

This document and all information contained therein is confidential and must not be communicated to parties other than CTI,

EPFL and Crossing-Tech without prior consent of the project directors board.

PROJECT: CTI 14432.1 PFES-ES

Integration of BIP into
Connectivity Factory:

Implementation
Project report: 2nd phase

Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek and Alina Zolotukhina

08/11/2013

Abstract:
Coordinating component behaviour and, in particular, concurrent access to resources is among the
key difficulties of building large concurrent systems. To address this, developers must be able to
manipulate high-level concepts, such as Finite State Machines and separate functional and
coordination aspects of the system behaviour.
OSGi associates to each bundle a simple state machine representing the bundle’s lifecycle. However,

once the bundle has been started, it remains in the state Active—the functional states are not
represented. Therefore, this mechanism is not sufficient for coordination of active components.
This report presents the methodology, proposed in the project, for functional component
coordination in OSGi by using BIP coordination mechanisms. In BIP, systems are constructed by
superposing three layers of modelling: Behaviour, Interaction, and Priority. This approach allows us to
clearly separate the system-wide coordination policies from the component behaviour and the
interface that components expose for interaction. By using BIP, we have shown how the allowed
global states and state transitions of the modular system can be taken into account in a non-invasive
manner and without any impact on the technology stack within an OSGi container. We illustrate our
approach on two use-cases, whereof one is based on a real-life application.

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 1

Table of Contents
1. Introduction .. 2

2. Design Methodology .. 4

2.1. Component Model ... 4

2.2. Design steps ... 6

2.2.1. Specification of component behaviour ... 6

2.2.2. Specification of interaction constraints .. 8

2.3. Run-time application setup .. 9

3. Implementation ... 10

3.1. Architecture ... 10

3.2. BIP Executor ... 11

3.3. BIP Engine .. 11

3.4. Integration with OSGi ... 12

4. Use-case scenarios .. 13

4.1. Use-case 1: Switchable Routes ... 13

4.2. Use-case 2: The Towers of Hanoi ... 14

5. Related work .. 17

6. Conclusion .. 18

References .. 18

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 2

1. Introduction

When building large concurrent systems, one of the key difficulties lies in coordinating

component behaviour and, in particular, concurrent access to resources. Native mechanisms

such as, for instance, locks, semaphores and monitors allow developers to address these

issues. However, such solutions are complex to design, debug and maintain. Indeed,

coordination primitives are mixed up with the functional code, forcing developers to keep in

mind both aspects simultaneously. Finally, in concurrent environments, it is difficult to

envision all possible execution scenarios, making it hard to avoid common problems such as

race conditions.

The coordination problem above calls for a solution that would allow developers to think on a

higher abstraction level, separating functional and coordination aspects of the system

behaviour. For instance, one such solution is the AKKA library [14] implementing the Actor

model. An actor is a component that communicates with other components by sending and

receiving messages. The processing of a message by an actor is atomic. The state of an actor

cannot be directly accessed by other actors, avoiding such common problems as data races.

However, component coordination and resource management are still difficult. Fairly

complex message exchange protocols have to be designed, which are still spread out across

multiple actors. Any modification of the coordination policy calls for the corresponding

modifications in the behaviour of several actors, potentially leading to cascading effects and

rendering the entire process highly error-prone.

Our approach relies on the observation that the behaviour of a component can be represented

as a Finite State Machine (FSM). An FSM has a finite set of states and a finite set of

transitions between these states. Transitions are associated to functions, which can be called to

force a component to take an action or to react to external events coming from the

environment. Such states and transitions usually have intuitive meaning for the developer.

Hence, representing components as FSMs is a good level of abstraction for reasoning about

their behaviour. In our approach, the primitive coordination mechanism is the synchronisation

of transitions of several components. This primitive mechanism gives the developers a

powerful and flexible tool to manage component coordination. Furthermore, this approach

allows us to clearly separate the system-wide coordination policies from the component

behaviour and the interface that components expose for interaction.

Figure 1: The lifecycle of a bundle in OSGi.

OSGi [17] associates to each bundle a simple state machine representing the bundle’s

lifecycle (Figure 1). A bundle can be in one of the states Installed, Resolved, Active,

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 3

etc. However, once the bundle has been started, it remains in the state Active—the

functional states are not represented. Therefore, this mechanism is not applicable for

coordination of active components.

We have implemented functional component coordination in OSGi by using BIP [6]

coordination mechanisms. In BIP, systems are constructed by superposing three layers of

modelling: Behaviour, Interaction, and Priority. The first layer, Behaviour, consists of a set of

components modelled by FSM. The second layer models interaction between components

defining explicitly which transitions can be synchronised. When several interactions are

possible, priorities can be used as a filter. Interaction and Priority layers are collectively called

glue. The execution of a BIP system is driven by the BIP Engine applying the following

protocol in a cyclic manner:

1. Upon reaching a state, each component notifies the BIP Engine about the possible

outgoing transitions;

2. The BIP Engine picks one interaction satisfying the glue specification and notifies

all the components involved in it;

3. The notified components execute the functions associated to the corresponding

transitions.

To use the transition synchronisation mechanism, developers must ensure that the component

states remain stable during one cycle of the above protocol: a component must be able to

perform any transition it has announced as possible to the BIP Engine.

As mentioned above, this approach allows a clear separation between the component

behaviour and system-wide coordination policies. For coordination scenarios that require

global state information (see for example our use case in Section 4.1), dedicated monitor

components can be added in straightforward manner. This allows centralising all the

information related to the coordination in one single location, instead of distributing it across

the components. This considerably simplifies the system maintenance and improves

reusability of components. Indeed, components do not carry coordination logic based on the

characteristics of any specific execution environment.

An observable trend in software engineering is that design becomes more and more

declarative. Developers provide specifications of what must be achieved, rather than how this

must be achieved. These specifications are then interpreted by the corresponding engines,

which generate—often on the fly—the corresponding software entities. Thus, it is not always

possible to instrument or even access the actual source code. Furthermore, it is usually not

desirable to modify such code, since this can lead to a considerable increase of the

maintenance costs.

We have taken a non-invasive approach relying on existing API for the interaction with the

controlled components. With our approach, designers write a separate annotated Java class

that we call BIP Specification. BIP specification is an abstract model of the component that is

aware of its functional states. It defines the functions associated to the corresponding

transitions. Transitions can be of three types: enforceable, spontaneous and internal.

Enforceable transitions are used for coordination through the BIP Engine; spontaneous

transitions are used to take into account the changes in the controlled component; finally,

internal transitions can be used to make the BIP Specification more concise—when enabled,

they are executed immediately. To ensure execution determinism, at most one internal

transition can be enabled at any given execution step. BIP Specification developers are

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 4

responsible for enforcing the validity of this requirement. However, our tools log an exception

when a violation is detected at runtime.

Annotations in a BIP Specification are processed by the BIP Executor, which we have

developed as part of our library, to construct a corresponding Behaviour object representing

the FSM. The Behaviour object is used by the BIP Engine to coordinate the actions of the

component with the other components of the system. Additional components can be provided

in a similar manner to monitor and influence the system behaviour, in particular to impose

safety properties. For specifying larger components, where annotations become impractical,

we have defined a Behaviour API, which allows developers to construct a Behaviour object

programmatically.

BIP coordination extension for OSGi has been implemented and tested in Connectivity

Factory™, a flagship product of Crossing-Tech S.A. The main use-case consists in managing

the memory usage by a set of Camel routes
1
. A Camel route connects a number of data

sources to transfer data among them. The data can be fairly large and may require additional

processing. Hence, Camel routes share and compete for memory. Without additional

coordination, simultaneous execution of several Camel routes can lead to OutOfMemory

exceptions, even when each route has been tested and sized appropriately on its own. We have

designed an annotated BIP Specification for Camel routes, using the suspend and resume

functions provided by the Camel Engine API. We also use notification policies provided by

Camel to observe the spontaneous modifications of the route states. By introducing an

additional Monitor component, we limit the number of Camel routes running simultaneously

to ensure that the available memory is sufficient for the safe functioning of the entire system.

Using BIP allows taking into consideration the structure of the controlled software and also

the coordination constraints imposed by the safety properties. The operational semantics of

the BIP framework is implemented by a dedicated Engine used for the coordination of

software modules according to the three-step protocol above. The BIP Engine is packaged as

an OSGi bundle, using the mechanisms provided by OSGi to publish the service that can be

used by the software modules.

This report is structured as follows. Section 2 explains the component model we used and

how the proposed design methodology should be applied in practice. Section 3 describes the

implemented software architecture. Section 4 illustrates the approach on two use cases.

Section 5 discusses the related work.

2. Design Methodology
2.1. Component Model

We consider a system of components, each represented by a Finite State Machine (FSM)

extended with ports. The FSM is specified by its states and guarded transitions between them.

Each transition has a function and a port associated to it. One port can be associated to several

transitions. There cannot be transitions from the same state labelled by the same port. The

firing of a single transition happens as follows:

1. The transition is checked for enabledness: a transition is enabled when it has no guard

or when its guard evaluates to true. Only enabled transitions can be fired;

2. The function associated with the transition is called;

1
 http://camel.apache.org/routes.html

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 5

3. The current state of the FSM is updated.

We define three types of transitions: internal, spontaneous and enforceable. Internal

transitions represent computations independent of the component environment and can be

performed immediately. Spontaneous transitions represent changes in the environment that

affect the component behaviour, but cannot be controlled. Enforceable transitions represent

the controllable behaviour of the component. At each state, at most one internal transition is

allowed to be enabled.

Figure 2: The model of the Task/Resource example

We illustrate the model on a simple example consisting of two components: a Task and a

Resource (Figure 2). The Task component has states sleep, work and pause, enforceable

transitions (blue arrows in Figure 2) labelled by ports b (begin) and f (finish) and

spontaneous transitions (red arrows in Figure 2) labelled by ports p (preempt) and r (resume).

The Resource component has states free and taken and corresponding enforceable

transitions labelled by ports a (acquire) and r (release). In order to begin execution, the task

has to acquire the resource. Upon termination of the task, the resource is released. This is

achieved by imposing synchronisation of the corresponding enforceable transitions of the two

components (see the green connectors in Figure 2). The Task can be spontaneously preempted

and resumed due to changes in the environment (e.g. by a component with higher priority),

which we do not model here. Finally, the Task can finish execution only when it has finished

all the work it has been assigned. This is modelled by associating a boolean guard finished

to the f (finish) transition of the Task component.

In our implementation, the execution of transitions is controlled and managed by a dedicated

BIP Executor object, described in detail in Section 3.2. The synchronisation between

components is ensured by the BIP Engine. BIP Executor maintains a queue of notifications

corresponding to spontaneous transitions and cyclically executes the following two steps:

1. All transitions from the current state are checked for enabledness.

2. One transition is picked for execution (in order of decreasing priority):

(a) If there is an internal transition, it is fired right away.

(b) If there is a spontaneous transition, and the corresponding event has already

happened (i.e. a corresponding notification is available in the queue), this

spontaneous transition is performed. If there are no notifications in the queue

corresponding to enabled spontaneous transitions and no enforceable transitions

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 6

are enabled, the component waits for the first notification of one of the enabled

spontaneous transitions.

(c) If there are enforceable transitions, the Executor informs the Engine about the

current state and the disabled ports (i.e. which transitions cannot be performed).

The Executor then waits for a response from the Engine, indicating the port to

execute. Upon receiving this response, the Executor performs the corresponding

transition.

When a spontaneous and an enforceable transition are enabled simultaneously, but a

notification corresponding to the former has not been received yet, the Executor will

announce the enforceable transition to the Engine. Thus, in order to satisfy the state stability

property mentioned in the Introduction, it must be possible to postpone the execution of the

spontaneous transition until after the execution of the enforceable one. In other words, a

spontaneous transition labelled with the same port must exist, leaving the target state of the

enforceable transition.

2.2. Design steps

One of the benefits of our approach is that the developer does not need to access the existing

source code or modify it. The design process involves two steps:

1. Defining the Behaviour for each component;

2. Specifying how the components can interact.

2.2.1. Specification of component behaviour

The FSM extended with ports, discussed in Section 2.1, is provided as an instance of a Java

class implementing the Behaviour interface. This interface is used by the Executor and the

Engine and it provides access to the information about states, ports, transitions and guards of

the FSM. For storing the corresponding information, we have defined the Port,

Transition and Guard classes (see below).

The following information must be provided:

• the name of the component;

• the list of all the states and the initial state;

• the list of ports (list of Port instances, where each instance is specified by its

name and type—enforceable or spontaneous);

• the list of transitions (list of Transition instances, where each instance is

specified by its name, source state, destination state and guard expression);

• the list of guards (list of Guard instances, where each instance is specified by its

name and a method returning a boolean value, which corresponds to the actual

guard function);

• a reference to the object, implementing the API used by the methods associated to

guards and transitions of the component.

There are two different ways to provide this information. The first one consists in directly

creating an object implementing the Behaviour interface. The second one is to use a

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 7

mechanism provided for building such objects from source code annotations. Annotations are

syntactic metadata associated to parameters, fields, methods or class declarations. We use

annotations associated to class and method declarations. Several annotations can be associated

to one declaration. They are processed by the Executor and the Behaviour object is created

automatically.

We have defined the following annotations (cf. Figure 3):

• @bipComponentType—annotation associated to a BIP component specification

class. It has two fields: name, the name of the component type, and initial, the

name of the initial state.

• @bipPort—annotation associated to a BIP component specification class. It has

two fields: name, port name, and type, port type which can be “spontaneous” or

“enforceable”, defining the type of associated transitions. The internal transitions

are defined by omitting their name. We use an additional @bipPorts annotation

to specify several instances of @bipPort annotation associated to the same class

declaration.

• @bipGuard—annotation associated to a method used to compute a transition

guard. The method should return a boolean value. This annotation has one field:

name, guard name which can be referred to in a guard expression of a transition.

• @bipTransition—annotation associated to a transition handler method with

four fields: name, the name of the port labelling the transition, source, the name

of the source state, target, the name of the target state and guard, a boolean

expression on the names of the guard methods (true if omitted). The guard

expressions can be defined using parenthesis and three logical operators: negation

(!), conjunction (&) and disjunction (|). Only ports defined by the @bipPort

annotation can be used as transition names.

Figure 3 shows an annotated Java class defining the Task component from the example in

Section 2.1.

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 8

Figure 3: Annotations for the Task/Resource example (cf. Figure 2)

2.2.2. Specification of interaction constraints

To define the interaction model, the developer specifies the interaction constraints of each

component. An interaction constraint can be provided for each port of a system. Two types of

constraints can be used to define allowed interactions:

• Causal constraints (Require): used to specify ports of other components that

are necessary for any interaction involving the port to which the constraint is

associated.

@bipComponentType(initial = "sleep",

 name = "org.bip.spec.Task")

@bipPorts({

 @bipPort(name = "b", type = "enforceable"),

 @bipPort(name = "f", type = "enforceable"),

 @bipPort(name = "r", type = "spontaneous"),

 @bipPort(name = "p", type = "spontaneous")

})

public class Task {

 //class declarations

 @bipTransition(name = "b", source = "sleep",

 target = "work", guard = "")

 public doWork() {

 //method body

 }

 @bipTransition(name = "f", source = "work",

 target = "sleep", guard = "finished")

 public goToSleep() {

 //method body

 }

 @bipTransition(name = "p", source = "work",

 target = "pause", guard = "")

 public pauseWork() {

 //method body

 }

 @bipTransition(name = "r", source = "pause",

 target = "work", guard = "")

 public resumeWork() {

 //method body

 }

 @bipGuard(name = "finished")

 public boolean operationFinished() {

 return operationFinished;

 }

}

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 9

• Acceptance constraints (Accept): used to define optional ports of other

components that are accepted in the interactions involving the port to which the

constraint is associated.

For example, the constraint Task.b Require Resource.a forces the port b of any

component of type Task to synchronise with a port a of some component of type

Resource. Furthermore, the constraint Task.b Accept Resource.a specifies that no

other ports are allowed to participate in the same interaction.

In the current implementation interaction constraints are given in an XML file. Figure 4

shows interaction constraints for the Task component of Figure 2.

Figure 4: Interaction constraints for the Task/Resource example (cf. Figure 2)

2.3. Run-time application setup

Components must be aware of the BIP Engine they are working with and the BIP Engine

must be informed of the components it coordinates. For that purpose, a number of methods

are defined in the BIP Engine and BIP Executor interfaces. The registration process

can be performed as follows:

• Register each component so that all Executor instances are aware of the BIP

Engine. This is done by calling the register method of the BIP Executor

interface:

executor.register(engine);

This method, in turn, calls the register method of the BIP Engine so that the

Engine gets informed of each component it coordinates:

engine.register(this);

• Provide to the Engine the interaction specifications by calling the method

specifyGlue of the BIP Engine interface. The argument of the method is an

instance of a dedicated Java object which contains the system interaction

constraints as defined in Section 2.2.2:

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 10

engine.specifyGlue(bipGlue);

• Start the BIP Engine coordination mechanism by calling the execute method of

the BIP Engine interface:

engine.execute();

3. Implementation

3.1. Architecture

The software architecture of the proposed framework is shown in Figure 5. The architecture

consists of two major parts: the part that involves the components to control (on the left) and

the BIP Engine part (on the right). The grey boxes in the diagram represent OSGi bundles.

Figure 5: Software architecture

For each component a BIP Behaviour is generated at runtime. The Behaviour contains all the

information about the FSM and ports of the controlled entities. As shown in the left-hand part

of the diagram, each instance of BIP Behaviour is coupled with a dedicated instance of BIP

Executor to form a BIP Module. The Notifier is an additional component informing the BIP

Executor of spontaneous events relevant to the controlled entities.

The right-hand part of Figure 5 presents the BIP Engine, which coordinates the execution of

the components. The implementation of the Engine is modular and makes use of Binary

Decision Diagrams (BDDs) [3].
2
 BDDs are efficient data structures to store and manipulate

boolean formulas.

2
 We have used JavaBDD decision diagram package available at http://javabdd.sourceforge.net/

http://javabdd.sourceforge.net/

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 11

The ports and states of all components of the system are associated to boolean variables.

These boolean variables are used at initialization by the Behaviour and Glue Encoders to

translate the corresponding constraints into boolean expressions (green arrows in Figure 5). At

every execution cycle during runtime, each component provides the information about its

current state and enabled ports (the red inform arrow). This information is also encoded into

boolean formulas by the Current State Encoder. The Symbolic BIP Engine computes the

conjunction of these constraints to obtain the global boolean formula that represents the

possible interactions of the system.

In the following sections, the implementations of the BIP Executor and BIP Engine are

presented in more detail.

3.2. BIP Executor

The BIP Executor builds the Behaviour object from the component specification or receives it

as an argument at the initialisation phase (as specified in Section 2.2.1). At each execution

cycle, the Executor interprets the Behaviour and fires the transitions. In order to fire a

transition, the Executor performs three steps:

1. Using the Behaviour, retrieves the method corresponding to the transition;

2. Using Java Reflection mechanism [13], invokes this method;

3. Updates the current state of the Behaviour to the target state of the performed

transition.

There can be at most one internal transition enabled at the current state. If no internal

transitions are enabled, the choice of spontaneous or enforceable ones is made based on the

information obtained from the notifiers and the Engine respectively (cf. Section 2.1):

• Spontaneous: a Notifier entity sends a notification (i.e. the name of a spontaneous

port) to the Executor via the function inform; this port is then stored in a queue

waiting to be processed;

• Enforceable: the Engine sends the name of an enforceable port to the Executor via

the function execute (the red arrow in Figure 5), the execution is performed

immediately.

BIP Executor implements the protocol presented in Section 2.1. In order to ensure consistency

of guard valuations, the guard functions are computed only once for each execution cycle,

regardless of how many times they are used.

3.3. BIP Engine

The BIP Engine orchestrates the coordination of the components by deciding which

interaction should be fired given the information about the current states of the components.

To do that, the Engine applies the three-step protocol presented in the Introduction in a cyclic

manner.

The Engine is packaged as an OSGi bundle and provides the coordination service used by BIP

Executor components. Furthermore, its implementation is modular and consists of five main

parts (cf. Figure 5): three Encoders, the BIP Coordinator and the core Symbolic BIP Engine.

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 12

The BIP Coordinator manages the flow of information between the components and the

Symbolic BIP Engine through a dedicated BIP Engine interface. Part of this interface is

used by the BIP Executors, whereas the other part is used by the Symbolic BIP Engine. In

particular, the BIP Coordinator receives:

• The Behaviour during the registration of the components at initialisation phase and

sends it to the Behaviour Encoder (register method presented in Section 2.3).

• The interaction constraint specifications, which are external to the components and

are provided only at initialization (specifyGlue method presented in

Section 2.3). The specifications are provided as an instance of a special bipGlue

object and the BIP Coordinator forwards them to the Glue Encoder.

• For each component, the current state and the list of ports disabled by guards. This

information is provided at each execution cycle (red inform arrow in Figure 5)

and is forwarded to the Current State Encoder.

• The chosen interaction from the Symbolic BIP Engine. The BIP Coordinator

instructs the components to make the necessary transitions (red execute arrow in

Figure 5).

The three encoders compute the boolean representation of the information they receive from

the BIP Coordinator. The boolean representation of the behaviour and interaction constraints

is only computed once at initialisation, whereas the boolean representation of the current state

information is recomputed at each execution cycle. The Symbolic BIP Engine receives all the

information provided by the three encoders. At each execution cycle, it computes the set of

feasible interactions in the system, chooses one interaction among these and notifies the BIP

Coordinator.

3.4. Integration with OSGi

In order to integrate our framework within an OSGi container the following bundles were

created:

• BIP API bundle, providing the interfaces to be used within the framework;

• BIP Engine bundle, providing the Engine services;

• BIP Executor bundle, providing the Executor code;

• BIP Admin bundle, providing the commands for setting up the application in the

Connectivity Factory™ OSGi container.

The separation into bundles allows us to isolate the aspects of our framework and improves

modularity. BIP Admin bundle does the binding between the components and the BIP Engine,

deserialises the XML representation of interaction constraints and allows the user to manage

the execution by providing the commands bip:register, bip:execute and

bip:stop for the application setup presented in Section 2.3. To process the commands this

bundle uses Karaf
3
—a generic platform providing higher level features and services

specifically designed for creating OSGi-based servers.

3
 http://karaf.apache.org/

http://karaf.apache.org/

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 13

(a) Camel Route (b) Switchable Route (c) Monitor

Figure 6: The models of the Camel Route, Switchable Route and the Monitor

4. Use-case scenarios

In this section, we describe two examples used to validate our approach. The Switchable

Routes use-case is a simplified real-life application encountered by Crossing-Tech S.A. We

use the Towers of Hanoi example to illustrate a slightly more complex coordination scenario.

4.1. Use-case 1: Switchable Routes

This use-case consists in managing the memory usage by a set of Camel routes. A Camel

route connects a number of data sources to transfer data among them. The data can be fairly

large and may require additional processing. Hence, Camel routes share and compete for

memory. Without additional coordination, simultaneous execution of several Camel routes

can lead to OutOfMemory exceptions, even when each route has been tested and sized

appropriately on its own. For the sake of simplicity, we assume that all active routes consume

the same amount of memory. Thus, it is sufficient to ensure that the number of active routes

does not exceed a given threshold.

In the example below, we consider three routes connected in a cycle. We seek to ensure that at

most two routes are active simultaneously.

An abstract model of the route is presented in Figure 6(a). It has four states: suspended,

ready, working and finishing. The route has transitions begin and end between the

states ready and working, corresponding to the processing of a file. The route can be

turned off via off transition from states ready and working.

Notice that this model does not respect the state stability assumption: spontaneous transition

begin from the state ready cannot be postponed if the notification arrives after the

component has promised to perform the off transition. To address this problem, we define

another model shown in Figure 6(b). This model is obtained by merging the ready and

working states together (the on state) and splitting the finishing state in two: wait and

done.

Firing the enforceable transition off takes the route into the state wait, from which two

transitions are possible, both leading to the state done. The internal transition can be taken if

the route has finished processing the files (the associated guard g is satisfied). Otherwise, the

component waits for the notification of the spontaneous event end. Since the transition

finished from the state done is enforceable, it requires a communication with the Engine

to be fired. This is used to coordinate the enforceable transitions of other components.

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 14

Finally, we introduce an additional Monitor component, shown in Figure 6(c), which allows

us to limit the number of simultaneously active routes to two. This is achieved by enforcing,

for each route component, the synchronisation between its port on (respectively finished)

and the port add (respectively rm) of the Monitor. We use interaction constraints similar to

the ones of the Task/Resource example of Section 2.1.

Figure 7 shows the execution log of the system consisting of three Switchable Routes and one

Monitor with component IDs 393–396 respectively. These IDs are assigned by the OSGi

registry. The components use the inform function described in Section 3.3 to provide to the

Engine the information about their respective current states. In particular, in Figure 7, two out

of the three Switchable Routes inform the BIP Engine that they are at state done and

therefore the Monitor correctly informs the Engine that it is in the state corresponding to the

number of active Switchable Routes.

In the next step, the Engine selects the interaction finished•rm, which forces the Monitor

to decrement the counter due to the completion of the ID 395 route.

Figure 7: BIP Engine: One execution cycle printout of the Switchable routes

4.2. Use-case 2: The Towers of Hanoi

In this use-case, the system consists of three pegs: the left, the middle and the right. The left

peg holds disks of size decreasing from n at the bottom to 1 at the top. The objective is to

transfer all disks to one of the other pegs, moving only one disk at a time and never putting a

larger disk on top of a smaller one. We refer to the move, where we put a disk on an empty

peg or on top of a larger disk, as a legal move.

***************************** Inform ***********************

Component: switchableRoute395 informs that is at state: done

Component: switchableRoute393 informs that is at state: off

Component: switchableRoute394 informs that is at state: done

Component: monitor396 informs that is at state: 2

**

*************************** Engine *************************

ChosenInteraction:

Chosen Component: switchableRoute395

Chosen Port: finished

Chosen Component: monitor396

Chosen Port: rm

**

***************************** Inform ***********************

Component: switchableRoute395 informs that is at state: off

Component: switchableRoute393 informs that is at state: off

Component: switchableRoute394 informs that is at state: done

Component: monitor396 informs that is at state: 1

**

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 15

Figure 8: The Towers of Hanoi use case

The algorithm is different for odd and even numbers of disks. A total of 2
n
 – 1 moves are

made in each case. Here we only present the model that solves the Towers of Hanoi for odd

values of n. The model for even values is similar.

The system model is shown in Figure 8. It has one component for each of the three pegs: left,

middle and right. In addition, there is a Monitor component ensuring that only legal moves are

made between pegs. For the sake of clarity, we do not show all the connectors in Figure 8.

More precisely, we only show the connectors that correspond to the interactions of the system

for the first three movements of the algorithm, when all the disks are on the left peg.

Behaviours of all peg components are identical. They differ only at initialisation: the left peg

is initialised to be full, the other two to be empty. Each peg has 2n ports: add1, …, addn for

adding the corresponding disk and rm1,…,rmn for removing. Each peg has only one state

start and a local boolean array (not shown in the figure) to keep track of the disks it holds.

Each transition has the corresponding guard associated to it (also not shown in the figure),

which determines whether the corresponding disk can be added to (respectively removed

from) the peg.

The behaviour of the Monitor component, combined with the interaction constraints imposed

by the connectors, ensures that a disk is moved between the left and the middle pegs

(transition rm), then between the middle and the right pegs (transition ml), then between the

left and the right pegs (transition rl) and so on.

Partial trace of the system execution is shown in Figure 9. As expected, the application

correctly terminates after 2
n
 – 1 moves.

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 16

Figure 9: BIP Engine: One execution cycle printout of the Hanoi towers

*************************** Inform *****************************

Component: org.bip.spec.MiddleHanoiPeg

informs that is at state: start

disabled ports: piece1Remove, piece2Remove, piece3Remove

**

*************************** Inform *****************************

Component: org.bip.spec.HanoiMonitor

informs that is at state: state-RM

*************************** Inform ****************************

Component: org.bip.spec.RightHanoiPeg

informs that is at state: start

disabled ports: piece1Add, piece2Add, piece2Remove, piece3Add

**

*************************** Inform *****************************

Component: org.bip.spec.LeftHanoiPeg

informs that is at state: start

disabled ports: piece1Remove, piece2Add, piece3Add, piece3Remove

**

*************************** Engine *****************************

ChosenInteraction:

Chosen Component: org.bip.spec.MiddleHanoiPeg

Chosen Port: piece2Add

Chosen Component: org.bip.spec.LeftHanoiPeg

Chosen Port: piece2Remove

Chosen Component: org.bip.spec.HanoiMonitor

Chosen Port: rm

**

*************************** Inform *****************************

Component: org.bip.spec.LeftHanoiPeg

informs that is at state: start

disabled ports: piece1Remove, piece2Remove, piece3Add

**

*************************** Inform *****************************

Component: org.bip.spec.RightHanoiPeg

informs that is at state: start

disabled ports: piece1Add, piece2Add, piece2Remove, piece3Add

**

*************************** Inform *****************************

Component: org.bip.spec.MiddleHanoiPeg

informs that is at state: start

disabled ports: piece1Remove, piece2Add, piece3Add, piece3Remove

***************************Inform *****************************

Component: org.bip.spec.HanoiMonitor

informs that is at state: state-ML

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 17

5. Related work

Different approaches have been proposed to deal with the coordination of concurrent systems.

First of all, locks and semaphores [15] have been extensively used in software engineering

approaches to address concurrency problems. However, these solutions do not allow a clear

separation between the functional code and the coordination mechanisms, making it hard to

design and maintain correct programs, especially when they are used in large concurrent

systems.

A Coordinator service was developed by the OSGi community [18] allowing simple

coordination between multiple software components. A Coordinator object has only two

states: Active and Terminated. This approach provides developers with a higher abstraction

level primitive for multi-party synchronisation barriers. Thus, some simple coordination can

be ensured on several entities having no information about each other.

A different approach is taken by the AKKA library [14], which is based on the primitives of

the Actor model [2]. Actors are concurrent components that communicate through ports. By

relying on asynchronous communication, the actor model also avoids the use of low-level

primitives, such as locks and semaphores. However, component coordination through the

specification of complex message exchange protocols among multiple actors can be

challenging and error-prone.

Apart from BIP, the most prominent component-based frameworks found in the literature are

Ptolemy [12] and Reo [4]. In particular, Reo is a channel-based exogenous coordination

model wherein complex coordinators, called connectors are compositionally built out of

simpler ones to orchestrate component instances in a component-based system. The Ptolemy

[12] framework also adopts an actor-oriented view of a system. Ptolemy actors can be

hierarchically interconnected and support heterogeneous, concurrent modelling and design.

However, for both of these frameworks, we are not aware of complementary work on using

these coordination models to control the behaviour of pre-existing independently developed

software components and, in particular, OSGi bundles.

A number of approaches have been proposed to the specification of OSGi component

behaviour. In particular, Blech et al. [7] propose a framework to describe behavioural

specification of OSGi bundles that can be used for runtime verification. The semantics

proposed bears similarity to the semantics of the BIP framework [6]. Runtime checks are

performed using constraint specifications to ensure safety in case of deviation from the

original specification. The behavioural models of the components are loaded from XML files

and integrated into a bundle [8]. The runtime monitors used are connected to the components

by using AspectJ [8]. The aspects are specified in separate files and have point-cuts that

define the locations where additional code must be added to the existing one. This approach

requires detailed knowledge of the source code, whereas our approach relies only on the

knowledge of the APIs provided by the components.

Another approach for OSGi-based behaviour specification has been studied by Mekontso

Tchinda et al. [16]. The authors propose specifying OSGi services based on a combined use of

interface automata [11] and process algebra [5]. Their specification of services is centred on

finding the best candidates for service substitution. Qin et al. [19] propose a framework that

specifies the behaviour of OSGi components through the use of WF-nets [1]. In their

approach, behaviour description files are used to specify not only the service behaviour but

also coordination protocols.

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 18

6. Conclusion

The introduction of OSGi was a tremendous improvement for the design of modular Java-

based systems. OSGi greatly simplifies the work of a software developer and its benefit has

been shown by the ever growing community of users. It takes into account such aspects as

class loading, class visibility, bundle lifecycle and service dynamicity. However, the lifecycle

layer makes a very strong simplification by limiting all the information about an active bundle

to a single state. In Crossing-Tech’s experience with OSGi, this happens to be very restrictive.

In our practice, common coordination issues are very difficult to address with the mechanisms

provided by the OSGi lifecycle layer. Developers had to resort to ad-hoc solutions to ensure

that resources such as memory within the JVM running an OSGi container are not being

exhausted.

The specification of what are the allowed global states and global state transitions is an

integral part of the specification of a modular system. Using BIP, we have shown how these

aspects can be taken into account in a non-invasive manner and without any impact on the

technology stack within an OSGi container following the best practices of OSGi.

Although differentiating multiple components within a bundle could go beyond the desired

scope of the OSGi specification, one has to notice that this finer granularity is already quite

common, since OSGi best practices prefer packages to bundles as means to express

dependency relationship. We consider that our work, recognizing the fact that bundles may

have multiple components with multiple functional states, will help to improve the OSGi

standard.

In this report, we have presented our approach to adding BIP coordination to OSGi. We have

presented the architecture of the implemented framework. This architecture relies on several

architectural elements, in particular a dedicated BIP Engine and a BIP Module. The latter

comprises an annotated Java class, called BIP Specification, interpreted by an associated BIP

Executor object. Our implementation of the BIP Engine is itself modular. It relies on a

symbolic kernel manipulating boolean formulas and three encoders that translate component

and glue specifications into such formulas. We have presented two use cases illustrating our

approach.

On-going and future work consists in implementing data transfer mechanism between

components, priority models and taking into account dynamically evolving system

architectures where components can arrive and disappear. We also plan to define a more

flexible and user-friendly format for specifying interaction constraints.

References

[1] W. Aalst. Verification of workflow nets. In P. Azéma and G. Balbo, editors, Application

and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science,

pages 407–426. Springer Berlin Heidelberg, 1997.

[2] G. Agha. Actors: a model of concurrent computation in distributed systems. MIT Press,

Cambridge, MA, USA, 1986.

[3] S. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27(6):509–

516, 1978.

CTI 14432.1 PFES-ES
BIP / Connectivity Factory

Integration: Implementation

S. Bliudze, A. Mavridou,

R. Szymanek, A. Zolotukhina

This document and all information contained therein is confidential and must not be communicated to parties other

than CTI, EPFL and Crossing-Tech without prior consent of the project directors board. 19

[4] F. Arbab. Reo: a channel-based coordination model for component composition.

Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[5] J. C. M. Baeten. A brief history of process algebra. Theoretical Computer Science,

335(2-3):131–146, May 2005.

[6] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and J. Sifakis.

Rigorous Component-Based System Design Using the BIP Framework. IEEE Software,

28(3):41–48, 2011.

[7] J. O. Blech, Y. Falcone, H. Rueß, and B. Schatz. Behavioral specification based runtime

monitors for OSGi services. In Proceedings of the 5th international conference on

Leveraging Applications of Formal Methods, Verification and Validation: technologies

for mastering change - Volume Part I, ISoLA’12, pages 405–419, Berlin, Heidelberg,

2012. Springer-Verlag.

[8] J. O. Blech, H. Rueß, and B. Schätz. On behavioral types for OSGi: From theory to

implementation. CoRR, abs/1306.6115, 2013.

[9] S. Bliudze and J. Sifakis. The algebra of connectors—structuring interaction in BIP.

IEEE Transactions on Computers, 57(10):1315–1330, 2008.

[10] S. Bliudze and J. Sifakis. Synthesizing Glue Operators from Glue Constraints for the

Construction of Component-Based Systems. In S. Apel and E. Jackson, editors,

Software Composition, LNCS, pages 51–67, Berlin / Heidelberg, 2011. Springer.

[11] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the 8th

European software engineering conference held jointly with 9th ACM SIGSOFT

international symposium on Foundations of software engineering, ESEC/FSE-9, pages

109–120, New York, NY, USA, 2001. ACM.

[12] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y.

Xiong. Taming heterogeneity: The Ptolemy approach. Proceedings of the IEEE,

91(1):127–144, 2003.

[13] I. R. Forman, N. Forman, D. J. V. Ibm, I. R. Forman, and N. Forman. Java reflection in

action, 2004.

[14] M. Gupta. Akka Essentials. Community experience distilled. Packt Publishing, 2012.

[15] D. Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison-

Wesley, Reading, MA, 2 edition, 1999.

[16] H. A. Mekontso Tchinda, N. Stouls, and J. Ponge. Spécification et substitution de

services OSGi. Rapport de recherche RR-7733, INRIA, Sept. 2011.

[17] OSGi Alliance. OSGi service Platform Core Specification, Apr. 2007. Release 4,

Version 4.15.

[18] OSGi Alliance. Coordinator service,

http://www.osgi.org/javadoc/r5/enterprise/org/osgi/service/coordinator/Coordinator.htm

l. (Accessed on 22/10/2013.).

[19] Y. Qin, H. Hao, L. Jim, G. Jidong, and L. Jian. An approach to ensure service behavior

consistency in OSGi. In Software Engineering Conference, 2005. APSEC’05. 12th

Asia-Pacific, 2005.

	1. Introduction
	2. Design Methodology
	2.1. Component Model
	2.2. Design steps
	2.2.1. Specification of component behaviour
	2.2.2. Specification of interaction constraints

	2.3. Run-time application setup

	3. Implementation
	3.1. Architecture
	3.2. BIP Executor
	3.3. BIP Engine
	3.4. Integration with OSGi

	4. Use-case scenarios
	4.1. Use-case 1: Switchable Routes
	4.2. Use-case 2: The Towers of Hanoi

	5. Related work
	6. Conclusion
	References

