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Abstract: 
Coordinating component behaviour and, in particular, concurrent access to resources is among the 
key difficulties of building large concurrent systems. To address this, developers must be able to 
manipulate high-level concepts, such as Finite State Machines and separate functional and 
coordination aspects of the system behaviour. 
OSGi associates to each bundle a simple state machine representing the bundle’s lifecycle. However, 

once the bundle has been started, it remains in the state Active—the functional states are not 
represented. Therefore, this mechanism is not sufficient for coordination of active components. 
This report presents the methodology, proposed in the project, for functional component 
coordination in OSGi by using BIP coordination mechanisms. In BIP, systems are constructed by 
superposing three layers of modelling: Behaviour, Interaction, and Priority. This approach allows us to 
clearly separate the system-wide coordination policies from the component behaviour and the 
interface that components expose for interaction. By using BIP, we have shown how the allowed 
global states and state transitions of the modular system can be taken into account in a non-invasive 
manner and without any impact on the technology stack within an OSGi container. We illustrate our 
approach on two use-cases, whereof one is based on a real-life application. 
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1. Introduction 

When building large concurrent systems, one of the key difficulties lies in coordinating 

component behaviour and, in particular, concurrent access to resources. Native mechanisms 

such as, for instance, locks, semaphores and monitors allow developers to address these 

issues. However, such solutions are complex to design, debug and maintain. Indeed, 

coordination primitives are mixed up with the functional code, forcing developers to keep in 

mind both aspects simultaneously. Finally, in concurrent environments, it is difficult to 

envision all possible execution scenarios, making it hard to avoid common problems such as 

race conditions. 

The coordination problem above calls for a solution that would allow developers to think on a 

higher abstraction level, separating functional and coordination aspects of the system 

behaviour. For instance, one such solution is the AKKA library [14] implementing the Actor 

model. An actor is a component that communicates with other components by sending and 

receiving messages. The processing of a message by an actor is atomic. The state of an actor 

cannot be directly accessed by other actors, avoiding such common problems as data races. 

However, component coordination and resource management are still difficult. Fairly 

complex message exchange protocols have to be designed, which are still spread out across 

multiple actors. Any modification of the coordination policy calls for the corresponding 

modifications in the behaviour of several actors, potentially leading to cascading effects and 

rendering the entire process highly error-prone. 

Our approach relies on the observation that the behaviour of a component can be represented 

as a Finite State Machine (FSM). An FSM has a finite set of states and a finite set of 

transitions between these states. Transitions are associated to functions, which can be called to 

force a component to take an action or to react to external events coming from the 

environment. Such states and transitions usually have intuitive meaning for the developer. 

Hence, representing components as FSMs is a good level of abstraction for reasoning about 

their behaviour. In our approach, the primitive coordination mechanism is the synchronisation 

of transitions of several components. This primitive mechanism gives the developers a 

powerful and flexible tool to manage component coordination. Furthermore, this approach 

allows us to clearly separate the system-wide coordination policies from the component 

behaviour and the interface that components expose for interaction. 

 

Figure 1: The lifecycle of a bundle in OSGi. 

OSGi [17] associates to each bundle a simple state machine representing the bundle’s 

lifecycle (Figure 1). A bundle can be in one of the states Installed, Resolved, Active, 



CTI 14432.1 PFES-ES 
BIP / Connectivity Factory 

Integration: Implementation 

S. Bliudze, A. Mavridou, 

R. Szymanek, A. Zolotukhina 

 

This document and all information contained therein is confidential and must not be communicated to parties other 

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 3 
 

etc. However, once the bundle has been started, it remains in the state Active—the 

functional states are not represented. Therefore, this mechanism is not applicable for 

coordination of active components. 

We have implemented functional component coordination in OSGi by using BIP [6] 

coordination mechanisms. In BIP, systems are constructed by superposing three layers of 

modelling: Behaviour, Interaction, and Priority. The first layer, Behaviour, consists of a set of 

components modelled by FSM. The second layer models interaction between components 

defining explicitly which transitions can be synchronised. When several interactions are 

possible, priorities can be used as a filter. Interaction and Priority layers are collectively called 

glue. The execution of a BIP system is driven by the BIP Engine applying the following 

protocol in a cyclic manner: 

1. Upon reaching a state, each component notifies the BIP Engine about the possible 

outgoing transitions; 

2. The BIP Engine picks one interaction satisfying the glue specification and notifies 

all the components involved in it; 

3. The notified components execute the functions associated to the corresponding 

transitions. 

To use the transition synchronisation mechanism, developers must ensure that the component 

states remain stable during one cycle of the above protocol: a component must be able to 

perform any transition it has announced as possible to the BIP Engine. 

As mentioned above, this approach allows a clear separation between the component 

behaviour and system-wide coordination policies. For coordination scenarios that require 

global state information (see for example our use case in Section 4.1), dedicated monitor 

components can be added in straightforward manner. This allows centralising all the 

information related to the coordination in one single location, instead of distributing it across 

the components. This considerably simplifies the system maintenance and improves 

reusability of components. Indeed, components do not carry coordination logic based on the 

characteristics of any specific execution environment. 

An observable trend in software engineering is that design becomes more and more 

declarative. Developers provide specifications of what must be achieved, rather than how this 

must be achieved. These specifications are then interpreted by the corresponding engines, 

which generate—often on the fly—the corresponding software entities. Thus, it is not always 

possible to instrument or even access the actual source code. Furthermore, it is usually not 

desirable to modify such code, since this can lead to a considerable increase of the 

maintenance costs. 

We have taken a non-invasive approach relying on existing API for the interaction with the 

controlled components. With our approach, designers write a separate annotated Java class 

that we call BIP Specification. BIP specification is an abstract model of the component that is 

aware of its functional states. It defines the functions associated to the corresponding 

transitions. Transitions can be of three types: enforceable, spontaneous and internal. 

Enforceable transitions are used for coordination through the BIP Engine; spontaneous 

transitions are used to take into account the changes in the controlled component; finally, 

internal transitions can be used to make the BIP Specification more concise—when enabled, 

they are executed immediately. To ensure execution determinism, at most one internal 

transition can be enabled at any given execution step. BIP Specification developers are 
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responsible for enforcing the validity of this requirement. However, our tools log an exception 

when a violation is detected at runtime. 

Annotations in a BIP Specification are processed by the BIP Executor, which we have 

developed as part of our library, to construct a corresponding Behaviour object representing 

the FSM. The Behaviour object is used by the BIP Engine to coordinate the actions of the 

component with the other components of the system. Additional components can be provided 

in a similar manner to monitor and influence the system behaviour, in particular to impose 

safety properties. For specifying larger components, where annotations become impractical, 

we have defined a Behaviour API, which allows developers to construct a Behaviour object 

programmatically. 

BIP coordination extension for OSGi has been implemented and tested in Connectivity 

Factory™, a flagship product of Crossing-Tech S.A. The main use-case consists in managing 

the memory usage by a set of Camel routes
1
. A Camel route connects a number of data 

sources to transfer data among them. The data can be fairly large and may require additional 

processing. Hence, Camel routes share and compete for memory. Without additional 

coordination, simultaneous execution of several Camel routes can lead to OutOfMemory 

exceptions, even when each route has been tested and sized appropriately on its own. We have 

designed an annotated BIP Specification for Camel routes, using the suspend and resume 

functions provided by the Camel Engine API. We also use notification policies provided by 

Camel to observe the spontaneous modifications of the route states. By introducing an 

additional Monitor component, we limit the number of Camel routes running simultaneously 

to ensure that the available memory is sufficient for the safe functioning of the entire system. 

Using BIP allows taking into consideration the structure of the controlled software and also 

the coordination constraints imposed by the safety properties. The operational semantics of 

the BIP framework is implemented by a dedicated Engine used for the coordination of 

software modules according to the three-step protocol above. The BIP Engine is packaged as 

an OSGi bundle, using the mechanisms provided by OSGi to publish the service that can be 

used by the software modules. 

This report is structured as follows. Section 2 explains the component model we used and 

how the proposed design methodology should be applied in practice. Section 3 describes the 

implemented software architecture. Section 4 illustrates the approach on two use cases. 

Section 5 discusses the related work. 

2. Design Methodology 
2.1. Component Model 

We consider a system of components, each represented by a Finite State Machine (FSM) 

extended with ports. The FSM is specified by its states and guarded transitions between them. 

Each transition has a function and a port associated to it. One port can be associated to several 

transitions. There cannot be transitions from the same state labelled by the same port. The 

firing of a single transition happens as follows: 

1. The transition is checked for enabledness: a transition is enabled when it has no guard 

or when its guard evaluates to true. Only enabled transitions can be fired; 

2. The function associated with the transition is called; 

                                                 
1
 http://camel.apache.org/routes.html 
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3. The current state of the FSM is updated. 

We define three types of transitions: internal, spontaneous and enforceable. Internal 

transitions represent computations independent of the component environment and can be 

performed immediately. Spontaneous transitions represent changes in the environment that 

affect the component behaviour, but cannot be controlled. Enforceable transitions represent 

the controllable behaviour of the component. At each state, at most one internal transition is 

allowed to be enabled. 

 

Figure 2: The model of the Task/Resource example 

We illustrate the model on a simple example consisting of two components: a Task and a 

Resource (Figure 2). The Task component has states sleep, work and pause, enforceable 

transitions (blue arrows in Figure 2) labelled by ports b (begin) and f (finish) and 

spontaneous transitions (red arrows in Figure 2) labelled by ports p (preempt) and r (resume). 

The Resource component has states free and taken and corresponding enforceable 

transitions labelled by ports a (acquire) and r (release). In order to begin execution, the task 

has to acquire the resource. Upon termination of the task, the resource is released. This is 

achieved by imposing synchronisation of the corresponding enforceable transitions of the two 

components (see the green connectors in Figure 2). The Task can be spontaneously preempted 

and resumed due to changes in the environment (e.g. by a component with higher priority), 

which we do not model here. Finally, the Task can finish execution only when it has finished 

all the work it has been assigned. This is modelled by associating a boolean guard finished 

to the f (finish) transition of the Task component. 

In our implementation, the execution of transitions is controlled and managed by a dedicated 

BIP Executor object, described in detail in Section 3.2. The synchronisation between 

components is ensured by the BIP Engine. BIP Executor maintains a queue of notifications 

corresponding to spontaneous transitions and cyclically executes the following two steps: 

1. All transitions from the current state are checked for enabledness. 

2. One transition is picked for execution (in order of decreasing priority): 

(a) If there is an internal transition, it is fired right away. 

(b) If there is a spontaneous transition, and the corresponding event has already 

happened (i.e. a corresponding notification is available in the queue), this 

spontaneous transition is performed. If there are no notifications in the queue 

corresponding to enabled spontaneous transitions and no enforceable transitions 
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are enabled, the component waits for the first notification of one of the enabled 

spontaneous transitions. 

(c) If there are enforceable transitions, the Executor informs the Engine about the 

current state and the disabled ports (i.e. which transitions cannot be performed). 

The Executor then waits for a response from the Engine, indicating the port to 

execute. Upon receiving this response, the Executor performs the corresponding 

transition. 

When a spontaneous and an enforceable transition are enabled simultaneously, but a 

notification corresponding to the former has not been received yet, the Executor will 

announce the enforceable transition to the Engine. Thus, in order to satisfy the state stability 

property mentioned in the Introduction, it must be possible to postpone the execution of the 

spontaneous transition until after the execution of the enforceable one. In other words, a 

spontaneous transition labelled with the same port must exist, leaving the target state of the 

enforceable transition. 

2.2. Design steps 

One of the benefits of our approach is that the developer does not need to access the existing 

source code or modify it. The design process involves two steps: 

1. Defining the Behaviour for each component; 

2. Specifying how the components can interact. 

2.2.1. Specification of component behaviour 

The FSM extended with ports, discussed in Section 2.1, is provided as an instance of a Java 

class implementing the Behaviour interface. This interface is used by the Executor and the 

Engine and it provides access to the information about states, ports, transitions and guards of 

the FSM. For storing the corresponding information, we have defined the Port, 

Transition and Guard classes (see below). 

The following information must be provided: 

• the name of the component; 

• the list of all the states and the initial state; 

• the list of ports (list of Port instances, where each instance is specified by its 

name and type—enforceable or spontaneous); 

• the list of transitions (list of Transition instances, where each instance is 

specified by its name, source state, destination state and guard expression); 

• the list of guards (list of Guard instances, where each instance is specified by its 

name and a method returning a boolean value, which corresponds to the actual 

guard function); 

• a reference to the object, implementing the API used by the methods associated to 

guards and transitions of the component. 

There are two different ways to provide this information. The first one consists in directly 

creating an object implementing the Behaviour interface. The second one is to use a 
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mechanism provided for building such objects from source code annotations. Annotations are 

syntactic metadata associated to parameters, fields, methods or class declarations. We use 

annotations associated to class and method declarations. Several annotations can be associated 

to one declaration. They are processed by the Executor and the Behaviour object is created 

automatically.  

We have defined the following annotations (cf. Figure 3): 

• @bipComponentType—annotation associated to a BIP component specification 

class. It has two fields: name, the name of the component type, and initial, the 

name of the initial state. 

• @bipPort—annotation associated to a BIP component specification class. It has 

two fields: name, port name, and type, port type which can be “spontaneous” or 

“enforceable”, defining the type of associated transitions. The internal transitions 

are defined by omitting their name. We use an additional @bipPorts annotation 

to specify several instances of @bipPort annotation associated to the same class 

declaration. 

• @bipGuard—annotation associated to a method used to compute a transition 

guard. The method should return a boolean value. This annotation has one field: 

name, guard name which can be referred to in a guard expression of a transition. 

• @bipTransition—annotation associated to a transition handler method with 

four fields: name, the name of the port labelling the transition, source, the name 

of the source state, target, the name of the target state and guard, a boolean 

expression on the names of the guard methods (true if omitted). The guard 

expressions can be defined using parenthesis and three logical operators: negation 

(!), conjunction (&) and disjunction ( | ). Only ports defined by the @bipPort 

annotation can be used as transition names. 

Figure 3 shows an annotated Java class defining the Task component from the example in 

Section 2.1. 
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Figure 3: Annotations for the Task/Resource example (cf. Figure 2) 

2.2.2. Specification of interaction constraints 

To define the interaction model, the developer specifies the interaction constraints of each 

component. An interaction constraint can be provided for each port of a system. Two types of 

constraints can be used to define allowed interactions: 

• Causal constraints (Require): used to specify ports of other components that 

are necessary for any interaction involving the port to which the constraint is 

associated. 

@bipComponentType(initial = "sleep", 

   name = "org.bip.spec.Task") 

 

@bipPorts({  

 @bipPort(name = "b", type = "enforceable"), 

 @bipPort(name = "f", type = "enforceable"), 

 @bipPort(name = "r", type = "spontaneous"), 

 @bipPort(name = "p", type = "spontaneous") 

}) 

 

public class Task { 

 //class declarations 

 @bipTransition(name = "b", source = "sleep", 

   target = "work", guard = "") 

 public doWork() { 

  //method body 

 } 

 @bipTransition(name = "f", source = "work", 

   target = "sleep", guard = "finished") 

 public goToSleep() { 

  //method body 

 } 

 @bipTransition(name = "p", source = "work", 

   target = "pause", guard = "") 

 public pauseWork() { 

  //method body 

 } 

 @bipTransition(name = "r", source = "pause", 

   target = "work", guard = "") 

 public resumeWork() { 

  //method body 

 } 

 @bipGuard(name = "finished") 

 public boolean operationFinished() { 

  return operationFinished; 

 } 

} 
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• Acceptance constraints (Accept): used to define optional ports of other 

components that are accepted in the interactions involving the port to which the 

constraint is associated. 

For example, the constraint Task.b Require Resource.a forces the port b of any 

component of type Task to synchronise with a port a of some component of type 

Resource. Furthermore, the constraint Task.b Accept Resource.a specifies that no 

other ports are allowed to participate in the same interaction. 

In the current implementation interaction constraints are given in an XML file. Figure 4 

shows interaction constraints for the Task component of Figure 2. 

 

Figure 4: Interaction constraints for the Task/Resource example (cf. Figure 2) 

2.3. Run-time application setup 

Components must be aware of the BIP Engine they are working with and the BIP Engine 

must be informed of the components it coordinates. For that purpose, a number of methods 

are defined in the BIP Engine and BIP Executor interfaces. The registration process 

can be performed as follows: 

• Register each component so that all Executor instances are aware of the BIP 

Engine. This is done by calling the register method of the BIP Executor 

interface: 

executor.register(engine); 

This method, in turn, calls the register method of the BIP Engine so that the 

Engine gets informed of each component it coordinates: 

engine.register(this); 

• Provide to the Engine the interaction specifications by calling the method 

specifyGlue of the BIP Engine interface. The argument of the method is an 

instance of a dedicated Java object which contains the system interaction 

constraints as defined in Section 2.2.2: 
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engine.specifyGlue(bipGlue); 

• Start the BIP Engine coordination mechanism by calling the execute method of 

the BIP Engine interface: 

engine.execute(); 

3. Implementation 

3.1. Architecture 

The software architecture of the proposed framework is shown in Figure 5. The architecture 

consists of two major parts: the part that involves the components to control (on the left) and 

the BIP Engine part (on the right). The grey boxes in the diagram represent OSGi bundles. 

 

Figure 5: Software architecture 

For each component a BIP Behaviour is generated at runtime. The Behaviour contains all the 

information about the FSM and ports of the controlled entities. As shown in the left-hand part 

of the diagram, each instance of BIP Behaviour is coupled with a dedicated instance of BIP 

Executor to form a BIP Module. The Notifier is an additional component informing the BIP 

Executor of spontaneous events relevant to the controlled entities. 

The right-hand part of Figure 5 presents the BIP Engine, which coordinates the execution of 

the components. The implementation of the Engine is modular and makes use of Binary 

Decision Diagrams (BDDs) [3].
2
 BDDs are efficient data structures to store and manipulate 

boolean formulas. 

                                                 
2
 We have used JavaBDD decision diagram package available at http://javabdd.sourceforge.net/ 

http://javabdd.sourceforge.net/
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The ports and states of all components of the system are associated to boolean variables. 

These boolean variables are used at initialization by the Behaviour and Glue Encoders to 

translate the corresponding constraints into boolean expressions (green arrows in Figure 5). At 

every execution cycle during runtime, each component provides the information about its 

current state and enabled ports (the red inform arrow). This information is also encoded into 

boolean formulas by the Current State Encoder. The Symbolic BIP Engine computes the 

conjunction of these constraints to obtain the global boolean formula that represents the 

possible interactions of the system. 

In the following sections, the implementations of the BIP Executor and BIP Engine are 

presented in more detail. 

3.2. BIP Executor 

The BIP Executor builds the Behaviour object from the component specification or receives it 

as an argument at the initialisation phase (as specified in Section 2.2.1). At each execution 

cycle, the Executor interprets the Behaviour and fires the transitions. In order to fire a 

transition, the Executor performs three steps: 

1. Using the Behaviour, retrieves the method corresponding to the transition; 

2. Using Java Reflection mechanism [13], invokes this method; 

3. Updates the current state of the Behaviour to the target state of the performed 

transition. 

There can be at most one internal transition enabled at the current state. If no internal 

transitions are enabled, the choice of spontaneous or enforceable ones is made based on the 

information obtained from the notifiers and the Engine respectively (cf. Section 2.1): 

• Spontaneous: a Notifier entity sends a notification (i.e. the name of a spontaneous 

port) to the Executor via the function inform; this port is then stored in a queue 

waiting to be processed; 

• Enforceable: the Engine sends the name of an enforceable port to the Executor via 

the function execute (the red arrow in Figure 5), the execution is performed 

immediately. 

BIP Executor implements the protocol presented in Section 2.1. In order to ensure consistency 

of guard valuations, the guard functions are computed only once for each execution cycle, 

regardless of how many times they are used. 

3.3. BIP Engine 

The BIP Engine orchestrates the coordination of the components by deciding which 

interaction should be fired given the information about the current states of the components. 

To do that, the Engine applies the three-step protocol presented in the Introduction in a cyclic 

manner. 

The Engine is packaged as an OSGi bundle and provides the coordination service used by BIP 

Executor components. Furthermore, its implementation is modular and consists of five main 

parts (cf. Figure 5): three Encoders, the BIP Coordinator and the core Symbolic BIP Engine. 
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The BIP Coordinator manages the flow of information between the components and the 

Symbolic BIP Engine through a dedicated BIP Engine interface. Part of this interface is 

used by the BIP Executors, whereas the other part is used by the Symbolic BIP Engine. In 

particular, the BIP Coordinator receives: 

• The Behaviour during the registration of the components at initialisation phase and 

sends it to the Behaviour Encoder (register method presented in Section 2.3). 

• The interaction constraint specifications, which are external to the components and 

are provided only at initialization (specifyGlue method presented in 

Section 2.3). The specifications are provided as an instance of a special bipGlue 

object and the BIP Coordinator forwards them to the Glue Encoder. 

• For each component, the current state and the list of ports disabled by guards. This 

information is provided at each execution cycle (red inform arrow in Figure 5) 

and is forwarded to the Current State Encoder. 

• The chosen interaction from the Symbolic BIP Engine. The BIP Coordinator 

instructs the components to make the necessary transitions (red execute arrow in 

Figure 5). 

The three encoders compute the boolean representation of the information they receive from 

the BIP Coordinator. The boolean representation of the behaviour and interaction constraints 

is only computed once at initialisation, whereas the boolean representation of the current state 

information is recomputed at each execution cycle. The Symbolic BIP Engine receives all the 

information provided by the three encoders. At each execution cycle, it computes the set of 

feasible interactions in the system, chooses one interaction among these and notifies the BIP 

Coordinator. 

3.4. Integration with OSGi 

In order to integrate our framework within an OSGi container the following bundles were 

created: 

• BIP API bundle, providing the interfaces to be used within the framework; 

• BIP Engine bundle, providing the Engine services; 

• BIP Executor bundle, providing the Executor code; 

• BIP Admin bundle, providing the commands for setting up the application in the 

Connectivity Factory™ OSGi container. 

The separation into bundles allows us to isolate the aspects of our framework and improves 

modularity. BIP Admin bundle does the binding between the components and the BIP Engine, 

deserialises the XML representation of interaction constraints and allows the user to manage 

the execution by providing the commands bip:register, bip:execute and 

bip:stop for the application setup presented in Section 2.3. To process the commands this 

bundle uses Karaf 
3
—a generic platform providing higher level features and services 

specifically designed for creating OSGi-based servers. 

                                                 
3
 http://karaf.apache.org/ 

http://karaf.apache.org/
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(a) Camel Route (b) Switchable Route (c) Monitor 

Figure 6: The models of the Camel Route, Switchable Route and the Monitor 

4. Use-case scenarios 

In this section, we describe two examples used to validate our approach. The Switchable 

Routes use-case is a simplified real-life application encountered by Crossing-Tech S.A. We 

use the Towers of Hanoi example to illustrate a slightly more complex coordination scenario. 

4.1. Use-case 1: Switchable Routes 

This use-case consists in managing the memory usage by a set of Camel routes. A Camel 

route connects a number of data sources to transfer data among them. The data can be fairly 

large and may require additional processing. Hence, Camel routes share and compete for 

memory. Without additional coordination, simultaneous execution of several Camel routes 

can lead to OutOfMemory exceptions, even when each route has been tested and sized 

appropriately on its own. For the sake of simplicity, we assume that all active routes consume 

the same amount of memory. Thus, it is sufficient to ensure that the number of active routes 

does not exceed a given threshold. 

In the example below, we consider three routes connected in a cycle. We seek to ensure that at 

most two routes are active simultaneously. 

An abstract model of the route is presented in Figure 6(a). It has four states: suspended, 

ready, working and finishing. The route has transitions begin and end between the 

states ready and working, corresponding to the processing of a file. The route can be 

turned off via off transition from states ready and working. 

Notice that this model does not respect the state stability assumption: spontaneous transition 

begin from the state ready cannot be postponed if the notification arrives after the 

component has promised to perform the off transition. To address this problem, we define 

another model shown in Figure 6(b). This model is obtained by merging the ready and 

working states together (the on state) and splitting the finishing state in two: wait and 

done. 

Firing the enforceable transition off takes the route into the state wait, from which two 

transitions are possible, both leading to the state done. The internal transition can be taken if 

the route has finished processing the files (the associated guard g is satisfied). Otherwise, the 

component waits for the notification of the spontaneous event end. Since the transition 

finished from the state done is enforceable, it requires a communication with the Engine 

to be fired. This is used to coordinate the enforceable transitions of other components. 
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Finally, we introduce an additional Monitor component, shown in Figure 6(c), which allows 

us to limit the number of simultaneously active routes to two. This is achieved by enforcing, 

for each route component, the synchronisation between its port on (respectively finished) 

and the port add (respectively rm) of the Monitor. We use interaction constraints similar to 

the ones of the Task/Resource example of Section 2.1. 

Figure 7 shows the execution log of the system consisting of three Switchable Routes and one 

Monitor with component IDs 393–396 respectively. These IDs are assigned by the OSGi 

registry. The components use the inform function described in Section 3.3 to provide to the 

Engine the information about their respective current states. In particular, in Figure 7, two out 

of the three Switchable Routes inform the BIP Engine that they are at state done and 

therefore the Monitor correctly informs the Engine that it is in the state corresponding to the 

number of active Switchable Routes. 

In the next step, the Engine selects the interaction finished•rm, which forces the Monitor 

to decrement the counter due to the completion of the ID 395 route. 

 

Figure 7: BIP Engine: One execution cycle printout of the Switchable routes 

4.2. Use-case 2: The Towers of Hanoi 

In this use-case, the system consists of three pegs: the left, the middle and the right. The left 

peg holds disks of size decreasing from n at the bottom to 1 at the top. The objective is to 

transfer all disks to one of the other pegs, moving only one disk at a time and never putting a 

larger disk on top of a smaller one. We refer to the move, where we put a disk on an empty 

peg or on top of a larger disk, as a legal move. 

***************************** Inform *********************** 

Component: switchableRoute395 informs that is at state: done 

Component: switchableRoute393 informs that is at state: off 

Component: switchableRoute394 informs that is at state: done 

Component: monitor396 informs that is at state: 2 

************************************************************ 

*************************** Engine ************************* 

ChosenInteraction: 

Chosen Component: switchableRoute395 

Chosen Port: finished 

Chosen Component: monitor396 

Chosen Port: rm 

************************************************************ 

***************************** Inform *********************** 

Component: switchableRoute395 informs that is at state: off  

Component: switchableRoute393 informs that is at state: off  

Component: switchableRoute394 informs that is at state: done  

Component: monitor396 informs that is at state: 1 

************************************************************ 
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Figure 8: The Towers of Hanoi use case 

The algorithm is different for odd and even numbers of disks. A total of 2
n
 – 1 moves are 

made in each case. Here we only present the model that solves the Towers of Hanoi for odd 

values of n. The model for even values is similar. 

The system model is shown in Figure 8. It has one component for each of the three pegs: left, 

middle and right. In addition, there is a Monitor component ensuring that only legal moves are 

made between pegs. For the sake of clarity, we do not show all the connectors in Figure 8. 

More precisely, we only show the connectors that correspond to the interactions of the system 

for the first three movements of the algorithm, when all the disks are on the left peg. 

Behaviours of all peg components are identical. They differ only at initialisation: the left peg 

is initialised to be full, the other two to be empty. Each peg has 2n ports: add1, …, addn for 

adding the corresponding disk and rm1,…,rmn for removing. Each peg has only one state 

start and a local boolean array (not shown in the figure) to keep track of the disks it holds. 

Each transition has the corresponding guard associated to it (also not shown in the figure), 

which determines whether the corresponding disk can be added to (respectively removed 

from) the peg. 

The behaviour of the Monitor component, combined with the interaction constraints imposed 

by the connectors, ensures that a disk is moved between the left and the middle pegs 

(transition rm), then between the middle and the right pegs (transition ml), then between the 

left and the right pegs (transition rl) and so on. 

Partial trace of the system execution is shown in Figure 9. As expected, the application 

correctly terminates after 2
n
 – 1 moves. 
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Figure 9: BIP Engine: One execution cycle printout of the Hanoi towers 

*************************** Inform ***************************** 

Component: org.bip.spec.MiddleHanoiPeg 

informs that is at state: start 

disabled ports: piece1Remove, piece2Remove, piece3Remove 

**************************************************************** 

*************************** Inform ***************************** 

Component: org.bip.spec.HanoiMonitor 

informs that is at state: state-RM 

*************************************************************** 

*************************** Inform **************************** 

Component: org.bip.spec.RightHanoiPeg 

informs that is at state: start 

disabled ports: piece1Add, piece2Add, piece2Remove, piece3Add 

**************************************************************** 

*************************** Inform ***************************** 

Component: org.bip.spec.LeftHanoiPeg 

informs that is at state: start 

disabled ports: piece1Remove, piece2Add, piece3Add, piece3Remove 

**************************************************************** 

*************************** Engine ***************************** 

ChosenInteraction: 

Chosen Component: org.bip.spec.MiddleHanoiPeg 

Chosen Port: piece2Add 

Chosen Component: org.bip.spec.LeftHanoiPeg 

Chosen Port: piece2Remove 

Chosen Component: org.bip.spec.HanoiMonitor 

Chosen Port: rm 

**************************************************************** 

*************************** Inform ***************************** 

Component: org.bip.spec.LeftHanoiPeg 

informs that is at state: start 

disabled ports: piece1Remove, piece2Remove, piece3Add 

**************************************************************** 

*************************** Inform ***************************** 

Component: org.bip.spec.RightHanoiPeg 

informs that is at state: start 

disabled ports: piece1Add, piece2Add, piece2Remove, piece3Add 

**************************************************************** 

*************************** Inform ***************************** 

Component: org.bip.spec.MiddleHanoiPeg 

informs that is at state: start 

disabled ports: piece1Remove, piece2Add, piece3Add, piece3Remove 

*************************************************************** 

***************************Inform ***************************** 

Component: org.bip.spec.HanoiMonitor 

informs that is at state: state-ML 

*************************************************************** 
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5. Related work 

Different approaches have been proposed to deal with the coordination of concurrent systems. 

First of all, locks and semaphores [15] have been extensively used in software engineering 

approaches to address concurrency problems. However, these solutions do not allow a clear 

separation between the functional code and the coordination mechanisms, making it hard to 

design and maintain correct programs, especially when they are used in large concurrent 

systems. 

A Coordinator service was developed by the OSGi community [18] allowing simple 

coordination between multiple software components. A Coordinator object has only two 

states: Active and Terminated. This approach provides developers with a higher abstraction 

level primitive for multi-party synchronisation barriers. Thus, some simple coordination can 

be ensured on several entities having no information about each other. 

A different approach is taken by the AKKA library [14], which is based on the primitives of 

the Actor model [2]. Actors are concurrent components that communicate through ports. By 

relying on asynchronous communication, the actor model also avoids the use of low-level 

primitives, such as locks and semaphores. However, component coordination through the 

specification of complex message exchange protocols among multiple actors can be 

challenging and error-prone. 

Apart from BIP, the most prominent component-based frameworks found in the literature are 

Ptolemy [12] and Reo [4]. In particular, Reo is a channel-based exogenous coordination 

model wherein complex coordinators, called connectors are compositionally built out of 

simpler ones to orchestrate component instances in a component-based system. The Ptolemy 

[12] framework also adopts an actor-oriented view of a system. Ptolemy actors can be 

hierarchically interconnected and support heterogeneous, concurrent modelling and design. 

However, for both of these frameworks, we are not aware of complementary work on using 

these coordination models to control the behaviour of pre-existing independently developed 

software components and, in particular, OSGi bundles. 

A number of approaches have been proposed to the specification of OSGi component 

behaviour. In particular, Blech et al. [7] propose a framework to describe behavioural 

specification of OSGi bundles that can be used for runtime verification. The semantics 

proposed bears similarity to the semantics of the BIP framework [6]. Runtime checks are 

performed using constraint specifications to ensure safety in case of deviation from the 

original specification. The behavioural models of the components are loaded from XML files 

and integrated into a bundle [8]. The runtime monitors used are connected to the components 

by using AspectJ [8]. The aspects are specified in separate files and have point-cuts that 

define the locations where additional code must be added to the existing one. This approach 

requires detailed knowledge of the source code, whereas our approach relies only on the 

knowledge of the APIs provided by the components. 

Another approach for OSGi-based behaviour specification has been studied by Mekontso 

Tchinda et al. [16]. The authors propose specifying OSGi services based on a combined use of 

interface automata [11] and process algebra [5]. Their specification of services is centred on 

finding the best candidates for service substitution. Qin et al. [19] propose a framework that 

specifies the behaviour of OSGi components through the use of WF-nets [1]. In their 

approach, behaviour description files are used to specify not only the service behaviour but 

also coordination protocols. 
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6. Conclusion 

The introduction of OSGi was a tremendous improvement for the design of modular Java-

based systems. OSGi greatly simplifies the work of a software developer and its benefit has 

been shown by the ever growing community of users. It takes into account such aspects as 

class loading, class visibility, bundle lifecycle and service dynamicity. However, the lifecycle 

layer makes a very strong simplification by limiting all the information about an active bundle 

to a single state. In Crossing-Tech’s experience with OSGi, this happens to be very restrictive. 

In our practice, common coordination issues are very difficult to address with the mechanisms 

provided by the OSGi lifecycle layer. Developers had to resort to ad-hoc solutions to ensure 

that resources such as memory within the JVM running an OSGi container are not being 

exhausted. 

The specification of what are the allowed global states and global state transitions is an 

integral part of the specification of a modular system. Using BIP, we have shown how these 

aspects can be taken into account in a non-invasive manner and without any impact on the 

technology stack within an OSGi container following the best practices of OSGi. 

Although differentiating multiple components within a bundle could go beyond the desired 

scope of the OSGi specification, one has to notice that this finer granularity is already quite 

common, since OSGi best practices prefer packages to bundles as means to express 

dependency relationship. We consider that our work, recognizing the fact that bundles may 

have multiple components with multiple functional states, will help to improve the OSGi 

standard. 

In this report, we have presented our approach to adding BIP coordination to OSGi. We have 

presented the architecture of the implemented framework. This architecture relies on several 

architectural elements, in particular a dedicated BIP Engine and a BIP Module. The latter 

comprises an annotated Java class, called BIP Specification, interpreted by an associated BIP 

Executor object. Our implementation of the BIP Engine is itself modular. It relies on a 

symbolic kernel manipulating boolean formulas and three encoders that translate component 

and glue specifications into such formulas. We have presented two use cases illustrating our 

approach. 

On-going and future work consists in implementing data transfer mechanism between 

components, priority models and taking into account dynamically evolving system 

architectures where components can arrive and disappear. We also plan to define a more 

flexible and user-friendly format for specifying interaction constraints. 
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