NA ⊗ NB
sym //

∇N
A,B

²²

NB ⊗ NA

∇N
A,B

²²
C(A ⊗ B)

C(sym)
// C(B ⊗ A) N(A ⊗ B)

N(sym)
// N(B ⊗ A)

commute, where sym is the obvious symmetry isomorphism of either simplicial abelian groups
or chain complexes. That is not the case however for AW and AWN .

(5) The functor Γ is not symmetric monoidal since the Alexander-Whitney map AW , and
consequently the morphism ϕ as in 3.2.5, is not symmetric. However, we can turn the comonoidal
structure on the normalization functor AWN given by the Alexander-Whitney map into a
monoidal structure on the adjoint functor Γ by defining

ϕC,D : ΓC ⊗ ΓD −→ Γ(C ⊗ D)

to be the composite

ΓC ⊗ ΓD
ηΓC⊗ΓD// ΓN(ΓC ⊗ ΓD)

Γ(AWΓC,ΓD)// Γ[N(ΓC) ⊗ N(ΓD)]
Γ(εC⊗εD) // Γ(C ⊗ D).

for every chain complexes C and D.
(6) For all simplicial abelian groups A = ΓC and B = ΓD, being via Γ the images of chain

complexes C and D, the normalized Alexander-Whitney map AWN
A,B is surjective. It follows,

since the unit η and counit ε of the (N, Γ)-adjunction are isomorphisms (N and Γ are inverse of
each other), that the morphism ϕC,D is a surjection as well.

3.3 Equivalences between categories of algebras and mod-
ules

In this section, we shall introduce the notions of weak and strong monoidal Quillen equivalences
between two monoidal model categories. A weak monoidal Quillen equivalence provides the
basic properties necessary for lifting Quillen equivalences between given categories to their cor-
responding categories of monoids and modules. The right adjoint functor of such an equivalence
being monoidal, we shall construct various induced left adjoints on the corresponding categories
of monoids and modules. This will lead to the main result of the chapter (cf. 3.3.8).

Before going into the definition of weak monoidal Quillen equivalences, we first need to define
the notion of Quillen invariance.

Definition 3.3.1. Let C be a model category, D a category, and let

L : C ⇐⇒ D : R

be an adjoint pair. An object of D is a cell object if it can be obtained from the initial object
∅ of D by a (possibly transfinite) composition of cobase changes of morphisms of the form L(f)
for cofibrations f in C. We say that the functor R creates a model structure if the following two
conditions are satisfied:
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• the category D supports a model structure in which a morphism f : X → Y is a weak
equivalence, resp. a fibration, if and only if the morphism R(f) is a weak equivalence,
resp. a fibration, in C,

• every cofibrant object in D is a retract of a cell object.

Now suppose that (C,⊗, 1) is a monoidal model category such that the forgetful functors

ModA −→ C and AMod −→ C, for all monoids A in C,

create model structures. We say that right Quillen invariance holds for C if for every weak
equivalence f : R → S of C-monoids, the restriction and extension of scalars along f induce a
Quillen equivalence

Extf = −⊗R S : ModR ⇐⇒ ModS : Resf ,

and that left Quillen invariance holds for C if for every weak equivalence f : R → S of C-monoids,
the restriction and extension of scalars along f induce a Quillen equivalence

Extf = S ⊗R − : RMod ⇐⇒S Mod : Resf .

Remarks 3.3.2. (1) A typical example of the creation of a model structure occurs when the
model category structure on C is cofibrantly generated.

(2) A sufficient condition for right Quillen invariance in C is that, for every cofibrant right
R-module M , the functor

M ⊗R − : RMod −→ C

preserves weak equivalences in C; and similarly for left Quillen invariance.

Definition 3.3.3. A weak monoidal Quillen pair between monoidal categories (C,⊗, 1) and
(D,∧, 1′) consists of a Quillen pair

L : D ⇐⇒ C : R

with a (lax) monoidal structure

ϕX,Y : RX ∧ RY → R(X ⊗ Y ), ν : 1′ → R(1)

on the right adjoint R, such that the following conditions are satisfied:

• The comonoidal morphisms

ϕ̃A,B : L(A ∧ B) → LA ⊗ LB, for every cofibrant objects A and B in D,

are weak equivalences in C.

• For any cofibrant replacement q : 1′c
∼→ 1′, the composite morphism

L(1′c)
L(q) // L(1′) ν̃ // 1

is a weak equivalence in C.

A strong monoidal Quillen pair is a weak monoidal Quillen pair for which the comonoidal mor-
phisms ϕ̃ and ν̃ are isomorphisms. A weak (resp. strong) monoidal Quillen pair is a weak (resp.
strong) monoidal Quillen equivalence if the underlying Quillen pair is a Quillen equivalence.

We may now construct various left adjoints for the right adjoint functor of a weak monoidal
Quillen pair.
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Construction 3.3.4. Let (C,⊗, 1) and (D,∧, 1′) be monoidal categories, and let R : C → D
be the right adjoint of a weak monoidal Quillen pair. Then R induces various functors on the
underlying categories of monoids and modules. More precisely, for a monoid A = (A, µ, η) in C
the monoid structure on RA is given by the composite morphisms

RA ∧ RA
ϕA,A // R(A ⊗ A)

R(µ) // RA and 1′
ν // R(1)

R(η) // RA.

For a right A-module M in C with action morphism α : M ⊗ A → M , the object RM of D
becomes a right RA-module via the composite morphism

RM ∧ RA
ϕM,A // R(M ⊗ A)

R(α) // RM,

and similarly for a left A-module N . In this context, R has a left adjoint L : D → C which
inherits a comonoidal structure

ϕ̃ : L(A ∧ B) → LA ⊗ LB and ν̃ : L(1′) → 1,

the pair being of course strong monoidal if ϕ̃ and ν̃ are isomorphisms. In this latter case, the
left adjoint L becomes a strong monoidal functor via the inverses

ϕ̃−1 : LA ⊗ LB → L(A ∧ B) and ν̃−1 : 1 → L(1′).

Via these morphisms, L then lifts to a functor on monoids and modules (and consequently
algebras) which are of course left adjoint to the monoid and module valued (and particularly
algebra valued) versions of R. This treats the case of strong monoidal Quillen pairs, but we want
to treat the more general case of weak monoidal Quillen pairs, in which the functors induced by
R on monoids, modules and algebras still have left adjoints. These latter functors, however, are
not usually given by the original left adjoint functor L defined here. We shall construct more
functors below.

(1) We assume here that the forgetful functor UC : MonC → C from C-monoids to C creates a
model structure on MonC (cf. 3.3.1). In particular, the category AlgC of C-algebras is cocomplete
and the forgetful functor UC has a left adjoint free monoid functor TC : C → MonC (cf. [17]
Chap.VII Thm.2) defined by

TC(X) :=
∐
n∈N

X⊗n = 1
∐

X
∐

(X ⊗ X)
∐

(X ⊗ X ⊗ X)
∐

. . . ,

with multiplication given by juxtaposition, ie. by

TX ⊗ TX ∼=
∐

m≥0 X⊗m ⊗
∐

n≥0 X⊗n ∼=
∐

m,n≥0 X⊗m ⊗ X⊗n mult //
∐

k≥0 X⊗n,

with
mult[(x1 ⊗ . . . ⊗ xm) ⊗ (y1 ⊗ . . . ⊗ yn)] := x1 ⊗ . . . ⊗ xm ⊗ y1 ⊗ . . . ⊗ yn,

and similarly for TD. From this, the monoid valued lift R : MonC → MonD has a left adjoint

Lmon : MonD → MonC ,

whose value for a D-monoid B can be defined as the coequalizer (cf. 2.1.8) of the C-monoid
morphisms

TC(LTDB) = TC(LTDUDB)
++
33 TC(LB) //___ LmonB,

the first of them being obtained by precomposing the adjunction unit

TDB = TDUDB // B
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with the composite functor TCL, and the second being the unique morphism in MonC which
restricts to the C-morphism

L(TDB) ∼=
∐

n≥0 L(B∧n)
‘

ϕ̃ //
∐

n≥0(LB)⊗n ∼= TC(LB).

Since the functor R preserves the underlying objects, the monoid left adjoint functor Lmon and
the original left adjoint functor L are related by a natural isomorphism

Lmon ◦ TD ∼= TC ◦ L : D −→ MonC .

(2) From the above construction for monoids, the right and left module valued functors

R : ModA → ModRA and R : AMod → RAMod,

for a given C-monoid A, have left adjoint functors

LA : ModRA → ModA and AL : RAMod → AMod respectively,

as soon as free R-modules and coequalizers of R-modules exist. Since the functor R preserves
the underlying objects, the left adjoint functors LA and AL are related to the original left adjoint
functor L by natural isomorphisms

LA ◦ (− ∧ RA) ∼= (−⊗ A) ◦ L : D −→ ModA,
AL ◦ (RA ∧ −) ∼= (A ⊗−) ◦ L : D −→ AMod,

where X ⊗ A is the free right A-module generated by an object X in C, A ⊗ X the free left
A-module generated by X, and similarly for Y ∧ RA and RA ∧ Y with Y ∈ D.

(3) For a given monoid B in D, the functor R : C → D induces a functor

R : Mod(LmonB) → ModB

which is the composite functor

R : Mod(LmonB)
R // ModR(LmonB)

η∗
// ModB ,

where η∗ is the restriction of scalars along the adjunction unit η : B → R(LmonB). We denote
by

LB : ModB
// Mod(LmonB)

the left adjoint to the functor R : Mod(LmonB) → ModB , which is the composite

ModB

−⊗BR(LmonB)// ModR(LmonB)
L(LmonB)

// Mod(LmonB);

it is related to the original left adjoint functor L by a natural isomorphism

LB ◦ (− ∧ B) ∼= (−⊗ LmonB) ◦ L : D −→ ModLmonB .

The same construction for left modules gives a left adjoint functor

BL : BMod //
(LmonB)Mod

to the restricted functor R : (LmonB)Mod → BMod which satisfy

BL ◦ (B ∧ −) ∼= (LmonB ⊗−) ◦ L : D −→LmonB Mod.
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Remark 3.3.5. In case the monoidal adjoint pair L : D ⇐⇒ C : R is strong monoidal, the
functors Lmon, LB and BL are given by L which is monoidal via ϕ−1, and the functors

LA : ModRA → ModA and AL : RAMod → AMod

are given by the formulas

LA(M) = L(M) ⊗LRA A and AL(N) = A ⊗LRA L(N),

where A is a LRA-module via the adjunction counit ε : LRA → A. In general however, the
functor L does not pass to monoids and modules.

The following result states under which conditions the left adjoints LB , BL, LA, AL and
Lmon of the functor R induce Quillen equivalences. The proof will not be given here; it is
essentially covered in section 5 of [21].

Lemma 3.3.6. Let R : (C,⊗, 1) → (D,∧, 1′) be the right adjoint of a weak monoidal Quillen
equivalence, and suppose that the unit objects 1 and 1′ are cofibrant.

(1) If B is a cofibrant monoid in D such that the forgetful functors create model structures for
B-modules and LmonB-modules, then

LB : ModB ⇐⇒ ModLmonB : R and BL : BMod ⇐⇒ LmonBMod : R

are Quillen equivalences.

(2) If right (respectively left) Quillen invariance holds for C and D, then for any fibrant monoid
A in C such that the forgetful functors for A-modules and RA-modules create model struc-
tures, the adjoint pair

LA : ModRA ⇐⇒ ModA : R (respectively AL : RAMod ⇐⇒A Mod : R)

is a Quillen equivalence. If in addition R preserves weak equivalences between monoids
and if the forgetful functors for modules over any monoid create model structures, then the
Quillen equivalence above holds for any monoid A in C.

(3) If the forgetful functors for monoids in C and D create model structures, then the adjoint
pair

Lmon : MonD ⇐⇒ MonC : R

is a Quillen equivalence.

Assuming 3.3.6, we may now proceed to the main theorem of the chapter. For clarity reasons,
let us fix some notation.

Notation 3.3.7. For a category C, we denote by DGC, respectively GC, the category whose
objects are N-differential-graded (resp. N-graded) objects of C and whose morphisms are the
appropriate collections of morphisms in C making the obvious required squares commute. For
example:

• DGAb = Ch+ denotes the category of N-graded chain complexes of abelian groups,

• DGModk = Ch+
k denotes the category of N-graded chain complexes of k-modules for a

commutative ring k,

• DGAlgk =: DGAk denotes the category of N-differential-graded k-algebras for a commu-
tative ring k,
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• DGAlgR =: DGAR denotes the category of N-differential-graded R-algebras for a monoid
R in C,

• GModR denotes the category of N-graded R-modules for a monoid R in C.

Theorem 3.3.8. Let N : sAb → Ch+ and Γ : Ch+ → sAb be the functors defined in 3.2.1 and
3.2.2.

(1) For an N-differential-graded algebra R, there is a Quillen equivalence

GModR
∼=Q sModΓR

between the categories of N-graded R-modules and simplicial modules over the simplicial
algebra ΓR.

(2) For a simplicial ring A, there is a Quillen equivalence

DGModNA
∼=Q DGModA

between the categories of N-differential-graded NA-modules and simplicial A-modules.

(3) For a commutative ring k, there is a Quillen equivalence

DGAk
∼=Q sAlgk

between the categories of N-differential-graded k-algebras and simplicial k-algebras. In
particular, for k = Z, there is a Quillen equivalence

DGRng ∼=Q sRng

between the categories of N-differential-graded rings and simplicial rings.

(4) For a simplicial commutative ring A, there is a Quillen equivalence

DGAlgNA
∼=Q sAlgA

between the categories of N-differential-graded NA-algebras and simplicial A-algebras.

Remark 3.3.9. Part (3) is a special case of part (4) for a constant commutative simplicial ring
A.

Proof. (3) Let k be a commutative ring. Consider the normalization functor N and its inverse
Γ as an adjoint pair

Γ : Ch+
k ⇐⇒ sModk : N

between the category of N-graded chain complexes of k-modules and the category of simplicial
k-modules, where N is the right adjoint of Γ. We may also view N as a monoidal functor
(N,ϕ, ν) with all ϕA,B being the shuffle maps

∇A,B : NA ⊗ NB → N(A ⊗ B)

for every simplicial k-modules A and B. By remark 3.2.8.(3), ∇A,B is a chain homotopy equiv-
alence whose inverse is the Alexander-Whitney map

AWA,B : N(A ⊗ B) → NA ⊗ B
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for any simplicial k-modules A and B. Since the functor Γ sends quasi-isomorphisms in Ch+
k to

weak equivalences in sModr, and since the unit and counit of the adjunction between N and Γ
are isomorphisms, the corresponding comonoidal maps

ϕ̃C,D = ∇̃C,D : Γ(C ⊗ D) → ΓC ⊗ ΓD, for every C,D in Ch+
k ,

are weak equivalences. This means that N is the right adjoint of a weak monoidal Quillen
equivalence between the categories sModk and Ch+

k . In addition, the unit objects of sModk

and Ch+
k (cf. 3.2.4.(1)) are both cofibrant, so that by 3.3.6.(3) we have a Quillen equivalence

DGAk = Mon(Ch+
k )

∼=Q Mon(sModk) = sAlgk

as desired. The Quillen equivalence

DGRng ∼=Q sRng

is now obvious if k = Z.
(2) Let A ∈ ObsRng be a simplicial ring. Quillen invariance holds for the category sRng of

simplicial rings, and the normalization functor

N : sModk −→ Ch+
k

preserves all weak equivalences, so that Quillen invariance also holds for Ch+
k by remark 3.3.2.(2).

Consequently, we can apply 3.3.8.(2) for k = Z in order to prove that the functor

N : sModk = sModZ = sAb −→ Ch+
k = Ch+

Z = Ch+

is the right adjoint of a Quillen equivalence

DGModNA
∼=Q DGModA

between the categories of N-differential-graded NA-modules and the category of simplicial A-
modules.

(1) Let k be a commutative ring. This time we view the normalizing functor N : sModk →
Ch+

k as the left adjoint of the pair

N : sModk ⇐⇒ Ch+
k : Γ.

The monoidal structure of Γ (cf. 3.2.8.(5)) is made in such a way that the comonoidal transfor-
mation ϕ̃, given by

ϕ̃A,B : L(A ⊗ B) −→ LA ⊗ LB

for the left adjoint N , is none other than the Alexander-Whitney map

AWA,B : N(A ⊗ B) −→ NA ⊗ NB for every objects A,B in sModk.

Since this last morphism is a chain homotopy equivalence for every A, B in sModk whose
homotopy inverse is the shuffle map ∇, the functor Γ becomes the right adjoint of a weak
monoidal Quillen equivalence. As we already saw above, the unit objects of sModk and Ch+

k

are both cofibrant, so that we can apply 3.3.6.(2) to obtain, for a monoid R in Ch+
k (ie. a

N-differential-graded k-algebra R), a Quillen equivalence

sModΓR
∼= DGModR

between the category of simplicial ΓR-modules and the category of N-differential-graded R-
modules.
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(4) Let A be a simplicial commutative ring. By remark 3.2.8.(4), the shuffle map ∇, as well
as its extension to normalized chain complexes

∇ : NK ⊗ NL −→ N(K ⊗ L) for every objects K,L in ObsAb,

are (lax) symmetric monoidal. This is not the case however of the Alexander-Whitney map;
that is, AW is not symmetric. Consequently:

• The normalized chain NA forms a differential-graded algebra which is commutative in the
sense that

xy = (−1)|x||y|yx,

for homogeneous elements x and y in NA.

• The functor N : sAb → Ch+ inherits a monoidal structure when viewed as a functor from
simplical A-modules with tensor product over A to N-differential-graded NA-modules with
tensor product over NA. More precisely there is a unique natural chain complex morphism

∇A : NM ⊗NA NM ′ −→ N(M ⊗A M ′) for M,M ′ ∈ ObModA

such that the square

NM ⊗ NM ′ ∇ //

²²

N(M ⊗ M ′)

²²
NM ⊗NA NM ′ ∇A

// N(M ⊗A M ′),

where the vertical arrows are the canonical quotient maps, commutes. In addition, since
A is commutative, ∇A becomes a symmetric monoidal functor from A-modules to NA-
modules.

Now let LA : DGModNA → sModA denote the left adjoint of N when viewed as a functor from
A-modules to NA-modules. The comonoidal morphism for LA has the form

LA(W ⊗NA W ′) −→ LA(W ) ⊗A LA(W ′) for W,W ′ ∈ ObDGModNA.

Proposition 3.16 in [21] imply that the adjoint pair

LA : DGModNA ⇐⇒ ModA : N

is a weak monoidal Quillen pair which is in fact, by 3.3.6.(2), a Quillen equivalence. Finally, we
can apply 3.3.6.(3) to obtain a Quillen equivalence

DGANA = Mon(ModNA)
∼=Q Mon(ModA) = sAlgA

as desired. ¤
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Chapter 4

Galois theory of commutative rings

The main goal of this chapter is to make the connection, in the generalizing process, between
the classical Galois theory of finite extensions of fields and the theory of homotopic Hopf-Galois
extensions of chapter 5. This will be done be reinterpreting the classical elements of the Galois
correspondence for fields as isomorphisms, before generalizing these isomorphisms to the case
of commutative rings. In the next chapter, these isomorphisms will in turn generalize to weak
equivalences in a monoidal model category.

We shall start with a short reminder on classical Galois theory, in which we define the classical
Galois correspondence and state the fundamental Galois theorem for the case of finite extensions
of fields. In section 4.2, we reinterpret these classical elements into algebra isomorphisms which
easily generalize to the case of commutative rings. We end the section by establishing different
characterizations of the notion of a Galois extension of commutative ring (cf. theorem 4.2.9);
these are due to the work of Chase, Harrison and Rosenberg (cf. [4]). In section 4.3 we provide a
topological example, that of normal covering spaces. In section 4.4 we return to the theory and
show how the Galois extensions of a commutative ring R are preserved and reflected under the
functor T ⊗R − for a faithfully flat R-algebra T . In the last section, we finally proceed to the
generalization of the Galois theorem for finite Galois extensions of fields to the case of connected
commutative rings.

4.1 Reminder on classical Galois theory

This is just a review of the basic elements of Galois theory for fields. We provide here the
definitions and results needed. For more details see [16] or [1].

Reminder 4.1.1. We say that a field L is an extension of a field K if K is a subfield of L. In
particular, L is a K-vector space whose dimension, the degree of L over K, is denoted [L : K].
We say that the extension K ⊆ L is finite if [L : K] is. For l1, . . . , ln ∈ L, we denote

• K[l1, . . . , ln] to be the smallest subring of L containing K and {l1, . . . , ln}, which equiva-
lently is the ring of all polynomial expressions in l1, . . . , ln with coefficients in K,

• K(l1, . . . , ln) to be the smallest subfield of L containing K and {l1, . . . , ln}, which equiv-
alently is the field of all rational polynomial expressions in l1, . . . , ln with coefficients in
K.

Furthermore, for any field extension K ⊆ L and any l ∈ L, we consider the surjective ring
homomorphism ev : K[X] → K[l] which to each polynomial f ∈ K[X] associates the element

79
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f(l) in the ring K[l] ⊆ K(l) ⊆ L. Since Ker(ev) has to be a prime ideal of K[X] (Im(ev) =
K[l] ∼= K[X]/Ker(ev) being entire), it can only be of one of the following forms:

• Ker(ev) = {0}. In this case ev is injective, K[l] ∼= K[X], [K(l) : K] = ∞, and there is
no non-zero polynomial f in K[X] such that f(l) = 0. We then say that l is transcendent
over K.

• Ker(ev) is a (prime) ideal of K[X] generated by an irreductible polynomial in K[X]. This
means that there exists non-zero polynomials f in K[X] such that f(l) = 0. Among
them, the polynomial of smallest degree whose leading coefficient is the unit of K is the
minimal polynomial of l over K. We denote it min(l,K). It follows that Ker(ev) is the
principal ideal < min(l,K) > generated by min(l,K), and consequently that min(l,K) is
irreductible in K[X]. We also have

K[l] ∼=
K[X]

Ker(ev)
=

K[X]
< min(l,K) >

∼= K(l),

deg(l) = [K(l) : K] = deg(min(l,K)),

and we say that l is algebraic over K.

A field extension K ⊆ L is said to be algebraic if every element l of L is algebraic over K. It is
worth noting that any finite extension L of K is algebraic, since if L contained a tanscendent
element l over K, we would have

[L : K] ≥ [K(l) : K] = ∞.

Moreover, an algebraic field extension K ⊆ L is

• normal if the roots of min(l,K) are all simple for every l in L,

• separable if the minimal polynomials min(l,K) ∈ K[X] of every l in L factors entirely as
polynomials of degree 1 in L[X].

Finally, for a given field extension K ⊆ L, a field homomorphism f : L → L̄ into an algebraic
closure L̄ of L is a K-homomorphism if it fixes every element of K, ie. f(k) = k for every k in
K. In the special case where K ⊆ L is an algebraic extension, a K-homomorphism is necessary
an automorphism of L. We denote the group of K-automorphism of L, with multiplication given
by composition, by AutK(L); and more generally the group of K-homomorphisms by EndK(L).

Here are two fundamental properties on normal and separable extensions.

Properties 4.1.2.

(1) If K ⊆ M ⊆ L are field extensions such that L is a normal extension of K, then L is a
normal extension of M .

(2) If K ⊆ M ⊆ L are field extensions such that L is a separable extension of K, then L is a
separable extension of M .

Proof. (1) By assumption, every l in L has a minimal polynomial min(l,K) in K[X], and
since K[X] ⊆ M [X], the extension M ⊆ L is algebraic. In addition, the minimal polynomial
min(l,M) of any l in L divides min(l,K) in M [X], and since min(l,K) factors as polynomials
of degree 1 in L[X], it follows that min(l,M) does too.

(2) The extension M ⊆ L is algebraic by (1). In addition, the minimal polynomial min(l,M)
of any l in L is a factor of min(l,K) in M [X], so that all of its roots in L are distinct. ¤
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The above properties allow to define a Galois extension not only in terms of normality and
separability, but also in terms of its Galois correspondence (cf. [1] for more details).

Definition 4.1.3. Let K ⊆ L be a field extension. We say that K ⊆ L is a Galois extension if
it is normal and separable; or equivalently if we have a Galois correspondence

{M ∈ ObF ld | K ⊆ M ⊆ L}
Gal[L:−] ..

{H ∈ ObGr | H ≤ AutK(L)}
L(−)

nn

between the set of intermediate field extensions of K ⊆ L and the set of subgroups of AutK(L),
where

Gal[L : M ] := AutK(M) and LH := {l ∈ L | h(l) = l, ∀h ∈ H},

such that K = LG for G := Gal[L : K]. We call

G = Gal[L : K] = AutK(L)

the Galois group of the extension, we say that L is a G-Galois (field) extension of K, and we
call K ⊆ L a G-Galois extension (of fields).

Remarks 4.1.4. (1) 4.1.2 obviously imply that M ⊆ L is a Galois field extension as well, so
that Gal[L : M ] is well defined as the Galois group of M ⊆ L.

(2) The Galois correspondence satisfy

LGal[L:M ] = M and Gal[L : LH ] ≥ H

for an intermediate field extension K ⊆ M ⊆ L and a subgroup H of AutK(L). In the special
case where the extension K ⊆ L is finite, the second relation becomes an equality.

We now state the fundamental result of classical Galois theory. We shall omit its proof since
its generalization to connected commutative rings (cf. 4.5.6) will be established at the end of
the chapter.

Theorem 4.1.5 (Galois theorem for fields). Let K ⊆ L be a finite G-Galois extension of fields.

(1) The Galois correspondence is an isomorphism in Set.

(2) For every intermediate field extension K ⊆ M ⊆ L, we have

[L : M ] = #Gal[L : M ] = #AutK(L),

where the prefix # denotes the cardinality of the group it precedes.

(3) For every intermediate field extension K ⊆ M ⊆ L, we have

f · Gal[L : M ] · f−1 = Gal[L : f(M)] for any f in Gal[L : M ].

(4) For every intermediate field extension K ⊆ M ⊆ L such that the extension K ⊆ M is
normal (and therefore Galois), Gal[L : M ] is a normal subgroup of Gal[L : K] and

Gal[M : K] ∼= Gal[L : K]/Gal[L : M ].
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4.2 Galois extensions of commutative rings
We now want to generalize the notion of Galois extension for fields to commutative rings. The
simple replacement of all fields by commutative rings in definition 4.1.3 would give rise to a
notion that would end up being too weak. Instead of doing this, we shall provide different
equivalent definitions which turn out to generalize well. These equivalences, among others we
won’t be using in this paper, were mainly established by Chase, Harrison and Rosenberg in [4]
who used them to develop the Galois theory of commutating rings.

We first start by reinterpreting the classical notion of G-Galois extension, as seen in the
previous section, in a way that will easily be expanded to the case of commutative rings. Consider
a field extension K ⊆ L and a finite group G such that every element of G is a K-automorphism
of L. This gives rise to a G-action

G × L → L : (a, l) 7→ al = a · l := a(l) with a · k = k for every k ∈ K,

or equivalently a group homomorphism

ϕ : G → AutK(L) : a 7→ (ϕ(a) : l 7→ a(l) = a · l) with g|K = idK ,

where of course

eG · l = l and a · (b · l) = (ab) · l for every a, b ∈ G and l ∈ L

by definition of a G-action.

Definition 4.2.1. The L-algebra L<G> is defined to be the L-vector space

L<G> :=
⊕
a∈G

La = {
∑
a∈G

xa · a | xa ∈ L, ∀a ∈ G},

with addition and scalar multiplication given componentwise, and multiplication given by

(
∑
a∈G

xa · a)(
∑
b∈G

yb · b) :=
∑

a,b∈G

(xa · a(yb)) · ab.

With the usual L-algebra structure of EndK(L) given by

• (f + g)(l) := f(l) + g(l) for every f, g in EndK(L) and every l in L,

• (f · g)(l) := f(l) · g(l) for every f, g in EndK(L) and every l in L,

• l · f(l′) := f(ll′) for every f in EndK(L) and every l, l′ in L,

we then have an L-algebra homomorphism

j : L<G>→ EndK(L) : xa · a 7→ (l 7→ xa · a(l)),

which provides L with a structure of L<G>-module.

We shall now establish a necessary and sufficient condition under which the map j is an
isomorphism. The proof uses the Dedekind lemma below.

Lemma 4.2.2 (Dedekind). Let K ⊆ L be a field extension. For any K-algebra A, the set

AlgK(A,L) = {f : A → L | f is a K-algebra homomorphism}

is a linearly independent subset of the L-vector space

HomK(A,L) = {f : A → L | f is a K-module homomorphism},

whose structure is given by
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• (f + g)(a) = f(a) + g(a) for every a ∈ A,

• (f · g)(a) = f(a) · g(a) for every a ∈ A,

• (kf)(a) = f(ka) for every a ∈ A and every k ∈ K.

Proof. Suppose that AlgK(A,L) is linearly dependent in HomK(A,L), and consider a linear
combination

n∑
i=1

lifi ≡ 0 with li ∈ L and fi ∈ AlgK(A,L)

such that
i 6= j ⇒ fi 6= fj and li 6= 0 for every i = 1, . . . , n,

in other words such that n is minimal for this dependence relation. Since all fi’s are in
AlgK(A,L), we have

fi(ab) = fi(a) · fi(b) for all i’s and every a, b in A.

It follows that
n−1∑
i=1

(lifi(a) − lifn(a)) · fi(b) =
n∑

i=1

(lifi(a) − lifn(a)) · fi(b)

=
n∑

i=1

lifi(ab) − fn(a)
n∑

i=1

lifi(b)

= 0 for every a, b ∈ A,

so that by minimality of n we have

lifi(a) = lifn(a) for every a ∈ A and i = 1, . . . , n.

Consequently, fi(a) = fn(a) for every a ∈ A and i = 1, . . . , n which contradicts our assumption
and proves the desired result. ¤

Proposition 4.2.3. The map j : L < G >→ EndK(L) is an isomorphism if and only if G is
embedded into AutK(L) (via ϕ) and K ⊆ L is a G-Galois extension.

Proof. (⇐) Assume that G ⊆ AutK(L) and that the extension K ⊆ L is G-Galois; meaning in
particular that the group G is finite. Let

x =
∑
a∈G

xa · a and y =
∑
a∈G

ya · a

be two elements of L<G> such that j(x) = j(y). Since j is L-linear, we have∑
a∈G

xa · j(a) = j(
∑
a∈G

xa · a) = j(
∑
a∈G

ya · a) =
∑
a∈G

ya · j(a). (∗)

Furthermore, every j(a) for a in G is a K-algebra endomorphism of L. This implies, by 4.2.2,
that the set {j(a) | a ∈ G} is linearly independent in EndK(L), so that xa = ya for every a ∈ G
and consequently x = y according to (∗); this proves the injectivity of j.

For the bijectivity, we know that K = LG for a finite group G. Let n := #G be the cardinality
of G. We then have isomorphisms

L<G> ∼= HomL<G>(L<G>,L<G>) ∼= HomL<G>(L⊗n, L⊗n)

∼= HomL<G>(L,L)⊗n2 ∼= [HomL(L,L)G]⊗n2

∼= K⊗n2
,
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so that
n2 = dimKL<G> = dimKL · dimLL<G> = dimKL · n,

and consequently dimKL = n. It follows that

dimKEndK(L) = n2 = dimKL<G>,

so that j is an isomorphism.
(⇒) Assume that j : L < G >→ EndK(L) is an isomorphism. If ϕ : G → AutK(L) was

not injective, there would exist two distinct elements a 6= b in G such that a(l) = b(l) for every
l ∈ L, ie. such that

j(a) = j(1L · a) = j(1L · b) = j(b);

and consequently j would not be injective. From this contradiction, it follows that G embeds in
AutK(L) via ϕ.

Now if the extension K ⊆ L wasn’t G-Galois, there would exist an x ∈ L\K such that
g(x) = x for every g ∈ G, so that for every f ∈ j(L<G>) ∼= EndK(L) we would have

x · f(l) = x · (xa · a(l))a∈G = (xa · x · a(l))a∈G

= (xa · a(x) · a(l))a∈G = (xa · a(xl))a∈G

= f(xl) for every l ∈ L.

This would mean that x commute with every element f of the group EndK(L), in other words
that x would be in the center of EndK(L). The latter being just K this would mean that x
belongs to K, which contradicts our assumption. The extension K ⊆ L is therefore G-Galois. ¤

The next step of the construction is to define a map h which turns out to be dual to j.
As a consequence, the map h becomes an isomorphism under the same necessary and sufficient
condition of 4.2.3.

Definition 4.2.4. The L-algebra
∏

G L is defined to be the set of all maps f : G → L, ie. the
set of all sequences (xa)a∈G in L, endowed with

• addition defined by (f + g)(a) := f(a) + g(a) for every f, g ∈
∏

G L and a ∈ G, ie. by

(xa)a∈G + (ya)a∈G = (xa + ya)a∈G

on sequences,

• multiplication defined by (f · g)(a) := f(a) · g(a) for every f, g ∈
∏

G L and a ∈ G, ie. by

(xa)a∈G · (ya)a∈G = (xaya)a∈G

on sequences, and

• scalar multiplication defined by (l · f)(a) := l · f(a) for every f ∈
∏

G L and l ∈ L, ie. by

l · (xa)a∈G = (lxa)a∈G

on sequences.

With the L-algebra structure on L ⊗K L given by l(x ⊗ y) := lx ⊗ y, where ⊗K denotes the
usual tensor product over the field K, we then have an L-algebra homomorphism

h : L ⊗K L →
∏
G

L : x ⊗ y 7→ (a 7→ x · a(y))a∈G = (x · a(y))a∈G.
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Remark 4.2.5. Since G is finite, we have

L < G >OO

∼=
²²

HomL(L,HomK(L,L)) ∼= EndK(L)

HomL(
∏

G L,L)
j=HomL(h,L) // HomL(L ⊗K L,L),

²²

∼=

OO

so that h is simply the dual of j.

Proposition 4.2.6. The map h : L ⊗K L →
∏

G L is an isomorphism if and only if G is
embedded into EndK(L) (via ϕ) and K ⊆ L is a G-Galois extension.

Proof. From the duality of 4.2.5, h is an isomorphism if and only if j is. The desired result
therefore follows from 4.2.3. ¤

This new interpretation of G-Galois extensions, via the maps j and h, can easily be general-
ized to a good notion of G-Galois extension R ⊆ S of commutative rings. We shall also define
the trace Tr : S → R associated to such an extension.

Definition 4.2.7. We say that an inclusion of commutative rings R ⊆ S is an extension if R
is a subring of S. In this case, the inclusion inc : R ↪→ S is an injective homomorphism of
commutating rings which gives S the structure of an R-algebra whose scalar multiplication is
given by the ring multiplication. In addition, we define

EndR(S) := {f : S → S | f is an R-algebra endomorphism},
AutR(S) := {f : S → S | f is an R-algebra automorphism},

and for a finite subgroup G of AutR(S) we have maps

• i : R ↪→ SG defined to be the inclusion of R into the ring SG of fixed elements of S under
all elements of G, where the elements of R remain fixed under G since

f(r) = f(r · 1) = r · f(1) = r · 1 = r

for every f in G and every r in R.

• j : S <G>→ EndR(S) defined to be the ring homomorphism specified by

j(xa · a)(s) := xa · a(s), as in 4.2.1,

where S <G> has the S-algebra structure given in 4.2.1,

• h : S ⊗R S →
∏

G S defined to be the commutative ring homomorphism specified by

h(x ⊗ y) := (x · a(y))a∈G, as in 4.2.4,

where
∏

G S has the S-algebra structure given in 4.2.4 and ⊗R denotes the usual tensor
product over R.

We then say that R ⊆ S is a G-Galois extension (of commutative rings) if i and h are bijective.
Moreover, for two G-Galois extensions S and S′ of a commutative ring R, we define a

morphism of G-Galois extensions to be an R-algebra homomorphism

ϕ : S → S′



86 4. Galois theory of commutative rings

which is G-equivariant (cf. 2.1.6); in other words such that

ϕ(g · s) = g · ϕ(s) for every s ∈ S, g ∈ G.

This defines the category Gal(R,G) of G-Galois extensions of a commutative ring R.
Finally, for any G-Galois extension of commutative rings R ⊆ S we may define the trace

Tr : S → R by Tr(y) :=
∑
g∈G

g(y),

which is well defined from the following facts:

• The map Tr : S → S is clearly well defined.

• Since R = SG via i, every a in G is R-linear, and consequently Tr is R-linear. Then, for
any r in SG = R we have

Tr(r) = r · Tr(1R) = r · (1R + . . . + 1R︸ ︷︷ ︸
|G| times

) ∈ R,

so that Tr(SG) ⊆ R.

• For any element s in S and any R-algebra automorphism a ∈ G with a(s) 6= s, there is a
unique inverse element a−1 in G such that

a(s) + a−1(s) = a(s) − a(s) = 0S = 0R ∈ R,

so that Tr(S\SG) ⊆ R.

Examples 4.2.8. (1) From what we have done so far (cf. 4.2.3 and 4.2.6), a G-Galois extension
of fields is obviously a special case of a G-Galois extension of commutative rings.

(2) For any commutative ring R, we have a trivial G-Galois extension S =
∏

G R, on which
the action of G ≤ AutR(

∏
G R) is given by

g((xa)a∈G) = (g(xa))a∈G for every g ∈ G, xa ∈ R,

so that i and h are bijective since

S ⊗R S =
∏
G

R ⊗R

∏
G

R ∼=
∏
G

∏
G

(R ⊗R R) ∼=
∏
G

∏
G

R =
∏
G

S.

More generally, any G-Galois extension S of R which is isomorphic to
∏

G R is said to be trivial.

The following result is very useful. It provides few equivalences of the notion of G-Galois
extensions for commutative rings. Other characterizations can be found in [4].

Theorem 4.2.9. Let R ⊆ S be an extension of commutative rings, and G a finite subgroup of
AutR(S) with e := eG = idS. The following conditions are equivalent:

(1) The extension R ⊆ S is G-Galois, ie. the maps i : R ↪→ SG and h : S ⊗R S →
∏

G S are
bijective.

(2) The maps i : R ↪→ SG and h : S ⊗R S →
∏

G S are surjective.

(3) The maps i : R ↪→ SG and j : S < G >→ EndR(S) are bijective and S is a finitely
generated projective R-module.
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(4) The map i : R ↪→ SG is bijective and there exist x1, . . . , xn, y1, . . . , yn in S such that

n∑
i=1

xia(yi) = δa,e =

{
1, if a = e,

0, if a 6= e.

Proof. (2 ⇔ 4) The group G naturally acts on S ⊗R S and
∏

G S by

g(x ⊗ y) = x ⊗ g(y) and g(xa)a∈G = (xag)a∈G

respectively, where G acts on
∏

G S by index shift. It follows that

h(g(x ⊗ y)) = h(x ⊗ g(y)) = (x · ag(y))a∈G = g · (x · a(y))a∈G

= g · h(x ⊗ y),

ie. h is compatible with the G-action given above. Now suppose that

(1S , 0, . . . , 0) ∈ Im(h) ⊆
∏
G

S,

where 1 = 1S is at position e = eG. There exists then an element
∑

i xi ⊗yi in S⊗R S such that

h(
∑

i

xi ⊗ yi) =
∑

i

h(xi ⊗ yi) =
∑

i

(xi · a(yi))a∈G

= (1, 0, . . . , 0);

and consequently ∑
i

(xi · a(yi)) =

{
1 if a = e,

0 if a 6= e.

From the compatibility of the G-action we have

h(g(
∑

i

xi ⊗ yi)) = g(h(
∑

i

xi ⊗ yi)) = (0, . . . , 0, 1︸︷︷︸
gth place

, 0, . . . , 0).

This implies that for any element (za)a∈G in
∏

G S we have

h(
∑
a∈G

za · g(
∑

i

xi ⊗ yi)) =
∑
a∈G

za · h(g(
∑

i

xi ⊗ yi))

=
∑
a∈G

za · (0, . . . , 0, 1︸︷︷︸
gth place

, 0, . . . , 0)

= (za)a∈G,

so that h is surjective. Conversely, if h is surjective then (1, 0, . . . , 0) is clearly an element of
Im(h). In addition, the equivalence between the surjectivity of i and the bijectivity of i is clear.

(1 ⇒ 2) This is trivial.
(2 ⇒ 3) We can assume (4). Let’s first show that S is a finitely generated projective R-

module. Consider the trace

Tr : S → R defined by Tr(x) :=
∑
g∈G

g(x) as in 4.2.7,

and define the maps

ϕi : S −→ R by ϕi := Tr(zyi) for every i = 1, . . . , n.
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We then have

n∑
i=1

xiϕi(z) =
n∑

i=1

xi · Tr(zyi) =
n∑

i=1

∑
a∈G

xi · a(z) · a(yi)

=
n∑

i=1

a(z)
∑
a∈G

xi · a(yi) =
n∑

i=1

a(z) · δa,e

= e(z) = z, for every z ∈ S,

so that the pair (xi, ϕi)n
i=1 forms a dual basis for S. By the dual basis lemma (cf. for example

[15] Lemma 2.9), the R-module S is finitely generated projective.
Now by localization, we may assume that S is a finitely generated free R-module with basis

x′
1, . . . , x

′
n (cf. [16] section X.4 theorem 4.4); and since we can write the preimage of (1, 0, . . . , 0)

under h by
n∑

i=1

xi ⊗ yi =
n∑

i=1

x′
i ⊗ y′

i for appropriate y′
i ’s in S,

we may omit the primes and consider that the xi ’s form a basis for S. From the above calculation
we get

xj =
n∑

i=1

xi · ϕi(xj),

so that

Tr(xjyi) = ϕi(xj) = δi,j (∗)

since (ϕi)n
i=1 is the dual basis of (xj)n

j=1. Consider the matrices

A := (a(xi))a,i and B := (b(yj))j,b .

Then

AB =

(
n∑

i=1

a(xi)b(yi)

)
a,b

= (δa,b)a,b = I

by (4), and

BA =

(∑
a∈G

a(xi)a(yj)

)
i,j

=

(∑
a∈G

a(xiyj)

)
i,j

= (Tr(xiyj))i,j = (δi,j)i,j = I

by (∗). This means that A is an invertible matrix, and consequently that the map j : S <G>→
EndR(S) is an isomorphism.

(3 ⇒ 1) Since S is a finitely generated projective R-module, we may again assume that S is
free over R with basis x1, . . . , xn as above. Again, the map j : S <G>→ EndR(S) is bijective
if and only if the matrix

A = (a(xi))a,i

is invertible. This, by duality, is equivalent to the bijectivity of the map h : S⊗R S →
∏

G S. ¤
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4.3 The example of normal covering maps
We detail here a topological example of the newly established notion of Galois extension.

Definition 4.3.1. Let p : Y → X be an epimorphism in T op. An open set U of X is said to
be evenly covered by p if its inverse image p−1(U) can be written as a disjoint union

p−1(U) =
∐
α∈I

Vα

of open sets Vα in Y , such that the restrictions

{p|Vα : Vα → U}α∈I

are homeomorphisms, ie. isomorphisms in T op. The collection {Vα}α∈I is then a partition of
p−1(U) into slices. If every point x of X has a neighborhood Ux which is evenly covered by p,
then p is a covering map and Y is the covering space of X.

Moreover, two covering maps p : Y → X and p′ : Y → X between the same spaces Y and X
are said to be equivalent if there exists an homeomorphism h : Y → Y such that the diagram

Y

p′

²²
Y p

//

h
∼=

>>~~~~~~~~~
X

commutes; this clearly induces an equivalence relation on the set of all covering maps from Y to
X. We denote by G(p) the group of all homeomorphisms h : Y → Y involved in the equivalent
class of the covering map p : Y → X, whose multiplication is given by composition; G(p) is the
group of deck transformations of p.

Finally, a covering map (or space) p : Y → X is said to be normal, or sometimes regular,
if for every element x in X and every pair of elements y and y′ in p−1(x) ⊆ Y there is a deck
transformation h in G(p) such that h(y) = y′.

Remarks 4.3.2. (1) If p : Y → X is a covering map, then for each x in X the subspace p−1(x)
of Y is discrete since each slice Vα of p−1(Ux) is open in Y and intersects the set p−1(x) in a
single point.

(2) By the unique lifting property of a covering map p : Y → X, ie. the fact that a
commutative square

{0} //

²²

Y

p

²²
Z

f
//

∃!f ′
>>}

}
}

}
}

X

of morphisms in T op with Z path connected, has a unique lift f ′ : Z → Y (cf. [11] proposition
1.34), a deck transformation h : Y → Y is completely determined by where it sends a single
point assuming that Y is path connected. In particular, only the identity deck transformation,
ie. the unit element in G(p), can fix a point of Y .

Example 4.3.3. The map
p : R → S1 : x 7→ e2πix

is a normal covering map. As even covering of S1, we can take

U = { S1\{1}, S1\{−1} }.
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The inverse images of its elements are

p−1(S1\{1}) =
⋃
n∈Z

(n, n + 1) and p−1(S1\{−1}) =
⋃
n∈Z

(n − 1/2, n + 1/2),

so that the restrictions

p|(n,n+1) : (n, n + 1) → S1\{1} and p|(n−1/2,n+1/2) : (n − 1/2, n + 1/2) → S1\{−1}

are effectively homeomorphisms. For this covering map, which projects a vertical helix onto a
circle, the deck transformations are the vertical translations taking the helix onto itself; more
formally these are the homeomorphisms

h : R → R : x 7→ x + n with n ∈ Z,

so that G(p) ∼= Z in this case. The normality of p is then clear.

The term "normal" for covering spaces is motivated by the following result (cf. [11] propo-
sition 1.39) that we won’t be needing here.

Proposition 4.3.4. Let p : (Y, y0) → (X,x0) be a covering map from path-connected covering
pointed space (Y, y0) to a path-connected and locally path-connected pointed space (X,x0). Let
H be the subgroup

H := π1p(π1(Y, y0)) ≤ π1(X,x0),

where π1 : T op∗ → Gr denotes the usual fundamental group functor from the category of pointed
spaces to the category of groups.

(1) The covering map p is normal if and only if H is a normal subgroup of π1(X,x0).

(2) The group G(p) is isomorphic to the quotient N(H)/H, where N(H) denotes the normal-
izer of H in π1(X,x0).

In particular, if p is normal then G(p) is isomorphic to π1(X,x0).

Definition 4.3.5. Given an action of a group G on a space Y , we can form the quotient space
Y/G in which each point y of Y is identified with every element of its orbit

Gy = {g · y | g ∈ G}.

The topological space Y/G is the orbit space of the action, to which we associate its orbit
projection

π : Y → Y/G defined by π(y) = Gy.

Proposition 4.3.6. Let p : Y → X be a covering map from a path-connected covering space.

(1) The action of the deck transformation group G(p) on Y is such that every y ∈ Y has a
neighborhood U which satisfy

g1(U) ∩ g2(U) 6= ∅ ⇒ g1 = g2 for every g1, g2 ∈ G(p);

in other words all the images g(U) for g ∈ G(p) are disjoint in Y .

(2) The associated orbit projection π : Y → Y/G(p) is a normal covering map whose group of
deck transformations is G(p).
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Proof. (1) Let y be an element of Y and U be a neighborhood of y in Y which project homeo-
morphically via p to an open set V in X. If g1(U) ∩ g2(U) 6= ∅ for some deck transformations
g1, g2 ∈ G(p), then there exist elements x1, x2 in U such that g1(x1) = g2(x2). Since x1 and x2

must lie in the same set p−1(x) for an x in X, and that p−1(x) intersects U in only one point,
we must have x1 = x2 in U . It follows that g−1

1 g2 fixes the point x1 = x2, so that g−1
1 g2 = id

by 4.3.2.(2), and consequently g1 = g2.
(2) Let U ⊆ Y be as in (1). Then π : Y → Y/G(p) simply identifies all the disjoint

homeomorphic sets {g(U)}g∈G(p) to a single open set π(U) in Y/G(p). By definition of the
quotient topology on Y/G(p), all restrictions

π|g(U) : g(U) −→ p(U) for g ∈ G(p)

are homeomorphisms, so that π is a covering space. Furthermore, each element of G(p) acts as
a deck transformation for π, so that G(p) ⊆ G(π). In addition, the covering map π is normal
since for every elements g1, g2 in G(p) the map g2g

−1
1 takes g1(U) to g2(U).

It remains to show the inclusion G(π) ⊆ G(p). If f is an element of G(π), then for any y in
Y the points y and f(y) are in the same orbit. There is then a deck transformation g ∈ G(p)
such that g(y) = f(y). Since Y is path-connected, it follows by 4.3.2.(2) that f = g ∈ G(p), and
consequently G(π) ⊆ G(p). ¤

Proposition 4.3.7. Let p : Y → X be a normal covering map from a path-connected covering
space whose group of deck transformations G(p) is finite, and consider the canonical morphism

ξ : Y × G(p) // Y ×X Y : (y, g) 7→ (y, g(y))

in T op induced by the pullback diagram

Y × G(p) ξ2

ÁÁ

ξ1

**

ξ

%%LLLLLL

Y ×X Y //

²²

Y

p

²²
Y p

// X,

where

• G(p) is given the discrete topology,

• ξ1 : (y, g) 7→ y the canonical projection, and

• ξ2 : (y, g) 7→ y · g the right action of G(p) on Y .

Then ξ is an homeomorphism, ie. an isomorphism in T op.

Proof. From the fact that the covering map p is normal, it follows that ξ is surjective. In
addition,

ξ(y, g) = ξ(y′, g′) ⇔ (y, g(y)) = (y′, g′(y′))
⇔ y = y′ and g(y) = g′(y)
⇔ y = y′ and g = g′,

where the last equivalence is a consequence of 4.3.2.(2) and the path-connectedness of Y . The
morphism ξ is therefore injective. ¤
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Construction 4.3.8. Let p : Y → Z be a covering map whose covering space Y is a path-
connected compact Hausdorff space and whose group of deck transformations G = G(p) is finite.
From 4.3.6 we know that its associated orbit projection π : Y → X := Y/G is a normal covering
map whose group of deck transformations is G, and from 4.3.7 that the induced morphism

ξ : Y × G // Y ×X Y

in T op, with G endowed with the discrete topology, is an isomorphism.
Dually, let R := C(X) and S := C(Y ) be the commutative rings of real continuous functions

on X and Y respectively. From a standard result of algebra, we have isomorphisms

X ∼= {maximal ideals of R} and Y ∼= {maximal ideals of S}.

The group G acts on S from the left by

G × S → S : (g, s) 7→ g ∗ s,

where
g ∗ s : Y → R is defined by (g ∗ s)(y) := s(g(y)),

and the canonical map C(π) : R → T dual to π identifies R with the invariant ring SG via the
isomorphism

SG = C(Y )G ∼= C(Y/G) = C(X) = R.

The map ξ is therefore dual to the canonical homomorphism

h : S ⊗R S →
∏
G

S : s ⊗ s 7→ (g 7→ s · g(t)) = (s · (g ∗ t))g∈G

via
C(Y )

²² ((QQQQQQQQQQQQQQQ

C(X)

C(π)

77ppppppppppppp

C(π)
''NNNNNNNNNNNNN

C(Y ) ⊗C(X) C(Y ) ∃! //___ C(Y ×X Y )
C(ξ) // C(G × Y )

C(Y )

OO 66mmmmmmmmmmmmmmm

since

C(Y ) ⊗C(X) C(Y ) = S ⊗R S and C(G × Y ) = C(
∏
G

Y ) ∼=
∏
G

C(Y ) =
∏
G

S.

Finally, since ξ is an isomorphism, the morphism h is an isomorphism via the antiequivalence
between the category of compact Hausdorff spaces and the category of commutative rings.

4.4 Faithful flatness

In this section, we shall study under which condition the functor T ⊗R −, for an R-algebra T,
preserves and reflects a G-Galois extension R ⊆ S. This condition is the faithful flatness of T .
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Definition 4.4.1. Let R be a commutative ring. We say that an R-module M is flat over R if
the functor

M ⊗R − : ModR → ModR

is exact, ie. it preserves exact sequences. On the other hand, we say that M is faithful over R if
the above functor reflects exact sequences, ie. the inverse image of an exact sequence is exact; or
equivalently if M/mM 6= 0 for every maximal ideal m of R. If these two conditions are satisfied
for M , we say that M is faithfully flat over R.

Lemma 4.4.2. Let R be a commutative ring, M a faithfully flat R-module, and ϕ : A → B an
homomorphism of R-modules. Then ϕ is an isomorphism if and only if the induced morphism

M ⊗R ϕ : M ⊗R A → M ⊗R B

is an isomorphism. This statement remains true if we replace both occurrences of "isomorphism"
by either "monomorphism" or "epimorphism".

Proof. An homomorphism of R-modules ϕ : A → B is an isomorphism if and only if we have an
exact sequence

0 // A
ϕ // B // 0. (∗)

This sequence is sent by the functor M ⊗R − to the sequence

0 // M ⊗R A
M⊗Rϕ // M ⊗R B // 0, (∗∗)

which is in turn exact by the flatness of M , so that M ⊗R ϕ is an isomorphism. To show the
converse, it suffices to use the same argument in reverse order, using this time the faithfulness
of M .

In order to show the last statement, we can proceed the same way after replacing the se-
quences (∗) and (∗∗) by respectively the sequences

0 // A
ϕ // B and 0 // M ⊗R A

M⊗Rϕ // M ⊗R B

for monomorphisms, and the sequences

A
ϕ // B // 0 and M ⊗R A

M⊗Rϕ // M ⊗R B // 0

for epimorphisms. ¤

Proposition 4.4.3. Let R be a commutative ring, T an R-algebra which is faithfully flat as an
R-module, and let S be a commutative ring extension of R endowed with a G-action for a finite
group G which acts on S by R-automorphisms. If T⊗RS is a G-Galois extension of T ∼= T⊗RR,
then S is a G-Galois extension of R.

Proof. Since T is flat, the canonical injection of commutative rings

0 Â Ä // R
Â Ä inc // S

induces by 4.4.2 an injection of R-algebras

0 Â Ä // T ⊗R R
Â Ä T⊗inc // T ⊗R S,
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so that the R-algebra T = T ⊗R R can be considered as a subalgebra of T ⊗R S. Consider
the map h : S ⊗R S →

∏
G S associated with the commutative ring extension R ⊆ S, and the

isomorphism
hT : (T ⊗R S) ⊗T (T ⊗R S) // ∏

G(T ⊗R S)

associated with the G-Galois extension T ⊆ T ⊗R S. Notice that hT
∼= T ⊗R h since

T ⊗R (S ⊗R S) ∼= (T ⊗R S) ⊗R S ∼= (T ⊗R S) ⊗T (T ⊗R S)

and
T ⊗R

∏
G

S ∼=
∏
G

(T ⊗R S).

This, with 4.4.2, implies that h is an isomorphism. In addition, we have

T ⊗R R ∼= T ∼= (T ⊗R S)G ∼= TG ⊗R SG = T ⊗R SG

since T ⊆ T ⊗R S is a G-Galois extension. It follows that we have an isomorphism

T ⊗R R
∼= // T ⊗R SG

which, by 4.4.2, induces an isomorphism R ∼= SG. ¤

Lemma 4.4.4. Any G-Galois extension of commutative rings R ⊆ S is faithfully flat over R.

Proof. By 4.2.9.(3), S is a projective R-module so that the functor S ⊗R − is exact and conse-
quently S is flat over R (cf. for example [18] section 2.4).

Now let m be a maximal ideal of R, and define

Rm := (R\m)−1R and Sm := (S\m)−1S

to be localizations of R and S respectively (cf. for example [16] section II.4). We then have
Rm ⊆ Sm, and since Rm 6= {0} it follows that Sm 6= {0}. This, by Nakayama Lemma (cf. for
example [16] section X.4), implies that S/mS 6= {0}; or equivalently that S is faithful over R. ¤

Lemma 4.4.5. Let R ⊆ S be a G-Galois extension of commutative rings, and consider the trace

Tr : S → R defined by Tr(y) :=
∑
g∈G

g(y) as in 4.2.7.

Then:

(1) The trace Tr : S → R is surjective.

(2) The R-submodule R of S is a direct summand of S.

Proof. (1) Consider the diagonal ring

∆(S) := {(xa)a∈G ∈
∏
G

S | xa = xb, ∀a, b ∈ G}.

We have a commutative diagram

S ⊗R S
h
∼=

//

S⊗RTr

²²

∏
G S

TrS

²²
S ⊗R R

k
∼=

// ∆(S),
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where h is an isomorphism by assumption, where the map k : s⊗ r 7→ (sr, . . . , sr) is an isomor-
phism via the obvious isomorphisms

S ⊗R R ∼= S ∼= ∆(S),

and where
TrS : (xa)a∈G

Â //
∑

g∈G g(xa)a∈G =
∑

g∈G(g(xa))a∈G

is the trace associated to the trivial G-Galois extension S ⊆
∏

G S (cf. 4.2.8.(2)) which, by the
way G acts on

∏
G S, gives

TrS(x, 0, . . . , 0) = (x, . . . , x) for every x ∈ S.

In particular, TrS is surjective, so that S⊗R Tr is surjective as well via the isomorphisms h and
k. Now from 4.4.4 we know that S is faithfully flat over R, which means that Tr is surjective.

(2) We have a short exact sequence

0 // R
inc // S // M // 0, (∗)

and by (1) we can choose an element c in S such that Tr(c) = 1R. Define the homomorphism

r : S −→ R by r(x) = Tr(cx).

Since

(r ◦ inc)(x) = r(x) = Tr(cx) =
∑
a∈G

a(cx) =
∑
a∈G

a(c)a(x)

=
∑
a∈G

a(c)x = (
∑
a∈G

a(c)) · x = Tr(c) · x = x

= id(x),

it follow that r is a retraction in (∗), so that S ∼= R ⊕ M as desired. ¤

Proposition 4.4.6. Let R ⊆ S be a G-Galois extension of commutative rings, and T an R-
algebra which is faithfully flat as an R-module. Then T ⊆ T ⊗R S is again a G-Galois extension.

Proof. We already saw in the proof of 4.4.3 that the map

hT : (T ⊗R S) ⊗S (T ⊗R S) // ∏
G T ⊗R S

is an isomorphism since hT
∼= T ⊗R h and h : S⊗R S →

∏
G S is an isomorphism by assumption.

By 4.4.5.(2), there exists an R-module M such that R ⊕ M ∼= S, so that

T ⊗R S ∼= T ⊗R (R ⊕ M) ∼= (T ⊗R R) ⊕ (T ⊗R M) ∼= T ⊕ (T ⊗R M).

This means that T is a direct summand of T ⊗R S as well. In particular T embeds into T ⊗R S.
Now consider the trace Tr : S → R and choose an element c in S such that Tr(c) = 1R as

in 4.4.5. Let x be an element of (T ⊗R S)G. Then

x = (T ⊗R Tr)(1R ⊗ c) · x =
∑
a∈G

(1R ⊗ a(c)) · x

=
∑
a∈G

(T ⊗R a)[(1R ⊗ c) · x] = (T ⊗R Tr)[(1R ⊗ c)x]

∈ Im(T ⊗R Tr) = T ⊗R R = T,

so that the map iT : T → (T ⊗R S)G is surjective. The desired result now follows from 4.2.9. ¤
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Conclusion 4.4.7. We can summarize 4.4.3 and 4.4.6 in the following way:

Let R ⊆ S be an extension of commutative rings, G a finite group which acts on S by R-
automorphisms, and let T be an R-algebra which is faithfully flat as an R-module. Then S is a
G-Galois extension of R if and only if T ⊗R S is a G-Galois extension of T ∼= T ⊗R R.

4.5 Galois correspondence for commutative rings

In this section, we establish the main result of the Galois theory of commutative rings for the
case of connected commutative rings (cf. definition 4.5.3) as developed in [4]. Because this result
should be a generalization of 4.1.5, it would be tempting to find a bijection

{subgroups of G} oo // {R-subalgebras of S}

for any G-Galois extension of commutative rings R ⊆ S, where S has the canonical R-algebra
structure given by the inclusion R ↪→ S. This however is not possible. To see why, it suffices to
consider the example where

R = Z and S =
∏
G

R = R × R = Z × Z

is the trivial G-Galois extension with a group G of cardinality two: While the commutative ring
S has an infinite number of R-algebras, the group G only has two subgroups (namely G and
{eG}). In order to obtain a satisfying result, we need a more general notion of separability (than
the one given in 4.1.1).

Definition 4.5.1. Let R be a commutative ring. An R-algebra S is separable over R if S is
projective as an (S ⊗R S)-module whose structure is given by

(s ⊗ t) · x := sxt for s, t, x ∈ S with (s ⊗ t) ∈ (S ⊗R S).

Example 4.5.2. If K ⊆ L is a finite field extension, then L is a separable K-algebra if and
only if the extension K ⊆ L is separable in the sense of 4.1.1.

Definition 4.5.3. An element e of a ring is said to be idempotent if e2 = e. Furthermore, we
say that a ring is connected when its only idempotent elements are its units 0 and 1.

In order for theorem 4.5.6 to fully generalize 4.1.5, it is essential to check that every field is
connected. The following proposition guaranties that this is indeed the case.

Proposition 4.5.4. If a ring is not connected, then it is not entire. In particular, every field
is connected.

Proof. Let e be an idempotent element of a ring R which is not zero or one. Since e2 = e, we
have e(1−e) = 0. From the fact that 1 6= e 6= 0 it follows that e 6= 0 6= 1−e so that the elements
e and 1− e are zero divisors of R, ie. R is not entire. The second assertion follows from the fact
that a field is entire by definition. ¤

Using yet another characterization of a Galois extension provided by [4] (cf. [4] thm 1.3)
which we state below (cf. 4.5.5), we may extend theorem 4.1.5 to connected commutative rings.



4.5. Galois correspondence for commutative rings 97

Lemma 4.5.5. Let R ⊆ S be an extension of commutative rings, and let G be a finite subgroup
of AutR(S) such that SG = R. Then R ⊆ S is a G-Galois extension if and only if S is separable
over R and, for any non-zero idempotent element e ∈ S and any a, b ∈ G with a 6= b, there exists
an element s in S such that

e · a(s) 6= e · b(s).

Theorem 4.5.6 (Galois theorem for connected commutative rings). Let R ⊆ S be a G-Galois
extension of commutative rings with S connected.

(A) Let H ≤ G be a subgroup of G, and let U := SH be the subalgebra of H-invariant elements
of S. Then

(1) U is separable over R,

(2) S is an H-Galois extension of U ,

(3) H = {g ∈ G | g(u) = u, ∀u ∈ U},
(4) if H is a normal subgroup of G, then U is a G/H-Galois extension of R.

(B) Conversely, if R is connected and U ⊆ S is a separable R-subalgebra of S, then there
exists a subgroup H of G such that

U = SH and H = {g ∈ G | g(u) = u, ∀u ∈ U}.

Proof. (A.2) Since S is a G-Galois extension of R, 4.2.9.(4) is satisfied and we can choose
elements x1, . . . , xn, y1, . . . , yn in S such that

n∑
i=1

xia(yi) = δa,e with a ∈ G and e = eG.

Obviously, this equality remains true for every a in H. This, with the fact that U = SG, implies
that the corresponding condition 4.2.9.(4) for the extension U ⊆ S is satisfied and theorem 4.2.9
makes it then an H-Galois extension.

(A.1) By (A.2) and 4.2.9.(3), the U -module S is projective, so that S ⊗R S is projective over
U ⊗R U . Applying (A.2) and 4.5.5, it follows that S is projective over S ⊗R S and consequently
over U ⊗R U . By 4.4.5.(2), U is a direct summand of S as a U -module, and consequently as a
U ⊗R U -module. This means that U is projective over U ⊗R U .

(A.3) Let
H ′ := {g ∈ G | g(u) = u, ∀u ∈ U}.

Since U = SH by definition, the inclusion H ⊆ H ′ is clear. Furthermore, by definition of H ′ we
have

sH′
= U = SH .

Applying (A.2) to (U,H) and (U,H ′), we obtain an H-Galois extension S of U and an H ′-Galois
extension S of U , so that ∏

H

S ∼= S ⊗U S ∼=
∏
H′

S

via the corresponding maps

hH : S ⊗U S −→
∏
H

S and hH′ : S ⊗U S −→
∏
H′

S.

This force H and H ′ to have the same cardinality, ie. H = H ′.
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(A.4) Suppose that H is a normal subgroup of G. The quotient group G/H acts on U = SH

by
aH · u = a(u) with a ∈ G and u ∈ U,

since every element of U remains fixed under H, and therefore

UG/H = UG = (SH)G = SG = R. (∗)

By 4.2.9, there are elements x1, . . . , xn, y1, . . . , yn in S such that

n∑
i=1

xia(yi) = δa,e for every a, e ∈ G with e = eG.

Let c ∈ S be a preimage of 1 = 1R via the trace Tr : S → R (cf. 4.4.5), so that∑
a∈H

a(c) = 1,

and define
x′

i :=
∑
a∈H

a(xic) and y′
i :=

∑
a∈H

a(yi) for i ≤ n.

Then all x′
i ’s and y′

i ’s are in SH = U since

h(x′
i) =

∑
a∈H

ha(xic) =
∑
a∈H

a(xic) = x′
i,

and h(y′
i) =

∑
a∈H

ha(yi) =
∑
a∈H

a(yi) = y′
i.

A direct calculation then shows that for any g ∈ G

n∑
i=1

x′
ig(y′

i) =

{
1 if g ∈ H,

0 if g 6∈ H.

This implies that the R-algebra U with acting group G/H would satisfy 4.2.9.(4) if the map

iU : R
Â Ä // UG/H

was bijective. This however is a direct consequence of (∗), so that U is a G/H-Galois extension
of R by 4.2.9.

(B) The argument uses the theory of separability, which we don’t want to develop here, in
an essential way. A proof of this result can be found in [4] as theorem 2.2.a. ¤

Conclusion 4.5.7. For any G-Galois extension of commutative rings R ⊆ S with S connected,
we have a bijection

{subgroups of G} oo // {separable R-subalgebras of S},

with correspondences
H

Â // SH GU U,Âoo

where

SH = {s ∈ S | h(s) = s, ∀h ∈ H},
GU = {g ∈ G | g(u) = u, ∀u ∈ U}.



4.5. Galois correspondence for commutative rings 99

This correspondence preserves the action of G in the sense that for a separable R-subalgebra U
of S and an element g of G we have

Gg(U) ∼= gUg−1.

Consequently, a subgroup H of G is normal in G if and only if

g(SH) ∼= Gg(SH) ∼= gSHg−1 ∼= gHg−1 = H = SH for every g ∈ G,

and this if and only if
g(SH) = SH for every g ∈ G,

in which case SH is a G-Galois extension of R. By 4.5.4, this generalizes the Galois theorem for
fields as stated in 4.1.5.
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Chapter 5

Homotopic Hopf-Galois extensions

We now extend the notion of Galois extensions of commutative rings, developed within the
context of a particular monoidal model category, to monoidal model categories in general. More
precisely, we shall view a G-Galois extension of commutative rings f : R → S as a morphism
of commutative monoids, in the monoidal category (Ab,×, {∗}), where the group G becomes a
particular kind of commutative monoid H (namely, a commutative Hopf monoid). The G-action
on S then becomes the H-coaction of S over R, and the G-Galois extension f an homotopic
H-Hopf-Galois extension which we shall more concisely call an H-Hopf-Galois extension. As
soon as these notions are established, we shall attempt to generalize the theory of chapter 4 to
this new context.

We start, in section 5.1, by establishing the notion of H-Hopf-Galois extension f : A → B.
This will be done by means of the coequalizer B⊗AB and the totalization of a fibrant replacement
of the generalized cobar complex C•(H;B), giving rise to two morphisms

h : B ⊗A B −→ B ⊗ H and i : A −→ C(H;B)

which correspond to the morphisms h and i defined in 4.2.7. We shall then provide the example
of the trivial H-Hopf-Galois extensions A → A⊗H, as well as a characterization of an H-Hopf-
Galois extension A → B in terms of its Amitsur complex C(B/A) and a canonical morphism
η : A → C(B/A).

In section 5.2, we establish a new notion of faithfulness that corresponds to what was defined
in 4.4 for commutative rings. After introducing dualizablility and faithfulness, and studying
some of their basic properties, we shall characterize H-Hopf-Galois extensions in terms of these
two notions.

Section 5.3 provides an answer to the question: When is an H-Hopf-Galois extension g :
A → C preserved and/or reflected under a functor B ⊗A − for an A-module B? The answer is
indeed accessible and might be formulated in terms of dualizablility and faithfulness.

We terminate the chapter, in section 5.4, by suggesting what might be the next step towards
the development of this general theory of Hopf-Galois extensions. More precisely, the goal would
be to demonstrate a Hopf-Galois correspondence theorem that would encompass 4.1.5 and 4.5.6.

5.1 The notion of Hopf-Galois extension

In this section, we mainly establish the notion of Hopf-Galois extension, provide an example (the
trivial Hopf-Galois extension), and demonstrate another characterization of that notion similarly
to what has been done in chapter 4.2 (the example was 4.2.8.(2) and the characterization 4.2.9).

101
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Throughout the section, we work within a cofibrantly generated (closed symmetric) monoidal
model category C = (C,⊗, 1) as defined in chapter 2. We shall consider a commutative monoid
A = (A,µA, ηA) in C, and a commutative A-algebra B = (B,µB , ηB , αAB) in the category cAlgA

of commutative A-algebras, where

• µB : B ⊗ B → B is the multiplication of B as defined in 2.1.4,

• ηB : 1 → B is the unit of B as defined in 2.1.4,

• αAB : A ⊗ B → B is the action of A on B as defined in 2.1.6.

In the category of A-modules (and in particular of A-algebras), we have a tensor product
over A, denoted ⊗A, which is defined as the coequilazer induced from the left and right actions
of A on each factor (cf. 2.1.8). In particular, we have a multiplication

µA
B : B ⊗A B −→ B

of B over A, which is induced by µB : B⊗B → B from the universal property of the coequalizer
B ⊗A B in the following way.

B ⊗ A ⊗ B
--
11 B ⊗ B

coeq //

µB

%%KKKKKKKKKKKK B ⊗A B

∃!µA
B

²²Â
Â
Â

B

We shall also assume the existence of a unit ηA
B : A → B which makes the diagram

A ⊗A B
ηA

B⊗AidB// B ⊗A B

µA
B

²²

B ⊗A A
idB⊗AηA

Boo

B
%%

∼=

eeLLLLLLLLLLLL yy
∼=

99rrrrrrrrrrrr

commute in the category of A-modules.
Besides A and B, we also need to consider a third ingredient, that of a commutative Hopf

monoid as defined below. We shall denote it H.

Definition 5.1.1. A (commutative) Hopf monoid H = (H,µH , ηH , δH , εH) in C is a (commu-
tative) monoid H = (H,µH , ηH) in C equipped with a counit εH : H → 1 and a coproduct
δH : H → H ⊗ H, in the category of (commutative) C-monoids, which make the following
diagrams commute

H
δH // H ⊗ H

δH⊗idH // (H ⊗ H) ⊗ H

∼=
²²

H
δH // H ⊗ H

idH⊗δH // H ⊗ (H ⊗ H)

H::
λH

∼=
zzttttttttttt dd

ρH

∼=
$$JJJJJJJJJJJ

δH

²²
1 ⊗ H H ⊗ H

εH⊗idH

oo
idH⊗εH

// H ⊗ 1

the first diagram being the coassociativity and the second the counity of H.
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Remark 5.1.2. We are not assuming that the coproduct δH is cocommutative; in the sense
that we don’t necessarily have

sym ◦ δH
∼= δH ,

where sym denotes the morphism that permutes both factors of H ⊗ H.

Now that the three ingredients A, B and H have been defined, we need them to be related
in some way. The first two are already related by the action αAB. Similarly, we shall relate H
to A and B by a coaction βHB of H on B viewed as a module over A.

Definition 5.1.3. We say that H coacts on B over A if there is a morphism

βHB : B −→ B ⊗ H

in the category cAlgA of commutative A-algebras, where B ⊗ H has the canonical A-algebra
structure induced by the A-algebra structure of B, such that the two following conditions are
satisfied:

• The following diagram commutes.

B
βHB // B ⊗ H

idB⊗δH // B ⊗ (H ⊗ H)

∼=
²²

B
βHB // B ⊗ H

βHB⊗idH //

idB⊗εH

²²

(B ⊗ H) ⊗ H

B ⊗ 1
""

∼=

bbEEEEEEEEEE

The commutativity of the large rectangle is the coassociativity and the commutativity of
the lower triangle the counity.

• The morphism
h : B ⊗A B −→ B ⊗ H

defined to be the composition

B ⊗A B
idB⊗AβHB // B ⊗A (B ⊗ H)

∼=
²²

(B ⊗A B) ⊗ H
µA

B⊗idH // B ⊗ H

is a cofibration in C.

The next step is to establish the notion of the totalization of a cosimplicial object in cosC;
it involves, once again, the notion of equalizer as defined in 2.1.8.

Definition 5.1.4. Let X : ∆ → C be a cosimplicial object. The totalization or total object
Tot(X) of X is the object of C defined to be the equalizer of the maps

Tot(X) //
∏

[n]∈Ob∆ [∆[n], Xn]
ϕ //

ψ
//
∏

f :[n]→[k]∈Mor∆ [∆[n], Xk],

where
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• [∆[n],−] is the adjoint of the functor

−⊗ ∆[n] : cosC −→ cosC,

where the tensor product is defined relative to the functorial reedy cosimplicial frame on
C∆op

as defined in [12].16.7.8,

• ϕ :=
∏

f ϕf , with ϕf defined for every f : [n] → [k] ∈ Mor∆ as

ϕf := [id∆[n], X(f)] : [∆[n], Xn] −→ [∆[n], Xk],

• ψ :=
∏

f ψf , with ψf defined for every f : [n] → [k] ∈ Mor∆ as

ψf := [f∗, idXk ] : [∆[k], Xk] −→ [∆[n], Xk],

with
f∗ : ∆[n] −→ ∆[k] : g 7→ f ◦ g.

Remark 5.1.5. According to [12] thm 18.6.6.(2) and 18.6.7.(2), we have a functor

Tot(−) : cosC −→ C,

called the totalization functor, which preserves weak equivalences between fibrant objects, where
fibrations, cofibrations and weak equivalences of cosimplicial objects respectively refer to reedy
fibrations, reedy cofibrations and reedy weak equivalences as defined in [12].15.3.3.(3). In par-
ticular, a cosimplicial map is a weak equivalence of cosC if and only if it is a weak equivalence
of C in each of its codegrees.

The totalization functor may be applied to a cosimplical object called the Hopf cobar complex
of B over A. This gives rise to an object C(H;B) and a map i : A −→ C(H;B) in C which we
shall use to establish the notion of Hopf-Galois extension.

Definition 5.1.6. Suppose that H coacts on B over A. The Hopf cobar complex C•(H;B) is
the cosimplicial commutative A-algebra

C•(H;B) : ∆ −→ cAlgA

with

• C•(H;B)n = Cn(H;B) := B ⊗ H ⊗ . . . ⊗ H︸ ︷︷ ︸
n times

in each codegree n,

• the coface maps di : Cn(H;B) → Cn+1(H;B) defined in each codegree n by

di :=


βHB ⊗ id⊗n

H , for i = 0,

idB ⊗ id⊗i−1
H ⊗ δH ⊗ id⊗n−i

H , for 0 < i < n,

idB ⊗ id⊗n
H ⊗ ηH , for i = n,

• the codegeneracy maps si : Cn(H;B) → Cn−1(H;B) defined in each codegree n by

si :=


αHB ⊗ id⊗n−1

H , for i = 0,

idB ⊗ id⊗i−1
H ⊗ εH ⊗ id⊗n−i

H , for 0 < i < n,

idB ⊗ id⊗n−1
H ⊗ εH , for i = n.
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Furthermore, we suppose the existence of a functorial fibrant replacement RC•(H;B) (cf. 1.4.2)
of C•(H;B) in the category of cosimplicial commutative A-algebras, and we define

C(H;B) := Tot(RC•(H;B))

to be its totalization. The algebra unit ηA
B : A → B induces a coaugmentation

coaug : A −→ C•(H;B),

which is the morphism of cosimplicial commutative A-algebras, with A seen as the constant
cosimplical commutative A-algebra, defined in each codegree n as

coaugn := ηA
B ⊗ η⊗n

H .

Upon totalization of the induced map A → RC•(H;B), this coaugmentation induces a morphism
of commutative A-algebras

i : A −→ C(H;B).

Remark 5.1.7. Let H be the category of right H-comodules in the category of commutative
A-algebras, and let cAlgA denote the category of commutative A-algebras. By 5.1.5 and the
functoriality of R, we have a functor

C(H;−) : H −→ cAlgA

which preserves weak equivalences.

We are now in position to generalize Galois extensions of commutative rings, as studied in
chapter 4, to the context of the monoidal category C.

Definition 5.1.8. A morphism f : A → B of commutative monoids in C, where the commutative
monoid B is given the natural A-algebra structure induced by f , is an homotopic H-Hopf-Galois
extension, or more concisely an H-Hopf-Galois extension, if H is a commutative Hopf monoid
which coacts on B over A such that the induced maps

h : B ⊗A B −→ B ⊗ H and i : A −→ C(H;B)

are weak equivalences in C.

Remark 5.1.9. From the assumption made on h in 5.1.3, if f is an H-Hopf-Galois extension,
then h is in fact an acyclic cofibration.

Example 5.1.10. The map

f = idA ⊗ ηH : A −→ A ⊗ H

is a H-Hopf-Galois extension, provided the induced morphisms

i : A → C(H;A ⊗ H) and (µH ⊗ idH) ◦ (idH ⊗ δH)

are weak equivalences. Indeed, the object A ⊗ H is a commutative monoid in C, whose multi-
plication and unit morphisms are respectively given by

µ(A⊗H) : A ⊗ H ⊗ A ⊗ H
∼= // A ⊗ A ⊗ H ⊗ H

µA⊗µH // A ⊗ H,

so that µA
(A⊗H) : (A ⊗ H) ⊗A (A ⊗ H)

∼= // A ⊗ H ⊗ H
idA⊗µH// A ⊗ H,

and by η(A⊗H) : 1 ηA // A
idA⊗ηH// A ⊗ H,

because
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• the diagram

(A ⊗ H ⊗ A ⊗ H) ⊗ A ⊗ H

∼=
²²

µ(A⊗H)⊗id(A⊗H) // A ⊗ H ⊗ A ⊗ H
µ(A⊗H) // A ⊗ H

A ⊗ H ⊗ (A ⊗ H ⊗ A ⊗ H)
id(A⊗H)⊗µ(A⊗H) // A ⊗ H ⊗ A ⊗ H

µ(A⊗H) // A ⊗ H

commutes, since it can be decomposed as

(A ⊗ H)⊗3
idA⊗sym⊗idH⊗idA⊗idH//

idA⊗idH⊗idA⊗sym⊗idH

²²

A⊗2 ⊗ H⊗2 ⊗ A ⊗ H
µA⊗µH⊗idA⊗idH //

(534)∈S6

²²

(A ⊗ H)⊗2

idA⊗sym⊗idH

²²
A ⊗ H ⊗ A⊗2 ⊗ H⊗2

(243)∈S6 //

idA⊗idH⊗µA⊗µH

²²

A⊗3 ⊗ H⊗3
µA⊗idA⊗µH⊗idH //

idA⊗µA⊗idH⊗µH

²²

A⊗2 ⊗ H⊗2

µA⊗µH

²²
(A ⊗ H)⊗2

idA⊗sym⊗idH // A⊗2 ⊗ H⊗2
µA⊗µH // A ⊗ H,

where the upper left square commutes by permutation of the symmetric group S6, the
upper right and the lower left squares commute by the naturality of the symmetry sym
which permutes two factors, and where the lower right square is made up of the two
diagrams

(A ⊗ A) ⊗ A

∼=
²²

µA⊗idA // A ⊗ A
µA // A (H ⊗ H) ⊗ H

∼=
²²

µH⊗idH // H ⊗ H
µH // H

A ⊗ (A ⊗ A)
idA⊗µA // A ⊗ A

µA // A H ⊗ (H ⊗ H)
idH⊗µH // H ⊗ H

µH // H

which commute by assumption, and

• the diagram

1 ⊗ A ⊗ Hii

λA⊗H

∼=

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
ηA⊗id(A⊗H) // A ⊗ A ⊗ H

idA⊗ηH⊗id(A⊗H)// A ⊗ H ⊗ A ⊗ H

∼=
²²

A ⊗ A ⊗ H ⊗ H

µA⊗µH

²²
A ⊗ H

commutes since it is made up of the commutative diagrams

1 ⊗ Add

λA

∼=

$$HHHHHHHHHHH
ηA⊗idA// A ⊗ A

µA

²²

1 ⊗ Hdd

λH

∼=

$$IIIIIIIIIII
ηH⊗idH// H ⊗ H

µH

²²
A H,
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and similarly for

A ⊗ H ⊗ 1jj

ρA

∼=

**TTTTTTTTTTTTTTTTTTT
idA⊗H⊗ηA⊗H// A ⊗ H ⊗ A ⊗ H

µA⊗H

²²
A ⊗ H

by the symmetry of C.

In addition, A ⊗ H has an A-module (hence A-algebra) structure given by the action

α = µA ⊗ idH : A ⊗ A ⊗ H // A ⊗ H,

and H coacts on A ⊗ H over A via the coaction

β = idA ⊗ δH : A ⊗ H // A ⊗ H ⊗ H,

because

• the diagram

A ⊗ H
idA⊗δH // A ⊗ H ⊗ H

id(A⊗H)⊗δH // A ⊗ H ⊗ (H ⊗ H)

∼=
²²

A ⊗ H
idA⊗δH // A ⊗ H ⊗ H

idA⊗δH⊗idH // (A ⊗ H ⊗ H) ⊗ H

can be reduced to the diagram

H
δH // H ⊗ H

idH⊗δH // H ⊗ (H ⊗ H)

∼=
²²

H
δH // H ⊗ H

δH⊗idH // (H ⊗ H) ⊗ H,

which commutes by assumption, and

• the diagram

A ⊗ H ⊗ 1

ρ(A⊗H)

∼=

))SSSSSSSSSSSSSSSSSS A ⊗ H ⊗ H
id(A⊗H)⊗εHoo

A ⊗ H

idA⊗δH

OO

can be reduced to the diagram

H ⊗ 1

ρH

∼=

((QQQQQQQQQQQQQQQQ H ⊗ H
idH⊗εHoo

H,

δH

OO

which commutes by assumption.
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The coaction β = idA ⊗ δH , which is a morphism of commutative A-algebras by construction,
induces the morphism

h : (A ⊗ H) ⊗A (A ⊗ H) −→ A ⊗ H ⊗ H,

which factors as

(A ⊗ H) ⊗A (A ⊗ H)
idA⊗idH⊗AidA⊗δH// (A ⊗ H) ⊗A (A ⊗ H ⊗ H)

∼=
²²

(A ⊗ H ⊗A A ⊗ H) ⊗ H

∼=
²²

(A ⊗ H ⊗ H) ⊗ H
(idA⊗µH)⊗idH // A ⊗ H ⊗ H.

By assumption, this implies that h is a weak equivalence, and consequently that f : A → A⊗H
is a H-Hopf-Galois extension.

Conjecture 5.1.11. In example 5.1.10, we should be able to remove the hypothesis that (µH ⊗
idH) ◦ (idH ⊗ δH) and i : A → C(H;A ⊗ H) are weak equivalences, as this is probably the
case. This would then provide a generalization of the trivial extensions defined in 4.2.8 and in
paragraph 5.1 of [19]. We shall then assume that the map

f = idA ⊗ ηH : A −→ A ⊗ H

is a H-Hopf-Galois extension for every commutative C-monoid A.

We now establish another cosimplicial object, the Amitsur complex, from which we may
characterize H-Hopf-Galois extensions. Such a characterization is given as theorem 5.1.16 at
the end of the section. Its proof requires two supplementary results (cf. 5.1.14 and 5.1.15) we
shall prove below.

Definition 5.1.12. Assume that H coacts on B over A. The Amitsur complex C•(B/A) is the
cosimplicial commutative A-algebra

C•(B/A) : ∆ −→ cAlgA

with

• C•(B/A)n = Cn(B/A) := B ⊗A . . . ⊗A B︸ ︷︷ ︸
n+1 times

in each codegree n,

• the coface maps di : Cn(B/A) → Cn+1(B/A) defined in each codegree n by

di :=


ηA

B ⊗A id⊗An+1
B , for i = 0,

id⊗Ai
B ⊗A ηA

B ⊗A id⊗An−i+1
B , for 0 < i < n,

id⊗An+1
B ⊗A ηA

B , for i = n,

where ηA
B : A −→ B = C0(B/A) is the unit map defined above,

• the codegeneracy maps si : Cn(B/A) → Cn−1(B/A) defined in each codegree n by

si :=


µA

B ⊗A id⊗An−1
B , for i = 0,

id⊗Ai
B ⊗A µA

B ⊗A id⊗An−i−1
B , for 0 < i < n,

id⊗An−1
B ⊗A µA

B , for i = n.

where µA
B : B ⊗A B −→ B = C0(B/A) is the multiplication map defined above.
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Furthermore, we assume the existence of a functorial fibrant replacement RC•(B/A) of C•(B/A)
(cf. 1.4.2) in the category of commutative A-algebras, and we define the completion of A along
B to be the totalization

C(B/A) := Tot(RC•(B/A)).

The algebra unit ηA
B : A → B, upon totalization of the induced map A → RC•(B/A), induces

a canonical completion map of commutative A-algebras

η : A −→ C(B/A).

If η is a weak equivalence in C, we say that A is complete along B.

Now that the maps i and η, connecting A with C(H;B) and C(B/A) respectively, have been
defined, we may also define a map h′ : C(B/A) −→ C(H;B) which completes the triangle

A
i //

η
##FF

FF
FF

FF
FF

F C(H;B)

h′

²²
C(B/A).

It actually happens that this triangle commutes as proposition 5.1.14 below will show.

Definition 5.1.13. Let C•(B/A) be the Amitsur complex and C•(H;B) the Hopf cobar com-
plex, with A, B and H as defined above. We define

h• : C•(B/A) −→ C•(H;B) ∈ Mor(scAlgA)

to be the canonical morphism of cosimplicial commutative A-algebras given in each codegree n
by the map

hn : B ⊗A . . . ⊗A B︸ ︷︷ ︸
n+1 times

−→ B ⊗ H ⊗ . . . ⊗ H︸ ︷︷ ︸
n times

,

which is the composition of all composites

B⊗A(i+1) ⊗ H⊗j
∼= // B⊗A(i−1) ⊗A (B ⊗A B) ⊗ H⊗j

(id
⊗A(i−1)
B ⊗A h ⊗ id⊗j

H )

²²
B⊗A(i−1) ⊗A (B ⊗ H) ⊗ H⊗j

∼= // B⊗Ai ⊗ H⊗(j+1)

for j = 0, . . . , n − 1, with i + j = n and h : B ⊗A B → B ⊗ H as in 5.1.3. Upon totalization of
the induced map RC•(B/A) → RC•(H;B), we obtain a morphism of commutative A-algebras

h′ : C(B/A) −→ C(H;B).

Proposition 5.1.14. Let A, B, H be as above, with H coacting on B over A, and consider the
induced morphisms

• i : A −→ C(H;B) as defined in 5.1.6,

• η : A −→ C(B/A) as defined in 5.1.12, and

• h′ : C(B/A) −→ C(H;B) as defined in 5.1.13.

Then i = h′ ◦ η.
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Proof. By the functoriality of TotR(−), we only have to check the commutativity of the triangle

A
η̄ //

ī
((PPPPPPPPPPPPPPPP C•(B/A)

h̄

²²
C•(H;B),

(∗)

where η̄, ī and h• are the morphisms which induce η, i and h′ respectively by application of the
composite functor Tot(R(−)). Since

• ī is defined in each codegree n as īn = ηA
B ⊗ η⊗n

H ,

• η̄ is defined in each codegree n as η̄n = (ηA
B)⊗A(n+1),

• h̄ is defined in each codegree n as h̄n = hn,

we only have to check the commutativity of (∗) on the first factor, ie. that h̄0 ◦ η̄0 = ī0, or
equivalently that the following diagram commutes.

A
ηA

B⊗AηA
B //

ηA
B

((PPPPPPPPPPPPPPPPP B ⊗A B

µA
B

²²
B.

(∗∗)

By definition of the unit ηA
B : A → B, we have a commutative diagram

B ⊗A A
idB⊗ηA

B //
hh

∼=
((RRRRRRRRRRRRRRRRR B ⊗A B

µA
B

²²
B,

which we may combine with the obvious commutative diagram

A ∼= A ⊗A A
ηA

B⊗AidA //

ηA
B

))SSSSSSSSSSSSSSSSSSS B ⊗A AOO

∼=

²²
B

in order to obtain the commutativity of (∗∗) as desired. ¤

The desired characterization of Hopf-Galois extensions may finally be established.

Lemma 5.1.15. Let A, B, H be as above with B cofibrant in cAlgA and H coacting on B over
A. If the induced map

h : B ⊗A B −→ B ⊗ H

is a weak equivalence, then h′ : C(B/A) → C(H;B) is a weak equivalence as well, and the map
ηA

B : A → B is a H-Hopf-Galois extension if and only if A is complete along B.
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Proof. Since by assumption h is an acyclic cofibration and B is cofibrant in the category cAlgA

of commutative A-algebras, the cosimplicial map

h• : C•(B/A) −→ C•(H;B), as defined in 5.1.13,

is a weak equivalence in cosC. Consequently, it is in each codegree a weak equivalence in cAlgA,
and the induced map

h′ : C(B/A) −→ C(H;B), as defined in 5.1.13,

is by 5.1.5 a weak equivalence in cAlgA. Finally, since i = h′ ◦ η by 5.1.14, axiom (M2) implies
that i is a weak equivalence if and only if η is one as was to be shown. ¤

Theorem 5.1.16. Let f : A → B be a morphism of commutative monoids in C with B cofi-
brant in cAlgA, where B is given the natural A-algebra structure induced by f , and let H be a
commutative Hopf monoid in C which coacts on B over A. Then the following conditions are
equivalent:

(1) The map f : A → B is an H-Hopf-Galois extension.

(2) The induced maps h : B ⊗A B → B ⊗ H and η : A → C(B/A) are weak equivalences.

Proof. (1 ⇒ 2) By definition, the induced maps h : B ⊗A B → B ⊗H and i : A → C(H;B) are
weak equivalences. It follows by 5.1.15 that the induced map h′ : C(B/A) → C(H;B) is a weak
equivalence as well. In addition, we know from 5.1.14 that i = h′ ◦ η. Therefore, the fact that
η is a weak equivalence is a consequence of the model category axiom (M2) for C.

(2 ⇒ 1) By 5.1.15, the induced map h′ : C(B/A) → C(H;B) is a weak equivalence. There-
fore, the fact that i is a weak equivalence follows from 5.1.14 and the model category axiom
(M2) for C. ¤

5.2 Dualizability and faithfulness
Following a similar idea to what has been done in section 4.4, the goal of this section is to
define a generalized notion of faithful flatness, and to study how we may use this new notion to
characterize Hopf-Galois extensions. In order to do that, we shall also define and study another
important ingredient: the notion of dualizablility.

We work again in the context of a cofibrantly generated monoidal model category (C,⊗, 1).
For every object X of C, we have by assumption a functor

[X,−] : C −→ C : Y 7→ [X,Y ] cf. 2.1.8,

which is the right adjoint of −⊗ X. We then have natural isomorphisms

C(X ⊗ Y,Z) ∼= C(X, [Y,Z]) for every objects X,Y, Z in C,

and in addition we impose the natural isomorphisms

[X ⊗ Y,Z] ∼= [X, [Y,Z]] for every objects X,Y, Z in C.

Now for any such objects, we may consider the morphism

id[X,Y ] : [X,Y ] −→ [X,Y ],
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whose adjoint is the evaluation morphism

evXY : X ⊗ [X,Y ] ∼= [X,Y ] ⊗ X −→ Y.

From the evaluation morphism, we can form the composite morphism

([X,Y ] ⊗ Z) ⊗ X
∼= // (X ⊗ [X,Y ]) ⊗ Z

evXY ⊗idZ // Y ⊗ Z,

whose adjoint is the canonical natural map

ν = νXY Z : [X,Y ] ⊗ Z −→ [X,Y ⊗ Z].

Within the monoidal model category (ModA,⊗A, A) for a commutative C-monoid A (cf. 2.4.2),
the same approach leads to a morphism

νA = νA
XY Z : [X,Y ]A ⊗A Z −→ [X,Y ⊗A Z]A cf. 2.1.8,

obtained from the evaluation morphism

evA
XY : X ⊗A [X,Y ]A −→ Y.

The appropriate notion of dualizability may now be defined in terms of the maps ν and νA.

Definition 5.2.1. Let DX := [X, 1] ∈ ObC be the functional dual of an object X in C. We say
that X is dualizable if the canonical map

νX1X : DX ⊗ X −→ [X,X]

is a weak equivalence in C. In those cases where νX1X is an isomorphism or the identity
morphism, we say respectively that X is strongly or strictly dualizable.

More generally, for a module M ∈ ObC over a commutative monoid A ∈ ObC, we define
DAM := [M,A]A to be the functional dual of M over A, ie. the equalizer of the two morphisms

[M,A]
ϕ ..
ψ

00 [A ⊗ M,A],

where ϕ is induced by the action of A on M , and where ψ is the composition

[M,A]
A⊗− // [A ⊗ M,A ⊗ A]

[A⊗M,αAA] // [A ⊗ M,A]

as defined in 2.1.8. We say that M is dualizable over A, or that M is A-dualizable, if the
canonical map

νA
MAM : DAM ⊗A M −→ [M,M ]A,

is a weak equivalence within the monoidal model category (ModA,⊗A, A). In those cases where
νA

MAM is an isomorphism or the identity morphism, we say respectively that X is strongly or
strictly A-dualizable or dualizable over A.

Remark 5.2.2. (1) In the definition of a dualizable A-module, the commutativity of the monoid
A is necessary.

(2) Being dualizable is equivalent to being 1-dualizable as the 1-action is simply given by
the unit morphism of the underlying monoid.

We shall need the following result on dualizability as given in [19] under lemma 3.3.2.
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Lemma 5.2.3. Let X,Y, Z be objects of C, A a commutative monoid of C, and let M,N,P be
three A-modules.

(1) If X or Z is dualizable, then the canonical map

νXY Z : [X,Y ] ⊗ Z −→ [X,Y ⊗ Z]

is a weak equivalence in C.

(2) If X is dualizable, then DX too and the canonical map

ρX : X −→ DDX = [[X, 1], 1],

defined as the right adjoint of the evaluation

evX = evX1 : X ⊗ [X, 1]
∼= // [X, 1] ⊗ X // 1,

is a weak equivalence in C.

(3) If M or P is A-dualizable, then the canonical map

νA
MNP : [M,N ]A ⊗A P −→ [M,N ⊗A P ]A

is a weak equivalence in C.

(4) If M is A-dualizable, then DAM too and the canonical map

ρA
M : M −→ DADAM = [[M, 1]A, 1]A,

defined as the right adjoint of the evaluation

evA
M = evA

MA : M ⊗A [M,A]A
∼= // [M,A]A ⊗A M // A,

is a weak equivalence in C.

The following result provides a very useful isomorphism between Hom objects over different
commutative monoids.

Lemma 5.2.4. Let f : A → B be a morphism of commutative monoids in C. For any A-module
M and any B-module N , there is an isomorphism

[M,N ]A ∼= [B ⊗A M,N ]B ,

where N is also viewed as an A-module via the restriction of scalars Resf : ModB → ModA (cf.
2.4.3), and where B ⊗A M has a B-module structure whose action is given on the first factor by
the multiplication of B.

Proof. By the universal property of equalizers, it suffices to find two composable morphisms

ϕ : [M,N ]A −→ [B ⊗A M,N ]B and ψ : [B ⊗A M,N ]B −→ [M,N ]A,

in order to obtain

ψ ◦ ϕ = id[M,N ]A and ϕ ◦ ψ = id[B⊗AM,N ]B .
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The morphism ϕ may be given as the composite

[M,N ]A
∼= // A ⊗A [M,N ]A

f⊗A[M,N ]A// B ⊗A [M,N ]A

σMN

²²
[B ⊗A M,B ⊗A N ]B

[B⊗AM,λN ] // [B ⊗A M,N ]B ,

where σMN corresponds by adjunction to the composite

B ⊗A [M,N ]A ⊗A (B ⊗A M)
ϕA

[M,N]A,M // B ⊗A ([M,N ]A ⊗A M)
B⊗Aev // B ⊗A N,

with ϕA
[M,N ]A,M given by the lax monoidal structure of the functor B ⊗A − as given in 3.2.6.

Moreover, the morphism ψ may be given by the composite

[B ⊗A M,N ]B
k // [B ⊗A M,N ]A

[λM ,N ]A // [M,N ]A,

where k is given, via the universal property of equalizers, by the restriction of h in the commu-
tative diagram

[B ⊗A M,N ]B //

Res(h)

))TTTTTTTTTTTTTTTTTT

k

²²Â
Â
Â

[B ⊗A M,N ] //
// [B ⊗ B ⊗ M,N ]

[B ⊗A M,N ]A
h // [B ⊗A M,N ] //

// [A ⊗ B ⊗ M,N ].

¤

In the isomorphism [M,N ]A ∼= [B ⊗A M,N ]B , there is in fact a connection between the
A-dualizability of M and the B-dualizability of B ⊗A M as the following result shows.

Proposition 5.2.5. Let f : A → B be a morphism of commutative monoids in C, and let M be
an A-module dualizable over A. Then the B-module B ⊗A M is dualizable over B.

Proof. By 5.2.4, B ⊗A M is a B-module whose action is defined on the first factor by the
multiplication of B, and we have an isomorphism

[M,N ]A ∼= [B ⊗A M,N ]B .

In addition, the canonical map

νB
(B⊗AM,B,B⊗AM) : DB(B ⊗A M) ⊗B (B ⊗A M) −→ [B ⊗A M,B ⊗A M ]B

factors as the composite

[B ⊗A M,B] ⊗B (B ⊗A M)
∼= // [M,B]A ⊗A M

∼ ν

²²
[M,B ⊗A M ]A

∼= // [B ⊗A M,B ⊗A M ]B ,

where the map ν is a weak equivalence by 5.2.3.(3) since M is a dualizable A-module by as-
sumption. ¤
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We now move on to faithfulness. Another notion we shall need as well is a generalized version
of injective modules as we define below.

Definition 5.2.6. Let A be a commutative monoid in C. An A-module M is said to be faithful,
or faithful over A, if for every morphism of A-modules f : X → Y , f is a weak equivalence if
and only if f ⊗A idM (or equivalently idM ⊗A f) is a weak equivalence.

Furthermore, a map of commutative monoids g : A → B is faithful if B, endowed with the
canonical A-module structure given by

A ⊗ B
g⊗idB // B ⊗ B

µB // B,

is faithful over A.
Finally, an A-module N is said to be injective, or injective over A, if for every weak equiv-

alence of A-modules f : X → Y , the induced map [f,N ]A : [Y,N ]A → [X,N ]A is a weak
equivalence. If in addition we also have the reverse implication, ie. that for every weak equiva-
lence [f,N ]A the map f is a weak equivalence, we shall then say that N is cofaithful, or cofaithful
over A.

Remark 5.2.7. By 2.3.3, any cofibrant A-module M is so that if f is a acyclic cofibration, then
f ⊗ idM and idM ⊗ f are weak equivalences.

Properties 5.2.8. Let f : A → B be a morphism of commutative monoids.

(1) If M is a faithful A-module, then B ⊗A M is a faithful B-module.

(2) If f is faithful and M is an A-module such that the B-module B ⊗A M is faithful over B,
then M is faithful over A.

Proof. (1) Consider a weak equivalence g : C → D in C. Then the composite

g ⊗B id(B⊗AM) : C ⊗B (B ⊗A M)
∼= // C ⊗A M

g⊗AidA∼

²²
D ⊗A M

∼= // D ⊗B (B ⊗A M)

is a weak equivalence since M is faithful over A. Conversely, a weak equivalence

h ⊗B id(B⊗AM) : E ⊗B (B ⊗A M) −→ F ⊗B (B ⊗A M)

is isomorphic to a weak equivalence

h ⊗B idM : E ⊗A M −→ F ⊗A M,

which in turns implies that h : E → F is a weak equivalence by faithfulness of M .
(2) Consider a weak equivalence g : C → D in C. Since B ⊗A M is faithful over B we have

a weak equivalence

g ⊗A idM : C ⊗A M
∼= // C ⊗B B ⊗A M

g⊗Bid(B⊗AM)∼

²²
D ⊗B B ⊗A M

∼= // D ⊗A M.

Conversely, a weak equivalence

h ⊗A idM : E ⊗A M −→ F ⊗A M
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induces, by faithfulness of f , a weak equivalence

E ⊗A B ⊗A M
∼= // E ⊗A M ⊗A B

h⊗AidM⊗AidB∼

²²
F ⊗A M ⊗A B

∼= // F ⊗A B ⊗A M,

which in turns induces a weak equivalence h : E → F by faithfulness of B ⊗A M . ¤

Proposition 5.2.9. Let f : A → B be a faithful morphism of commutative monoids in C with
B dualizable over A, and let M be a faithful A-module. If B ⊗A M is a dualizable B-module,
then M is a dualizable A-module.

Proof. We need to check that the map

νA
MAM : [M,A]A ⊗A M −→ [M,M ]A,

is a weak equivalence in C. Consider the commutative diagram

B ⊗A [M,A]A ⊗A M
idB⊗AνA

MAM //

∼=
²²

B ⊗A [M,M ]A

∼=
²²

[M,A]A ⊗A B ⊗A M

νA
MAB⊗AidM

²²

[M,M ]A ⊗A B

νA
MMB

²²
[M,A ⊗A B]A ⊗A M

∼=
²²

[M,M ⊗A B]A

∼=
²²

[M,B]A ⊗A M

∼=
²²

[M,B ⊗A M ]A

∼=
²²

[B ⊗A M,B]B ⊗B (B ⊗A M)
νB
(B⊗AM)B(B⊗AM) // [B ⊗A M,B ⊗A M ]B ,

where the lowest vertical isomorphisms are given by 5.2.4. Since B ⊗A M is assumed to be
dualizable over B, the lowest horizontal map is a weak equivalence by definition. In addition, B
is dualizable over A, so that 5.2.3.(3) and the faithfulness of M imply that the canonical maps

νA
MAB ⊗A idM and νA

MMB

are weak equivalences. Consequently, the upper horizontal map is a weak equivalence by (M2),
and the faithfulness of B over A implies that the map νA

MAM is a weak equivalence. ¤

In 4.2.7, besides i and h, we also defined a ring homomorphism j : S <G>→ EndR(S) which
provided another way to characterize Galois extensions of commutative rings (cf. 4.2.9). The
same thing can be done here.

Definition 5.2.10. For a morphism of commutative monoids f : A → B, and a commutative
Hopf monoid H which coacts on B over A, we define the map

j : DH ⊗ B −→ [B,B]A
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to be the composite

DH ⊗ B
νH1B //

j

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO [H,B]
∼= // [B ⊗ H,B]B

[h,B]B

²²
[B ⊗A B,B]B

∼=
²²

[B,B]A,

where h : B ⊗A B → B ⊗ H is the canonical morphism induced from f (cf. 5.1.3), and where
both isomorphisms are given by 5.2.4.

Proposition 5.2.11. Let f : A → B be a morphism of commutative monoids, and H a com-
mutative Hopf monoid which coacts on B over A. Suppose that B is dualizable over itself.

(1) If B is injective over itself and if h is a weak equivalence, then j is a weak equivalence as
well.

(2) If B is cofaithful over itself, then h is a weak equivalence if and only if j is a weak
equivalence.

Proof. This is an easy consequence of 5.2.6, 5.2.3.(2) and the model category axiom (M2) as
stated in 1.2.4. ¤

Proposition 5.2.12. Let f : A → B be a morphism of commutative monoids, and H a com-
mutative Hopf monoid which coacts on B over A. Suppose that the induced morphism

h : B ⊗A B −→ B ⊗ H, as defined in 5.1.3,

is a weak equivalence (and consequently an acyclic cofibration).

(1) For a cofibrant B-module M , there is a canonical weak equivalence

hM : M ⊗A B −→ M ⊗ H.

(2) If H is dualizable, for a cofibrant injective B-module M , there is a canonical weak equiv-
alence

jM : DH ⊗ M −→ [B,M ]A.

Proof. (1) The map hM is defined to be the composite

M ⊗A B
∼= // M ⊗B B ⊗A B

idM⊗Bh// M ⊗B B ⊗ H
∼= // M ⊗ H,

which is a weak equivalence by (M2) and 5.2.7 since h is an acyclic cofibration by assumption.
(2) The map jM is defined to be the composite

DH ⊗ M
νH1M

∼
// [H,M ]

∼= // [B ⊗ H,M ]B

∼ [h,M ]B

²²
[B ⊗A B,M ]B

∼= // [B,M ]A,

where νH1M is a weak equivalence by 5.2.3.(1) and the dualizability of H, and where [h,M ]B
is a weak equivalence by injectivity of M . The fact that jM is a weak equivalence then follows
from axiom (M2). ¤
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Remark 5.2.13. According to 5.2.3.(1), we may also transfer the dualizability of H on M in
5.2.12.(2).

For a morphism of commutative monoids f : A → B with a commutative Hopf monoid H
coacting on B over A, there is in C a canonical map ν′ from M ⊗A C(H;B) to C(H;M ⊗A B).
We shall provide two conditions under which this map becomes a weak equivalence.

Proposition 5.2.14. Let f : A → B be an H-Hopf-Galois extension. Then, for a B-module M
which is faithful over A, the canonical map

ν′ : M ⊗A C(H;B) −→ C(H;M ⊗A B)

is a weak equivalence.

Proof. By the universal property of totalizations, the weak equivalence iM : M → C(H;M⊗H),
induced by the trivial H-Hopf-Galois extension M → M ⊗ H of M , factors as the composite

M
∼= // M ⊗A A

idM⊗Ai

∼
// M ⊗A C(H;B)

ν′

²²
C(H;M ⊗A B)

C(H;hM )

∼
// C(H;M ⊗ H),

where

• the map idM ⊗A i is a weak equivalence since i is a weak equivalence and M is faithful,
and

• the map C(H;hM ) is by 5.1.7 a weak equivalence since hM is a weak equivalence.

The fact that ν′ is a weak equivalence then follows from axiom (M2). ¤

The second condition requires the following assertion.

Conjecture 5.2.15. Let f : A → B be a morphism of commutative monoids, and H a com-
mutative Hopf monoid which coacts on B over A. For any A-dualizable A-module M , we have
a weak equivalence

TotR([M,C•(H;B)]A) ∼ // [M,TotR(C•(H;B))]A.

Proposition 5.2.16. Let f : A → B be a morphism of commutative monoids, and H a commu-
tative Hopf monoid which coacts on B over A. For any A-dualizable A-module M , the canonical
map

ν′ : M ⊗A C(H;B) −→ C(H;M ⊗A B)

is a weak equivalence.

Proof. For each n ∈ N, consider the weak equivalence

Cn(H; [DAM,B]A) [[M,A]A, B]A ⊗ H⊗n

∼

²²
[[M,A]A, B ⊗ H⊗n]A [DAM,Cn(H;B)]A.
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After application of the composite functor TotR(−), we obtain by 5.1.7 and 5.2.15 a weak
equivalence

C(H; [DAM,B]A) ∼ // [DAM,C(H;B)]A,

which fits into the commutative diagram

M ⊗A C(H;B)
ρA

M⊗AidC(H;B)

∼
//

ν′

²²

DADAM ⊗A C(H;B)
νA
(DAM)AC(H;B)

∼
// [DAM,C(H;B)]A

C(H;M ⊗A B)
C(H;ρA

M⊗AidB)

∼
// C(H;DADAM ⊗A B)

C(H;νA
(DAM)AB)

∼
// C(H; [DAM,B]A),

∼

OO

where the four horizontal maps are weak equivalences by 5.1.7, 5.2.7 and the A-dualizability of
M . It follows from axiom (M2) that ν′ is a weak equivalence. ¤

We may finally proceed to the characterization of a Hopf-Galois extension in terms of du-
alizability and faithfulness. We shall assume the following result based on proposition 6.2.1 in
[19], which we conjecture is true also in this context.

Conjecture 5.2.17. Let f : A → B be an H-Hopf-Galois extension. Then B is a dualizable
A-module. This result is the generalization to Hopf-Galois extensions of the fact seen in 4.2.9
that for each Galois extension of commutative rings R ⊆ S, the ring S is a finitely generated
R-module.

Theorem 5.2.18. Let f : A → B be a morphism of commutative monoids, and H a cofibrant
commutative Hopf monoid which coacts on B over A. Then f is a faithful H-Hopf-Galois
extension if and only if the induced map h : B ⊗A B → B ⊗ H is a acyclic cofibration and the
A-module B is faithful and dualizable over A.

Proof. (⇒) This is a consequence of 5.2.17 and the definition of an H-Hopf-Galois extension.
(⇐) Suppose that h is a weak equivalence and that B is dualizable and faithful over A. We

must check that the canonical map i : A → C(H;B) is a weak equivalence which, by faithfulness
of B, is equivalent to the fact that

idB ⊗A i : B ∼= B ⊗A A −→ B ⊗A C(H;B)

is a weak equivalence. As in the proof of 5.2.14, we have a commutative diagram

B
∼= //

iB

∼

..

B ⊗A A
idB⊗Ai// B ⊗A C(H;B) ν′

∼
// C(H;B ⊗A B)

∼ C(H;h)

²²
C(H;B ⊗ H),

where

• the map C(H;h) is a weak equivalence by 5.1.7,

• the map ν′ is a weak equivalence by 5.2.16, and

• the map iB , induced after application of the composite functor TotR(−) by the trivial
H-Hopf-Galois extension B → B ⊗ H, is a weak equivalence by definition.

It follows by (M2) that iB ⊗A i is a weak equivalence, and consequently that i is a weak equiv-
alence by faithfulness of B. ¤
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5.3 Cobase changes of Hopf-Galois extensions
The goal of this section is to establish when an H-Hopf-Galois extension g : A → C is preserved
and reflected under a functor B ⊗A − for an A-module B. Conveniently enough, the condi-
tion under which this happens to be the case may be expressed in terms of dualizability and
faithfulness.

Let us fix again a cofibrantly generated monoidal model category (C,⊗, 1). For two mor-
phisms of commutative monoids f : A → B and g : A → C, we have a commutative diagram

A
g //

f

²²

C

f ′

²²
B

g′
// B ⊗A C,

where f ′ = f ⊗A idC , g′ = idB ⊗A g, and where B and C have the A-module structures induced
by f and g respectively. In this situation, we shall say that f ′ is the cobase change of f along
g, and that g′ is the cobase change of g along f . We shall first establish under which conditions
H-Hopf-Galois extensions are preserved under cobase changes.

Proposition 5.3.1. Let f : A → B be a morphism of commutative monoids with B cofibrant.
If g : A → C is a faithful H-Hopf-Galois extension, then the cobase change g′ : B → B ⊗A C of
g along f is a faithful H-Hopf-Galois extension as well.

Proof. By assumption, the commutative Hopf monoid H coacts on C over A, so that the coaction
βHC : C → C ⊗ H fits into the commutative diagram

C
βHC // C ⊗ H

idC⊗δH // C ⊗ (H ⊗ H)

∼=
²²

C
βHC //

∼=
''OOOOOOOOOOOOOOO C ⊗ H

βHC⊗idH //

idC⊗εH

²²

(C ⊗ H) ⊗ H

C ⊗ 1 .

This coaction uniquely extends to g′ via the functor B ⊗A −, which sends g to g′ and the
commutative diagram above to the commutative diagram

(B ⊗A C)
βH(B⊗AC) // (B ⊗A C) ⊗ H

id(B⊗AC)⊗δH // (B ⊗A C) ⊗ (H ⊗ H)

∼=
²²

(B ⊗A C)
βH(B⊗AC) //

∼=
))SSSSSSSSSSSSSSSSS

(B ⊗A C) ⊗ H
βH(B⊗AC)⊗idH //

id(B⊗AC)⊗εH

²²

((B ⊗A C) ⊗ H) ⊗ H

(B ⊗A C) ⊗ 1 ,

where βH(B⊗AC) = idB ⊗A βHC , so that H coacts on B ⊗A C over B as well.
We shall prove that g′ is a faithful H-Hopf-Galois extension by invoking 5.2.18. We know

that C is a dualizable A-module by 5.2.17, and is faithful by hypothesis. By 5.2.5 and 5.2.8.(1),
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it follows that B ⊗A C is a dualizable and faithful B-module. It remains to verify that the
canonical map

h : (B ⊗A C) ⊗B (B ⊗A C) −→ (B ⊗A C) ⊗ H

is a weak equivalence. This map fits into the commutative diagram

B ⊗A C ⊗A C
idB⊗Ah′

∼
//

∼=
²²

B ⊗A (C ⊗ H)

∼=
²²

(B ⊗A C) ⊗B (B ⊗A C) h // (B ⊗A C) ⊗ H,

where h′ is an acyclic cofibration by assumption, so that idB⊗Ah′ is a weak equivalence. It follows
from (M2) that h is a weak equivalence. The required hypotheses of 5.2.18 for g′ : B → B ⊗A C
to be an H-Hopf-Galois extension are therefore verified. ¤

Proposition 5.3.2. Let f : A → B be a morphism of commutative monoids with B faithful and
dualizable over A, and let g : A → C be an H-Hopf-Galois extension. Then the cobase change
g′ : B → B ⊗A C of g along f is an H-Hopf-Galois extension as well.

Proof. The commutative Hopf monoid H coacts on B ⊗A C over B and makes the canonical
map

h : (B ⊗A C) ⊗B (B ⊗A C) −→ (B ⊗A C) ⊗ H

into a weak equivalence as in the proof of 5.3.1. It remains to verify that the canonical map

i : B −→ C(H;B ⊗A C)

is a weak equivalence. This map fits into the commutative diagram

B
∼= //

i --

B ⊗A A
idB⊗Ai′

∼
// B ⊗A C(H;C)

ν′∼

²²
C(H;B ⊗A C),

where

• the canonical map ν′ is a weak equivalence by 5.2.16 since B is dualizable over A,

• the canonical map i′, and consequently idB ⊗A i′ by faithfulness of B over A, is a weak
equivalence since g : A → C is an H-Hopf-Galois extension.

It then follows, from axiom (M2), that i is a weak equivalence as desired. ¤

Conversely, we may study under which conditions cobase changes reflect (faithful) H-Hopf-
Galois extensions.

Proposition 5.3.3. Let A → B and g : A → C be morphisms of commutative monoids with B
faithful and dualizable over A, let H be a dualizable commutative Hopf monoid that coacts on C
over A, and consider the cobase change g′ : B → B ⊗A C of g along f .

(1) If g′ is an H-Hopf-Galois extension, then g is an H-Hopf-Galois extension as well.

(2) If g′ is a faithful H-Hopf-Galois extension, then g is a faithful H-Hopf-Galois extension
as well.
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Proof. (1) Suppose that g′ : B → B ⊗A C is an H-Hopf-Galois extension. We must check that
the two canonical maps

i : A −→ C(H;C) and h : C ⊗A C −→ C ⊗ H

are weak equivalences.
By assumption, we have a weak equivalence i′ : B → C(H;B ⊗A C), for the H-Hopf-Galois

extension g′, which fits into the commutative diagram

B
∼= //

i′

∼

--

B ⊗A A
idB⊗Ai // B ⊗A C(H;C)

ν′∼

²²
C(H;B ⊗A C),

where the map ν′ is a weak equivalence by 5.2.16 since B is dualizable over A. It follows from
axiom (M2) that the map idB ⊗A i is a weak equivalence, and consequently that i is a weak
equivalence by faithfulness of B over A.

Furthermore, the canonical map h : C ⊗A C → C ⊗ H fits, as in the proof of 5.3.1, into the
commutative square

B ⊗A C ⊗A C
idB⊗Ah //

∼=
²²

B ⊗A (C ⊗ H)

∼=
²²

(B ⊗A C) ⊗B (B ⊗A C) h′

∼
// (B ⊗A C) ⊗ H,

where the canonically induced map

h′ : (B ⊗A C) ⊗B (B ⊗A C) −→ (B ⊗A C) ⊗ H

is a weak equivalence by assumption. From axiom (M2), it follows that idB ⊗A h is a weak
equivalence, and consequently that h is a weak equivalence by faithfulness of B over A.

(2) From (1), it remains to check that if g′ is faithful then g is faithful. This however is a
direct consequence of 5.2.8.(2). ¤

Notice that reflecting (faithful) H-Hopf-Galois extensions under cobase changes requires
stronger conditions than preserving them under cobase changes. As a consequence, we may
improve 5.3.3 in the following way.

Theorem 5.3.4. If A → B and g : A → C are morphisms of commutative monoids such that B
is faithful and dualizable over A, and if H is a dualizable commutative Hopf monoid that coacts
on C over A, then

(1) the map g is an H-Hopf-Galois extension if and only if its cobase change along f is an
H-Hopf-Galois extension,

(2) the map g is a faithful H-Hopf-Galois extension if and only if its cobase change along f
is a faithful H-Hopf-Galois extension.

Proof. This is simply a combination of 5.3.1, 5.3.2 and 5.3.3. ¤

The reason for the term cobase change to be used in this context comes from the following
probable assertion.
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Conjecture 5.3.5. For two morphisms of commutative monoids f : A → B and g : A → C, we
may form their pushout

A
g //

f

²²

C

f ′

²² l

²²

B
g′

//

k 22

B ⊗A C

p

##G
G

G
G

G

D,

which corresponds to the monoid B⊗A C since for any two morphisms of commutative monoids

k : B −→ D and l : C −→ D with lg = kf,

the unique morphism p : B ⊗A C → D is given by the coequalizer

B ⊗ A ⊗ C
ϕ

..
ψ

00 B ⊗ C //

k⊗l

²²

B ⊗A C

∃!p

²²Â
Â
Â

D ⊗ D
µD // D,

where µD is a morphism of commutative A-algebras by the commutativity of D, and where ϕ
and ψ are respectively defined as the composites

B ⊗ A ⊗ C
idB⊗f⊗idC // B ⊗ B ⊗ C

µB⊗idC // B ⊗ C

and

B ⊗ A ⊗ C
idB⊗g⊗idC // B ⊗ C ⊗ C

idB⊗µC // B ⊗ C.

If that is the case, the above results provide conditions under which H-Hopf-Galois extensions
are preserved under pushouts.

5.4 Towards a Hopf-Galois correspondence theorem
This section is a proposed sketch of a future Hopf-Galois correspondence theorem. We shall first
generalize the cobar complexes C(H;B), where B is a right H-comodule, to cobar complexes of
the form C(B;H;B′) with B′ being a left H-comodule. This allows to formulate a trivial example
of Hopf-Galois extensions for a right H-comodule. We shall then provide a sufficiently strong
notion, that of allowability, in order to formulate what might be the desired correspondence
theorem. This might certainly be achieved within the context of a cofibrantly generated monoidal
model category (C,⊗, 1), which we fix for the rest of the section. As above, we shall consider
a commutative monoid A in C, a commutative Hopf monoid H in C, and two commutative
A-algebras B and B′ such that H coacts on them over A in such a way that B becomes a right
H-comodule and B′ a left H-comodule.

Definition 5.4.1. The Hopf cobar complex C•(B;H;B′) is the cosimplicial commutative A-
algebra

C•(B;H;B′) : ∆ −→ cAlgA

with
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• C•(B;H;B′)n = Cn(B;H;B′) := B ⊗ H ⊗ . . . ⊗ H︸ ︷︷ ︸
n times

⊗B′ in each codegree n,

• the coface maps di : Cn(B;H;B′) → Cn+1(B;H;B′) defined in each codegree n by

di :=


βHB ⊗ id⊗n

H ⊗ idB′ , for i = 0,

idB ⊗ id⊗i−1
H ⊗ δH ⊗ id⊗n−i

H ⊗ idB′ , for 0 < i < n,

idB ⊗ id⊗n
H ⊗ βHB′ , for i = n,

• the codegeneracy maps si : Cn(B;H;B′) → Cn−1(B;H;B′) defined in each codegree n
by

si :=


αHB ⊗ id⊗n−1

H ⊗ idB′ , for i = 0,

idB ⊗ id⊗i−1
H ⊗ εH ⊗ id⊗n−i

H ⊗ idB′ , for 0 < i < n,

idB ⊗ id⊗n−1
H ⊗ αHB′ , for i = n.

Furthermore, we suppose the existence of a functorial fibrant replacement RC•(B;H;B′) of
C•(B;H;B′) in the category of cosimplicial commutative A-algebras, and we define

C(B;H;B′) := Tot(RC•(B;H;B′))

to be its totalization.

Remarks 5.4.2. (1) It is clear that C(B;H; 1) ∼= C(H;B).
(2) Since H is a commutative Hopf monoid, it has a canonical structure of (left and right)

H-comodule.

From this, we should be able to establish the following properties and example.

Properties 5.4.3. Under a possible supplementary condition,

(1) there are weak equivalences C(H;H; 1) ∼ ∗ ∼ C(1;H;H),

(2) there are weak equivalences C(B;H;H) ∼ B and C(H;H;B′) ∼ B′,

(3) there are projections π : C(B;H;B′) → B and π′ : C(B;H;B′) → B′.

Example 5.4.4. Let M be a right H-comonoid of commutative algebras. Then the morphism

τM = C(M ;H; ηH) : C(M ;H; 1) −→ C(M ;H;H)

is an H-Hopf-Galois extension, where

• the morphism β : C(M ;H;H) → C(M ;H;H) ⊗ H comes from idM ⊗ idH⊗n ⊗ δH ,

• the morphism i : C(M ;H; 1) → C(C(M ;H;H);H; 1) is a weak equivalence by 5.4.3.(3),

• the morphism h : C(M ;H;H) ⊗C(M ;H;1) C(M ;H;H) → C(M ;H;H) ⊗ H, defined as the
composite

C(M ;H;H) ⊗C(M ;H;1) C(M ;H;H)

id⊗β

²²
C(M ;H;H) ⊗C(M ;H;1) C(M ;H;H) ⊗ H

µ⊗id // C(M ;H;H) ⊗ H,
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is a weak equivalence as it fits into the commutative diagram

C(M ;H;H) ⊗C(M ;H;1) C(M ;H;H)

id⊗β

²²

∼ // M ⊗ H

C(M ;H;H) ⊗C(M ;H;1) C(M ;H;H) ⊗ H

µ⊗id

²²
C(M ;H;H) ⊗ H

∼ // M ⊗ H.

The above results, together with the following condition of allowability, should be sufficient
for the desired correspondence theorem (as stated below) to be verified.

Definition 5.4.5. Let H̄ be a commutative Hopf monoid in C, and let q : H → H̄ be a morphism
of commutative Hopf monoids. We say that q, or equivalently H̄, is allowable if the induced
map

πH : C(H; H̄; 1) −→ H,

where H has the H̄-comodule structure induced by q, has a section H → C(H; H̄; 1).

Theorem 5.4.6 (Hopf-Galois correspondence). Let f : A → B be an H-Hopf-Galois extension,
and let H̄ be a commutative Hopf monoid in C. If q : H → H̄ is allowable, then the H̄-Hopf-
Galois extension

τB : C(B; H̄; 1) −→ C(B; H̄; H̄), as given in 5.4.4,

fits into a commutative diagram

C(B; H̄; 1)
πB

∼
//

τB ,,

B

∼ ιB

²²
C(B; H̄; H̄),

where the morphism of H̄-comodules ιB is a weak equivalence. In addition, if C(1; H̄;H) is
endowed with a natural structure of Hopf monoid, then the induced map

iH̄ : A −→ C(H̄;B) ∼= C(B; H̄; 1)

is a C(1; H̄;H)-Hopf-Galois extension.

A

iH ∼

²²

iH̄ // C(B; H̄; 1)
πB // B

ιB ∼

²²
C(B;H; 1)

C(B;q;1)// C(B; H̄; 1)
C(B;H̄;ηH̄)// C(B; H̄; H̄)

This result, however, may only be conjectured for now and constitutes a topic for future
research.



126 5. Homotopic Hopf-Galois extensions



Bibliography

[1] Francis Borceux and George Janelidze, Galois Theories, Cambridge studies in ad-
vanced mathematics, 2001.

[2] Francis Borceux, Handbook of categorical algebra vol. 1-3, Encyclopedia of Mathematics,
Cambridge university press, 1994.

[3] S. Caenepeel, Galois corings from the descent theory point of view, American mathemat-
ical society, 2003.

[4] S.U. Chase, D.K. Harrison, A. Rosenberg, Galois theory and cohomology of commu-
tative rings, American Mathematical Society, 1965.

[5] W. G. Dwyer and J. Spalinski, Homotopy theories and model categories, edited by I.M.
James in Handbook of algebraic topology, North-Holland, 1995.

[6] Paul G. Goerss, Model categories and simplicial methods.

[7] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Math-
ematics Vol 174, Birkhäuser, 1999.

[8] Cornelius Greither, Cyclic Galois Extensions of Commutative Rings, Lecture Notes in
Mathematics, Springer, 1992.

[9] Kathryn Hess, Model categories in algebraic topology, in Applied Categorical Structures,
Kluwer Acedemic Publishers, Netherland, 2002.

[10] Kathryn Hess, doctoral course in Homotopic algebra, given in Lausanne during Fall 2003.

[11] Allen Hatcher, Algebraic topology, Cambrige University Press, 2002.

[12] Philip S. Hirschhorn, Model categories and their localizations, Mathematical Survey and
Monographs Vol. 99, American Mathematical Society, 2003.

[13] Mark Hovey, Model categories, Mathematical Survey and Monographs Vol. 63, American
Mathematical Society, 1999.

[14] Mark Hovey, Monoidal model categories, American Mathematical Society, 1998.

[15] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics Vol. 189,
Springer, 1999.

[16] Serge Lang, Algebra, revised third edition, Graduate Texts in Mathematics Vol. 211,
Springer, 2002.

[17] Saunders Mac Lane, Categories for the working mathematician, second edition, Graduate
Texts in Mathematics Vol. 5, Springer, 1997.

127



128 Bibliography

[18] M. Scott Osborne, Basic homological algebra, Graduate Texts in Mathematics Vol. 196,
Springer, 2000.

[19] John Rognes, Galois extensions of structured ring spectra, arXiv, 2005.

[20] Stephan Schwede and Brooke E. Shipley, Algebras and modules in monoidal model
categories, London Mathematical Society, 2000.

[21] Stephan Schwede and Brooke E. Shipley, Equivalences of monoidal model categories,
Algebraic and Geometric Topology, 2003.


