000196963 001__ 196963
000196963 005__ 20180913062400.0
000196963 037__ $$aREP_WORK
000196963 245__ $$aEqual-order discontinuous finite volume element methods for the Stokes problem
000196963 269__ $$a2014
000196963 260__ $$c2014
000196963 300__ $$a21
000196963 336__ $$aReports
000196963 520__ $$aThe aim of this paper is to develop and analyze  a one-parameter family of  stabilized discontinuous finite volume element methods for the Stokes equations in two and three spatial dimensions. The proposed scheme is constructed using a baseline finite element (FE) approximation of velocity and pressure by discontinuous piecewise linear elements, where an interior penalty stabilization is applied. {\it A priori} error estimates are derived for the velocity and pressure in the mesh-dependent norm, and optimal convergence rates are predicted for velocity in the $L^2-$norm under the assumption that source term is locally in $ H^1$. Several numerical experiments are presented to validate the theoretical findings.
000196963 6531_ $$aStokes equations
000196963 6531_ $$aDiscontinuous Galerkin formulation
000196963 6531_ $$aStabilization
000196963 6531_ $$aFinite volume element method
000196963 6531_ $$aError analysis
000196963 700__ $$aKumar, Sarvesh
000196963 700__ $$0242883$$aRuiz Baier, Ricardo$$g190276
000196963 909C0 $$0252436$$pMATHICSE$$xU12241
000196963 909CO $$ooai:infoscience.tind.io:196963$$preport
000196963 917Z8 $$x190276
000196963 917Z8 $$x190276
000196963 917Z8 $$x190276
000196963 917Z8 $$x190276
000196963 917Z8 $$x148230
000196963 917Z8 $$x190276
000196963 917Z8 $$x148230
000196963 937__ $$aEPFL-REPORT-196963
000196963 973__ $$aOTHER
000196963 980__ $$aREPORT