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Abstract
Systems found in nature are composed of numerous components that interact with each
other. Sometimes a small change in the microscopic interactions is accompanied by an
abrupt change in the material properties. This phenomenon is called a phase transition.
A simple example of a phase transition is the transformation of a liquid into a solid. A
transition that remained to this day one of the most mysterious is the glass transition.
The glass transition is present in amorphous materials and manifests itself in a slowdown
of the dynamical properties of the material. A glass can be seen in many aspects as a
frozen liquid.
The phase and glass transition are not only found in nature, but also in artificial systems
used in computer science and communications. In this context, these transitions appear
as sudden changes in the execution or in the performances of algorithms. In particular,
we retrieve the glass transition in systems where the interactions between constituents
are represented by a sparse graph. It appears that these systems are similar to spin
glasses that were developed in statistical physics to study the glass transition. Within
this framework, a non-rigorous mathematical tool, called the cavity method, has been
developed to analyze these models.

In this thesis we focus on the application of the cavity method in coding theory. Our
work focuses on two topics related to code constructions based on sparse graphical models.

Our first contribution concerns two error correcting codes: low-density parity-check
(LDPC) codes and low-density generator-matrix (LDGM) codes. These codes are used to
correct the errors that appear when information is transmitted over an imperfect channel.
The conditional entropy is an important quantity for analyzing the performance of a code,
but difficult to compute. The cavity method predicts that the conditional entropy is
asymptotically equal to another quantity that is easy to compute: the Bethe free energy.
We present a rigorous proof that the prediction of the cavity method is exact for LDGM
and LDPC codes over a binary symmetric channel (BSC) in a high noise regime. For this
we develop a new technique that combines loop calculus and the polymer expansion from
statistical physics. The conditional entropy is computed as a series expansion containing
the Bethe free energy as its zero-th order term plus some correction terms. We show that
the series is convergent for graphical model at high temperatures. Moreover if the graphs
have large girth, we prove that the correction terms are asymptotically vanishing. This
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Abstract

applies immediately to LDGM codes. The application to LDPC codes requires more
care as the parity constraints in such codes correspond to a low temperature regime.
Nevertheless, by combining the properties of graph expansion and counting arguments,
we can prove that the conditional entropy is asymptotically equal to Bethe free energy.

Our second contribution concerns lossy source coding. Our objective is to compress a
binary symmetric source. It is well-known that once compressed, the source cannot be
reconstructed without a certain number of errors that is called “distortion”. For a fixed
compression rate, the distortion cannot be smaller than the Shannon distortion. We
investigate an encoding scheme based on spatially-coupled LDGM codes. The LDGM
codes that we consider have check nodes with regular degree and variable nodes with
random degree distributed according to a Poisson distribution. We show that these
codes equipped with a low-complexity encoding algorithm, approach the Shannon dis-
tortion for any compression rate. The algorithm we consider is a belief-propagation
guided-decimation (BPGD) process. The BPGD algorithm depends on a probability
distribution on the space of compressed sequences. This distribution can be interpreted
as the Gibbs measure of a spin glass at finite temperature. We compare the properties of
this Gibbs measure and the performance of the BPDG algorithm. Therefore, we study
the phase diagram of this measure using the cavity method. In particular, we compute
two transition temperatures called dynamical temperature and condensation temperature.
We observe that, in the case of spatially coupled LDGM codes, the dynamical temperature
saturates to the condensation temperature. This saturation mechanism is similar to
the so-called threshold saturation that appears in channel coding with spatially-coupled
codes. In addition, we show that, as the degree of the check nodes increases, the typical
sequences of the Gibbs measure at the condensation temperature give rise to a distortion
that tends to the Shannon distortion.

Keywords: Spin glass, cavity method, dynamical and condensation temperatures, Bethe
free energy, polymer expansion, loop calculus, lossy source coding, low-density generator-
matrix codes, low-density parity-check codes, spatial coupling, threshold saturation,
rate-distortion bound, belief propagation, decimation
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Résumé
Les objets qui nous entourent sont composés de nombreux constituants en interactions.
Il arrive qu’une petite modification dans les interactions microscopiques s’accompagne
d’un changement abrupt dans les propriétés du matériau. On parle alors de transition
de phase. C’est ce qui arrive par exemple lorsque qu’un liquide se transforme en solide.
Une des transitions qui reste à ce jour parmi les plus énigmatiques est la transition
vitreuse. Présente dans les matériaux amorphes, elle se manifeste sous la forme d’un
fort ralentissement de la dynamique sous-jacente. Ainsi un verre ressemble sous bien des
aspects à un liquide figé.
Les transitions de phase et la transition vitreuse ne sont pas uniquement présentes dans la
nature mais aussi dans certains systèmes artificiels que l’on rencontre en informatique ou
en communications. Dans ce contexte, ces transitions se manifestent par des changements
soudains dans le fonctionnement d’un algorithme ou dans les performances de celui-ci.
On retrouve la transition vitreuse en particulier sur des modèles où les interactions entre
les constituants sont représentées par des graphes creux. Ces derniers possèdent une
structure mathématique proche de ce qui est appelé des verres de spins avec interactions
diluées. Les verres de spins sont des modèles théoriques de physique statistique qui furent
développés pour étudier la transition vitreuse. Plusieurs outils mathématiques furent
inventés dans ce cadre pour comprendre et étudier ces modèles.

Dans cette thèse nous nous concentrons sur l’application dans le codage de l’un de
ces outils, qui est non rigoureux, appelé la méthode de la cavité. Notre travail porte sur
deux sujets d’étude relatifs à des codes construits à partir de graphes creux.

Notre première contribution concerne deux codes correcteurs d’erreurs : les codes à
contrôle de parité de faible densité (LDPC) et les codes à matrice génératrice creuse
(LDGM). Ces codes sont utilisés pour se protéger contre une altération de données sur un
canal de transmission imparfait. La qualité d’un code se mesure par le nombre d’erreurs
qu’il est capable de corriger. Une quantité difficile à calculer mais primordiale dans le
contrôle de la qualité d’un code est l’entropie conditionnelle. La méthode de la cavité pré-
dit que cette entropie conditionnelle est asymptotiquement égale à une quantité aisément
calculable : l’énergie libre de Bethe. Nous prouvons rigoureusement que dans le cas d’un
canal de transmission binaire fortement bruité, la prédiction de la méthode de la cavité
est exacte pour les codes LDGM et LDPC. Pour ce faire nous développons une nouvelle
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Abstract

technique combinant la série des boucles et le développement en série de polymères
de la physique statistique. L’entropie conditionnelle apparait comme étant égale à une
somme dont le premier terme est l’énergie libre de Bethe suivit de termes correctifs.
Nous montrons que pour les modèles graphiques à haute température cette somme est
convergente. De plus si les graphes en question ont une grande maille, nous prouvons que
les termes correctifs à l’énergie libre de Bethe sont asymptotiquement nuls. Ce résultat
s’applique immédiatement aux codes LDGM. Le cas des codes LDPC est plus délicat car
les contraintes de parité correspondent à un régime de basse température. Néanmoins en
combinant les propriétés d’expansion des graphes et des arguments de comptage, nous
prouvons que les termes correctifs à l’énergie libre de Bethe sont asymptotiquement nuls.

Notre deuxième contribution concerne le domaine du codage de source avec perte.
L’objectif est ici de compresser une source d’information binaire et symétrique. Il est
bien connu qu’une fois comprimée, cette source ne peut pas être reconstruite qu’avec un
certain nombre d’erreurs appelé distorsion. Pour chaque taux de compression, il existe
une limite inférieure à la distorsion atteignable qui s’appelle la distorsion de Shannon.
Notre étude porte sur un procédé d’encodage basé sur des codes LDGM spatialement
couplés. Les codes LDGM que nous considérons ont des nœuds de contrainte réguliers et
des nœuds de variable ayant des degrés aléatoirement distribués selon une loi de Poisson.
Nous montrons que ces codes associés à un algorithme de basse complexité peuvent
approcher la distorsion de Shannon quel que soit le taux de compression. L’algorithme
dont il est question est un processus de décimation de graphe guidé par une propagation
de croyance (BPGD). L’algorithme BPGD est dépendant d’une distribution de probabilité
sur les séquences compressée. Cette distribution de probabilité peut être interprétée
comme une mesure de Gibbs d’un verre de spins à température finie. Nous comparons les
propriétés de cette mesure de Gibbs aux performances de l’algorithme BPGD. Pour cela
nous étudions le diagramme de phase de cette mesure en utilisant la méthode de la cavité.
En particulier nous calculons deux températures de transition appelées température
dynamique et température de condensation. Nous observons que dans le cas des codes
LDGM spatialement couplé, la température dynamique sature vers la température de
condensation. De plus nous montrons que lorsque le degré des nœuds de contrainte
augmente, les séquences typiques de la mesure de Gibbs à la température de condensation
donnent lieu à une distorsion approchant la distorsion de Shannon.

Mots clés : Verre de spin, méthode de la cavité, température dynamique et de conden-
sation, énergie libre de Bethe, développement en série de polymères, série des boucles,
codage de source avec perte, codes à contrôle de parité de faible densité, codes à matrice
génératrice creuse, couplage spatial, saturation de seuil, courbe de distorsion, propagation
de croyance, décimation
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Preamble
Systems found in nature involve many constituents that interact locally with each other.
Simple relationships between parts can give rise to complex collective behaviors of a whole
system. We cite the examples of ants exchanging pheromones and building an anthill,
neurons transmitting electrical pulses or avalanches in a pile of colliding sand grains.
This mechanism is not only found in nature but also in artificial systems such as those
that are encountered in information theory and coding, statistical inference, theoretical
computer science, bio-informatics and signal processing. In these latter models, the
dependencies between constituents are often represented by sparse random graphs. It
is surprising that these systems are similar to spin glasses with dilute interactions, a
subject studied in statistical mechanics.

Spin glass models are toy examples that were developed in the 1970s to understand the
behavior of disordered systems and try to unravel the mystery of the glass transition
in amorphous materials. In 1975, D. Sherrington and S. Kirkpatrick introduced one of
the first exactly solvable models of spin glasses that now bears their name [1]. Four
years later G. Parisi solved the SK model, perfecting the replica trick [2, 3], a highly
non-rigorous method involving ill-defined mathematical objects. In their 1985 paper “SK
Model: The Replica Solutions without Replicas” [4], M. Mezard, G. Parisi and M. A.
Virasoro developed the cavity method in an attempt to replace the lack of rigor of the
replica trick by a more probabilistic approach.

The cavity method combines the advantages of reproducing the replica trick results and
is much more intuitive. The cavity method can be regarded as a series of successive
approximation steps called “replica symmetry breaking (RSB) steps” and is a non-trivial
generalization for loopy graphs of the Bethe-Peierls approach on trees. This makes its
formalism closely related to algorithms such as belief propagation (BP) or min-sum
algorithm (MSA). For this reason the cavity method has been applied fruitfully outside
statistical physics in fields as diverse as biology [5, 6], compressed sensing [7, 8], machine
learning [9, 10], neural networks [11, 12], coding theory [13, 14] and constraint satisfaction
problems [15, 16]. The strength of the cavity method is its ability to provide theoretical
insights, as well as algorithms to compute entropies, thresholds or ground-state energies.
However, formulas predicted by the cavity method remain unproven in most of cases.
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Despite the success of the rigorous approach by Guerra and Talagrand [17, 18] for the
SK model, the whole field is very much at its beginning, and there remain many open
problems.

This thesis focuses on the applications of the cavity method in coding theory. The core
of the present document consists of two parts.

Part II concerns channel coding on the binary symmetric channel with codes based on
sparse graphical models. In this context the cavity method is at its minimal level of
complexity (no RSB steps) and reduces to the Bethe-Peierls mean field theory. It has
already been used extensively to provide computationally efficient decoding algorithms
and formulas that predict the performance of such codes. Our contribution lies in a
mathematically rigorous proof of the validity of the Bethe formula for computing the
conditional entropy of code instances. The techniques we present are new and are based
on a combinatorial tool from statistical physics, called the polymer expansion.

Part III presents a different flavor in that it consists in an exploratory work in lossy
source coding theory and in the use of the cavity method for interpreting algorithmic
results. We show that spatially-coupled codes approach the rate-distortion bound under a
low-complexity message-passing and decimation algorithm. Spatial coupling, a graphical
construction recently discovered in channel coding, has quickly proved fruitful in other
areas of study. Using the full machinery of the cavity method, we give an interpretation
of the performance improvements in terms of glass transitions. We also provide tools
for computing performance thresholds and show that the so-called threshold saturation
mechanism takes place.

The present introductory part consists of three chapters. In Chapter 1, we first present
the general formalism of graphical models and explain briefly the basic assumptions of
the cavity method. Most of the concepts that are at the basis of the cavity method
come from glass theory and statistical physics. Therefore we present a review of the
glass phenomenology and the main results on the Ising model, along with the cavity
method. In Chapter 2, we express two problems from coding theory in the language of
spin glasses. The first is the computation of the conditional entropy for sparse graph
codes in channel coding, and the second is the application of spatially-coupled codes
in lossy source coding theory. We also provide a general review of the channel coding
theory and the rate distortion theory. Chapter 3 contains the statement of the main
contributions, along with a summary of Part II and Part III.
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1 Spin Glasses and the Cavity
Method

In this chapter, we provide an introduction to spin glasses, a particular type of random
graphical models.

In Section 1.1, we present certain concepts from statistical physics. In particular, we
introduce the free energy as a central object to study graphical models.

In Section 1.2, we illustrate the concepts of the preceding section with the square lattice
Ising model and introduce the concept of extremal measures.

In Section 1.3, we give a review of the glass phenomenology and describe some properties
of the glass transition.

In Section 1.4, we present the notion of quenched disorder and describe some of the most
iconic spin glasses.

In Section 1.5, we provide a high level introduction of the main concepts of the cavity
method.

1.1 Graphical Models and Concepts from Statistical Physics

In coding or spin glass theory, we encounter probability distributions that take values on
binary alphabets that could be either bits u ∈ {0, 1} or equivalently spins σ ∈ {−1, 1}.
A factor graph Γ = (V,C,E) is a bipartite graph that represents the factorization
properties of such distributions. It is defined by a set of variable nodes V , a set of
function nodes or check nodes C and a set of edges E ⊂ V × C. The number of
variable nodes is n = |V | and the number of check nodes is m = |C| . The letters
i, j, k ∈ V refer to variable nodes and a, b, c ∈ C to check nodes. We also use the
notation ∂i = {a ∈ C | (i, a) ∈ E} (resp. ∂a = {i ∈ V | (i, a) ∈ E}) to denote the variable
neighborhood (resp. check neighborhood). Variable nodes i ∈ V are associated with
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Chapter 1. Spin Glasses and the Cavity Method

binary variables ui ∈ {0, 1} and check nodes are associated with non-negative weight
functions ψa whose arguments are u∂a := {ui | i ∈ ∂a}. The weight functions have the
general form

ψa (u∂a) = exp (−βH (u∂a | xa)) , (1.1)

where H is a real valued function, possibly infinite, that could depend on a local parameter
xa and on a global parameter β > 0. The collection of local parameters is denoted by x.
By analogy with the corresponding parameter entering the Gibbs distribution of physical
models, β is called the inverse temperature. The Gibbs measure associated with the
factor graph Γ is

µβ (u | x) = 1
Z (β | x)

∏
a∈C

ψa (u∂a) . (1.2)

The normalization factor Z in Equation (1.2) is called the partition function and is a
sum over all configurations u ∈ {−1, 1}n of the product of the interaction functions

Z (β | x) =
∑

u∈{0,1}n

∏
a∈C

ψa (u∂a) . (1.3)

1.1.1 The Free Energy

Most often, we are interested in computing the average of a quantity A (u) under the
measure µ. This average is traditionally denoted with brackets as

〈A〉β|x =
∑
u

µβ (u | x)A (u) . (1.4)

It turns out that this can always be mapped to the computation of a central object called
the free energy

f (β | x) = − 1
nβ

lnZ (β | x) . (1.5)

Finding 〈A〉 is equivalent to first computing a perturbed version of the free energy (here
ε > 0 is a small perturbation parameter)

f (β; ε | x) = − 1
nβ

ln

∑
u

eεA(uI)
∏
a∈C

ψa (u∂a)

 , (1.6)

and taking a derivative with respect to the perturbation parameter

− 1
nβ
〈A〉β|x = d

dε
f (β; ε | x)

∣∣∣∣
ε=0

. (1.7)

For this reason, it is often said that the free energy contains all the “useful information”
about the Gibbs measure µ. However the perturbed free energy (1.6) could be much
harder to compute than the free energy (1.5) of the original problem.
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1.2. An Important Paradigm: the Square Lattice Ising Model

The free energy is a central object to understanding a graphical model. Unfortunately
it is an object that is a priori hard to compute. The partition function (1.3) is a sum
involving 2n terms. When there exist symmetries in a problem, for instance if the graph
is a lattice or if the interactions are uniform (ψa = ψ), the complexity can sometimes
be reduced drastically. This is, however, never the case for glassy systems that are at
the core of many problems in computer science. These are “disordered” systems with no
explicit symmetries.

1.2 An Important Paradigm: the Square Lattice Ising Model

Graphical models involve a large number of degrees of freedom (say ui ∈ {0, 1}); for
instance 104 in coding or 1023 in statistical physics. In general, we are interested in the
asymptotic properties of a system. The limit when the number of variables tends to infinity
is called the thermodynamic limit. The thermodynamic limit of the free energy probes
the sudden changes of the structure of Gibbs measures as a control parameter (e.g., the
temperature) varies. Consider the free energy in the thermodynamic limit as a function
of the control parameter. When this quantity has a point of non-analyticity, we say that
the system undergoes a phase transition. Phase transitions are ubiquitous in nature; for
instance, water turns to steam or snow, or a piece of iron acquires a magnetization. Phase
transitions are also present in information science when an overload of noise, pushing a
system off capacity, suddenly disrupts all communications.

One of the earliest attempts to model a phase transition was the square lattice Ising
model. This model combines the benefits of being both simple enough to be analytically
solvable and complex enough to have a phase transition.

The Ising model for a one-dimensional chain of spins was first introduced and solved
by Ising [19] in his 1924 thesis. Although this model was developed for studying the
ferromagnetic transition in matter, there is no phase transition in 1D. The two dimensional
version of the problem is much harder and was solved analytically in 1944 by Onsager
[20]. Unlike the one-dimensional system, the Ising model on the square lattice possesses a
paramagnetic-ferromagnetic phase transition at finite temperature where a spontaneous
magnetization develops.

Denote by ΛL = (V,E) the square lattice with n = L2 spins with periodic boundary
conditions (ΛL is equivalent to the torus (Z/LZ)2). We will use the letters i, j for vertices
in V and we denote by a couple (i, j) ∈ E an edge of the lattice. In this example we can
dispose of the bipartite structure of factor graphs as the function nodes are in one-to-one
correspondence with the edges. A spin is a binary variable σi ∈ {−1, 1} associated with
a vertex i ∈ V of the lattice. A spin configuration is a vector of n binary variables
σ ∈ {−1, 1}n. The occurrence probability of a configuration at temperature β−1 is given
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Chapter 1. Spin Glasses and the Cavity Method

by the Gibbs measure

µn (σ) = 1
Zn

e−βHn(σ), (1.8)

where the energy cost function, called the Hamiltonian, contains only nearest neighbor
interactions

Hn (σ) =
∑

(i,j)∈ΛL

−Jσiσj . (1.9)

The coupling constant J in the Hamiltonian (1.9) is non-negative. Such interactions
between spins are called ferromagnetic interactions.

The free energy of this model first computed by Onsager is given in terms of an elliptic
integral. We first introduce the dimensionless rescaled temperature

z := tanh (βJ) . (1.10)

The temperature is minimal when z = 0 and becomes maximal when z = 1. The free
energy in terms of the rescaled temperature is

f0 (z) = ln 2
2 + 1

2π

ˆ π

0
dθ lnK (z, θ) , (1.11)

where

K (z, θ) =
(
1 + z2)2 +

√
1− 4z2 + 22z4 − 4z6 + z8 − 8z (1− z2)2 cos (2θ)

(1− z2)2 . (1.12)

The free energy is a continuously differentiable function of z, but it is not analytic on
the whole interval z ∈ [0, 1]. The second derivative becomes singular at the point

zc =
√

2− 1 ≈ 0.414. (1.13)

The temperature zc is the critical temperature (recall z = tanh (βJ)) at which the
square-lattice Ising model undergoes a phase transition. To understand the nature of
the phase transition and its implication on the structure of the Gibbs measure (1.8), we
introduce the concept of extremal measures, which is central in Gibbs measures theory.
It is well known that in the thermodynamic limit, Gibbs measures of the form (1.8) are
contained in a set closed under convex combinations. Different Gibbs measures can be
obtained using different boundary conditions. The pure states or extremal measures
are Gibbs measures that cannot be expressed as a convex combination. For periodic
boundary conditions the thermodynamic limit of the Gibbs measure (1.8) yields

µ =

µ0 z < zc,
1
2µ+ + 1

2µ− z ≥ zc,
(1.14)
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1.2. An Important Paradigm: the Square Lattice Ising Model

Figure 1.1: Squared lattice with ± boundary conditions. On the left Λ+
L=5 and on the

right Λ−L=5.

where µ0 is the unique high-temperature measure and µ+ and µ− are the two extremal
measures at low temperature [21].

The extremal measures at low temperature are induced by the square lattices Λ+
L and

Λ−L with variables at the boundary fixed to +1 and −1 respectively. Figure 1.1 shows
the square lattices Λ+

L and Λ−L for L = 5. We describe some property of the pure states
µ+ and µ−. Denote by 〈·〉 (periodic boundary condition), 〈·〉+ (+ boundary condition)
and 〈·〉− (− boundary condition) the average with respect to µ, µ+ and µ−. The average
value of a spin is called the magnetization. Take without loss of generality the spin σi=0
at the center of the lattice. The magnetization m = 〈σ0〉 is always equal to zero. This is
because the Gibbs measure (1.8) is symmetric under spin configuration flips (this is valid
for periodic boundary conditions)

µn (σ1, ..., σn) = µn (−σ1, ...,−σn) . (1.15)

The magnetizations m+ = 〈σ0〉+ and m− = 〈σ0〉− are computed exactly for the Ising
model [22]

m± = ±

1−
(
z2 − 1

2z

)4
1/8

. (1.16)

The magnetizations as a function of the rescaled temperature are depicted in Figure 1.2.
The values m± are called the spontaneous magnetizations. If the system is perturbed by
an arbitrarily small magnetic field, it will be described by the measure µ+ or µ−, breaking
the symmetry (1.15). This mechanism is responsible for the spontaneous magnetization
that occurs in ferromagnetic material. The spontaneous magnetizations informs us about
the typical sequences or support of the pure states. The support of the extremal measure
µ+ (resp. µ−) contains typical spin configurations with positive (resp. negative) average
magnetization. At low temperatures, the convex combination (1.14) is thus supported
on two “clusters” of spin configurations with mostly +1 or −1 values. Whereas at
high temperatures, the support of the measure µ0 is a giant cluster containing typical
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0.2 0.4 0.6 0.8 1.0
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0.0

0.5

1.0

Figure 1.2: Magnetizations for the Ising model. The spontaneous magnetizations m+
and m− are shown in blue and red respectively. The magnetization m = 0 is shown in
purple.

Figure 1.3: Pictorial representation of the phase transition in the Ising model. The boxes
represent the state space {−1, 1}n and the circles represent the states on which the Gibbs
measure is supported. A typical configuration of each support is depicted. An arrow up
(resp. down) represents a +1 spin (resp. −1).

sequences with zero average magnetization. The clustering of the measure is depicted in
the diagram in Figure 1.3

We make one last remark about the pure states and the clustering in the Ising model.
The clustering can also be characterized by point-to-point correlations

corr (σi, σj) := 〈σiσj〉 − 〈σi〉 〈σj〉 . (1.17)

The point-to-point correlations were computed exactly in 1976 by Wu et al. [23]; but
their form is too complicated, hence we simply give the essential property. Away from
the phase transition, the point-to-point correlation functions for the pure states µ0, µ+
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1.3. Glass Phenomenology

and µ− are vanishing if spins are far away. That is,

lim
|i−j|→∞

corr0,± (σi, σj) = 0, (1.18)

where|i− j| is the Manhattan distance between two spins. The decay of correlations
is even exponential with the distance. However, because of the convex decomposition
(1.14), point-to-point correlations for distant spins are non-zero in the low-temperature
phase

lim
|i−j|→∞

corr (σi, σj) = m2
+ > 0. (1.19)

1.3 Glass Phenomenology

Numerous materials do not possess a crystalline structure, and it is common to find
amorphous solids without long-range ordering. A glass is a particular class of amorphous
solids, which exhibits a glass transition. In this section, we provide a brief description of
the glass phenomenology based on the topical reviews [24, 25, 26].

The material made of sand, lime and soda constituting our windows is one of the best
known examples of glass. The method of its manufacture has been known since the
beginning of antiquity [27]. We find glass in various aspects of our daily lives, some of
which are unexpected. Glasses made of sugars and water is important in cereal-based
food processing [28] and in the preservation of vaccines [29]. Glasses are also used for
making optical fibers [30] and solar cells [31].

The structure of a glass is similar to that of a liquid, but its mechanical properties are
similar to those of a solid. Various methods exist to create glass, but the most common
way is by rapidly cooling a melt. This reduces the mobility of the molecules and avoids a
possible rearrangement into a crystal. The rate of cooling necessary to reach a glassy
state depends strongly on the material considered. For example, it attains the value of
50 K/s for salol, 107 K/s for water and more than 1010 K/s for silver [32]. During the
cooling process the viscosity1 of the material increases by several order of magnitude.
Although this transition is abrupt, it does not involve discontinuous changes in any
physical property.

One definition of the glass transition temperature Tg is the temperature at which the
shear viscosity reaches 1013 Pa·s (in comparison, the viscosity of water is about 10−3

Pa·s). Tg depends upon the cooling rate; the slower the cooling rate is, the lower the glass
transition temperature is [33]. However, the dependence on the cooling rate is rather
weak (in practice, it is observed that Tg is proportional to the logarithm of the cooling
rate [34]). The typical relation between the volume and the temperature of a liquid
is depicted in Figure 1.4. The glass transition temperature is below the melting point

1The viscosity measures the resistance of a fluid to a shear stress.
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Figure 1.4: Typical relation between the volume and the temperature of glass in the
liquid (solid line), glassy (solid lines a, b) and crystalline states (dashed line). Tm is the
melting temperature, Tga and Tgb are the glass transition temperatures corresponding to
a slow (a) and a fast (b) cooling rate. Unlike crystallization, vitrification is a smooth
transition. (From [35].)

Tm (if it exists) and two different cooling scenarios give rise to different glass transition
temperatures.

There exists a theoretical lower-limit to the glass transition temperature. If it were
possible to obtain a transition at an arbitrarily low temperature, the entropy of the
glass would be lower than the entropy of the crystal. Since the entropy of the crystal
vanishes when T → 0, this would imply that the glass thus formed would have a negative
entropy at low temperature. The entropy being intrinsically a non-negative quantity2,
this would be paradoxical. The lowest temperature before the paradox occurs is called the
Kauzmann temperature TK [35]. To avoid an entropy crisis at exactly TK, the material
should form an ideal glass with a unique (or at least sub-exponential) configuration. In
practice the Kauzmann temperature is not reachable as it would require an infinitely
slow cooling rate. The critical point TK is only estimated from extrapolations of the
liquid behavior below Tg. Thus the existence of an ideal-glass state remains debated [36].

To interpret the phenomenology just described, Goldstein [37] developed a convenient
framework that is known today as the landscape paradigm. The potential energy3 of a
material is an n-dimensional function of the configurations of the particles or molecules
present in the system. Goldstein assumes that the energy landscape generated by this
function provides information about the dynamics of relaxation towards equilibrium.
At high temperatures, the particles have sufficiently high kinetic energy to visit any

2In thermodynamics, the entropy is the logarithm of the states accessible by the system.
3The total energy is the sum of the potential energy, depending on the positions of the constituents

and the kinetic energy associated with their motion.
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Figure 1.5: Schematic representation of a glass energy landscape. The number of
transition states is exponential in the size of the system. A sub-exponential fraction of
transition states are deep minima and correspond to ideal glass states. (Adapted from
[36].)

configuration. When the temperature is cooled down below the melting point Tm, it is
likely that the system remains trapped in a local minimum of the potential energy. Due
to fluctuations, the system jumps from a local minimum to another in a time that is
exponential in the energy barrier between those minima. In non-glassy materials, the
system eventually relaxes from these transition states to the crystalline configuration that
is a global minimum of the potential. However in glass, the energy landscape is complex
and consists of a multitude of local minima. A schematic representation of a complex
energy landscape is depicted in Figure 1.5. The transition states are exponentially
numerous and they are clustered into basins separated by a high energy barrier. As a
consequence of both effects, the relaxation time towards equilibrium becomes exponential
in the system size and the system remains trapped in transition states. Glasses are
peculiar in that they are off-equilibrium systems with properties constantly evolving very
slowly with time.

1.4 Spin Glasses

Like glass, “spin glasses” have a complex energy landscape. This is due to the fact that,
unlike the Ising model, spin glasses have little or no explicit symmetry. A system is said
to present quenched disorder if some parameters controlling its properties are random
and do not evolve with time [38]. The word “quenched” is borrowed from the terminology
of the manufacture of alloys. There is a presence of impurities in the metal when it is
in the molten state. To obtain a metallic glass, the alloy is subject to a rapid cooling.
This procedure, called quenching, freezes the positions of the impurities and prevents the
material from entering into an ordered state. Although two quenched workpieces do not
have the same global structure, their properties are similar.
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Chapter 1. Spin Glasses and the Cavity Method

We can distinguish between two types of quenched disorder entering in the Gibbs measure
(1.2) of a spin glass.

Structural disorder: The graph Γ which shapes the dependencies between the variables
is sampled randomly from a prescribed ensemble.

Interaction disorder: The parameters controlling the interactions (the xa in (1.2)) are
random.

The systems that we are studying in this thesis have both structural and interaction
disorder. Therefore the Gibbs measures that we consider are random objects.

The average over the disorder is called a quenched average and is denoted by EΓ,X [·]. In
all spin glass models, much attention is given to the calculation of the quenched average
of the free energy

f (β) = lim
n→∞

EΓ,X [f (β | x)] . (1.20)

In general we expect that the free energy is a self-averaging quantity that converges to a
non-random object as n grows. Thereby the quenched average (1.20) should capture the
typical behavior of the disorder realizations.

We mention below some of the most iconic spin glasses.

Edwards-Anderson (EA) model [39]: The graph is a D dimensional lattice. Like
the Ising model, the interactions are between spin pairs JEA

ij σiσj . However the
coupling constants are independent and identically distributed (i.i.d.) random
variables that have a Gaussian distribution of mean 0 and variance J2. The
EA model is the most difficult spin glass to analyze and little is known beyond
mean-field approximations. As the interaction graph is a regular lattice, we do not
expect that mean-field methods (such as the cavity method) are exact for finite D.
However, in the asymptotic regime D →∞, we recover the SK model.

Sherrington-Kirkpatrick (SK) model [1]: The graph is the complete graph Kn with
n vertices, where n is the number of spins. The interactions are also between pairs
of spins JSK

ij σiσj . The coupling constants are i.i.d. distributed according to a
Gaussian with mean 0 and variance J2/n. The 1/n scaling factor ensures that the
free energy is not trivial in the asymptotic limit as the number of interacting pairs
is quadratic in n. So far, it is proven rigorously that the cavity method gives the
correct quenched free energy for the SK model [17, 18]. Using similar techniques it
is also proven that the quenched free energy of the SK model is self-averaging [40].

Dilute p-spin models: The graph is a random bipartite graph and function nodes are
regular with degree p. The interactions involve the product of p spins Jaσa1 · · ·σap.
The coupling constants are i.i.d. random variables with Gaussian distribution
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1.5. Introduction to the Cavity Method

N
(
0, J2) or with Bernoulli symmetric distribution, depending on the models

considered. For variable nodes with Poisson-distributed random degree and at zero
temperature, it is proven that the cavity method predicts the correct free energy.
The proof is algorithm-based and exploits the property that at zero temperature
the system is identical to XORSAT [41].

The models encountered in coding theory on which this thesis focuses are similar to
p-spin models.

1.5 Introduction to the Cavity Method

Computing the free energy is generally a hard task and is a fortiori even harder for glassy
systems. Rather than calculating the exact quantity, we can look at an approximation.
Mean-field approximations enable us to replace the exhaustive computation of the free
energy by solving a system of several equations. The price to pay is that in general those
approximations are not accurate when the correlations between distant variables are
strong.

The approximation method at the basis of the cavity method is the Bethe-Peierls mean-
field theory. First introduced in 1935 by Bethe [42] and extended the following year by
Peierls [43], it can be considered as a sophisticated mean-field approximation that goes
beyond the slightly older Curie-Weiss theory. Particularly well suited to graphical models
that are locally tree-like, it is even conjectured for these graphs that it is asymptotically
exact in the presence of short-range correlations. The cavity method is a non-trivial
generalization of this approximation to systems that exhibit long-range correlations
between variables.

1.5.1 Graphical Models on Trees: the Bethe Free Energy

Consider the Gibbs measure

µβ (u | x) = 1
Z (β | x)

∏
a∈C

ψa (u∂a) . (1.21)

If the graphical model is a tree, there exists an iterative procedure for computing exactly
and efficiently the free energy.

We call “message” any probability distribution over a single binary variable. Assign to
edge (ia) ∈ E a pair of messages νia(ui) and ν̂ai(ui) that satisfies the belief propagation
(BP) equations
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Chapter 1. Spin Glasses and the Cavity Method



νia(ui) =
∏
b∈∂i\a ν̂bi(ui)∑

si

∏
b∈∂i\a ν̂bi(si)

.

ν̂ai(ui) =
∑

u∂a\i
ψa(u∂a)

∏
j∈∂a\i νja(uj)∑

s∂a
ψa(s∂a)

∏
j∈∂a\i νja(sj)

.

(1.22)

By convention when ∂i \ a (resp. ∂a \ i) is an empty set, the product over b ∈ ∂i \ a (resp.
j ∈ ∂a \ i) is equal to one. The BP equations, also called sum-product equations, admit
a unique solution on a tree. The iterative version of equations (1.22) is the sum-product
algorithm. On trees, we find a solution after t∗ iterations, where t∗ is the diameter of the
tree.

Denote the collection of all messages by (ν, ν̂). The Bethe free energy is a functional of
the messages (ν, ν̂) associated with a fixed point of the BP equations (1.22)

fBethe(ν, ν̂) = 1
n

∑
a∈C

Fa +
∑
i∈V

Fi −
∑

(i,a)∈E
Fia

 , (1.23)

where



Fa = −1
β ln{

∑
u∂a

ψa(u∂a)
∏
j∈∂a νja(uj)},

Fi = −1
β ln{

∑
ui

∏
b∈∂i ν̂bi(ui)},

Fia = −1
β ln{

∑
ui νia(ui)ν̂ai(ui)}.

(1.24)

It is well known that on trees, the Bethe free energy is equal to the free energy.

Lemma 1.1 (Exactness of the Bethe free energy on trees). If the graphical model is a
tree, then

f = fBethe(ν, ν̂), (1.25)

where (ν, ν̂) satisfies the BP equations (1.22).

A proof of this lemma can be found in [44] or in Section 4.2 as a consequence of the loop
sum identity.
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1.5.2 Loopy Graphs: Predictions From the Cavity Method

It is tempting to conjecture that Lemma 1.1 is true for locally tree-like graphs, at least
in the asymptotic regime n → ∞. This is however not the case in general and many
systems are known to behave differently such as the XORSAT or K-SAT models [41, 45].
The general picture is much more flavored and interesting.

The cavity method assumes that the random Gibbs distribution (1.2) can, in the limit of
n→ +∞, be decomposed into a convex superposition of N “extremal measures”

µβ(u | x) =
N∑
p=1

wp µβ,p(u | x), (1.26)

each of which occurs with a weight wp = e−βn(fp−f), where fp is a free energy associated
with the extremal measure µβ,p. Notice the similarity between the hypothesis contained
in Equation (1.26) and the energy landscape paradigm in Section 1.3. Here pure states
play the role of the transition states.

The convex decompositions of the Gibbs distribution into bona fide extremal measures
are under mathematical control for “simple” models such as the square lattice Ising
model [46]. But for spin glass models, is it not known how to construct or even precisely
define the extremal measures. One important conceptual difference with respect to the
Ising model, which has a small number of extremal states, is that for spin glasses we
envision the possibility of having an exponentially large (in n) number of terms in the
decomposition (1.26).

In the context of sparse graphical models it is further assumed that there are “extremal”
Bethe measures that are a good proxy for the “extremal measures” discussed above.
The Bethe measures are those measures that have marginals given by BP marginals.
When the BP equations have many fixed point solutions there are many possible Bethe
measures. Heuristically, the extremal ones correspond to the minima of the Bethe free
energy4. Similarly, it is assumed that the Bethe free energies corresponding to solutions
of the BP equations are good proxies for the free energies fp. Moreover we expect that
the free energies fp are self-averaging quantities.

Since the weights wp have to sum to 1, we have

e−βnf ≈
N∑
p=1

e−βnfp ≈ e−βnminϕ(ϕ−β−1Σ(ϕ;β)), (1.27)

where enΣ(ϕ;β) counts the number of extremal states µβ,p with free energy fp ≈ ϕ. Once
we choose to replace fp by the Bethe free energies, then the counting function Σ(ϕ;β) and

4Remarkably, it is not very important to be able to precisely select the “extremal” ones because at
low temperatures we expect that they outnumber the others.
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the free energy f can be computed through a fairly technical procedure, and a number
of remarkable predictions about the decomposition (1.26) emerge.

The cavity method predicts the existence of two sharply defined thresholds βd and βc
at which the nature of the convex decomposition (1.26) changes drastically. Figure 1.6
gives a pictorial view of the transitions associated with the decomposition (1.26).

Replica-symmetric (RS) phase: For β < βd the measure µβ(u | x) is extremal, in
the sense that N = 1 in (1.26). In this phase, the Bethe free energy should be
asymptotically exact

lim
n→∞

EΓ,X [|f − fBethe|] = 0. (1.28)

Dynamical replica-symmetry breaking (d-RSB) phase: For βd ≤ β < βc the
measure is a convex superposition of an exponentially large number of extremal
states. The exponent ϕ − β−1Σ(ϕ;β) in (1.27) is minimized at a value ϕint(β)
such that Σ(ϕint(β);β) > 0. Then the growth rate (as n → +∞) of the number
of extremal states that dominate the convex superposition of pure states (1.26) is
defined as

Σ(β) ≡ Σ(ϕint(β);β) = β(ϕint(β)− f(β)), (1.29)

and is strictly positive. This quantity is called the complexity. It appears that
the complexity is a decreasing function of β, which becomes equal to zero at βc.
In summary, for β ∈ [βd, βc[, an exponentially large number of extremal states
with the same free energy ϕint contribute significantly to the Gibbs distribution.
Surprisingly, the convex combination is itself a Bethe measure. Therefore there
exists a BP fixed point for which the corresponding Bethe free energy should be
exact. In practice this enables us to compute the quenched free energy but not the
free energy of a particular instance, as there is no known method to discriminate
this particular fixed point from the (exponentially numerous) others.

Static replica-symmetry breaking (s-RSB) phase: For β ≥ βc the number of ex-
tremal states that dominate the measure is finite. It is said that the measure is
condensed over a small number of extremal states. In fact, there could still be
an exponential number of extremal states but they do not contribute significantly
to the measure, because their weight is exponentially smaller than the dominant
ones. In this phase, the Bethe free energy is not exact and we should use the full
machinery of the cavity method (see Chapter 8).

There exists a mathematically more precise definition of βd and βc in terms of correlation
functions. When these correlation functions are computed within the framework of the
cavity method, the resulting values of βd and βc agree with those given by the complexity
curve Σ(β). In the RS phase and the d-RSB phase, point-to-point correlation functions of
type (1.17) decay with respect to the distance between spins. Like the low-temperature
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Figure 1.6: Pictorial representation of the decomposition of the Gibbs distribution into a
convex superposition of extremal states. Balls represent extremal states (their size represents
their internal entropy). For β < βd there is one extremal state. For βd < β < βc there are
exponentially many extremal states (with the same internal free energy ϕint). For β > βc there is
a finite number of extremal states.

case of the Ising model, this is not the case in the s-RSB phase. There exists another type
of correlations relevant to the characterization of the d-RSB: the point-to-set correlations.
Point-to-set correlations measure how correlated a spin is with respect to any change in
the set of spins located at a distance R from it. Although point-to-set correlations decay
exponentially fast with R in the RS phase, this is not the case for the d-RSB and s-RSB
phases [47, 48].

What is the significance of the transitions at βd and βc? The condensation threshold is a
thermodynamic phase transition point: the free energy f(β) is not analytic at βc. At
βd the free energy has no singularity: in particular, its analytical expression does not
change in the whole range 0 < β < βc. At βd the transition is dynamical: Markov chain
Monte Carlo algorithms have an equilibration time that diverges when β ↑ βd, and are
unable to sample the Gibbs distribution for β > βd. For more details we refer to [44].
The d-RSB and s-RSB are thus very similar to the phenomenological glass transition
discussed in Section 1.3, where βd and βc have to be linked with Tg (the glassy transition
temperature) and TK (the Kauzmann transition temperature), respectively.
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2 Coding Theory and Sparse Graph
Constructions

In this chapter, we express two problems from coding theory in the language of spin
glasses.

In Section 2.1, we start by an introduction to the channel coding problem. We present
two code constructions based on sparse graphical models, the low-density parity-check
codes and the low-density generator-matrix codes. We show that the measure of their
error correction performances is linked to the computation of the free energy of a spin
glass.

In Section 2.2, we give a brief review of the lossy source coding problem and rate distortion
theory. We present an encoding scheme based on low-density generator-matrix codes for
binary sources. We express the encoding process as a problem of sampling according
to the Gibbs measure of a spin glass. Finally, we present a code construction technique
called spatial coupling and describe the corresponding spatially-coupled low-density
generator-matrix codes.

2.1 Channel Coding

The transfer of information through a noisy medium is one of the most fundamental
topics in information theory. Everyone has experienced talking to a person across the
street during a windy day. To be heard, we have to sometimes repeat the same word
several times. We can then ask if this way of proceeding is optimal. Is there a minimum
amount of information that must be retransmitted in order to be understood? And
just as importantly, if not more, how can we efficiently achieve this optimal number of
retransmissions? The first question was answered by Shannon [49] in his 1948 paper,
thus creating the field of information theory. The second question still stimulates the
active research field of channel coding. Since then, many different code constructions
were invented. We mention the Hamming codes [50] discovered in 1950 among the early
algebraic codes, or more recently the Polar codes that are provable capacity-achieving
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codes developed in 2009 by E. Arikan [51].

Our study concerns codes constructed from sparse graphical models, and more specifically
low-density parity-check codes (LDPC) and their dual construction, the low-density
generator-matrix codes (LDGM). LDPC codes were first developed in Gallager’s thesis
[52] in 1963 but overlooked because they were too complicated for the technology of
the 1960s. The importance of these codes was recognized three decades later, when in
1996 they were rediscovered independently by Neil and McKay [53] and by Sipser and
Spielman [54]. LDPC codes perform very well under distributed low-complexity decoding
algorithms and have been proven to achieve capacity over binary erasure channels (BEC)
[55]. Since 1996, they have been integrated into standards for wireless data transmissions,
computer chips and commercial cell phones.

In this section, we start by reviewing the problem of communicating through a noisy
memoryless channel. Then we follow with an overview of the LDPC and LDGM code
construction and how to measure the quality of their error correction through the
conditional entropy of the source given the received message. We finish by showing that
the computation of the conditional entropy of an LDPC or an LDGM code is tantamount
to computing the free energy of a spin glass system.

According to the prediction of the cavity method, the Bethe free energy of an LDGM or
an LDPC code should be equal to its the free energy. In this thesis we prove that the
prediction of the cavity method is exact over binary-symmetric channels (BSC) at high
noise. For this we use a tool from statistical physics called the polymer expansion.

Let us briefly comment on the connections of this work with other recent approaches. For
the class of graphical models that describe communication with LDPC and LDGM codes
over BSC we have ample evidence that the replica-symmetric solution1 is exact. Bounds
between the replica-symmetric and true free energy were derived in [56, 57, 58], and for
the special case of the binary erasure channel equality was proved in [59, 60]. These
results are based on specific methods such as combinatorial calculations for the binary
erasure channel, and the interpolation method for the bounds on general channels. In
[61] a more generic approach is taken based on cluster expansions combined with duality.
The cluster expansions used in [61] are sophisticated forms of polymer expansions. It is
proven that correlations between pairs of distant (with respect to graph distance) bits
decay exponentially fast for LDGM codes in the regime of large noise, and LDPC codes in
the regime of small noise. This has also allowed us to conclude that the replica-symmetric
formulas are exact in these regimes for general binary-symmetric memoryless channels.
A case where the cluster expansions of [61] does not work is that of LDPC codes over
BSC in the regime of large noise, which is the case considered in this thesis.

1Replica-symmetric formulas are quenched averaged forms of the Bethe formulas.
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Figure 2.1: Communication through a noisy channel

2.1.1 Communication Through Noisy Memoryless Channels

Alice wants to send messages to Bob. The source of the messages is modeled as a random
variable U which generates strings of M bits u ∈ {0, 1}M uniformly at random. To
protect the messages against interferences, Alice adds redundancy. This procedure is
called the encoding process and can be viewed as a one-to-one mapping from u to a
longer string of bits x ∈ {0, 1}N , where N ≥M. The message with redundancy is called
a codeword, and the set of codewords is called the codebook CN . The measure of the
redundancy is the rate. It is defined as the ratio between the number of bits M that
carry the information and the number of bits N that compose a codeword.

R = M

N
. (2.1)

Alice sends a codeword x ∈ CN to Bob through a noisy memoryless channel. The string
of bits that Bob receives, denoted by y ∈ AN , is a corrupted version of the codeword.
The corrupted codeword does not necessarily belong to a binary alphabet. For instance, if
we are in the presence of erasures, the alphabet is ternary A = {0, 1, erasure}. Once Bob
receives the corrupted codeword of Alice, he will decode it by constructing an estimate
of the codeword x̂

(
y
)
or of the original message û

(
y
)
. The communication process is

summarized in Figure 2.1.

When we say that the channel is memoryless, we mean that the probability to receive the
particular bit yi in y depends only on xi in x. The term “memoryless” refers to the fact
that if bits are sent one after the other, the state of the channel (or the noise realization)
is independent of its previous state. Thus the probability that Bob receives y takes the
simple form of a product

PY |X
(
y | x

)
=

N∏
i=1

q (yi | xi) , (2.2)
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Figure 2.2: Transition probability of the BSC (p) channel.

where q (y | x) is a transition probability that characterizes the channel completely. The
transition probabilities of a channel are traditionally represented by a diagram. For
example, the transition probabilities of the BSC are depicted in Figure 2.2. The BSC is
a model for channels that corrupt bits by transforming a zero into a one or vice versa
with an equal flipping probability p.

For a given pair (u, û), we measure the fraction of incorrectly decoded bits by the relative
Hamming distance

dM (u, û) = 1
M

M∑
i=1

I (ui 6= ûi) , (2.3)

where I denotes the indicator function. The quality of the reconstruction is measured by
the probability of block code error

PM = PU,Y [u 6= û], (2.4)

and by the average bit-error probability

DM = EU,Y [dM
(
u, û

(
y
))

]. (2.5)

In the present case the average bit-error probability is equal to the average distortion.

Alice decides to send messages with a rate R and she tolerates a fraction of bit-error D.
She asks if a sequence of encoding schemes exists with the prescribed requirement that
limM→∞DM = D. This question is answered by the famous Shannon theorems. The
version presented below is transcribed from MacKay’s book [62, p. 162].

Theorem 2.1 (Noisy-Channel theorem). Define the capacity of a binary input memory-
less channel as the maximum of the mutual information over all probability distributions
for X ∈ {0, 1}

C = maxPX I (X;Y ) . (2.6)
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0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

Figure 2.3: The achievable coding region for the BSC (p) with a rate R = 1/2 is shown
in blue. For p ≤ 0.11, it is possible to achieve a vanishing block code error.

1. If R < C, there exist codes and decoders achieving limM→∞ PM = 0.

2. If R ≥ C and h2 (D) ≥ 1−C
R , there exist codes and decoders achieving limM→∞DM =

D.

3. For any D, rates higher than C
1−h2(D) are not achievable.

In Theorem 2.1 we introduced the binary entropy function

h2 (p) = −p log2 p− (1− p) log2 (1− p) . (2.7)

To illustrate the theorem, we take an example with R = 1
2 and D = 0 on the binary

symmetric channel. The capacity of the BSC(p) is

CBSC (p) = 1− h2 (p) . (2.8)

For flipping probability less than p ≈ 0.11, the rate is smaller than the capacity and a
vanishing block code error probability is achievable. For higher flipping probabilities
p ' 0.11, the average bit-error probability can be at best DSh = h−1

2

(
1− 1−h2(p)

R

)
as

depicted in Figure 2.3.

2.1.2 Codes Based on Sparse Graphical Models

LDGM and LDPC codes are linear codes constructed from sparse matrices. A common
advantage of both types of codes is that they can be described in terms of sparse factor
graphs. The decoding process for these codes tantamount to an optimization problem on
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a graphical model.

LDGM Codes

A low-density generator-matrix code is defined by its M ×N generator-matrix G, where
G is created randomly. The fraction of rows with row weight2 s, 1 ≤ s ≤ lmax, is Λs ≥ 0,
and the fraction of columns with column weights t, 1 ≤ t ≤ rmax, is Pt ≥ 0. It is easy
to see that

∑lmax
s=1 Λs =

∑rmax
t=1 Pt = 1 and the average row and column weight fractions

l =
∑lmax
s=1 Λss, r =

∑rmax
t=1 Ptt satisfy

Ml = Nr. (2.9)

It is convenient to use the generating functions Λ (z) =
∑lmax
s=1 Λszs, P (z) =

∑rmax
t=1 Ptz

t

to refer to the fractions of rows and columns weights. The ensemble of generator-matrices
with the same fractions (Λ, P ) is denoted by LDGM(Λ, P,M). A generator-matrix is
selected uniformly at random3 from the ensemble LDGM(Λ, P,M). For example, the
following matrix belongs to the ensemble LDGM(z4, z2, 3)

G =

 1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1

 . (2.10)

Note that in regime of interest M →∞, the matrix G becomes sparse. The design rate
of the code is by definition RLDGM = r

l .

Given a message u, the corresponding codeword is simply

x = uG, (2.11)

where the matrix product is performed in F2. The optimal block decoder is the maximum
a posteriori (MAP) decoder

ûMAP = arg max
u

PU |Y
(
u | y

)
, (2.12)

and the optimal bit decoder is the bit-MAP decoder

ûMAP
i = arg max

ui
PUi|Y

(
ui | y

)
. (2.13)

The block MAP decoder (2.12) minimizes the probability of block error (2.4) and the bit
MAP decoder (2.13) minimizes the average bit-error probability (2.5).

2The weight of a row or column is the number of non-zero elements that it contains.
3This ensemble is not practical to generate in practice. One uses slightly different ensembles that have

the same asymptotic properties. For details we refer to [59].
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Figure 2.4: Graph of LDGM code corresponding to the matrix (2.10).

The conditional probability distribution and its marginal which appear in (2.12) and
(2.13) are Gibbs distributions. Using Bayes rules and the memoryless property of the
channel (2.2), we obtain

PU |Y
(
u | y

)
∝

N∏
a=1

(
q (ya | 0)
q (ya | 1)

) (−1)xa(u∂a)
2

. (2.14)

The underlying graphical model is constructed by taking the number of variables n = M ,
the number of check nodes m = N and drawing an edge (i, a) iff Gia = 1. Figure 2.4
shows the graph corresponding to the generator-matrix G in (2.10). The probability
(2.14) is the following Gibbs measure

PU |Y (u | h) = 1
ZLDGM

∏
a∈C

eha
∏
i∈∂a(−1)ui , (2.15)

where the normalization factor

ZLDGM =
∑

u∈{0,1}n

∏
a∈C

eha
∏
i∈∂a(−1)ui , (2.16)

is the partition function of the LDGM measure. The quantities ha which appear in the
measure (2.15) are the half log-likelihood ratios of the channel observations ya

ha = 1
2 ln q (ya | 0)

q (ya | 1) . (2.17)

The LDGM Gibbs measure (2.15) is that of a disordered system. The factor graph Γ
is selected uniformly at random among the ensemble of bipartite graphs with fractions
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of variable nodes with degree s equal to Λs and with fractions of function nodes with
degree t equal to Pt. The channel observations ha are also randomly distributed. For
the BSC (p), as the code is linear and the optimal decoder is symmetric, we can assume
without loss of generality that the all-zero codeword is sent (see Appendix A), which
implies that the probability distribution of ha is

q (ha) = (1− p) δ (ha − h) + p δ (ha + h) , (2.18)

where
h = 1

2 ln 1− p
p

. (2.19)

The type of interaction in (2.15) is similar to the magnetic interactions discussed in the
Ising model section. The difference is that the coupling constant could be negative or
positive, and the number of variables (or spins) involved are in general more than two.
The intensity of the half log-likelihood ratios (2.19) is viewed as the temperature of the
system.

LDPC Codes

A low-density parity-check code (LDPC) is a dual construction to the LDGM code.
An LDPC code from the ensemble LDPC(Λ, P,N) is generated from an (N −M)×N
parity-check matrix H, where the fraction of row weights (respectively, columns weights)
is prescribed by Λ (z) (respectively P (z)). For instance, the following matrix belongs to
the ensemble LDPC(z2, z4, 3)

H =

 1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1

 . (2.20)

If and only if a sequence x is a codeword, it satisfies

HxT = 0,

and the codebook is then the subspace CN =
{
x ∈ {0, 1}N | HxT = 0

}
. The design rate

of the code is RLDPC = 1− l
r . The optimal block and bit decoder are also given by their

respective maximum a posteriori (MAP) decoder

x̂ = arg max
x

PX|Y
(
x | y

)
, (2.21)

and
x̂i = arg max

xi
PXi|Y

(
xi | y

)
. (2.22)

Using the memoryless property of the channel, the conditional probability distribution
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2.1. Channel Coding

Figure 2.5: The graph associated with the parity-check matrix (2.20).

in (2.21) and (2.22) can be factorized in a Gibbs measure

PX|Y
(
x | y

)
∝

M∏
a=1

I
((
HxT

)
a

= 0
) N∏
i=1

(
q (yi | 0)
q (yi | 1)

) (−1)xi
2

. (2.23)

To construct the underlying graphical model, we take the number of variables to be
n = N , the number of check nodes to be m = N −M , and we draw an edge (i, a) iff
HT
ia = 1. Figure 2.5 shows the graph corresponding to the parity-check matrix H in

(2.20).

The conditional probability (2.23) becomes

PX|Y (x | h) = 1
ZLDPC

∏
a∈C

1 +
∏
i∈∂a

(−1)xi
∏
i∈V

ehi(−1)xi , (2.24)

where the normalization factor

ZLDPC =
∑

x∈{0,1}n

∏
a∈C

1 +
∏
i∈∂a

(−1)xi
∏
i∈V

ehi(−1)xi , (2.25)

is the partition function of the LDPC code. Similarly to LDGM codes, the quantities hi
are the half log-likelihood ratios of the channel observations yi

hi (yi) = 1
2 ln q (yi | 0)

q (yi | 1) . (2.26)

The Gibbs measure (2.24) is a measure of a disordered system. Similarly to the LDGM
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Chapter 2. Coding Theory and Sparse Graph Constructions

case, the factor graph Γ is selected uniformly at random among the ensemble of bipartite
graphs with fractions of variable nodes with degree s equal to Λs and with fractions of
function nodes with degree t equal to Pt. Under the all-zero codeword assumption for
the BSC (p), we recover the distribution of half log-likelihood ratios

q (hi) = (1− p) δ (hi − h) + pδ (hi + h) , (2.27)

where h is the amplitude of the half log-likelihood ratios given by (2.19).

The LDPC Gibbs measure is, however, very different from the LDGM measure (2.15) in
that it contains parity-check constraints. These interaction functions are “hard” in the
sense that they are equal to zero for certain variable configurations (when x /∈ C). The
amplitude h = 1

2 ln 1−p
p cannot be interpreted as a temperature for LDPC codes. The

LDPC Gibbs measure can in fact be viewed as a spin glass measure at zero temperature
(infinite energy cost if x /∈ C) with a ground state degeneracy (there is an exponential
number of codewords).

2.1.3 The Conditional Entropy as a Measure of Optimal Performance

We want to measure the behavior of the average bit-error probability (2.5) of a code
as the channel parameter changes. The performance of the code is lower-bounded by
the optimal bit-MAP decoder (2.13) for LDGM codes and (2.22) for LDPC codes. The
average bit-error probability DMAP

M of the MAP decoder is a quantity difficult to analyze
and control. Fano’s inequality [63] provides a lower bound on the error in terms of the
conditional entropy

h2
(
DMAP
M

)
≥ 1
M
H (U | Y ) = 1

RN
H (X | Y ) . (2.28)

The averaged conditional entropy over the LDPC
(
z3, z6) ensemble is depicted in Figure

2.6. The Shannon lower bound on the entropy of the average error probability is shown
for comparison. The smallest value of p, for which the conditional entropy is non-
zero, is called the MAP threshold pMAP and according to Fano’s inequality DMAP

M > 0
for p > pMAP. The conditional entropy is trivial at low noise and is non-analytic at
pMAP ≈ 0.101. The picture for LDGM codes is slightly different at low noise, because
these codes exhibit an error floor h2

(
DMAP
M

)
> 1

MH (U | Y ) > 0. This issue can be
fixed, however, by adding a precoder, thus making LDGM codes still useful in practice.

If we define the free energy for the LDGM and LDPC codes, respectively, as

fLDGM = 1
n

lnZLDGM and fLDPC = 1
n

lnZLDPC, (2.29)

then the conditional entropy on the BSC (p) channel is directly related to the free energy
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Figure 2.6: Conditional entropy and Shannon bound on the BSC (p). The average
conditional entropy for the LDPC(z3, z6) ensemble is shown in red. Its threshold is
pMAP ≈ 0.101. The optimal Shannon bound is shown in dashed blue and its threshold is
pSh ≈ 0.110. (Adapted from [59]).

of the codes through the formulas (see [64] for a derivation)

1
M
HLDGM (U |Y ) = Eh [fLDGM]− l

r

1− 2p
2 ln 1− p

p
, (2.30)

and

1
N
HLDPC (X|Y ) = Eh[fLDPC]− 1− 2p

2 ln 1− p
p

. (2.31)

Therefore the analysis of the performance of LDGM or LDPC codes under MAP decoding
is tantamount to the computation of the free energy of spin glasses.

2.2 Lossy Source Coding

Lossy source coding is one the oldest and most fundamental problems in communications.
It was originally created to answer the following question: Up to which fidelity can
we reconstruct a source of information if we only have a limited amount of memory
to describe it? The measure of fidelity depends on the application considered. If the
source is a picture or a song, the fidelity will depend on the human perception and its
aesthetic sense. The concept of lossy compression gave rise to numerous efficient encoding
algorithms, notably for movies, music or photos. An example: a Beethoven symphony
takes about three times less memory space with an MP3 encoder than with a lossless
sound compression algorithm, such as FLAC, and this is without a perceptible difference
of quality for the human ear.
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Chapter 2. Coding Theory and Sparse Graph Constructions

The rate-distortion theory was created by Shannon in 1948. Far from the technical
complexity of current lossy-encoding techniques, it nevertheless poses a solid theoretical
foundation. Being a dual problem of channel coding, the rate-distortion theory can be
explained within a common framework. The fidelity of the reconstruction is measured by
the distortion that is identical to the average error probability encountered previously
in channel coding. Thus lossy compression can be viewed as communication through
a perfect channel but with codewords shorter than the original message. Therefore
Shannon’s theorems for channel coding apply, characterizing the achievable region of
distortion versus a compression-rate diagram. The question of an explicit construction of
an efficient encoding/decoding scheme remains unanswered by the theorem and forms an
active research area.

It has been known since 1963 [65] that linear codes can achieve the Shannon rate-distortion
bound. However, it is of fundamental importance to find encoding/decoding schemes
with a low computational complexity. One of the first attempts is the work by Viterbi and
Omura [66] who designed in 1974 trellis codes approaching the rate-distortion bound for
memoryless sources and bounded distortion measures. Although linear in the number of
encoded bits, the complexity increases exponentially as we approach the distortion bound.
In the past few years, different techniques emerged for designing efficient algorithms. We
mention the concatenation of small codes under optimal encoding [67], and also the polar
codes that achieve the rate-distortion bound with almost linear complexity [68].

It has been shown that LDGM codes equipped with low-complexity message-passing
algorithms approach the rate-distortion curve for optimized degree distributions (Λ, P )
[69, 70, 71]. However, these results are empirical and there is no real principle for the
choice of the degree distribution.

The construction investigated in this thesis is based on simple spatially-coupled LDGM
codes. Spatially-coupled codes were first introduced in the context of channel coding in the
form of convolutional LDPC codes [72] and it is now well established that the performance
of such ensembles under BP decoding is consistently better than the performance of the
underlying ensembles [73, 74, 75]. This is also true for coupled LDGM ensembles in the
context of rateless codes [76]. The key observation is that the BP threshold of a coupled
ensemble saturates towards the maximum a posteriori MAP threshold of the underlying
ensemble as the width of the coupling window grows. A proof of this threshold saturation
phenomenon is in [77, 78]. An important consequence is that spatially-coupled regular
LDPC codes with large degrees universally achieve capacity. Recently, more intuitive
proofs based on replica-symmetric energy functionals have been given in [79, 80]. Spatial
coupling has also been investigated beyond coding theory in other models such as the
Curie-Weiss chain, random constraint satisfaction problems [81, 82, 83], and compressed
sensing [84, 7, 85].

Our motivation to study spatially-coupled LDGM codes in lossy source coding is two-fold.
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2.2. Lossy Source Coding

First we want to know if the spatially-coupled version of an LDGM code can approach
the rate-distortion bound under low-complexity message-passing decoding when the
underlying code cannot. Second, we want to assess if, as in channel coding, a threshold
saturation phenomenon occurs and, if so, what is the specific nature of such thresholds.

Our focus is on LDGM codes with Poisson-distributed degrees for function nodes and
regular degrees for variable nodes. This degree distribution is known to achieve the
rate-distortion bound under optimal decoding [69] but shows poor performance under
message-passing decoding. A similar conclusion is reached (by non-rigorous means) by
the cavity [86] and replica [14] methods from statistical physics.

In this section, we start by reviewing the basics of the rate-distortion theory. Subsequently,
we present the way in which an LDGM construction can be used as a lossy source encoding
/decoding scheme. Finally, we introduce the concept of spatial coupling and the related
code construction.

2.2.1 The Rate-Distortion Theory

Consider a source of information X generating sequences of N bits x ∈ {0, 1}N . Without
loss of generality, we consider that this source has maximal entropy H (X) = N . Thus
Xi are i.i.d. Bernoulli 1/2 random variables. We want to encode this information into
a smaller sequence that possesses only M < N bits. We have then to compress an
information sequence to a smaller string of bits u ∈ {0, 1}M . The reproduction of the
source based on the stored sequence is denoted by X̂. The measure of fidelity is simply
the Hamming distance between the original signal and its reproduction

dN (x, x̂) = 1
N

N∑
i=1
|xi − x̂i| . (2.32)

The distortion is the average of the Hamming distance (2.32) over the source realizations
and over the encoding/decoding realization4

DN = E
X,X̂

[dN (x, x̂)] . (2.33)

The inverse ratio between the length of the source and its representation in the memory
measures the compression rate

R = M

N
. (2.34)

The problem of determining, for a given rate, what is the achievable distortion is
then isomorphic to a channel coding problem. Lossy source coding can be viewed as
communication through a noiseless channel at a rate R−1. The distortion (2.33) can be,
in this context, interpreted as the average bit-error probability (2.5). The following is

4The encoding/decoding scheme can be a probabilistic algorithm.
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Figure 2.7: Shannon rate-distortion curve and the achievable region.

thus a consequence of Theorem 2.1 (see [62, p. 167]).

Theorem 2.2 (Lossy source coding theorem). Define the Shannon rate-distortion curve
as

DSh (R) = h−1
2 (1−R) . (2.35)

1. If D ≥ DSh (R), there exists codes achieving limN→∞DN = D.

2. For any R, distortions lower than DSh (R) are not achievable.

The rate-distortion curve is shown in Figure 2.7. The blue area represents the achievable
region.

2.2.2 LDGM as a Lossy Source Compression Scheme

Let G be an M ×N generator-matrix from an LDGM (Λ, P,M) ensemble. We start by
describing the decoding process. The reconstructed message is defined as the product of
the compressed sequence u and the generator-matrix

x̂ (u) = uG. (2.36)

As the matrix G contains only Nl non-zero entries, decoding is an operation of linear
complexity. The difficulty comes from the encoding process. The optimal encoder finds a
compressed sequence u such that the resulting distortion is minimized

uopt = arg min
u
d (x, x̂ (u)) . (2.37)
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2.2. Lossy Source Coding

Figure 2.8: Coding of 9-bit images representing the word “LTHC” into 4-bit images.
This code is based on the matrix (2.38).

So far, no polynomial complexity algorithms that can solve the optimization problem
(2.37) are known. In fact for the regular distribution P = zl, this problem turns out
to be MAX-l-XORSAT, which is known to be NP-hard [87, p. 366], thus leaving little
chance that such algorithms exist.

An example of an LDGM encoding/decoding process is depicted in Figure 2.8. The
3× 3-bit images representing the word “LTHC” are compressed to 2× 2-bit images, then
recovered with some distortion. The images are transformed into a string of bits starting
with the pixel in the upper left corner and going from left to right and from top to
bottom. The matrix used to realize this example is the following:

Gexample =


1 1 0 1 1 1 0 0 1
1 1 1 0 1 0 0 0 0
0 1 1 0 0 0 1 0 0
0 1 0 0 1 1 0 1 0

 . (2.38)

We use the optimal encoding scheme (2.37), which requires looking through 24 configura-
tions. For compressed images of size 16× 16, the number of configurations would exceed
the number of atoms in the universe.
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2.2.3 Decoding by Sampling: BP Guided Decimation

The optimization problem (2.37) can be formulated in terms of a graphical model. We
consider n = M variable nodes and m = N check nodes, and we draw an edge (i, a) iff
Gia = 1. On this graph we define the Gibbs measure

µβ (u | x) = 1
Zβ(x)e

−2βNdN(x,x̂(u))

= 1
Zβ(x)

∏
a∈C

e−2β|xa−
⊕

i∈∂a ui|, (2.39)

where β > 0, the inverse temperature, is an open parameter. The normalization factor in
Equation (2.39) is the partition function

Zβ (x) =
∑

u∈{0,1}n

∏
a∈C

e−2β|xa−
⊕

i∈∂a ui|. (2.40)

Suppose for the moment that we are able to sample a configuration u∗ according to the
distribution (2.39). As β increases, the resulting distortion becomes lower on average
and in the limit we have

lim
β→∞

d (x, x̂ (u∗)) = min
u
d (x, x̂ (u)) . (2.41)

Sampling a configuration for a value of β large enough is equivalent to solving the
optimization problem (2.37).

We can design a sampling algorithm if we can compute the free energy of a system. We
recall that the perturbation of the free energy gives us access to the expectation of bits
and thus to their marginal distributions (see Eqn. (1.6)). By the Bayes rule:

µβ(u | x) =
n∏
i=1

µβ(ui|x, u1, . . . , ui−1). (2.42)

Thus we can sample u by first sampling u1 from µβ(u1|x), then u2 from µβ(u2|x, u1) and
so on.

The sampling procedure is summarized by the Algorithm 2.1. This algorithm fixes a
variable at every step and then removes it from the variable set. Such a process is called
decimation. The graphical model thus changes after each iteration, but it is not hard to
see that it remains in the same form (2.39) albeit with a different graph.

In order to have a low-complexity algorithm, the estimation of the marginal distributions
(2.43) can be made through the Bethe free energy. We then refer to a belief propagation
guided decimation (BPGD) algorithm. If, as in Algorithm 2.1, the value of u∗i is sampled
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Algorithm 2.1 Sampling by decimation
for i = 1 to i = n do

compute the conditional marginal distribution

µβ
(
ui | x, u∗1, . . . , u∗i−1

)
; (2.43)

sample u∗i according to (2.43);
return u∗;

from the marginal distribution (2.43), we say that we have a BPGD algorithm with
randomized rounding (BPDG-r).

We also mention the existence of another type of decimation widely used for constraint
satisfaction problems. The bit u∗i is fixed to a value that maximizes the marginal
distribution (2.43). Such a decimation process is call hard and the associated algorithm
is denoted by BPDG-h. We stress that these algorithms are not samplers. The reasons
for using hard decimation procedures is primarily empirical. BPGD-h algorithms are
deterministic and they achieve distortions lower than BPGD-r algorithms. Unfortunately
there is no clear interpretation of the output sequence of BPGD-h algorithms in terms of
the Gibbs measure (2.15).

2.2.4 Spatially-Coupled LDGM Codes

Spatially-coupled LDGM codes are codes based on a special class of M ×N generator-
matrices. These matrices are block lower-band matrices. There are L column partitions,
L+ w − 1 row partitions and the blocks are formed of M

L+w−1 ×
N
L matrices Gu,v. The

integer L is called the spatial extent or length and the integer w ≤ L is called the coupling
window. The reason for having a terminology related to space will appear once the
graphical model is built. A generator-matrix G of a spatially-coupled LDGM code has
the following form

G =



G1,1 0 0
... . . . 0

G1+w−1,1 GL,L

0 . . . ...
0 0 GL+w−1,L


. (2.44)

If the columns of G have a weight distributed according to P and the rows in the
partitions w − 1 < u < L+ 1 have a weight distributed according to Λ, we say that the
matrix belongs to the ensemble SCLDGM (Λ, P, L,w,M). Notice that the rows in the
partition u ≤ w − 1 or u ≥ L+ 1 have a different weight distribution. Those partitions
play an important role in coupled codes.
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Figure 2.9: Factor graph associated with the spatially-coupled matrix (2.45).

The principal feature of graphical models associated with spatially-coupled codes is that
they possess an ordering along a “spatial” direction. The spatial position is denoted
by the non-negative integer z ≤ L + w − 1. The variable and function node sets are
also composed of subsets labeled by their respective spatial position V = ∪L+w−1

z=1 Vz and
C = ∪Lz=1Cz. The subset of function nodes Cz at position z contains m/L elements and
the subset of variable nodes Vz at position z contains n/ (L+ w − 1) elements. We draw
an edge (i, a) ∈ E iff there exists a non-zero element in ith row and the ath column of
the matrix G. Note that an edge that links a variable node i ∈ Vv to a function node
a ∈ Cu corresponds to an element in the block Gu,v. Therefore due to the band structure
of the matrix (2.45), a variable node i ∈ Vv can be connected to a function node a ∈ Cu
only if 0 ≤ v − u ≤ w.

The following matrix belongs to the SCLDGM
(

1
4z

1 + 1
2z

3 + 1
4z

4, z2, 4, 2, 8
)
ensemble

GSC =



(
1 1 0
0 0 1

)
0 0(

1 0 0
0 1 1

) (
1 1 0
0 1 1

)
0

0
(

1 0 1
0 0 0

) (
1 0 0
0 1 0

)

0 0
(

1 1 1
0 0 1

)


. (2.45)

The corresponding graphical model is depicted in Figure 2.9. Nodes at a common position
z are enclosed in a black box that is called a “copy” of the underlying LDGM code.
Blocks Gu,u in a spatially-coupled matrix are associated with edges drawn inside a copy,
as the other blocks are associated with edges between distinct copies. The blocks G1,1
(resp. G1,2) in (2.45) and its associated edges in Figure 2.9 are shown in blue (resp. red).
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2.2.5 The Poisson-Regular Degree Distributions

The LDGM ensemble studied in this thesis has p-regular check nodes and no constraints
on the degree distribution of the variable nodes.

The M ×N LDGM matrix is randomly generated as follows: Initialize the matrix to
the all-zero matrix. For each column, choose p entries at random and assign their values
to one. The degree of the variable nodes is then a random variable with Binomial
distribution Bi(N, p/M). In the asymptotic regime of large N,M with M/N = R the
code-bit node degrees are i.i.d. Poisson distributed with an average degree p/R.

The coupled version of the LDGM matrix is generated analogously. For each column
in the partition z ∈ {1, . . . , L}, we choose p entries at random among the rows in the
partition u ∈ {z, . . . , z + w − 1} and assign their values to 1.

To simplify notation, we will denote these ensembles by LDGM (p,R,N) and their coupled
version by SCLDGM (p,R, L,w, ρ), where ρ = N/L is the density of function nodes per
copy.

One reason to look at the variable Poisson-degree distribution is that it possesses a
universality property that the other distributions do not. Suppose that the amount
of memory for compressing a sequence is fixed to M but the length of the sequence
is unknown, except that it is less than N < M/R∗, for some rate R∗. One way of
treating this issue could be to have several different matrices with rates ranging from
R∗ to 1. This would require the storage of several matrices. The Poisson distribution,
however, enables us to cover all rates R > R∗ using only one matrix. To do so, we first
generate an M ×M/R∗ matrix G from the LDGM (p,R∗,M/R∗) ensemble (resp. from
the SCLDGM (p,R∗, L, w,M/LR∗) ensemble). If N = M/R < M/R∗, we delete from G

the columns k (1−R∗/R)−1 with k ∈ {1, . . . ,M (1/R∗ − 1/R)} . The resulting matrix G̃
belongs to the LDGM (p,R,N) ensemble (resp. belongs to the SCLDGM (p,R, L,w,N/L)
ensemble).
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3 Contribution and Organization

In Part II of the thesis, we prove the exactness of the Bethe free energy for LDGM and
LDPC codes over a BSC at high noise. These results are based on the paper by Macris
and Vuffray [88].

In Part III of the thesis, we show that spatially-coupled LDGM codes with BPGD
algorithms approach the rate-distortion bound. This work and its presentation are based
on the paper by Aref, Macris and Vuffray [89].

In this chapter, we summarize the main contributions of the thesis.

Exactness of the Bethe Free Energy for Sparse Graph Codes
(Part II)

We prove that the Bethe free energy enables us to compute the conditional free entropy
of LDGM and LDPC code instances on a BSC at high noise. By this we mean that the
Bethe free energy associated with an LDPC code or an LDGM code used over a BSC in
a large noise regime is, with high probability, asymptotically exact as the block length
grows. The proof of this fact is obtained with the help of a tool from statistical mechanics,
called the polymer expansion, which is new in the context of coding theory. The polymer
expansion has an easy application to the case of low-density generator-matrix (LDGM)
codes for high noise, and more generally, to graphical models in a high-temperature
regime. It is interesting that the polymer expansion has to be combined with special
features of the graphical model associated with LDPC codes (features that are not needed
in the usual applications of the polymer expansion).
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The Polymer Expansion (Chapter 4)

In 2006 Chertkov and Chernyak [90] developed a loop-sum representation for the partition
function of graphical models. The virtue of this representation is that the partition
function factorizes as the product of the Bethe contribution and a finite sum of terms
over subgraphs (not necessarily connected) with no dangling edges. Each term of the sum
involves only the belief-propagation messages on the edges contained in the subgraphs
and in its edge boundary . In [90] these subgraphs are called loops. It is tempting to use
the loop-sum representation not only as a mere formal tool, but to compare the true and
Bethe free energies.

One of our contributions in the thesis is the development of this idea from a systematic
point of view. We recognize that the loop-sum is itself the partition function of a system
of polymers (Equation (4.22) on page 54). A loop can be seen as an union of connected
subgraphs with no dangling edges, called polymers. Each polymer has an associated
weight that depends only on the belief-propagation messages on the edges contained
in the polymer and in its edge boundary. The representation of the loop-sum as the
partition function of a polymer system with infinitely repulsive interactions opens the
way to the computation of the logarithm of this sum via a combinatorial expansion
known in statistical mechanics as the polymer expansion [91] (Lemma 4.1 on page 56).

If this expansion converges, then we can in principle compute corrections to the Bethe free
energy (which corresponds to the zero-th order term of the expansion) to an arbitrarily
high order. A sufficient condition for the convergence of the expansion is that the activity
of a polymer decreases exponentially fast enough in the polymer size (Corollary 4.1 on
page 59).

At the end of this chapter, we provide a pedagogical application of the polymer expansion
for the square lattice Ising model. We derive the first correction terms to the Bethe free
energy for this model and compare the results to the exact solutions. We show that the
first correction terms given by the polymer expansion significantly improve the Bethe
estimation of the critical temperature.

High-Temperature Models (Chapter 5)

If the girth of the graph is large, all contributions beyond the zero-th order Bethe free
energy only come from large loops and, if these contributions become small as the size
of a loop increases, we could expect that, provided the expansion converges uniformly
in system size, the Bethe free energy is asymptotically exact. More generally, this
mechanism could occur for typical instances of graphs from a random Erdős-Rényi type
ensemble of sparse graphs, because the neighborhood of a given vertex is tree-like.

We show that the polymer expansion is absolutely convergent for general models pro-
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vided that the temperature is high enough. We give an immediate application of this
result to models whose factor graph has a large girth in the sense that the girth grows
logarithmically with the size of the graph. For such models, we prove that the Bethe free
energy is asymptotically exact in the thermodynamic limit (Theorem 5.1 on page 75).

We directly apply this result for irregular LDGM codes in the high-noise regime. We
prove that the free energy of an instance drawn at random from an irregular LDGM
ensemble is, with high probability, given by the Bethe formula in the large block length
limit (Theorem 5.2 on page 79).

LDPC Codes (Chapter 6)

In this chapter we consider regular LDPC codes used over a BSC in the high-noise
regime. For this model the solutions of the BP equations are not unique. In particular,
the low-noise solution is always a solution. We impose a restriction on the class of BP
solutions in which we evaluate the Bethe free energy, and we call high-noise solutions
the solutions obtained from this restriction (Hypothesis 6.1 on page 83). In the case of
LDPC codes, we cannot prove that the polymer expansion is absolutely convergent. The
reason is that the check-node constraints are indicator functions. Such constraints cannot
be viewed as high-temperature constraints but rather of low (even zero) temperature.
Therefore the polymer expansion cannot be used directly by itself.

It is interesting that we can show that a truncated form of this expansion does converge
absolutely (uniformly in the system size), using expander properties of typical instances
from the LDPC ensemble. Moreover, we prove that the convergent truncated expansion
accounts for the biggest part of the corrections to the Bethe free energy, up to a remainder
of order O(e−nε), ε > 0 (Theorem 6.1 on page 94). This remainder is not controlled with
the polymer expansion but estimated by a combinatorial counting method. The final
result is again that the Bethe free energy is asymptotically exact with high probability
in the large size limit (Theorem 6.2 on page 96).

Approaching the Rate-Distortion Bound by Spatial Cou-
pling, a Perspective from the Cavity Method (Part III)

We investigate an encoding scheme for lossy source compression of a binary symmetric
source which is based on spatially-coupled LDGM codes. The degree of the check nodes
is regular, and the degree of the variable nodes is Poisson distributed with an average
depending on the compression rate. We show that under a low-complexity BPGD-h and
BPGD-r algorithm, we approach the rate distortion curve for any compression rate.

The BPGD encoders are based on a random Gibbs measure with non-zero “temperature.”
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We investigate the links between the algorithmic performance of the BPGD encoders
and the phase diagram of this Gibbs measure. Using the cavity method, we investigate
the phase diagram that predicts a dynamical and condensation thresholds for the Gibbs
measure. We observe that the dynamical threshold of the spatially-coupled code saturates
towards the condensation temperature. Moreover, for large degrees the condensation
temperature approaches the temperature related to the information theoretic Shannon
test-channel noise parameter of rate-distortion theory. This provides heuristic insight
into the excellent performance of the BPGD algorithms.

Approaching the Rate-Distortion Bound by Spatial Coupling (Chapter
7)

Recall that p denotes the check-node degree, R denotes the rate, L denotes the coupling
length, w denotes the coupling window and ρ denotes the number of check nodes per
copy.

The Gibbs measure (2.39) is the basis for setting up the BPGD algorithms. At each step
of the decimation procedure, we compute with BP the marginal distribution of individual
bits. The main idea is that, when the marginal distributions are close to be uniform, a
random bit from the boundary of the chain is fixed to a random value; and as long as
there exist bits with biased marginal distribution, they are eliminated from the chain
by fixing them and decimating the graph. We consider two forms of BPGD algorithms
(Algorithm 7.1 on page 113). The BPGD-h algorithm which turns out to perform slightly
better, is based on hard decisions. The BPGD-r algorithm uses a randomized decimation
rule for fixing the bits.

For both algorithms, we observe that the rate-distortion curve of the coupled ensemble
approaches the Shannon limit when ρ� L� w � 1 and the node degree grows large
(Figure 7.3 on page 114 and Figure 7.4 on page 115). We cannot assess if the Shannon
limit is achieved based on our numerical results. However we observe that, in order to
avoid finite size effects, the degree has to grow large only after the other parameters
grow large in the specified order. In practice though ρ = 2000, L = 64, w = 3 and check
degrees equal to p = 3 yield good results for a compression rate 1/2.

The performance of the BPGD algorithms depends on the inverse temperature parameter
in the Gibbs measure and is optimal for a specific β∗ (R, p) (Figure 7.5 on page 116).
Using the prediction of the cavity method for the average distortion, we compare the
quality of sampling of BPGD-r algorithms. We observe that the BPGD-r algorithm
correctly samples the Gibbs measure (2.39) down to inverse temperatures roughly higher
than β∗(Figure 7.6 on page 117).
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A Perspective from the Cavity Method (Chapter 8)

We provide a summary of the main technical ideas of the cavity method at the beginning
of this chapter. We then proceed to derive the equations necessary for computing the
dynamical and condensation thresholds βd and βc of the Gibbs measure (2.39). The
cavity equations take the form of six fixed-point integral equations (Equations (8.51)
on page 131 and (8.52) on page 131 and Equations (8.54) on page 131 and (8.55) on
page 132 ) .

Using population dynamics we solve the fixed point integral and compute the values of
these thresholds for the coupled and underlying ensembles (Table 8.1 on page 139 and
Table 8.2 on page 139 ). We observe that for both ensembles we always have β∗ < βd. In
particular, the BPGD-r algorithm does not sample correctly after βd. We also observe that
when ρ� L� w � 1 and for every p, there is threshold saturations β∗ → βd → βc for
the coupled ensembles. This explains the good performance of the BPGD-r algorithm. On
the coupled ensembles, the BPGD-r correctly samples at low-temperatures configurations
that have a small distortion.

Moreover, we observe by population dynamics that two of the six cavity equations are
satisfied by a trivial fixed point. This is justified by a theoretical analysis for large degrees
p. When this trivial fixed point is used, the remaining four equations reduce to two
fixed-point integral equations that have the form of usual density evolution equations
for a BSC (Equations (8.63) on page 136 and (8.55) on page 132). This simplification
is slightly surprising because although the original Gibbs measure does not possess
channel symmetry1, this symmetry emerges as a solution of the cavity equations. Within
this framework the saturation of the dynamical temperature towards the condensation
temperature appears to be very similar to threshold saturation, in the context of channel
coding with LDPC codes.

The simplifications of the cavity equations enables us to perform an asymptotic analysis
in the limit p → ∞. We show that in this limit the dynamical threshold βd goes to
zero for the underlying ensembles. Moreover, for both ensembles βc → βSh, where βSh
corresponds to the amplitude of the half log-likelihood ratios of a BSC test channel at
capacity CBSC = R (Equation (8.73) on page 138). This shows that the rate-distortion
curve can be interpreted as a line of condensation thresholds for each R.

1In the context of spin glass theory this is the Nishimori gauge symmetry.
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Part IIExactness of the Bethe Free
Energy for Sparse Graph Codes
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4 The Polymer Expansion

In this chapter, we present the polymer expansion and show that it enables us to compute
the correction terms of the Bethe free energy in a systematic way.

In Section 4.1, we set up the notation and recall the definition of the Bethe free energy.

In Section 4.2, for the convenience of the reader we provide a derivation of the loop sum
identity of Chertkov and Chernyak.

In Section 4.3, we show that the loop sum can be represented as the partition function
of a system of polymers (Equation (4.22) on page 54). We also present the polymer
expansion that enables us to compute the corrections to the Bethe free energy (Lemma 4.1
on page 56).

In Section 4.4, we give a sufficient condition which ensures the uniform convergence
of the polymer expansion. The condition is that the activity of a polymer decreases
exponentially fast enough in the polymer size (Corollary 4.1 on page 59).

In Section 4.5, we provide a pedagogical application of the polymer expansion for the
Ising model. To our knowledge this formalism has never been applied on this model.

4.1 Settings

The LDGM and LDPC codes are special cases of general factor graph models. We find it
convenient to develop the formalism of the loop sum and polymer expansions in a unified
manner which applies to general models.

We begin with a few definitions and notations. Consider two vertex sets: V a set of n
variable nodes and C a set of m check nodes. We think of n and m large. We consider
bipartite graphs – call them Γ – connecting V and C. The set of edges is E. Letters i, j
will always denote nodes in V and letters a, b nodes in C. We reserve the notations ∂i
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(resp. ∂a) for the sets of nodes that are neighbors of i (resp. a) in Γ.

Consider a bipartite graph Γ. We construct a general factor graph model or spin system
as follows. We attach spin degrees of freedom si ∈ {−1,+1} to nodes i ∈ V . A spin
configuration is an assignment s = (si)i∈V . To each check node a we associate a weight
depending on spins i ∈ ∂a. The collection of spins si with i ∈ ∂a and the associated
weights are denoted s∂a and ψa(s∂a), respectively. The partition function of the factor
graph model (or spin system) is

Z =
∑

s∈{−1,+1}n

∏
a∈C

ψa(s∂a). (4.1)

The free energy is defined by
f = 1

n
lnZ (4.2)

and its thermodynamic limit is taken in the limit n→ +∞.

If we restrict ourselves to the class of strictly positive weights their most general form is

ψa(s∂a) = exp{β
∑
I⊂∂a

JI
∏
i∈I

si}, (4.3)

where β > 0 has the interpretation of an inverse temperature and JI ∈ R have the
interpretation of coupling constants.

The cavity method enables us the computation of candidate approximations, called Bethe
free energies, for f = 1

n lnZ. In the case of LDPC and LDGM codes it enables us the
computation of candidate approximations for the free energies fLDPC and fLDGM. As
explained in the introduction, controlling in a rather systematic way the quality of these
approximations is the object of Part II.

Let us first recall the Bethe formulas for general factor graph models. This involves
a set of messages νia(si) and ν̂ai(si) attached to the edges of (ia) ∈ E. Messages are
probability distributions over the single spin space {−1, 1}. The collection of all messages
is denoted (ν, ν̂); they satisfy the belief propagation fixed-point equations



νia(si) =
∏
b∈∂i\a ν̂bi(si)∑

si

∏
b∈∂i\a ν̂bi(si)

.

ν̂ai(si) =
∑

s∂a\i
ψa(s∂a)

∏
j∈∂a\i νja(sj)∑

s∂a
ψa(s∂a)

∏
j∈∂a\i νja(sj)

(4.4)

The Bethe free energy functional associated with a particular solution of these equations

50



4.2. Loop Sum Identity

is

fBethe(ν, ν̂) = 1
n

∑
a∈C

Fa +
∑
i∈V

Fi −
∑

(i,a)∈E
Fia

 , (4.5)

where 

Fa = ln{
∑
s∂a

ψa(s∂a)
∏
j∈∂a νja(sj)},

Fi = ln{
∑
si

∏
b∈∂i ν̂bi(si)},

Fia = ln{
∑
si νia(si)ν̂ai(si)}.

(4.6)

Notice that the functional fBethe (ν, ν̂) is well defined for any sets of messages ν and
ν̂. The stationary points of fBethe(ν, ν̂) considered as a function of the messages over
RE × RE , satisfy the belief propagation equations (see [92]).

4.2 Loop Sum Identity

The “loop sum identity” is a representation of the error term between the free energy and
the Bethe free energy. It takes the form of the logarithm of a sum over sub-graphs that
are non-necessarily connected. This identity was first derived for graphical models with
binary variables by Chertkov and Chernyak in [90] and later generalized for variables on
a q-ary alphabet by the same authors in [93]. The extension of the loop sum identity to
continuous alphabet has been carried out by Xiao and Zhou in [94]. The present section
contains a short derivation of the loop sum identity based on the original paper [90].
There exists other representations of the loop sum identity and its generalization notably
as the holographic transformation of a normal factor graph [95, 96].

Consider the problem of computing the partition function of a factor graph model
(Equation (4.1)). The loop expansion takes a natural form on graphical models called
vertex models, where variables are attached to edges. We introduce the auxiliary set of
spins σia, σ̂ai ∈ {−1, 1} attached to directed edges (i→ a) and (a→ i) respectively. We
denote by σ∂a = {σja|j ∈ ∂a} the collection of spins that are on edges pointing toward a
and we denote by σ̂∂i = {σ̂bi|b ∈ ∂i} the collection of spins that are on edges pointing
toward i. We can rewrite (4.1) as a partition function of a vertex model

Z =
∑

σ,σ̂∈{−1,1}|E|

∏
a∈C

ψa(σ∂a)
∏
i∈V

φi(σ̂∂i)
∏

(a,i)∈E

1 + σiaσ̂ai
2 , (4.7)

where
φi(σ̂∂i) =

∏
b,c∈∂i

1 + σ̂biσ̂ci
2 . (4.8)
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Let us comment on the expression (4.7). The new factors (4.8) ensure that all spins
on edges outgoing from a variable node i take the same value si. The last product in
(4.7) forces spins on the same edge to be equal. The key idea in the loop expansion is to
“soften” the constraints on the edges before performing the expansion.

Using the following identity, valid for any binary distributions νia and ν̂ai ,

1 + σiaσ̂ai
2 = νia(σia)ν̂ai(σ̂ai) + σiaν̂ai(−σia)σ̂aiνia(−σ̂ai)∑

s∈{−1,1} νia(s)ν̂ai(s)
, (4.9)

we can rewrite the partition function (4.7) as

Z =
∑

σ,σ̂∈{−1,1}|E|

∏
a∈C

ψa(σ∂a)
∏
j∈∂a

νja(σja)

×
∏
i∈V

φi(σ̂∂i)
∏
b∈∂i

ν̂bi(σ̂bi)

×
∏

(a,i)∈E

 ∑
s∈{−1,1}

νia(s)ν̂ai(s)

−1

×
∏

(a,i)∈E

(
1 + σia

ν̂ai(−σia)
νia(σia)

σ̂ai
νia(−σ̂ai)
ν̂ai(σ̂ai)

)
. (4.10)

We use the “generalized binomial formula” on graphs. For any function χ defined on the
edges e ∈ E of a graph Γ, the following relation holds∏

e∈E
(1 + χ(e)) = 1 +

∑
g⊂Γ

∏
e∈E∩g

χ(e), (4.11)

where the sum runs on every non-empty subset of edges represented by subgraphs g
whose vertices are incident to the edges in the subset. Expanding the last product in
(4.10) with the generalized binomial formula yields

Z = exp(nfBethe(ν, ν̂))×
(

1 +
∑
g⊂Γ

K (g)
)
. (4.12)

The quantity that is factorized in the expansion appears to be the Bethe free energy
functional (4.5) evaluated at the distributions ν and ν̂. The weights K(g) associated
with each subgraph can be distributed in contributions coming from vertices in g

K(g) =
∏

i∈g∩V
Ki

∏
a∈g∩C

Ka, (4.13)
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where

Ki(g) =
∑
si

∏
a∈∂i\g ν̂ai(si)

∏
a∈∂i∩g siνia(−si)∑

si

∏
a∈∂i ν̂ai(si)

, (4.14)

and

Ka(g) =
∑
s∂a

ψa(s∂a)
∏
i∈∂a\g νia(si)

∏
i∈∂a∩g siν̂ai(−si)∑

s∂a
ψa(s∂a)

∏
i∈∂a νia(si)

. (4.15)

The sum over non-empty subgraphs in (4.12) is the loop sum identity. Note that for
the moment the binary distributions entering in (4.9) are completely arbitrary. The
transformation (4.9) is crucial in that it allows the preservation of the correlations between
neighboring spins. Messages ν̂a→i directed toward a spin σi can be interpreted as an
interaction from the neighboring variables σ∂a\i that bias the average value of the spin σi.
Expanding the Kronecker delta in (4.7) directly is equivalent as taking ν and ν̂ as being
uniform distributions. Such an expansion would be accurate only in a regime were the
spins are almost independent from each other and almost uniformly distributed between
+1 and −1. This is the case for instance in the high-temperature regime. Thanks to
the transformation (4.9), the effect of correlations between neighboring spins can be
captured by the distributions ν and ν̂. Thus, for appropriate choices of messages (ν, ν̂),
the expansion can also be accurate in the low-temperature regime.

In order for the loop sum identity to be useful, one has to choose the “correct” binary
distributions. We call di(g) = |∂i∩ g| (resp. da(g) = |∂a∩ g|) the induced degree of node
i (resp. a) in a subgraph g. If di (g) ≥ 2 and da (g) ≥ 2 for all i, a ∈ g, we say that g is a
loop. In other words a loop has no dangling edge. The natural requirement for sparse
locally tree-like graphs is that every subgraph g that is not a loop must have a zero
weight. In particular if Γ is a trees, it implies that the loop sum is equal to zero. This
condition requires that the distributions ν and ν̂ must be chosen such that da(g) = 1 and
di(g) = 1 implies Ka(g) = 0 and Ki(g) = 0 respectively. The requirement Ka(g) = 0 is
fulfilled by distributions ν̂ai that satisfy the following equation∑

si

siν̂ai(−si)
∑
s∂a\i

ψa(s∂a)
∏

j∈∂a\i
νja(sj) = 0. (4.16)

This is satisfied if ν̂ai is a solution of the first belief propagation equation (4.4)

ν̂ai(si) =
∑
s∂a\i

ψa(s∂a)
∏
j∈∂a\i νja(sj)∑

s∂a
ψa(s∂a)

∏
j∈∂a\i νja(sj)

. (4.17)

Similarly one can check that the requirement Ki(g) = 0 is fulfilled by the choice

νia(si) =
∏
b∈∂i\a ν̂bi(si)∑

si

∏
b∈∂i\a ν̂bi(si)

. (4.18)
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Figure 4.1: Example of Γ ∈ B (3, 4, 8). The loop g has two disjoint connected parts γ1
and γ2.

This is nothing else but the second belief propagation equation (4.4).

4.3 Polymer Expansion of the Loop Sum Identity

4.3.1 Polymer Representation

In the loop sum identity (4.12), only non-empty subgraphs g ⊂ Γ with no isolated vertices
and no dangling edges are present. These subgraphs are called “loops”. Note that these
loops are not necessarily cycles, and are not necessarily connected. Figure 4.1 shows an
example.

Each generalized loop can be decomposed in a unique way as an union of its connected
components

g = ∪kγk, (4.19)

where γk are the connected components of g. It is easy to see that the γk entering in
(4.19) are non-empty connected loops and are mutually disjoint (see figure 4.1). The
connected loops γk are called polymers. Remarkably, each weight K(g) can be factorized
(see Section 4.2, Eqn. (4.13)) in a product of contributions associated with the connected
parts of g. We have

K(g) =
∏
k

K(γk). (4.20)

The factorization implies
1 +

∑
g⊂Γ

K (g) ≡ Zpolymer, (4.21)

with

Zpolymer =
∑
M≥0

1
M !

∑
γ1,...,γM⊂Γ

M∏
k=1

K (γk)
∏
k<k′

I (γk ∩ γk′ = ∅) . (4.22)
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Figure 4.2: All the Mayer graphs for M = 1, 2, 3 and their associated Ursell functions.

In the second sum on the right-hand side, each γk runs over all polymers contained in Γ.
The factor 1

M ! accounts for the fact that a polymer configuration has to be counted only
once. The indicator function ensures that the polymers do not intersect. By convention
the term corresponding to M = 0 is equal to 1. The convention is also taken that if
M = 1 the product over the indicator functions equals 1. Note that because of the
non-intersection constraint of the polymers, the number of terms in the sums on the
right-hand side is finite.

From a physical point of view (4.22) interprets the loop sum in Eqn. (4.12) as the partition
function of a gas of polymers that can acquire any shape allowed by Γ. The polymers
in this gas have an activity1 K(γ) and interact via a two body hard-core repulsion
which precludes their overlap. This analogy enables us to use methods from statistical
mechanics to analyze the corrections to the Bethe free energy.

4.3.2 A Combinatorial Tool: the Polymer Expansion

The polymer expansion is a powerful tool from statistical physics to expand the logarithm
of a polymer partition function in powers of the activity. We give in this section a quick
derivation of the polymer expansion based on [91].

We denote by GM the set of all connected graphs G with M labeled vertices 1, . . . ,M

1“Activity” is the name used by chemists for the prior probability weight K(γ) of an isolated polymer.
Note that here K(γ) can be negative and this analogy is at best formal. We use the name “activity”
rather than “prior weight” for K(γ) precisely because they can be negative in the present context.
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(see figure 4.2). These are called Mayer graphs.We associate to an ensemble of Mayer
graphs GM an Ursell function whose arguments are polymers

UM (γ1, . . . , γM ) =


∑
G∈GM

∏
(k,k′)∈G (I (γk ∩ γk′ = ∅)− 1) if M ≥ 2

1 if M = 1
, (4.23)

were the product runs over the edges (k, k′) of G.

Lemma 4.1 (Polymer expansion). If Zpolymer is the partition function of a polymer
system (Eqn. (4.22)), the following equality hold

lnZpolymer =
∞∑

M=1

1
M !

∑
γ1,...,γM⊂Γ

UM (γ1, . . . , γM )
M∏
k=1

K (γk) . (4.24)

Proof. Let us introduce some notations. We denote the complete graph with M labeled
vertices by KM . A partition of the set {1, . . . ,M} into q “blocks” is an unordered list
{I1, . . . , Iq} of disjoint nonempty subsets It ⊂ {1, . . . ,M}. The partitions of M elements
into q “blocks” form an ensemble denoted by PqM .

We recall that polymers γ are connected subgraphs of Γ that cannot intersect due to the
presence of the hard core constraints I (γk ∩ γk′ = ∅). The polymer expansion identity is
based on the expansion of these hard core constraints using the binomial theorem on
graphs (Eqn. (4.11))

∏
k<k′

I (γk ∩ γk′ = ∅) =
∏

(k,k′)∈KM

(I (γk ∩ γk′ = ∅)− 1 + 1)

=1 +
∑

G⊂KM

∏
(k,k′)∈G

(I (γk ∩ γk′ = ∅)− 1) . (4.25)

The sum in (4.25) runs over non-empty subset of edges of KM represented by subgraphs G
whose vertices are incident to the edges in the subset. Notice that each general subgraph
in KM can be written as an union of disjoint connected subgraphs G1, ..., Gq. This with
the fact that U1 (γk) = 1 enable us to re-sum (4.25) as

1 +
∑

G⊂KM

∏
(k,k′)∈G

(I (γk ∩ γk′ = ∅)− 1) =
M∑
q=1

∑
{I1,...,Iq}∈PqM

q∏
t=1

U|It|
(
(γk)k∈It

)
. (4.26)

Figure 4.3 gives a pictorial representation of the formula (4.26) in the case M = 3.

Together with (4.25) and (4.26), the polymer partition function (4.22) can be rewritten
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Figure 4.3: Example in the case M = 3 of the terms entering in the re-summation (4.26).
The number of “blocks” in a partition of {1, 2, 3} is denoted by q. Recall that U1 (γk) = 1.

as

Zpolymer = 1 +
∑
M≥1

1
M !

M∑
q=1

∑
{I1,...,Iq}∈PqM

q∏
t=1

φ (It) , (4.27)

where

φ (It) :=
∑
γk∈It

U|It|
(
(γk)k∈It

) ∏
k∈It

K (γk) . (4.28)

The function introduced in (4.28) depends only on the size of the ensemble

φ (It) = φ (|It|) , (4.29)

as k ∈ It in (4.28) are just dummy indices. The number of partitions of {1, . . . ,M} with
prescribed size |I1| = m1, . . . , |Iq| = mq is

∑
{|I1|=m1,...,|Iq |=mq}∈PqM

1 = M !
q!

q∏
t=1

1
mt!

, (4.30)

wherem1, . . . ,mq are non-zero integers satisfyingm1+· · ·+mq = M . These considerations
allow us to rewrite (4.27) as

Zpolymer =1 +
∑
M≥1

M∑
q=1

1
q!

∑
m1+···+mq=M

q∏
t=1

φ (mt)
mt!

.

=1 +
M∑
q=1

1
q!

∞∑
M=q

∑
m1+···+mq=M

q∏
t=1

φ (mt)
mt!

=1 +
M∑
q=1

1
q!

( ∞∑
M=1

φ (M)
M !

)q

= exp
( ∞∑
M=1

φ (M)
M !

)
. (4.31)
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The argument in the exponential of (4.31) is equal to the right-hand side of (4.24).

Lemma 4.1 is rather general and is a combinatorial feature of polymer systems. It requires
no special property from the polymers γ or from their containing graph Γ.

4.4 Convergence Criterion and Control of the Polymer Ex-
pansion

The polymer expansion presented in Section 4.3 gives us a way to compute the logarithm
of the loop sum. Unlike the polymer partition function (4.22), the polymer expansion
(4.24) contains an infinite number of terms as polymers can overlap. It is then necessary
to have tools to ensure that the series is absolutely convergent. Besides in order to be
able to take the limit n→∞ terms by terms in the series, we have to ensure that the
convergence is uniform in the system size. This is ensured by the following lemma

Lemma 4.2 (Convergence criterion). Let

Q =
∞∑
t=0

1
t! sup
x∈V ∪C

∑
γ3x
|γ|t |K (γ)| , (4.32)

where the last sum in (4.32) runs over polymers γ containing x. If Q < 1 then the
polymer expansion (4.24) is absolutely convergent. Moreover we have the following bound∣∣∣∣∣∣

∞∑
M=1

1
M !

∑
γ1,...,γM⊂Γ

UM (γ1, . . . , γM )
M∏
k=1

K (γk)

∣∣∣∣∣∣ ≤
( 1

1−Q

) ∑
x∈V ∪C

∑
γ3x
|K (γ)| e|γ|.

Proof. We use the remarkable inequality [91]

|UM (γ1, . . . , γM )| ≤
∑
T∈TM

∏
(k,k′)∈T

|I (γk ∩ γk′ = ∅)− 1|

=
∑
T∈TM

∏
(k,k′)∈T

I (γk ∩ γk′ 6= ∅) , (4.33)

where TM is the set of trees on M vertices labeled 1, · · · ,M . Using (4.33) we find that
the term of order M in (4.24) is smaller than∣∣∣∣∣∣

∑
γ1,...,γM⊂Γ

UM (γ1, . . . , γM )
M∏
k=1

K (γk)

∣∣∣∣∣∣ ≤
∑
T∈TM

∑
γ1,...,γM

∏
(k,k′)∈T

I (γk ∩ γk′ 6= ∅)
M∏
k=1
|K (γk)| .

(4.34)
We will now estimate the sum over γ1, . . . , γM for each tree T . Let t1, . . . , tM be the
degrees of the nodes 1, . . . ,M . One can decide that γ1 is the root of T and that the leafs
are among 2, . . . ,M . We first perform recursively the sum over γ2, . . . , γM by starting
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from the leaf nodes in this set. One finds the estimate

∑
γ2,...,γM

M∏
k=2
|K (γk)|

∏
(k,k′)∈T\{1}

I (γk ∩ γk′ 6= ∅) ≤ |γ1|t1
M∏
k=2

 sup
x∈V ∪C

∑
γ3x
|γ|tk−1 |K (γ)|

 .
(4.35)

This implies

∑
γ1,...,γM

M∏
k=1
|K (γk)|

∏
(k,k′)∈T

I (γk ∩ γk′ 6= ∅) ≤
∑

y∈V ∪C

∑
γ13y
|K (γ1)| |γ1|t1

×
M∏
k=2

 sup
x∈V ∪C

∑
γ3x
|γ|tk−1 |K (γ)|

 .
(4.36)

Now it is easy to estimate the sum over T in (4.34). According to Cayley’s formula, the
number of trees with M labeled vertices of degrees t1, . . . , tM is equal to

(M − 2)!
(t1 − 1)! · · · (tM − 1)! , (4.37)

so we find that (4.34) is upper bounded by

∑
y∈V ∪C

∑
γ13y
|K (γ1)| e|γ1| 1

M

+∞∑
t=0

1
t! sup
x∈V ∪C

∑
γ3x
|γ|t |K (γ)|

M−1

. (4.38)

We see that in this expression the quantity in parenthesis is

Q =
+∞∑
t=0

1
t! sup
x∈V ∪C

∑
γ3x
|γ|t |K (γ)| , (4.39)

which is smaller than 1 by hypothesis.

An immediate application of this lemma is the following corollary which gives a conver-
gence condition independent of n.

Corollary 4.1 (Uniform convergence criterion). Recall that the degree of the variable
nodes is upper-bounded by lmax and the degree of the check nodes is upper-bounded by
rmax. Define by Rx the minimal size of polymers containing x ∈ V ∪ C. Let ε < 1

2 . If

|K (γ)| ≤
(
εe−1−max(lmax,rmax)

)|γ|
(4.40)

then:
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1. 1
n lnZpolymer has an absolutely uniformly (in n) convergent expansion.

2. 1
n

∣∣∣lnZpolymer
∣∣∣ ≤ 4

n

∑
x∈V ∪C ε

Rx .

Proof. The number of polymers with size |γ| = τ containing a node x ∈ V ∪ C is
upper-bounded by emax(lmax,rmax)τ (See Appendix B). Therefore as a polymer contains at
least two nodes

Q ≤ ε2

1− ε ≤
1
2 . (4.41)

Application of Lemma 4.2 ends the proof.

An important consequence of Corollary 4.1 is that it implies in particular that the
polymer free energy is analytic as a function of {K(γ), γ ⊂ Γ}.

A mathematically precise and simple way to express the analyticity of the series is to
replace K(γ) by zK(γ), z ∈ C, |z| < z0, where z0 > 1 is fixed. Then the polymer free
energy becomes a function of the complex variable z,

1
n

lnZpolymer(z) (4.42)

and (4.1) becomes a series expansion in zM , M ≥ 1. If the convergence criterion (4.40)
holds with K(γ) replaced by z0K(γ) we can conclude by Montel’s theorem [97] that the
series is holomorphic for |z| < z0. Moreover the limit n→ +∞, as long as it exists, is
also holomorphic for |z| < z0. In practice, existence of the limit requires some regularity
structure on the sequence of graphical models (which is not the case in the present
formulation), and it can be checked term by term on the series expansion. We take z0 > 1
in order to then apply the results to the case of interest z = 1.

As will be seen in Chapter 5 it is fairly easy to check that the inequality (4.40) is satisfied
for high-temperature general-models and also for typical instances of LDGM codes in the
large noise regime. These cases also serve as pedagogical examples to better understand
the difficulties that arise in the case of LDPC codes. In fact for LDPC codes we are not
able to satisfy this criterion as such. However the criterion holds if Γ is an expander
and the sum in Zpolymer is restricted to small polymers of size |γ| < λn, 0 < λ < λ0 � 1.
The contribution of “large” polymers |γ| > λn is treated differently.

4.5 Illustration with the 2D Ising Model

The section’s goal is to illustrate the concepts presented above with the square lattice
Ising model encountered in Chapter 1. We compare quantities computed within the
Bethe approximation and the exact solution and we show how the polymer expansion is
effective to computes the corrections to the Bethe approximation.
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4.5.1 Preamble

Denote by Λn = (V,E) the square lattice with n spins with periodic boundary conditions.
We will use the letters i, j for vertices in V and denote by a couple (i, j) ∈ E an
edge of the lattice. A spin is a binary variable σi ∈ {−1, 1} associated with a vertex
i ∈ V of the lattice. A spin configuration is a vector of n binary variables σ ∈ {−1, 1}n.
The Hamiltonian or energy-cost of the Ising model contains only ferromagnetic nearest
neighbor interactions

Hn (σ) =
∑

(i,j)∈Λn

−Jσiσj . (4.43)

The occurrence probability of a configuration at temperature β−1 is given by the Gibbs
measure

µN (σ) = 1
Zn

e−βHn(σ), (4.44)

where Zn is the partition function

Zn =
∑
σ

e−βHn(σ). (4.45)

We denote by brackets 〈·〉µ the average with respect to the measure µ. Note that the
measure (4.44) can be interpreted as a factor graph model on a bipartite graph if for
each edge (i, j) ∈ E we create a check node with factor exp (βJσiσj) .

We are interested in the properties of the system in the thermodynamic limit n→∞.
The quantities of interest are the free energy

fIsing = lim
n→∞

1
n

lnZn, (4.46)

the dimensionless internal energy

u = lim
n→∞

1
Jn
〈Hn〉µn , (4.47)

the entropy
s = lim

n→∞
−1
n
〈lnµn〉µn , (4.48)

and the heat capacity
C = d

dβ−1 (Ju) . (4.49)

We introduce at this point the dimensionless rescaled temperature

z := tanh (βJ) . (4.50)
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The temperature is minimal when z = 0 and becomes maximal when z = 1. Quantities
(4.47), (4.48), (4.49) can be obtained by taking derivatives2 of the free energy (4.46). It
is straightforward to derive the following identities

u = −
(
1− z2

) d

dz
fIsing, (4.51)

s = fIsing −
1− z2

2 ln
(1 + z

1− z

)
d

dz
fIsing, (4.52)

C = 1− z2

4

(
ln
(1 + z

1− z

))2
((

1− z2
) d2

dz2 fIsing − 2z d
dz
fIsing

)
. (4.53)

4.5.2 The Bethe Free Energy of the Ising Model

Because the measure (4.44) is translation invariant, the belief propagation messages are
uniform over the graph. The BP messages ν (σ) are parametrized by a single number

ξ =
∑
σ

σν (σ) .

The Bethe free energy for the square-lattice Ising model takes the following form in the
limit n→∞

fBethe
ξ (z) := ln

(
(1 + ξz)4 + (1− ξz)4

)
− 2 ln

(
1 + ξ2z

)
− ln

(
1− z2

)
, (4.54)

where the value of the parameter ξ ∈ [−1, 1] satisfies the following belief propagation
equation

ξ = (1 + zξ)3 − (1− zξ)3

(1 + zξ)3 + (1− zξ)3 . (4.55)

Equation (4.55) has several solutions and we should define a way to select one of them in
which to evaluate fBethe

ξ (z). For the Ising model, it appears that the polymers activities
K (γ) are non-negative independently of the BP fixed point. It implies that the Bethe
free energy is a lower bound to the free energy

fBethe
ξ (z) ≤ fIsing (z) , (4.56)

reproducing the results of Sudderth et al. [99] and Ruozzi [100] for more general graphical
models. Inequality (4.56) implies that following fixed-point selection principle minimizes

2The free energy is a convex function of z. This enables us to exchange the derivative with the
thermodynamic limit [98, p. 203].
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the error

fBethe (z) := max
ξ
fBethe
ξ (z) . (4.57)

A phase transition occurs in the number of solutions of the belief propagation equation
(4.55) at

zBethe
c = 1

3 . (4.58)

The high-temperature regime, z < zBethe
c , is characterized by a unique, trivial solution

ξhigh = 0. (4.59)

As for low temperatures, z ≥ zBethe
c , two solutions which differs only by a sign emerge

ξlow = ±
√

1− 3z
(z − 3) z2 . (4.60)

The associated high and low-temperature free energies are respectively

fBethe
high (z) = ln 2− ln

(
1− z2

)
, (4.61)

and

fBethe
low (z) = ln 16z2

(1 + z) (1− z) (1 + 6z − z2) . (4.62)

Note that for z ≥ zBethe
c , the low-temperature free energy is always bigger than the

high-temperature free energy. Thus according to our selection principle (4.57) zBethe
c also

corresponds to a phase transition in the Bethe approximation.

4.5.3 The Polymer Expansion for the Ising Model

According to Section 4.2, the difference between the Bethe free energy and the free energy
is given by

f Ising (z)− fBethe
ξ (z) = fPolymer

ξ (z) , (4.63)
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where

fPolymer
ξ = lim

n→∞
1
n

∑
M≥1

1
M !

∑
γ1,...,γM

M∏
k=1

Kξ (γk)
∑
G∈GM

∏
(k,k′)∈G

(I (γk ∩ γk′ = ∅)− 1) .

(4.64)

In (4.64), weights are given by the following formula

Kξ (γ) =z|γ∩E|
∏

i∈γ∩V

(1− ξ)qi (1 + zξ)4−qi + (−1)qi (1 + zξ)qi (1− zξ)4−qi

(1 + zξ)4 + (1− zξ)4 , (4.65)

where qi = |{j ∈ V | (i, j) ∈ γ ∩ E}| is the induced degree in γ of the vertex i.

In the next subsection we compute the first terms of the expansion (4.64) which are the
leading correction terms of the Bethe free energy. Up to the third order correction terms
we find that the phase transition occurs at a lower temperature than predicted by the
Bethe free energy3

zBethe+corr
c ≈ 0.405. (4.66)

This transition temperature is found by applying the selection principle of the fixed point
(4.57) to the Bethe free energy to which we added the first correction terms from the
polymer expansion. We define accordingly the corrected Bethe free energy as

fBethe+corr = max
ξ

(fξ + corrξ) . (4.67)

High-Temperature Expansion

At the high-temperature fixed-point (4.59), weights (4.65) become

Khigh (γ) = z
|γ∩E| ∏

i∈γ∩V

1 + (−1)qi
2 . (4.68)

According to (4.68) a polymer is any subgraph with vertices of even induced degree. The
activity of a polymer is exponentially decreasing in the number of edges contained in the
polymer.

Figure 4.4 shows the first polymers entering in the expansion. The multiplicity of
a polymer described in Figure 4.4 is the ratio between the number of polymers of a
particular shape (up to rotations and translations) and the number of vertices. Let us
define more precisely the notion of multiplicity. We say that two polymers γ1 and γ2
have the same shape if there exists a transformation T composed of a translation and
a rotation such that γ1 = T [γ2]. We clearly see that “having the same shape” defines

3In general mean-field methods neglect fluctuations and overestimate the critical temperature.
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Figure 4.4: Polymers entering in the first orders of the expansion at high temperature.

an equivalence relation between polymers. The interest of this equivalence relation is
that polymers with the same shape give the same contribution in the polymer expansion.
Therefore we can simplify the polymer expansion by considering only contributions given
by a certain shape of polymer rather than contributions given by the polymers themselves.
The multiplicity χ ([γ]) is a number associated to an equivalence class of polymers having
the same shape. It represents in the thermodynamic limit the number of occurrence per
variables of a certain shape in the lattice

χ ([γ]) = lim
n→∞

|[γ]|
n
. (4.69)

Using the polymer expansion (4.64) we compute the difference between the free energy
and the Bethe free energy up to the first few small-order correction-terms

f Ising − fBethe
high = z4 + 2z6 + 9

2z
8 +O

(
z10
)
. (4.70)

Low-Temperature Expansion

Similarly to the high-temperature case we compute the activity at the low-temperature
fixed-point (4.60)

Klow (γ) =
∏

i∈γ∩V
κqi , (4.71)

where
κ2 = (1− z)2

4z = (1− z)2

4 +O
(
(1− z)3

)
, (4.72)
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Figure 4.5: Polymers entering in the first orders of the expansion at low temperature.

κ3 = 1− z2

8z3/2

√
(3z − 1) (3− z) = 1− z

2 +O
(
(1− z)2

)
, (4.73)

κ4 = −1− 10z2 + z4

8z2 = 1− (1− z)2

2 +O
(
(1− z)3

)
. (4.74)

Polymers are subgraphs with no induced degree-one vertex. According to (4.71), the
activity of a polymer is in the first order in (1− z)

Klow (γ) =
(1− z

2

)4|V ∩γ|−2|E∩γ|
+ high order terms. (4.75)

But the exponent on the right-hand side of (4.75) is the number of edges attached to γ
but not in γ. The activity of the polymer is exponentially decreasing in the perimeter
size, where the perimeter are edges which connect the polymer to the rest of the lattice.

Figure 4.5 shows the first polymers entering in the low-temperature expansion. The
difference between the free energy and the Bethe free energy in the first few small-order
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Table 4.1: Phase transition temperature for the different approximations

zc zBethe
c zBethe+corr

c

0.414 0.333 0.405

correction-terms

f − fBethe
High =κ4

2 + 2κ4
2κ

2
3 + κ4

2κ
4
3κ4 + 2κ6

2 + 2κ4
2κ

4
3 + 4κ5

2κ
2
3κ4 + 2κ6

2κ4

≈ 1
256 (1− z)8 + 1

64 (1− z)9 + 21
512 (1− z)10 + 45

512 (1− z)11

+ 687
4096 (1− z)12 + 609

2048 (1− z)13 +O (1− z)14 . (4.76)

4.5.4 Comparison with the Exact Solution

We compare the value of the free energy (4.46), the internal energy (4.47), the entropy
(4.48) and the heat capacity (4.49) obtained by the exact computation, by the Bethe free
energy approximation and by the polymer expansion. Table 4.1 shows a recapitulation of
the various phase transition temperatures predicted by the three approaches. In Figures
4.6, 4.7, 4.8, 4.9 and 4.10 the exact quantity is represented in black, the Bethe quantity
is in blue and the Polymer corrections are in red.

Figure 4.6 depicts the various free energies. Figure 4.7 shows the relative difference
between the exact solution and the approximations

∆fapprox

f
= f − fapprox

f
. (4.77)

In Figure 4.8 the free energy is reported. Figure 4.9 shows the entropy and Figure 4.10
shows the heat capacity.

The first few small-order correction-terms given by the polymer expansion already
improves significantly the quantitative results predicted by the Bethe approximation.
Notably, the relative error on the phase transition temperature predicted by the Bethe
approximation is reduced from 24% to 2%.

4.5.5 On the Convergence of the Polymer Expansion

The mechanism which ensures that the polymer expansion is a convergent series is
different between the high and the low-temperature regime.

In the high-temperature regime we can directly apply apply Corollary 4.1 by noticing
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Figure 4.6: Free energy. The curves are: f in black, fBethe in blue and the corrections
fBethe+corr in red.
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Figure 4.7: Free energy relative difference. The curves are ∆fBethe

f in blue and the
corrections ∆fBethe+corr

f in red .
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0.2 0.4 0.6 0.8
z
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-1.0

-0.5

0.0
u

Figure 4.8: Internal energy. The curves are u in black, uBethe in blue and the corrections
uBethe+corr in red .
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Figure 4.9: Entropy. The curves are s in black, sBethe in blue and the corrections
sBethe+corr in red.
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CV

Figure 4.10: Heat capacity. The curves are C in black, CBethe in blue and the corrections
CBethe+corr in red.

with (4.68) that |Khigh (γ)| < z|γ∩E| < z|γ|. We thus find that for a temperature z <
1
2e
−5 ≈ 0.003 the polymer expansion is an absolutely convergent series. This extremely

small convergence radius contrasts with the result found in the previous subsection.
Apparently from the comparison with the exact solution, it seems reasonable to think
that the polymer series is convergent up to the phase transition z <

√
2− 1. However

because of estimates made in Lemma 4.2 and more importantly the loose bound on
the number of rooted polymers in Corollary 4.1, we cannot expect to ensure absolute
convergence on a large interval.

The low-temperature regime is more challenging. The activity of polymers does not
decrease fast enough with the system size uniformly in n (take for instance the activity
of the whole lattice Klow (Λn) ≈

(
1− 1

2 (1− z)
)n

). We cannot directly apply Corollary
4.1 in this situation. However on the lattice, a polymer is almost completely determined
by the position of the boundary nodes. Once the induced degree two nodes and three
nodes are placed on the lattice, there are almost no other choice for placing the degree
four nodes (They must “fill” the space between the degree two nodes and three nodes).
It implies that the number of polymers containing a vertex x ∈ V with a prescribed
boundary size |∂γ| = τ is exponentially increasing in τ . This combines with the fact
that the activity is decreasing in the boundary size enables us to fulfill the convergence
criterion of Lemma 4.2.

70



5 High-Temperature Models

In this chapter1, we prove that the Bethe free energy is exact for high-temperature
models.

In Section 5.1, we sketch the general strategy of the proof.

In Section 5.2, we show that the polymer expansion is absolutely convergent for general
models provided that the temperature is high enough. A direct application of this result
is the proof that the Bethe free energy is exact at high temperatures for factor graphs
with large girth (Theorem 5.1 on page 75).

In Section 5.3, we apply the result of Section 5.2 to LDGM codes. We prove that the free
energy of an instance drawn at random from an irregular LDGM code ensemble is, with
high probability, given by the Bethe formula in the large block length limit (Theorem 5.2
on page 79).

5.1 Preamble

We recall that the partition function of a general graphical models for binary variables is

Z =
∑

s∈{−1,+1}n

∏
a∈C

ψa(s∂a), (5.1)

with weights
ψa(s∂a) = exp{β

∑
I⊂∂a

JI
∏
i∈I

si}.

All the correction terms to the Bethe free energy are contained in the free energy of the

1The material of this chapter is based on [88].
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polymer gas, namely
1
n

lnZ = fBethe + 1
n

lnZpolymer. (5.2)

If a suitable fixed point of the belief propagation equations is chosen such that the Bethe
free energy is a good approximation, then we expect that the polymer free energy is
small (or negligible in an appropriate limit). One way that this could happen is if the
activities of the polymers become small as the size of the polymers increase. Let us
explain this point in more detail. We expect the activities to be exponentially small in
|γ| (as will become clear later for LDGM codes this is true for small h = 1

2 ln 1−p
p ). For h

small enough the smallness of the activities enables us to expand thelog in a power series
in K(γ). Since the polymers have no dangling edges, on a locally tree-like graph they
have a typical size |γ| ≈ c lnn for some small constant c. This means K(γ) ≈ O(e−c lnn)
and since the series expansion starts linearly with K(γ), the polymer free energy is
itself O(e−c lnn). Note that the polymer free energy could still be negligible even if
the activities are not small because in general they have signs and cancellations could
occur. However such cancellations would be difficult to control. The regimes investigated
in the present chapter are those where the activities are small enough so that their
weight counterbalances the entropy of the polymers and we do not need to track sign
cancellations.

5.2 Exactness of the Free Energy at High Temperature

When we speak of the high-temperature regime it is meant that the coupling constants
JI are finite and β > 0 is small enough so that

µ := 2β sup
a∈C

∑
I⊂∂a

|JI | < 1. (5.3)

We remark for later use that in the high-temperature regime∣∣ψa({s∂a})− 1
∣∣≤ µ. (5.4)

It will become clear that for LDGM codes the high-temperature regime is equivalent to
large noise. However for LDPC codes this is not true because these codes essentially
correspond to have JI = +∞.

We begin with the high-temperature regime of general factor graph models. It has
been proven [101] that when the high-temperature condition (5.4) is satisfied the belief
propagation equations have a unique fixed-point solution. We assume in the present
chapter that the Bethe free energy is computed at this fixed point.

Lemma 5.1 (High-temperature bound on the activities). For µ <
(
2l2maxrmax

)−1, the
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polymers activity is bounded by

|K(γ)| ≤ (6eµ)2|g|/(2+rmax).

Proof. In order to find bounds on the activities (4.14) and (4.15), we should control the
behavior of the belief propagation messages. This is realized through the BP equations
(4.17) and (4.18). We first choose to parametrize the BP distributions ν, ν̂ with real
numbers ζ, ζ̂

ν̂ai(si) = 1 + si tanh ζ̂a→i
2 and νia(si) = 1 + si tanh ζi→a

2 . (5.5)

The BP equation (4.17) now reads

tanh ζ̂a→i =
∑
s∂a

ψa(s∂a)si
∏
j∈∂a\i νja(sj)∑

s∂a
ψa(s∂a)

∏
j∈∂a\i νja(sj)

. (5.6)

Using the high-temperature condition (5.4) leads to the following bound

| tanh ζ̂a→i| =

∣∣∣∑s∂a
(ψa(s∂a)− 1 + 1) si

∏
j∈∂a\i νja(sj)

∣∣∣
1 +

∑
s∂a

(ψa(s∂a)− 1)
∏
j∈∂a\i νja(sj)

≤

∣∣∣∑s∂a
(ψa(s∂a)− 1) si

∏
j∈∂a\i νja(sj)

∣∣∣
1−

∣∣∣∑s∂a
(ψa(s∂a)− 1)

∏
j∈∂a\i νja(sj)

∣∣∣
≤

∑
s∂a
|ψa(s∂a)− 1|

∏
j∈∂a\i νja(sj)

1−
∑
s∂a
|ψa(s∂a)− 1|

∏
j∈∂a\i νja(sj)

≤ µ

1− µ
≤ 2µ, (5.7)

where in the last line, we use the fact that µ < 1/2.

The other BP equation (4.18) takes the form

tanh ζi→a = tanh

 ∑
b∈∂i\a

ζ̂b→i

 . (5.8)

Using the bound (5.7) on messages ζ̂a→i gives

| tanh ζi→a| ≤ tanh
(
(lmax − 1) tanh−1(2µ)

)
≤ 2(lmax − 1)µ. (5.9)

The inequalities (5.7) and (5.9) can be restated in terms of distributions ν̂, ν and take
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the form 
1−2µ

2 ≤ ν̂ai(si) ≤ 1+2µ
2

1−2(lmax−1)µ
2 ≤ νia(si) ≤ 1+2(lmax−1)µ

2 .
(5.10)

By noticing that
∑
s sν̂ai(s) = tanh ζ̂a→i and using the bound (5.7), we are in position to

control the activity (4.15)

|Ka(γ)| ≤
∑
s∂a
|ψa(s∂a)− 1|

∏
i∈∂a\γ νia(si)

∏
i∈∂a∩γ ν̂ai(−si)

1−
∑
s∂a
|ψa(s∂a)− 1|

∏
i∈∂a νia(si)

+
∏
i∈∂a∩γ |

∑
si siν̂ai(si)|

1−
∑
s∂a
|ψa(s∂a)− 1|

∏
i∈∂a νia(si)

≤ µ+ (2µ)|∂a∩γ|

1− µ
≤ 6µ, (5.11)

where in the last line we use the fact that subgraphs γ have no dangling edges (i.e.,
|∂a ∩ γ| ≥ 2) and µ ≤ 1/2.

The second activity (4.14) is directly controlled using bounds on distributions ν̂ and ν
given by equations (5.10)

|Ki(γ)| ≤
∑
si

∏
a∈∂i\γ |ν̂ai(si)|

∏
a∈∂i∩γ |νia(−si)|

|
∑
si

∏
a∈∂i ν̂ai(si)|

≤
(1 + (lmax − 1)2µ

1− 2µ

)lmax

≤ (1 + 4lmaxµ)lmax . (5.12)

The total activity of a polymerγ, given by the relation (4.13), is then bounded by

|K(γ)| ≤
∏

i∈γ∩V
|Ki|

∏
a∈γ∩C

|Ka|

≤ exp
(
|γ ∩ V |lmax ln(1 + 4lmaxµ) + |γ ∩ C| ln(6µ)

)
. (5.13)

There are two antagonistic contributions in the loops activities. One is exponentially
increasing in the number of variable nodes contained in γ. The other is exponentially
decreasing in the number of check nodes contained in γ. We recall that the size of a
subgraph γ, denoted by |γ|, is the total number of variable and check nodes contained in
the loop

|γ| := |γ ∩ C|+ |γ ∩ V |. (5.14)

In order to show that the activities in (5.13) are exponentially decreasing in the polymer
size, we have to show that the number of variable nodes contained in a polymer cannot
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5.2. Exactness of the Free Energy at High Temperature

be arbitrarily larger than the number of check nodes. Consider the number of edges
contained in a subgraph. We can bound from above this number counted from the
check node perspective and we can find a lower bound counted from the variable node
perspective. This leads to the following bound on the number of variable nodes

rmax|γ ∩ C| ≥ 2|γ ∩ V |. (5.15)

Using the definition (5.14) and the bound (5.15), we find that for every non-negative
numbers p and q

|γ ∩ V |p− |γ ∩ C|q = −(p+ q)|γ ∩ C|+ p|γ|

≤ |γ|rmaxp− 2q
2 + rmax

(5.16)

This implies the upper bound for the exponent in (5.13)

|γ|
2 + rmax

ln
(

(6eµ)2(1 + 4lmaxµ)rmaxlmax

)
. (5.17)

Moreover for µ < 1/2l2maxrmax we have

(6µ)2(1 + 4rmaxµ)rmaxlmax ≤ (6eµ)2. (5.18)

From (5.13), (5.17) and (5.18) we deduce the bound on the activities

|K(γ)| ≤ (6eµ)2|γ|/(2+rmax). (5.19)

Theorem 5.1 (Exactness of the Bethe free energy: High temperature). Let Γn be a
sequence of Tanner graphs, with uniformly bounded degrees and with large girth in the
sense that girth(Γn) ≥ C ln |Γn| where C > 0 is a numerical constant. Consider the free
energy sequences of models constructed on Γn. For 0 < µ < e−max(lmax,rmax)2−7 we have

lim
n→+∞

|f − fBethe(ν, ν)| = 0 . (5.20)

Remark 5.1. Even if the individual limits of f and fBethe are not well defined their
difference tends to zero. As will be seen in the proof, the order of magnitude of this
difference is O((cµ)2girth/(2+rmax)) with c > 0 a constant depending only on the degrees of
the nodes and the couplings JI .

Proof. Let n the number of variable nodes of the graph Γn. Proving Equ. (5.20) is
equivalent to

lim
n→+∞

1
n

lnZpolymer = 0. (5.21)
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Chapter 5. High-Temperature Models

To show this we apply Corollary 4.1 for ε = (6eµ)
2

2+rmax e1+max(lmax,rmax), Lemma 5.1
ensuring that the activities are decreasing fast enough. The graphs Γn have large girth,
and since a polymer γ ⊂ Γn containing x certainly contains at least one closed cycle, we
have |γ| ≥ C lnn (for C > 0 not too large). Using this fact we find

1
n
| lnZpolymer| ≤ 4

n

∑
x∈V ∪C

|ε|C lnn

≤4
(

1 + l

r

)
|ε|C lnn (5.22)

Clearly this estimate tends to zero as n → +∞ for µ < e−max(lmax,rmax)2−7. In fact we
have that n−1 ln

∣∣∣Zpolymer
∣∣∣ = O(µ2girth/2+rmax).

5.3 Application to LDGM Codes

5.3.1 Preamble

For a graph Γ from a standard ensemble LDGM(Λ, P ) [59] the fraction of variable nodes
of degree 1 ≤ s ≤ lmax is Λs ≥ 0, and the fraction of check nodes with degree 1 ≤ t ≤ rmax
is Pt ≥ 0. Of course

∑lmax
s=1 Λs =

∑rmax
t=1 Pt = 1. Here Γ is the Tanner graph of an LDGM

code with design rate r/l = n/m, where l and r are the average variable and check node
degrees, respectively. The large block length limit corresponds to n,m→∞ with fixed
design rate. When we say that Γ is random we mean that we draw it uniformly from
some specified ensemble. The corresponding expectation and probability are denoted by
EΓ, PΓ.

We transmit codewords from an LDGM code with Tanner graph Γ and uniform prior
over a BSC with flip probability p. Here information bits u = (ui)ni=1 are attached to
variable nodes V and codewords are given by x = (xa)ma=1 with

xa = ⊕i∈∂aui . (5.23)

We must have n < m and l > r so that the design rate r/l is well defined. We can
assume without loss of generality that the all-zero codeword is transmitted. The posterior
probability that x = (xi)ni=1 ∈ {0, 1}n, or equivalently u = (ua)ma=1, is transmitted given
that y = (ya)ni=1 ∈ {0, 1}n is received, reads

pU |Y
(
u|y
)

= 1
ZLDGM

∏
a∈C

eha
∏
i∈∂a(−1)ui . (5.24)

In this expression
ha = (−1)ya 1

2 ln 1− p
p

(5.25)
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are the half-log-likelihood ratios and

ZLDGM =
∑

u∈{0,1}n

∏
a∈C

eha
∏
i∈∂a(−1)ui (5.26)

is the partition function. The amplitude of ha is set to

|ha| ≡ h ≡
1
2 ln 1− p

p
. (5.27)

It is good to keep in mind that the high-noise regime – p close to 1/2 – corresponds to small
h. It is equivalent to describe the channel outputs y in terms of the half-log-likelihood
ratios h = (ha)ma=1 which are i.i.d. with probability distribution

q(ha) = (1− p)δ(ha − h) + pδ(ha + h). (5.28)

The expectation with respect to this distribution is called Eh.

Remark 5.2. Equ. (5.26) is the partition function of a spin system with one coupling
constant βJI → ha per check, and the high-temperature regime (5.4) simply corresponds
to h� 1.

The free energy for fixed (Γ, y) is

fLDGM = 1
n

lnZLDGM (5.29)

For communications, the importance of this quantity stems from the fact that it is
intimately related to the Shannon conditional entropy by the simple formula,

1
n
HLDGM (U |Y ) = Eh [fLDGM]− l

r

1− 2p
2 ln 1− p

p
. (5.30)

5.3.2 The Bethe Free Energy for LDGM Codes

We parametrize the BP messages by reals numbers

ζi→a =
∑
σi

σiνia (σi) and ζ̂a→i =
∑
σi

σiν̂ai (σi) . (5.31)

It is immediate to specialize the Bethe formulas to LDGM codes. The Bethe free energy
(4.5) is given by a sum of three quantities

fBethe
LDGM(ζ, ζ̂) =

∑
a∈C

Fa +
∑
i∈V

Fi −
∑

(i,a)∈E
Fia, (5.32)
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where 

Fa = ln{1 + tanh ha
∏
i∈∂a tanh ζi→a}+ ln cosh h,

Fi = ln{
∏
a∈∂i(1 + tanh ζa→i) +

∏
a∈∂i(1− tanh ζa→i)}

Fia = ln{1 + tanh ζi→a tanh ζ̂a→i}.

(5.33)

The BP equations (4.4) become
ζi→a =

∑
b∈∂i\a ζ̂b→i

ζ̂a→i = tanh−1(tanh ha
∏
j∈∂a\i tanh ζj→a

)
.

(5.34)

If the LDGM code contains no degree-one check nodes then (ζ, ζ̂) = (0, 0) is the trivial
fixed point. However if there is a non-vanishing fraction of degree-one check nodes the
fixed point (ζ, ζ̂) is non-trivial.

5.3.3 Exactness of the Bethe Free Energy for LDGM Codes

For h small enough, an instance of an LDGM code is a particular high-temperature
graphical-model.

Lemma 5.2. For h <
(
4l2maxrmax

)−1, the polymers activity is bounded by

|K(γ)| ≤ (12eh)2|γ|/(2+rmax).

Proof. The LDGM codes can be seen as a special case of the high-temperature general-
models with I → ∂a and βJI → ha. The high-temperature condition translates into
2 supa |ha| = µ� 1. Recalling that |ha| = h = 1

2 ln 1−p
p , we see that the high-temperature

condition is equivalent to taking p close to 1/2. The bound on the activity is obtained
by applying (5.19)

|K(γ)| ≤
(

6e ln 1− p
p

)2|γ|/(2+rmax)
. (5.35)

The activities of the LDGM codes have a high-temperature bound and the high-noise
regime p ≈ 1/2 is then similar to a high-temperature regime for general models.

Remark 5.3. There is a simplification for LDGM ensembles with no degree-one check
nodes. In this case the BP equations admit a trivial fixed point where (ζ, ζ̂) = (0, 0). The
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activities at the trivial fixed point can be computed exactly

Ktrivial
a (g) =

tanh ha if ∂a ∩ g = ∂a

0 otherwise,
(5.36)

and

Ktrivial
i (g) =

1 if |∂a ∩ g|is even
0 otherwise.

(5.37)

Subgraphs contributing in the loop sum are only those which have check nodes with
maximal induced degree and variable nodes with odd degree. Their activities admit the
simple bound

|Ktrivial(g)| ≤ (1− 2p)|g∩C| ≤ (1− 2p)
2|g|

2+rmax (5.38)

Theorem 5.2 (Exactness of the Bethe free energy: LDGM at high noise). Suppose
that we draw Γ uniformly at random from the ensemble LDGM(Λ, P, n). For h <

e−max(lmax,rmax)2−7 we have

lim
n→+∞

EΓ

[∣∣fLDGM − fBethe
LDGM(ζ, ζ̂)

∣∣] = 0 . (5.39)

Proof. Set ε = (12eh)
2|γ|

2+rmax e−max(lmax,rmax)−1. For h small enough Corollary 4.1 implies

1
n
| lnZpolymer

LDGM | ≤
4
n

∑
x∈V ∪C

εRx . (5.40)

We recall that Rx is the shortest size of a polymer containing x. Taking the expectation
of this inequality,

EΓ

[ 1
n
| lnZpolymer

LDGM |
]
≤ 4

(
1 + lmax

rmax

) 1
|V ∪ C|

∑
x∈V ∪C

EΓ
[
εRx

]
. (5.41)

Given Γ, let ND(x) be subgraphs formed by the set of nodes that are at distance less
than D from x. For the moment D is a fixed number. For D fixed and n large enough,
this subgraph is a tree with probability

1−O(Clmax,rmax,D

n
), (5.42)

where Clmax,rmax,D > 0 depends only on D and the maximal degrees. This means that
for n large enough the polymers γ 3 x have a size |γ| ≥ D. Thus for D fixed and n large
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enough

1
|V ∪ C|

∑
x∈V ∪C

EΓ
[
εRx

]
≤εD(1−O(Clmax,rmax,D

n
)) + ε2O(Clmax,rmax,D

n
) (5.43)

Replacing this estimate in (5.41) and taking the limit n→ +∞,

lim
n→+∞

EΓ

[ 1
n
| lnZpolymer

LDGM |
]
≤ 4

(
1 + lmax

rmax

)
εD. (5.44)

Finally taking the limit D →∞ ends the proof.
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6 LDPC Codes

In this chapter1, we prove that the Bethe free energy is exact for LDPC codes over a
BSC at high noise.

In Section 6.1, we set up the notation and recall the relation between the conditional
entropy of a code and its free energy.

In Section 6.2, we compute the free energy of an LDPC code and we derive the associated
BP equations. We show that the activity of a “big” polymer does not necessarily decrease
with increasing size. We separate in the loop sum contributions from “small” and “big”
polymers.

In Section 6.3, we show that, by using expander properties of typical instances from the
LDPC ensembles, the polymer expansion truncated to “small” polymers is uniformly
convergent (Corollary 6.1 on page 89).

In Section 6.4, we estimate the contribution from “big” polymers by using a combinatorial
counting method.

In Section 6.5, we prove that the convergent truncated polymer expansion accounts for
the biggest part of the corrections to the Bethe free energy, up to a remainder of order
O(e−nε), ε > 0 (Theorem 6.1 on page 94). Finally, we prove that the Bethe free energy
is with high probability asymptotically exact in the large size limit (Theorem 6.2 on
page 96).

In Section 6.6, we discuss some remaining open problems.

1The material of this chapter is based on [88].
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Chapter 6. LDPC Codes

6.1 Settings

For LDPC codes we will limit ourselves to regular code ensembles with variable-node
degree l and check-node degree r. Instead of using the notation LDPC(zl, zr, n), we find
it more convenient to denote the regular ensemble by LDPC(l, r, n). The Tanner graph
of a regular LDPC code is a bipartite (l, r) regular graph – call it Γ – connecting V and
C. In other words the vertices of V have degree l, vertices of C have degree r, and there
are no double edges. We recall that the design rate of a LDPC code is 1− l/r = 1−m/n.
The large block length limit again corresponds to n,m→ +∞ with fixed design rate.

We transmit code words with uniform prior, from an LDPC code with Tanner graph
Γ, over a BSC with flip probability p. Here n > m and l < r so that the design rate
1− l/r is well defined. We assume without loss of generality that the all zero codeword is
transmitted. Then the posterior probability that x = (xi)ni=1 ∈ {0, 1}n is the transmitted
word given that y = (yi)ni=1 ∈ {0, 1}n is received, reads

PX|Y
(
x|y
)

= 1
ZLDPC

∏
a∈C

I (⊕i∈∂axi = 0)
∏
i∈V

exp((−1)xihi) . (6.1)

In this formula
hi = (−1)yi 12 ln 1− p

p
(6.2)

are the half-log-likelihood ratios and the normalizing factor Z is the partition function

ZLDPC =
∑

x∈{0,1}n

∏
a∈C

I (⊕i∈∂axi = 0)
∏
i∈V

exp((−1)xihi). (6.3)

As before the amplitude of hi is set to |hi| ≡ h ≡ 1
2 ln 1−p

p and the high-noise regime - p
close to 1/2 - corresponds to small h. The distribution of the i.i.d. half-log-likelihood
ratios is q(hi) = (1− p)δ(hi − h) + pδ(hi + h).

Remark 6.1. Equ. (6.3) is the partition function of a spin system with two types
of coupling constants βJI → hi and +∞. The infinite coupling constant mimics the
parity-check constraints, so the high-temperature condition (5.4) is never satisfied which
makes the ensuing analysis more challenging.

The Shannon conditional entropy HLDPC(X|Y ) of the input word given the output word
y is again directly related to the free energy

fLDPC = 1
n

lnZLDPC (6.4)

through the formula

1
n
HLDPC (X|Y ) = Eh[fLDPC]− 1− 2p

2 ln 1− p
p

. (6.5)

82



6.2. The Polymer Expansion for LDPC Codes

6.2 The Polymer Expansion for LDPC Codes

6.2.1 The Bethe Free Energy of LDPC Codes

We parametrize the BP messages by reals numbers (η, η̂), i.e.,

ηi→a =
∑
σi

σiνia (σi) and η̂a→i =
∑
σi

σiν̂ai (σi) . (6.6)

The associated Bethe free energy (4.5) is

fBethe
LDPC(η, η̂) = 1

n

(∑
a∈C

Pa +
∑
i∈V

Pi −
∑

(i,a)∈E
Pia

)
, (6.7)

where 

Pa = ln{1 +
∏
i∈∂a tanh ηi→a} − ln 2,

Pi = ln{ehi
∏
a∈∂i(1 + tanh ηa→i) + e−hi

∏
a∈∂i(1− tanh ηa→i)}

Pia = ln{1 + tanh ηi→a tanh η̂a→i}.

(6.8)

According to equations (4.4), BP messages satisfy the belief propagation fixed-point
equations 

ηi→a = hi +
∑
b∈∂i\a η̂b→i

η̂a→i = tanh−1(∏
j∈∂a\i tanh ηj→a

)
.

(6.9)

The BP equations (6.9) always admit the trivial solution tanh ηa→i = 1, tanh η̂i→a = 1
for all noise levels. Thus unlike the high-temperature cases, the BP equations of LDPC
codes are not sufficient to control the BP fixed points. We need an extra requirement on
the class of fixed point used in the loop expansion, called high-noise fixed-points.

Given ε > 0, we say that a fixed point (η, η̂) is an ε high-noise fixed-point if for all
(i, a) ∈ E

| tanh ηi→a| ≤ θ. (6.10)

where
θ = (1 + ε) tanh h. (6.11)

In the remainder of this chapter we work under the following hypothesis
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Hypothesis 6.1 (Existence of high-noise fixed-points). We assume that for h < h0 small
enough independent of n and for ε > 0 independent of n and h, there exists a solution
(η, η̂) of the belief propagation equations (6.9) which satisfies the high-noise condition
(6.10).

The analysis does not require the uniqueness of this fixed point but only its existence.
We call such fixed points “high-noise solutions.”

The condition (6.10) can be justified by looking at the Taylor series expansion of a
solution at high noise. For h = 0, the BP equations (6.9) admit the simple solution
tanh ηa→i = 0, tanh η̂i→a = 0. If we compute the Taylor expansion of this solution with
respect to the noise parameter, we findtanh η̂a→i =

∏
j∈∂a\i tanh hj

tanh ηi→a = tanh hi +
∑
b∈∂i\a

∏
j∈∂a\i tanh hj ,

(6.12)

plus some terms of order O((tanh h)r). This shows that there exists a h0(ε, n) such that
the high-noise condition (6.10) is satisfied for h < h0(ε, n). However it does not guarantee
that h0(ε, n) is uniform in the size of the graph.

6.2.2 Bound on the Activity

We recall that the induced degree of check and variable nodes are denoted by da(g) =
|∂a ∩ g| and di(g) = |∂i ∩ g|, respectively. The number of check nodes and variable
nodes with prescribed induced degree are denoted by ns (g) = |{i ∈ g ∩ V |di(g) = s}|
and mt (g) = |{a ∈ g ∩ C|da(g) = t}| , respectively.

Lemma 6.1 (High-noise activity bound for LDPC codes). For fixed numerical constants
α, β that we can take close to one, there exist θ0 > 0 such that for all θ < θ0

|K(g)| ≤ K(n(g),m(g)), (6.13)

where

K(n(g),m(g)) = (1 + αθr)mr(g)
r−1∏
t=2

(
αθr−t

)mt(g)
×

l−1∏
s=2,
even

(
1 + β

2 (1 + 4s+ s2)θ2
)ns(g)

×
l∏

s=3,
odd

(β(1 + s)θ)ns(g) . (6.14)
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Proof. The LDPC codes cannot be seen as high-temperature models. The LDPC partition
function (6.3) is composed of two type of factors. The variable-node factors, coming
from channel observations, satisfy the high-temperature condition at high-noise. However
the check-node factors are equal to zero whenever neighboring bits does not satisfy the
parity-check constraints. Thus the check-node factors cannot satisfy the high-temperature
condition (5.4).

By using the high-noise condition (6.10) along with the BP equations (6.9), we find the
reciprocal bound on messages from check nodes to variable nodes

| tanh η̂a→i| ≤ θr−1. (6.15)

For LDPC codes, the activities associated with check nodes (4.15) are

Ka(g) = ua + (−1)da(g)va
1 + uawa

, (6.16)

where 
ua =

∏
i∈∂a\g tanh ηi→a

va =
∏
i∈∂a∩g tanh η̂a→i

wa =
∏
i∈∂a∩g tanh ηi→a.

(6.17)

Using inequalities (6.10), (6.15), it is straightforward to bound the check activities

|Ka(g)| ≤ |ua|+ |va|
1− |ua||wa|

≤ θr−da(g) + θ(r−1)da(g)

1− θr . (6.18)

Thus for a fixed numerical constant α that we can take close to one

|Ka(g)| ≤
{

1 + αθr if da(g) = r

αθr−da(g) if da(g) 6= r.
(6.19)

The activities associated with variable nodes (4.14) read

Ki(g) = e(ui−vi) + (−1)di(g)e−(ui−vi)

e(ui+wi) + e−(ui+wi)

∏
a∈∂i∩g

cosh η̂a→i
cosh ηi→a

, (6.20)
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where 
ui = hi +

∑
a∈∂i\g η̂a→i

vi =
∑
a∈∂i∩g ηi→a

wi =
∑
a∈∂i∩g η̂a→i.

(6.21)

Again by a direct application of inequalities (6.10) and (6.15), we find

|Ki(g)| ≤ e(di(g)+1) tanh−1 θ + (−1)di(g)e−(di(g)+1) tanh−1 θ

e(di(g)+1) tanh−1 θ + e−(di(g)+1) tanh−1 θ

×
(

1 + θ2

1− θ2

)di(g)/2
. (6.22)

For a fixed constant β close to one we have the following bound

|Ki(g)| ≤
{

1 + β
2 (1 + 4di(g) + di(g)2)θ2 if di(g) even

β(1 + di(g))θ if di(g) odd.
(6.23)

Using the formulas (4.13) we derive the estimate (6.14) of subgraphs activities for θ < θ0
small enough. Estimate (6.14) is essentially optimal for small θ as can be checked by
Taylor expanding K(g) in powers of θ.

6.2.3 Splitting of the Loop Sum

Estimate (6.13), (6.14) is quite cumbersome, so let us begin with a few remarks to
understand its main qualitative features. The activity K(γ) is not necessarily very small
for graphs containing too many check nodes of maximal induced degree and too many
variable nodes of even induced degree. More precisely for these “bad graphs” the rate of
decay as |γ| grows is too slow even for θ small, and it is not clear that it counterbalances
the exponentially large entropic terms. However the rate of decay as |∂γ ∩ C| grows is
large for θ small. Here the boundary ∂γ ∩ C is by definition the set of check nodes in γ
of non-maximal induced degree. An example is shown in Figure 6.1. For this reason we
will analyze the contributions from small and large polymers separately.

The size under which a polymer is small is chosen based on expansion arguments. For
the convenience of the reader we briefly review the necessary tools [59]. We will say that
Γ is a (λ, κ) expander if for every subset V ⊂ V such that |V| < λn we have

|∂V| ≥ κl |V| , (6.24)

where |∂V| is the number of check nodes that are connected to V, and λ, κ are two
positive numerical constants. Take a random Γ ⊂ B (l, r, n). Fix 0 < κ < 1 − 1

l and

86



6.2. The Polymer Expansion for LDPC Codes

Figure 6.1: Example for a Γ ∈ LDPC (3, 4, 8) of polymers and their associated activities.
On the left a small polymer and on the right a large polymer.

0 < λ < λ0 where λ0 is the (only) positive solution of the equation2

l − 1
l
h2(λ0)− 1

r
h2(λ0κr)− λ0κrh2( 1

κr
) = 0 . (6.25)

Then we have
P[Γ is a (λ, κ) expander] = 1−O

( 1
nl(1−κ)−1

)
. (6.26)

Later on we need to take κ ∈]1− 2(r−1)
lr , 1− 1

l [, which is always possible for r > 2. In
the rest of the chapter κ is always a constant in this interval, and 0 < λ < λ0. For
concreteness, one can think of the example (l, r) = (3, 6), κ = 0.5 and λ0 = 7.7× 10−4.

We say that a polymer is small if |γ| < λn. We define the partition function (with
activities computed at the high-noise fixed-point) of a gas of small polymers

Zsmall =
∑
M≥0

1
M !

∑
γ1,...,γM s.t |γk|<λn

M∏
k=1

K (γk)
∏
k<k′

I (γk ∩ γk′ = ∅) . (6.27)

The loop sum is equal to the partition function of the gas of small polymers plus a
contribution containing at least one polymer of large size |γ| > λn. We call the latter
contribution Rlarge. More precisely

1 +
∑
g⊂Γ

K(g) = Zsmall +Rlarge, (6.28)

where
Rlarge =

∑
g⊂Γ s.t ∃γ⊂g with |γ|≥λn

K(g), (6.29)

2Here h2(x) = −x ln x− (1 − x) ln(1 − x) is the binary entropy function.
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6.3 Contribution of Small Polymers

For Γ ⊂ LDPC(l, r, n) that are expanders, if γ is ”small” then |∂γ ∩ C| is of the order of
|γ| and the activity is exponentially small in the size of the polymer. This is the meaning
of the following lemma.

Lemma 6.2 (Activity bound for expander graphs). Assume that Γ is a (λ, κ) expander
with κ ∈]1− 2(r−1)

lr , 1− 1
l [. For |γ| < λn we have for θ small enough

|K(γ)| ≤ θ
c
2 |γ|, (6.30)

with
c = r − 2 + r

3− l(1− κ) . (6.31)

Remark 6.2. In the process of this derivation one has to require 3− l(1− κ) > 0 and
c > 0. This imposes the condition on the expansion constant κ > 1− 2(r−1)

lr . Note that
an expansion constant cannot be greater than 1 − 1/l, so it is fortunate that we have
1− 1

l > 1− 2(r−1)
lr (for any r > 2).

Proof. Recall that di(γ) (resp. da(γ)) is the induced degree of node i (resp. a) in γ.
The type of γ is given by two vectors n = (ns(γ))ls=2 and m = (mt(γ))rt=2 defined as
ns (γ) := |{i ∈ γ ∩ V |di(γ) = s}| and mt (γ) := |{a ∈ γ ∩ C|da(γ) = t}|. In words, ns(γ)
and mt(γ) count the number of variable and check nodes with induced degrees s and t in
γ. Note that we have the constraints|γ| =

∑l
s=2 ns(γ) +

∑r
t=2mt(γ)∑l

s=2 sns(γ) =
∑r
t=2 tmt(γ)

(6.32)

We apply the expander property to the set V = {i ∈ γ ∩ V }. This reads

|∂V| ≥ κl
l∑

s=2
ns (γ) . (6.33)

On the other hand |∂V| ≤
∑r
t=2mt(γ) +

∑l
s=2(l − s)ns(γ). With (6.32) and (6.33) this

yields the constraint

r∑
t=2

(r − t)mt(γ) ≥ −|γ|l(1− κ) + (l(1− κ) + r − 1)
r∑
t=2

mt(γ). (6.34)

Relaxing the second constraint in (6.32) gives

r∑
t=2

tmt(γ) ≥ 2
l∑

s=2
ns(γ). (6.35)
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6.3. Contribution of Small Polymers

Combined with the first constraint of (6.32) this yields

(r + 2)
r∑
t=2

mt(γ) ≥ 2|γ|+
r∑
t=2

(r − t)mt(γ). (6.36)

We have by use of inequalities (6.34) and (6.36)

r−1∑
t=2

(r − t)mt(γ) ≥
(
r − 2 + r

3− l(1− κ)
)
|γ|. (6.37)

Finally, by bounding the product over t = 2, · · · , r − 1 in the activity bound (6.14), we
obtain (6.30).

The free energy of the gas of small polymers n−1 lnZsmall has a polymer expansion (4.24)
with the second sum replaced by a sum over γ1, . . . , γM s.t |γi| < λn.

Lemma 6.3 (Convergence of the small polymer expansion). Suppose r > 2 and assume
that Γ is a (λ, κ) expander with κ ∈]1− 2(r−1)

lr , 1− 1
l [. One can find θ0 > 0 such that for

|θ| < θ0 ∣∣ 1
n

lnZsmall
∣∣ ≤ 4

n

∑
x∈V ∪C

θ
c
2RxeARx , (6.38)

where Rx is the smallest size of a polymer containing x.

Proof. When Γ is an expander we can use the bound (6.30) on the activities of the small
polymers and Corollary 4.1.

Lemma 6.3 has the following consequence:

Corollary 6.1 (Control of the small polymer expansion for expander graphs). Suppose
r > 2. Let E be the event that Γ is (λ, κ) expander. For |θ| < θ0,

EΓ

[ 1
n

∣∣lnZsmall
∣∣∣∣∣∣E] = O(n−(1−χ)) (6.39)

for any 0 < χ < 1.

Remark 6.3. We stress that Corollary 6.1 and Lemma 6.3 hold for any (l, r) with
r > 2. The restriction to odd l will come only when we estimate the contribution of large
polymers.

Proof. Taking the conditional expectation over expander graphs (6.38) implies

1
n
EΓ

[∣∣lnZsmall
∣∣∣∣∣∣E] ≤ 4

(
1 + l

r

)
EΓ

[
θ
c
2Roe(1+max(lmax,rmax))Ro

∣∣∣∣E], (6.40)
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Chapter 6. LDPC Codes

were o ∈ C ∪V is a fixed vertex. We can compute this expectation by conditioning on the
first event that Γ is tree-like in a neighborhood of size O(lnn) around this vertex, and
on the second complementary event. The second event has small probability O(n−(1−χ))
for any 0 < χ < 1. Besides, from (6.38) it is easy to show that n−1| lnZsmall| is bounded
uniformly in n (put 2 ≤ Rx). Thus the second event contributes only O(n−(1−χ)) to
the expectation. For the first event we have that the smallest polymer is a cycle with
|γ| = O(lnn). This implies that this event contributes O((θ

c
2 eA)lnn)) to the expectation.

For small θ it is O(n−(1−χ)) that dominates.

6.4 Probability Estimates on Graphs

The next lemma shows that the contribution from large polymers is exponentially small,
with high probability with respect to the graph ensemble.

Lemma 6.4 (Control of the large polymer loop sum). Fix δ > 0. Assume l ≥ 3 odd and
l < r. There exists a constant C > 0 depending only on l and r such that for θ small
enough

PΓ

[
|Rlarge| ≥ δ

]
≤ 1
δ
e−Cn. (6.41)

Proof. Let ΩΓ (n,m) be the set of all g ⊂ Γ with prescribed type (n(g),m(g)). By (6.14)
and the Markov bound

P [|Rlarge| ≥ δ] ≤
1
δ

∑
n,m∈∆

K (n,m)EΓ [|ΩΓ (n,m)|] , (6.42)

where

∆ ≡
{

(n,m) | λn ≤
l∑

s=2
ns +

r∑
t=2

mt,
l∑

s=2
sns =

r∑
t=2

tmt,
l∑

s=2
ns < n,

r∑
t=2

mt < nl/r

}
.

(6.43)

The expectation of the number of g ⊂ Γ with prescribed type can be estimated by
combinatorial bounds provided by McKay [102]. It turns out that these subgraphs
proliferate exponentially in n only for a subdomain of ∆ where K (n,m) is exponentially
much smaller in n. In the subdomain where K (n,m) is not small (but it is always
bounded) the number of subgraphs is sub-exponential when l is odd and l < r. As a
consequence for l odd and l < r, we are able to prove that the sum on the right-hand
side of (6.42) is smaller than e−Cn.

Let us now give the details of this calculation. Let ω = 4r2−2r+2, a number independent
of n. The combinatorial bound is only valid for subgraphs g with number of edges at
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6.4. Probability Estimates on Graphs

most equal to nl − ω. Thus we have to separate the domain of summation (6.43) into

∆ω = ∆ ∩
{

(n,m) |
l∑

s=2
sns ≤ nl − ω

}
and∆c

ω = ∆ \∆ω, (6.44)

and handle each part separately.

For (n,m) ∈ ∆c
ω a trivial bound of the expected size of ΩΓ (n,m) is given by

EΓ [|ΩΓ (n,m)|] ≤
(
nl

ω

)
= O (nω) . (6.45)

This is nothing but simply counting the possible subgraphs obtained by removing ω
edges from Γ. For the same reason the activity (6.14) is upper-bounded by

∣∣∣K (n,m)
∣∣∣ ≤ (1 + αθr)n

l
r

(
1 + β

2 (1 + 4l + l2)θ2
)ω

(β(1 + l)θ)n−ω

=O
((
β (1 + l) (1 + α)

l
r θ
)n−ω)

. (6.46)

Indeed the activity of the total graph is upper-bounded by

K (Γ) = (1 + αθr)n
l
r (β(1 + l)θ)n . (6.47)

The worst case scenario for the activity of subgraphs obtained by removing ω edges from
Γ is then bounded by (6.46). Therefore for every θ < θ1 =

(
β (1 + l) (1 + α)

l
r

)−1
and n

large enough, there exists a constant C1 > 0 depending on l and r such that

∑
n,m∈∆c

ω

K (n,m)EΓ [|ΩΓ (n,m)|] ≤ e
C1(n−ω) ln

(
θ
θ1

)
. (6.48)

For (n,m) ∈ ∆ω, the probability that a graph g with prescribed type (n(g),m(g)) belongs
to ΩΓ(n,m) is upper-bounded by McKay’s estimate

PΓ [g ∈ ΩΓ(n,m)] ≤
∏l
s=2

(
l!

(l−s)!

)ns∏r
t=2

(
r!

(r−t)!

)mt
(nl−ω)!(

nl−
∑l

s=2 sns−ω
)

!

. (6.49)
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By counting the number of graphs g with prescribed degrees (n(g),m(g)), we deduce

EΓ [|ΩΓ(n,m)|] ≤
(

n

n2, ..., nl

)(
n lr

m2, ...,mr

) (∑l
s=2 sns

)
!∏l

s=2 s!ns
∏r
t=2 t!mt

PΓ [g ∈ ΩΓ(n,m)] .

(6.50)

Setting xs = ns
n , yt = r

l
mt
n , we perform an asymptotic analysis for n large of the bound

(6.50). We first estimate factorials using Stirling approximation valid for k > 0

e
1

12k+1 ≤ k!√
2πke−kkk

≤ e
1

12k . (6.51)

In order to simplify the terms in ω we also use the following inequality valid for n > lω

and 0 ≤ z ≤ 1− ω
nl

(1− z) ln (1− z)− ω

nl
ln
(
ω

nl

)
≥
(

1− z − ω

nl

)
ln
(

1− z − ω

nl

)
. (6.52)

This could be easily proven by considering a joint probability distribution p(A = 0, B =
0) = 0, p(A = 0, B = 1) = z, p(A = 1, B = 0) = ω

nl , p(A = 1, B = 1) = 1− z − ω
nl and

applying the inequality
H (A) ≤ H (A,B) , (6.53)

where H is the Shannon entropy in nat.

Observe that
−
(

1− ω

nl

)
ln
(

1− ω

nl

)
≤ ω

nl
. (6.54)

Using the relations (6.50), (6.51), (6.52) along with (6.54) gives the following bound on
the number of subgraphs of Γ

EΓ [|ΩΓ(n,m)|] ≤ Cl,rn
ω
l

+2 exp
(
nlf

(
x, y

))
, (6.55)

where Cl,r is a constant that depends only on l and r and

f
(
x, y

)
=
(

1−
l∑

s=2

s

l
xs

)
ln
(

1−
l∑

s=2

s

l
xs

)
+
(

l∑
s=2

s

l
xs

)
ln
(

l∑
s=2

s

l
xs

)

+ 1
l

(
l∑

s=2
xs ln

(
l

s

))
+ 1
r

(
r∑
t=2

yt ln
(
r

t

))

− 1
r

((
1−

r∑
t=2

yt

)
ln
(

1−
r∑
t=2

yt

)
+

r∑
t=2

yt ln yt

)

− 1
l

((
1−

l∑
s=2

xs

)
ln
(

1−
l∑

s=2
xs

)
+

l∑
s=2

xs ln xs

)
. (6.56)
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The bound on the activity (6.14) can also be put in a form where the growth rate in n is
explicit

K (n,m) = exp
(
nlkθ

(
x, y

))
, (6.57)

where

kθ
(
x, y

)
=yr
r

ln (1 + αθr) +
r−1∑
t=2

yt
r

ln
(
αθr−t

)

+
l−1∑
s=2,
even

xs
l

ln
(

1 + β

2
(
1 + 4s+ s2

)
θ2
)

+
l∑

s=3,
odd

xs
l

ln (β (1 + s) θ) . (6.58)

Define the ensemble

∆′ ≡
{(
x, y

)
∈ Rl−1

+ × Rr−1
+ | λ ≤ 1

l

l∑
s=2

xs + 1
r

r∑
t=2

yt,

l∑
s=2

s

l
xs =

r∑
t=2

t

r
yt,

l∑
s=2

xs < 1,
r∑
t=2

yt < 1
}
. (6.59)

It is easy to verify that if (n,m) ∈ ∆ω then
(
x, y

)
∈ ∆′. Combining (6.48), (6.55) and

(6.57) gives finally∑
n,m∈∆ω

K (n,m)EΓ [|ΩΓ (n,m)|] ≤ C ′l,rn
ω
l

+l+r exp (nlΛ) , (6.60)

where
Λ (θ) = max

(x,y)∈∆′

{
f
(
x, y

)
+ kθ

(
x, y

)}
. (6.61)

In (6.48) we estimate the sum over (n,m) ∈ ∆ω by the crude bound |∆ω| ≤ nl−1
(
nl
r

)
r−1.

It remains now to prove that Λ (θ) is strictly negative for θ small enough. In the subspace
∆0 ⊂ ∆′ defined by having all coordinates xs for s odd and yt for t < r equal to zero, the
function kθ

(
x, y

)
can be made arbitrarily close to zero as θ is small. Notice also that

in the complementary subspace ∆′ \∆0, the function kθ
(
x, y

)
can be made arbitrarily

negative for small θ due to the presence of the terms ln θ. It is therefore sufficient to
show that the restriction of f

(
x, y

)
to ∆0 is strictly negative. Call zs = x2s and define

the set

∆′0 ≡

z ∈ R
l−1

2
+ | lλ ≤

l−1
2∑

s=1
zs < 1

 . (6.62)
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If z ∈ ∆′0 then
(
x, y

)
∈ ∆0, as we can express the variable yr =

∑ l−1
2
s=1

2s
l zs with the

second constraint in (6.59). The restriction to ∆0 of f
(
x, y

)
can be recast into the form

lf
(
x, y

)
= f0 (z)−

(
1− l

r

)
h2


1−1

2∑
s=1

2s
l
zs

 , (6.63)

where

f0 (z) =− (l − 1)h2


l−1

2∑
s=1

2s
l
zs

+
l−1

2∑
s=1

zs ln
(
l

2s

)

−

1−
l−1

2∑
s=1

zs

 ln

1−
l−1

2∑
s=1

zs

−
l−1

2∑
s=1

zs ln zs. (6.64)

The function f0 takes its maximum in ∆′0 at z∗ = 1
2l−1

( l
2s
)
and f0 (z∗) = 0. Thus, since

2λ <
∑ l−1

2
s=1

2s
l zs < 1− 1

l , for
(
x, y

)
∈ ∆0 we have

lf
(
x, y

)
< −

(
1− l

r

)
min

{
h2 (2λ) , h2

(1
l

)}
< 0. (6.65)

Therefore for θ small enough Λ (θ) < 0 and there exist for large n a constant C2 > 0
depending on l and r such that∑

n,m∈∆ω

K (n,m)EΓ [|ΩΓ (n,m)|] ≤ e−nC2 . (6.66)

Combining Markov’s inequality (6.42) and inequalities (6.48), (6.66) ends the proof.

Notice that the condition l
r < 1 appears naturally in (6.65). It is thus necessary that the

graph Γ describes a code (i.e., with positive rate).

6.5 Exactness of the Bethe Free Energy for LDPC Codes

The results of sections 6.3 and 6.4 allow first to prove

Theorem 6.1 (Leading correction terms are given by the polymer expansion). Suppose
l is odd and 3 ≤ l < r. Take Γ at random in LDPC(l, r, n). There exist a small θ0
independent of n such that for θ < θ0, and any high-noise-solution

(
η, η̂

)
of the BP

equations, with probability 1−O(n−(l(1−κ)−1)) we have

∣∣ 1
n

lnZLDPC − (fBethe
LDPC

(
η, η̂

)
+ 1
n

lnZsmall)
∣∣ = O(e−nl(1−κ)−1). (6.67)
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Remark 6.4. We recall that 0 < l(1− κ)− 1 < (r − 2)/r. This proposition shows that
large polymers contribute only with exponentially small corrections to the Bethe free
energy. Inverse power in n corrections can be computed systematically from the polymer
expansion of n−1 lnZsmall.

Proof. Note that

1
n

ln

∑
g⊂Γ

K(g)

 = 1
n

lnZsmall + 1
n

ln
(

1 + Rlarge
Zsmall

)
, (6.68)

which means that the term on the left hand side of (6.67) is equal to

1
n

∣∣∣∣ln(1 + Rlarge
Zsmall

)∣∣∣∣ . (6.69)

On one hand, from corollary 6.1 and the Markov bound, we have for any ε > 0,

P
[
e−nε ≤ Z−1

small ≤ e
nε

∣∣∣∣E] = 1− 1
ε
O(n−(1−χ)). (6.70)

On the other hand, from lemma 6.4

P
[
|Rlarge| ≥ δ

∣∣∣∣E]P[E] ≤P
[
|Rlarge| ≥ δ

]
≤1
δ
e−Cn (6.71)

and since P[E] = 1−O(n−(l(1−κ)−1)),

P

[
|Rlarge| ≥ δ

∣∣∣∣E]≤ 2
δ
e−Cn. (6.72)

Using (6.70) and (6.72), and choosing δ
2 = e−2nε it is not difficult to show that (at this

point one must take 0 < 2ε < C)

P
[∣∣∣∣Rlarge
Zsmall

∣∣∣∣ ≥ e−nε∣∣∣∣E] ≤ 1
ε
O(n−(1−χ)) + e−n(C−2ε) . (6.73)

Thus

P
[∣∣∣∣Rlarge
Zsmall

∣∣∣∣ ≤ e−nε∣∣∣∣E] ≥ 1− 1
ε
O(n−(1−χ)) . (6.74)
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This implies for n large

P
[∣∣∣∣ln(1 + Rlarge

Zsmall

)∣∣∣∣ ≤ 2e−nε
∣∣∣∣E] ≥ 1− 1

ε
O(n−(1−χ)). (6.75)

Furthermore

P
[∣∣∣∣ln(1 + Rlarge

Zsmall

)∣∣∣∣ ≤ 2e−nε
]
≥
(
1− 1

ε
O(n−(1−χ))

)(
1−O(n−(l(1−κ)−1))

)
≥1−O(n−(l(1−κ)−1)) . (6.76)

The last line is obtained by choosing

ε = nl(1−κ)−1

n1−χ ≤ n
r−2
r
−1+χ <

C

2 , (6.77)

which is possible since κ ∈]1− 2(r−1)
lr , 1− 1

l [ and we can take χ > 0 as small as we wish.

Finally from
nε = nl(1−κ)−1+χ ≥ nl(1−κ)−1 (6.78)

and (6.76) we deduce the statement of the proposition.

Theorem 6.2 (Exactness of the Bethe free energy: LDPC high noise). Suppose l is odd
and 3 ≤ l ≤ r. There exists θ0 > 0 (small) independent of n, such that for θ ≤ θ0 and
any high-noise-solution

EΓ

[∣∣ 1
n

lnZLDPC − fBethe
LDPC

(
η, η̂

)∣∣]= O
(
n−(l(1−κ)−1)) . (6.79)

The O(·) is uniform in the channel output realizations h.

Remark 6.5. We recall that κ ∈]1 − 2(r−1)
lr , 1 − 1

l [ which implies that the expansion
constant κ is such that, for r > 2, 0 < l(1− κ)− 1 < (r − 2)/r.

Proof. Consider the difference

∣∣ 1
n

lnZLDPC − fBethe
LDPC(η, η̂)

∣∣ (6.80)

We first remark that this quantity is bounded uniformly in n because each term
n−1| lnZLDPC| and |fBethe

LDPC| is bounded, as can be checked directly from their defini-
tion.

Now consider the event S - or the set of graphs - such that∣∣∣∣ln(1 + Rlarge
Zsmall

)∣∣∣∣ ≤ e−nl(1−κ)−1
. (6.81)
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Proposition (6.1) says that

P[Sc] = O(n−(l(1−κ)−1)). (6.82)

Thus we have

E
[∣∣ 1
n

lnZLDPC − fBethe
LDPC

∣∣∣∣∣∣Sc]P[Sc] = O(n−(l(1−κ)−1)) . (6.83)

We will now estimate
E
[∣∣ 1
n

lnZLDPC − fBethe
LDPC

∣∣∣∣∣∣S]P[S] . (6.84)

Since P[S] = 1−O(n−(l(1−κ)−1)) we have to show that the expectation conditioned over
S is small.

E
[∣∣ 1
n

lnZLDPC − fBethe
LDPC

∣∣∣∣∣∣S] =E
[∣∣ 1
n

lnZLDPC − fBethe
LDPC

∣∣∣∣∣∣S ∩ E]P[E]

+ E
[∣∣ 1
n

lnZLDPC − fBethe
LDPC

∣∣∣∣∣∣S ∩ Ec]P[Ec]. (6.85)

Since, as remarked before, (6.80) is bounded and P[Ec] = O(n−(l(1−κ)−1) the second
term on the right-hand side is O(n−(l(1−κ)−1). It remains to show that the conditional
expectation in the first term of the right-hand side is small. This is bounded above by
two contributions. The first one is

E
[ 1
n

∣∣∣∣ln(1 + Rlarge
Zsmall

)∣∣∣∣∣∣∣∣S ∩ E] ≤ e−nl(1−κ)−1
, (6.86)

and the second (recall corollary 6.1)

E
[ 1
n
| lnZsmall|

∣∣∣∣S ∩ E] = O(n−(1−χ)) . (6.87)

Putting all contributions (6.83), (6.85), (6.86), (6.87) together we obtain the desired
result

E
[∣∣ 1
n

lnZLDPC − fBethe
LDPC

∣∣] = O(n−(1−χ)) +O(n−(l(1−κ)−1))

= O(n−(l(1−κ)−1)) . (6.88)

In the last step we have taken 0 < χ < l(1− κ)− 1.

97



Chapter 6. LDPC Codes

6.6 Discussion

6.6.1 LDPC: The Case l Even

When l is even, the point θ = 0 has a singular behavior. As the channel realization is
trivial h = 0, the low-noise fixed-point is simply the all zero messages (ηi→a, η̂a→i) = (0, 0).
The activities can be exactly computed for this BP fixed-point

Ka (γ) =

1 if |∂a ∩ γ| = r

0 otherwise
, Ki (γ) = 1 + (−1)|∂i∩γ|

2 . (6.89)

When the graph Γ is an expander, every small polymer |γ| < nλ contains at least one
check node with an induced degree less than r (see Lemma 6.2). Thus K (γ) = 0 and

Zsmall = 1. (6.90)

The contribution of the small polymer vanishes, as predicted already by the polymer
expansion (see Lemma 6.3).

However for the total graph, and unlike the case l odd, we have

K (Γ) = 1. (6.91)

More generally, polymers with a size on the order of the total graph have an activity
close to one. This implies that the contribution from large polymers is non-vanishing but
growing linearly

1 < EΓ (|Rlarge|) < Cl,rn
4r2
. (6.92)

This can be shown using the same counting arguments as in Section 6.4. As a consequence,
we find that similarly to Theorem 6.1 the Bethe free energy is asymptotically exact with
high probability. More precisely, with probability 1−O(n−(l(1−κ)−1))

∣∣ 1
n

lnZLDPC − fBethe
LDPC

∣∣ = O

( 1
n

lnn
)
. (6.93)

The notable difference with Theorem 6.1 is that the decay rate of the difference is not
exponential.

When l is even and θ > 0, the bound on the activity of the total graph predict an
exponential growth

K (Γ) = (1 + αθr)
l
r
n
(
1 + βθ2

)n
. (6.94)

The contribution of the large polymer can no longer be estimated as in Section 6.4. To
tackle this problem, we believe that it is necessary to have a precise control of sign
cancellations in the sum Rlarge. Such a control is out of reach of the method presented in
this thesis.
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6.6.2 The Case l > r

The constraint r > l appears naturally in the course of proving Theorem 6.4. If r < l, large
polymers with an activity exponentially increasing with their size are also exponentially
numerous. Therefore we found by using counting arguments that the contribution of
Rlarge is not negligible.

When r < l, the graphical model no longer describes a code. In fact at exactly h = 0, the
partition function counts the number of solutions of a random linear system of equations
that is overdetermined. This corresponds to an UNSAT phase of a linear-constraints
satisfaction-problem. In this phase, it is expected that the Bethe free energy is not a
good approximation of the free energy (instead one should use the RSB free energy [44]).
Then it seems reasonable to think that the corrections to the Bethe free energy are
non-vanishing, even with a precise control of the sign cancellation in the activities.

6.6.3 LDPC at Low Noise

The low-noise regime is characterized by half-log likelihood ratios with high magnitudes
h ≈ ∞. The low-noise fixed-point of the belief-propagation equations is the trivial
solution

(ηi→a, η̂a→i) = (+∞,+∞) . (6.95)

The activities can be exactly computed at the low-noise fixed-point

K (γ) =
∏

a∈γ∩C

1 + (−1)|∂a∩γ|

2
∏

i∈γ∩V
(−1)l e−2hiI (|∂i ∩ γ| = l) . (6.96)

According to (6.96), polymers are subgraphs that have check nodes with even induced
degree and variable nodes with induced degree equal to l. The particularity of the
low-noise activities is that their intensity depends on the sign of the half-log likelihood
ratios hi, and a fortiori on the distribution of h. Using Hoeffding’s inequality, we see that
a polymer has, with large probability, a small activity

Ph
(
|K (γ)| ≤ e−2h(tanhh−2ε)|γ∩V |

)
≥ 1− e−2ε2|γ∩V |. (6.97)

However, the expected activity is dominated by rare events

Eh [|K (γ)|] = 1. (6.98)

This prevents the use of the same counting arguments as in Section 6.4.
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7 Approaching the Rate-Distortion
Bound by Spatial Coupling

In this chapter1, we show that, under a low-complexity BPGD-h and BPGD-r algorithm,
spatially-coupled LDGM codes approach the rate distortion curve for any compression
rate.

In Section 7.1, we recall briefly the problem of lossy source coding. We describe the LDGM
and the spatially-coupled LDGM ensemble in terms of their graphical representations.
We also recall the spin glass formulation of the problem and its associated Gibbs measure.

In Section 7.2, we define the BPGD-h and BPGD-r algorithms (Algorithm 7.1 on
page 113).

In Section 7.3, we show the simulations results (Figure 7.3 on page 114 and Figure 7.4
on page 115). We also discuss the dependence of the algorithmic performances when we
change the temperature of the Gibbs measure.

7.1 Spatially-Coupled LDGM Codes

7.1.1 Lossy Compression of Symmetric Bernoulli Sources

Let X = {X1, X2, . . . , XN} represent a source of length N , where Xa, a = 1, . . . , N are
i.i.d. Bernoulli(1/2) random variables. We desire to encode this information into a memory
which possesses onlyM = RN bits, where R ∈ [0, 1] is the compression rate. The encoder
maps a source word x ∈ {0, 1}N to one of 2NR index words u ∈ {0, 1}NR. The decoding
operation maps the stored sequence u to a reconstructed sequence x̂(u) ∈ {0, 1}N . For a
given pair (x, x̂), the quality of the reconstruction is measured by the Hamming distance

1The material and the presentation of this chapter are based on [89].
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between the original sourceword and its reproduction

dN (x, x̂) = 1
N

N∑
a=1
|xa − x̂a| . (7.1)

The quality of the reconstruction for the encoding/decoding scheme is the average of
(7.1) over the source realizations and over the encoding/decoding output realization

DN = E
X,X̂

[d (x, x̂)] . (7.2)

For the symmetric Bernoulli source considered here, the average distortion of any encoding-
decoding scheme is lower bounded by the Shannon rate-distortion curve (see Section 2.2)

Dsh(R) = h−1
2 (1−R) (7.3)

where h2(q) = −q log2 q − (1− q) log2(1− q) is the binary entropy function. The rate-
distortion curve is convex decreasing with Dsh(0) = 1/2 and Dsh(1) = 0.

7.1.2 Spatially-Coupled Low-Density Generator-Matrix Constructions

Our lossy source coding scheme is based on a spatially-coupled LDGM code ensemble.
We first describe the underlying ensemble in terms of its graphical representation.

Underlying Poisson LDGM(p,R,N) Ensemble

These are bipartite graphs with a set C of N check nodes of constant degree p, a set
V of M code-bit nodes with random degree, and a set E of edges connecting C and
V . The ensemble of graphs is generated as follows: each edge emanating from a check
node is connected uniformly at random to one of the code-bit nodes. The degree of
code-bit nodes is a random variable with Binomial distribution Bi(pN, 1/NR). In the
asymptotic regime of large N,M with M/N = R the code-bit node degrees are i.i.d.
Poisson distributed with an average degree p/R.

Spatially-Coupled SCLDGM(p,R, L,w, ρ) Ensemble

We first lay out a set of positions indexed by integers z ∈ Z on a one-dimensional
line. This line represents a “spatial dimension”. We fix a “window size” which is an
integer w ≥ 1. Consider L sets of check nodes each having ρ nodes, and locate the
sets in positions 1 to L. Similarly, locate L + w − 1 sets of ρR code-bit nodes each,
in positions 1 to L + w − 1. All checks have constant degree p, and each of the p
edges emanating from a check at position z ∈ {1, . . . , L} is connected uniformly at
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Figure 7.1: A bipartite graph from the underlying LDGM(2, 0.5, 8) ensemble. Here
N = 8, M = 4 and p = 2. Labels represent code-bits ui, reconstructed bits x̂i and source
bits xi.

Figure 7.2: A graph from the SCLDGM(p = 2, R = 0.5, L = 4, w = 2, ρ = 8) ensemble.
The code-bit nodes in boundary sets have smaller degree than the code-bit nodes in the
other sets (in light blue in the figure).

random to code-bit nodes within the range {z, . . . , z + w − 1}. It is easy to see that
for z ∈ {w, . . . , L− w + 1}, in the asymptotic limit n→ +∞, the code-bit nodes have
Poisson-distributed degrees with average p/R. For the remaining positions close to the
boundary the average degree is reduced. More precisely for positions on the left side
z ∈ {1, . . . , w − 1} the degree is asymptotically i.i.d. Poisson with average p/R × z/w.
For positions on the right side z ∈ {L+ 1, . . . , L+ w − 1} the degree is asymptotically
Poisson with average p/R × (L + w − z)/w. Figures 7.1 and 7.2 give a example of an
underlying and a spatially-coupled graph.

Notation

Generic graphs from the ensembles will be denoted by Γ or Γ(C, V,E). We will use
letters a, b, c for check nodes and letters i, j, k for code-bit nodes of a given graph (from
underlying or coupled ensembles). Following our convention we denote the total number
of check nodes by m = |C| and the total number of variable nodes by n = |V |. We

105



Chapter 7. Approaching the Rate-Distortion Bound by Spatial Coupling

will often make use of the notation ∂a for the set of all code-bit nodes connected to
a ∈ C, i.e.,∂a = {i ∈ V | (i, a) ∈ E}. Similarly, for i ∈ V , ∂i = {a ∈ C| (i, a) ∈ E}. For
spatially-coupled graphs the sets of nodes at a specified position z are Cz and Vz.

7.1.3 Decoding Rule and Optimal Encoding

A code-bit node i ∈ V is associated with a code bit ui. A check node a ∈ C is
associated with two types of bits: the reconstructed bit x̂a and the source bit xa. By
definition the source sequence has length N . So we have |C| = N for the underlying
ensembles, and |C| = ρL = N for the coupled ensembles. A compressed word u has
length NR for the underlying ensemble, and ρR(L+ w − 1) for the coupled ensemble.
Thus the compression design rate is R = M/N for the underlying ensemble, and it is
Rcou = ρR(L + w − 1)/ρL = R(1 + w−1

L ) for the coupled ensemble. The compression
design rate of the coupled ensembles is slightly higher, due to the code-bit nodes at the
boundary, but in the asymptotic regime N,M � L� w the difference with the design
rate R of the underlying ensemble vanishes.

Decoding Rule

The reconstruction mapping is given by the linear operation (modulo 2 sum)

x̂a(u) = ⊕i∈∂aui. (7.4)

We do not investigate non-linear decoding rules, although the whole analysis developed
here can be adapted to such rules. Source coding with such “non-linear check nodes”
have been investigated for underlying LDGM(p,R,N) ensembles [103].

Optimal Encoding

Given a source word x, the optimal encoder seeks to minimize the Hamming distortion
(7.1), and so searches among all u ∈ {0, 1}NR to find a configuration uopt such that

uopt (x) = arg min
u
dN (x, x̂(u)) . (7.5)

The resulting minimal distortion is

dN,opt(x) = min
u
dN (x, x̂(u)) . (7.6)
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Optimal Distortion of the Ensemble

A performance measure for the code ensemble is given by the optimal distortion of the
ensemble (not to be confused with Shannon’s optimal distortion)

DN,opt = EΓ,X [dN,opt(x)] (7.7)

where EΓ,X is an expectation over the graphical ensemble at hand and the symmetric
Bernoulli source X.

Finding the minimizers in (7.5) by exhaustive search takes exponential time in N ; and
there is no known efficient algorithmic procedure to solve the minimization problem.
Nevertheless, the cavity method proposes a formula for the asymptotic value of (7.7) as
N → +∞. It is conjectured that this formula is exact. We come back to this point at
the end of Subsection 7.1.4.

7.1.4 Statistical Mechanics Formulation

We equip the configuration space {0, 1}NR with the Gibbs measure (over u ∈ {0, 1}NR)

µβ(u | x) = 1
Zβ(x)e

−2βNdN (x,̂x(u))

= 1
Zβ(x)

∏
a∈C

e−2β|xa−
⊕

i∈∂a ui| (7.8)

where the “inverse temperature” β > 0 is a real parameter and

Zβ(x) =
∑
u

e−2βNdN (x,̂x(u)) (7.9)

is the partition function. The expectation with respect to the Gibbs measure (7.8) is
denoted by the bracket 〈·〉. More precisely the average of a function A(u) is

〈A(u)〉 = 1
Z

∑
u∈{−1,+1}RN

A(u)e−2βNdN (x,̂x(u)). (7.10)

The function for which we are interested in the average value is the Hamming distortion
between the pair (x, x̂(u)).

Note that the minimizer uopt in (7.5) maximizes this conditional distribution,

uopt (x) = argmaxuµβ (u | x) . (7.11)

The source coding problem can thus be interpreted as an estimation problem where x is
an observation and u has to be estimated.
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In the statistical mechanics interpretation, the Gibbs measure (7.8) is the distribution
associated with a spin glass that is defined by the Hamiltonian 2NdN (x, x̂(u)). This
Hamiltonian can be seen as a cost-function for assignments of “dynamical” variables,
the bits ui ∈ {0, 1}. The Hamiltonian is random: for each realization of the source
sequence x and the graph instance we have a different realization of the cost-function.
The source and graph instance are qualified as “quenched” or “frozen” random variables,
to distinguish them from dynamical variables.

Finding uopt amounts to finding the “minimum energy configuration”. The minimum
energy per node is equal to 2dN,opt, and it is easy to check the identity (use 7.6 and 7.9)

2dN,opt(x) = − lim
β→∞

1
βN

lnZβ (x) . (7.12)

As this identity already shows, a fundamental role is played by the quenched free energy

fN (β) = − 1
βN

EΓ,X [lnZβ(x)] . (7.13)

For example the average free energy enables us to compute the optimal distortion of the
ensemble

2DN,opt = lim
β→+∞

fN (β). (7.14)

There exists also another useful relationship that we will use between average distortion
and free energy. Consider the “internal energy” defined as

uN (β) = 2EΓ,X [〈dN (x, x̂(u))〉] (7.15)

It is straightforward to check that the internal energy can be computed from the quenched
free energy (use (7.9), (7.14), (7.15))

uN (β) = ∂

∂β
(βfN (β)) (7.16)

and that in the zero temperature limit it reduces to the average minimum energy or
optimal distortion (use (7.6), (7.7), (7.15))

2DN,opt = lim
β→+∞

uN (β). (7.17)

What is the relation between the quantities fN (β), uN (β), and DN,opt for the underlying
and coupled ensembles? The following theorem states that they are equal in the infinite
block length limit. This limit is defined as

lim
N→+∞
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Table 7.1: Optimal distortion for LDGM(p,R = 0.5) ensembles computed in [103]; The Shannon
bound for R = 0.5 is Dsh ≈ 0.1100.

p 3 4 5 6

Dopt 0.1179 0.1126 0.1110 0.1104

with M/N fixed for the underlying ensemble; and as

lim
N→+∞

= lim
L→+∞

lim
ρ→+∞

with M/N fixed for the coupled ensemble. We stress that for the coupled ensemble the
order of limits is important.

Theorem 7.1. Consider the two ensembles

LDGM(p,R,N) and SCLDGM(p,R, L,w, ρ)

for an even p and R. Then the respective limits

lim
N→+∞

fN (β), lim
N→+∞

uN (β) and lim
N→+∞

DN,opt

exist for all β ≥ 0 and have identical values for the two ensembles.

This theorem is proved in [83] for the max-XORSAT problem. The proof in [83] does
not depend on the check nodes density N/M , so that it applies verbatim to the present
setting. We conjecture that this theorem is valid for a wider class of graph ensembles. In
particular we expect that it is valid for odd p and also for the regular LDGM ensembles
(see [104] for similar results concerning LDPC codes).

It is conjectured that the one-step-replica-symmetry-breaking-formulas (1-RSB), obtained
from the cavity method [105], for the N → +∞ limit of the free, internal and ground
state energies are exact. Remarkably, it has been proven [106], using an extension of
the Guerra-Toninelli interpolation bounds [40], that these formulas are upper bounds.
The 1-RSB formulas allow to numerically compute [103], using population dynamics,
Dopt ≡ limN→+∞DN,opt. As an illustration, Table 7.1 reproduces Dopt for increasing
check degrees. Note that Dopt approaches Dsh as the degrees increase. One observes
that with increasing degrees the optimal distortion of the ensemble attains Shannon’s
rate-distortion limit.

7.2 Belief Propagation Guided Decimation

Since the optimal encoder (7.5) is intractable, we investigate suboptimal low-complexity
encoders. We focus on two encoding algorithms based on the belief propagation (BP)
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equations supplemented with a decimation process.

7.2.1 Belief Propagation Equations

Instead of estimating the block u (as in (7.5)) we would like to estimate bits ui with the
help of the marginals

µi(ui | x) =
∑
u\ui

µβ(u | x) (7.18)

where the sum is over u1, . . . uN with ui omitted. However computing the exact marginals
involves a sum with an exponential number of terms and is also intractable. For sparse
random graphs, when the size of the graph is large, any finite neighborhood of a node i
is a tree with high probability. Computing the marginals on a tree-graph can be done
exactly and leads to the BP equations. Therefore it seems reasonable to compute the
BP marginal distribution in place of (7.18),

µBP
i (ui | x) = 1

2 cosh βηi
eβ(−1)uiηi (7.19)

where the biases ηi are computed from solutions of the BP equations. The latter are a set
of fixed-point equations involving 2 |E| real valued messages ηi→a and η̂a→i associated
with the edges (i, a) ∈ E of the graph. We haveη̂a→i = (−1)xaβ−1 tanh−1(tanh β

∏
j∈∂a\i tanh βηj→a

)
ηi→a =

∑
b∈∂i\a η̂b→i

(7.20)

and
ηi =

∑
a∈∂i

η̂a→i. (7.21)

For any solution of the BP equations one could consider the estimator

ûBP
i = argmaxµBP

i (ui | x) =


1
2(1 + sign tanh βηi), if ηi 6= 0
Bernoulli(1

2), if ηi = 0.
(7.22)

One could then use the decoding rule (7.4) to determine a reconstructed word and the
corresponding distortion. Unfortunately, given x, the number of solutions of the BP
equations which lead to a roughly identical distortion grows exponentially large in N .
This has an undesirable consequence: it is not possible to pick the relevant solution by a
plain iterative method. To get around this problem, the BP iterations are equipped with
a heuristic decimation process.
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7.2.2 Decimation Process

We start with a description of the first round of the decimation process. Let Γ, x be a
graph and source instance. Fix an initial set of messages η(0)

i→a at time t = 0. Iterate the
BP equations (7.20) to get a set of messages η(t)

i→a and η̂(t)
a→i at time t ≥ 0. Let ε > 0 be

some small positive number and T some large time. Define a decimation instant tdec as
follows:

• i) If the total variation of messages does not change significantly in two successive
iterations,

1
|E|

∑
(i,a)∈E

|η̂(t)
a→i − η̂

(t−1)
a→i | < ε (7.23)

for some t < T , then tdec = t.

• ii) If (7.23) does not occur for all t ≤ T then tdec = T .

At instant tdec each code-bit has a bias given by η(tdec)
i . Select and fix one particular

code-bit idec according to a decision rule

(idec, uidec)← D(η(tdec)). (7.24)

The precise decision rules that we investigate are described in the next paragraph. At
this point, update xa ← xa ⊕ uidec for all a ∈ ∂idec, and decimate the graph Γ← Γ \ idec.
This defines a new graph and source instance, on which we repeat a new round. The
initial set of messages of the new round is the one obtained at time tdec of the previous
round.

7.2.3 Belief Propagation Guided Decimation

The decision rule (7.24) involves two choices. One has to choose idec and then set uidec

to some value. Let us first describe the choice of idec.

We evaluate the maximum bias

Btdec = max
i∈V
|η(tdec)
i | (7.25)

at each decimation instant. If Btdec > 0, we consider the set of nodes that maximize
(7.25), we choose one of them uniformly at random, and call it idec. If Btdec = 0 and we
have a graph of the underlying ensemble, we choose a node uniformly at random from
{1, . . .m}, and call it idec. If Btdec = 0 and we have a graph of the coupled ensemble, we
choose a node uniformly at random from the w left-most positions of the current graph,
and call it idec. Note that because the graph gets decimated, the w left-most positions of
the current graph form a moving boundary.
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With the above choice of decimation node the encoding process is seeded at the boundary
each time the BP biases fail to guide the decimation process. We have checked empirically
that if we choose idec uniformly at random from the whole chain (for coupled graphs)
the performance is not improved by coupling. In [107] we adopted periodic boundary
conditions and the seeding region was set to an arbitrary window of length w at the
beginning of the process, which then generated its own boundary at a later stage of the
iterations.

We now describe two decision rules for setting the value of uidec in (7.24).

1. Hard decision

uidec =

θ(η
(tdec)
idec

), if Btdec > 0
Bernoulli(1

2), if Btdec = 0
(7.26)

where θ(.) is the Heaviside step function. We call this rule and the associated
algorithm BPGD-h.

2. Randomized decision

uidec =

0, with prob 1
2(1 + tanh βη(tdec)

idec
)

1, with prob 1
2(1− tanh βη(tdec)

idec
).

(7.27)

In other words, we fix a code-bit randomly with a probability given by its BP
marginal (7.19). We call this rule and the associated algorithm BPGD-r.

Algorithm 7.1 summarizes the BPGD algorithms for all situations.

7.2.4 Initialization and Choice of Parameters ε, T and β

We initialize η(0)
i→a to zero just at the beginning of the algorithm. After each decimation

step, rather than resetting messages to zero we continue with the previous messages. We
have observed that resetting the messages to zero does not lead to very good results.

The parameters ε and T are in practice set to ε = 0.01 and T = 10. The simulation
results do not seem to change significantly when we take ε smaller and T larger.

The performance of the BPGD algorithm does depend on the choice of β which enters
in the BP equations (7.20) and in the randomized decision rule (7.27). It is possible to
optimize over β. This is important in order to approach (with coupled codes) the optimal
distortion of the ensemble, and furthermore to approach the Shannon bound in the large
degree limit. While we do not have a first principle theory for the optimal choice of β, we
provide empirical observations in Section 7.3. We observe that knowing the dynamical
and condensation (inverse) temperatures predicted by the cavity method enables us to
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Algorithm 7.1 BP Guided Decimation Algorithm

Generate a graph instance Γ(C, V,E) from the underlying or coupled ensembles;
Generate a Bernoulli symmetric source word x;
Set η(0)

i→a = 0 for all (i, a) ∈ E;
while V 6= ∅ do

Set t = 0; while Convergence (7.23) is not satisfied and t < T do
Update η̂(t)

a→i according to (7.20) for all (a, i) ∈ E;
Update η(t+1)

i→a according to (7.20) for all (i, a) ∈ E;
t← t+ 1.

Compute bias η(t)
i =

∑
a∈∂i η̂

(t)
a→i for all i ∈ V

Find B = maxi∈V |η(t)
i |;

if B = 0 then For an instance from the underlying ensemble randomly pick a
code-bit i from V . For a graph from the coupled ensemble randomly pick a code-bit
from the w left-most positions of Γ and fix it randomly to 0 or 1; ;
else

Select i = argmaxi∈V |η(t)
i |; Fix a value for ui according to rule (7.26) or (7.27);

Update xa ← xa ⊕ ui for all a ∈ ∂i;
Reduce the graph Γ← Γ \ {i};

make an educated guess for an estimate of the optimal β. In particular, it turns out that
for coupled codes with large degrees the best β approaches the information theoretic
test-channel value.

7.2.5 Computational Complexity

It is not difficult to see that the complexity of the plain BPGD algorithm 7.1 is O(N2)
for both the underlying and coupled ensembles. The reason is that the BP algorithm
requires to update a number of BP messages proportional to N and the decimation
process requires to run the BP algorithm after each decimation. The complexity for
the coupled ensemble can be rewritten as O(ρ2L2). By employing window decoding
[108, 109], one can reduce the complexity of the BP algorithm and the complexity of the
coupled ensemble becomes O(ρ2Lw) with almost the same performance. This can be
further reduced by noticing that the BP messages do not change significantly between
two decimation steps. As a result, we could decimate δρ code-bits at each step for
some small δ, so that the complexity of the BPGD algorithm becomes O(ρLw/δ). To
summarize, it is possible to get a linear in block length complexity without significant
loss in performance.
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Figure 7.3: The BPGD-h algorithmic distortion versus compression rate R compared to
the Shannon rate-distortion curve at the bottom. Points are obtained by optimizing over
β and averaging over 50 instances. Top: spatially-coupled SCLDGM(p,R, L = 64, w =
3, ρ = 2000) ensembles for p = 3, 4, 5 (top to bottom). Bottom: LDGM(p,R,N = 128000)
ensembles for p = 3, 4, 5 (bottom to top).

7.3 Simulations

In this section we discuss the performance of the BPGD algorithms. The comparison
between underlying ensembles, coupled ensembles and the Shannon rate-distortion curve
is illustrated. The role played by the parameter β is investigated.

7.3.1 BPGD Performance and Comparison to the Shannon Limit

Figures 7.3 and 7.4 display the average distortion DBPGD(R) obtained by the BPGD
algorithms (with hard and randomized decision rules) as a function of R, and compares
it to the Shannon limit Dsh(R) given by the lowest curve. The distortion is computed
for fixed R and for 50 instances, and the empirical average is taken. This average is then
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Figure 7.4: The BPGD-r algorithmic distortion versus compression rate R compared
to the Shannon rate-distortion curve at the bottom. Points are obtained by choosing
β = βsh = 1

2 log(1−Dsh
Dsh

) and averaging over 50 instances. Continuous lines are a guide to
the eye. Top: spatially-coupled SCLDGM(p,R, L = 64, w = 3, ρ = 2000) ensembles for
p = 3, 4, 5 (top to bottom). Bottom: LDGM(p,R,N = 128000) ensembles for p = 3, 4, 5
(bottom to top).

optimized over β, giving one dot on the curves (continuous curves are a guide to the eye).

The plots at the bottom of Figures 7.3 and 7.4 are for the underlying ensembles with
p = 3, 4, 5 and N = 128000. We observe that as the check degree increases the BPGD
performance gets worse. But recall from Table 7.1 that with increasing degrees the
optimal distortion of the ensemble (not shown explicitly on the plots) gets better and
approaches the Shannon limit. Thus the situation is similar to the case of LDPC codes
where the BP threshold gets worse with increasing degrees, while the MAP threshold
approaches Shannon capacity.

The plots at the top of Figures 7.3 and 7.4 show the algorithmic performance for the
coupled ensembles with p = 3, 4, 5, ρ = 2000, w = 3, and L = 64 (so again a total length
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Figure 7.5: The BPGD-h algorithmic distortion versus β. Results are obtained for
the SCLDGM(p = 5, R = 0.5, L = 64, w = 3, ρ = 2000) and LDGM(5, 0.5, 128000)
ensembles. Results are averaged over 50 instances. The minimum distortion occurs at
β∗(5,0.5,64,3) ≈ 1.03± 0.01 and β∗(5,0.5) ≈ 0.71± 0.01.

of N = 128000). We see that the BPGD performance approaches the Shannon limit as
the degrees increase. One obtains a good performance, for a range of rates, without any
optimization on the degree sequence of the ensemble, and with simple BPGD schemes.

The simulations, suggest the following. Look at the regime ρ � L � w � 1. When
these parameters go to infinity in the specified order for the coupled ensemble, DBPGD(R)
approaches Dopt(R). In words, the algorithmic distortion approaches the optimal distor-
tion of the ensemble. When furthermore p→ +∞ after the other parameters, DBPGD(R)
approaches Dsh(R). At this point it is not possible to assess from the simulations whether
these limits are exactly attained.

7.3.2 The Choice of the Parameter β

We discuss the empirical observations for the dependence of the curves DBPGD(β,R) on
β at fixed rate. We illustrate our results for R = 1/2 and with the underlying LDGM(p =
5, R = 0.5, N = 128000) and coupled SCLDGM(p = 5, R = 0.5, w = 3, L = 64, ρ = 2000)
ensembles.

In Figure 7.5 we plot the distortion DBPGD−h(β,R = 1/2) of the hard decision rule. For
all values of 0 < β < 3, the algorithmic distortion DBPGD−h(β,R) of the coupled ensemble
is below the corresponding curve of the underlying ensemble. The most important feature
is a clear minimum at a value β∗ which is rate dependent. The rate-distortion curve
for the hard decision rule in Figure 7.3 is computed at this β∗ and is the result of the
optimization

DBPGD−h(R) = min
β>0

DBPGD−h(β,R). (7.28)
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Figure 7.6: The BPGD-r algorithmic distortion versus β. Results are obtained for
SCLDGM(p = 5, R = 0.5, L = 64, w = 3, ρ = 2000) and LDGM(5, 0.5, 128000) ensemble.
Results are averaged over 50 instances. The values β∗ of Figure 7.5 are reported for
comparison.

We observe that the optimal value β∗cou for the coupled ensemble is always larger than β∗un
for the underlying ensemble. Moreover we observe that as the check-degree p increases
β∗un tends to zero, whereas β∗cou saturates to βsh(R) where

βsh(R) ≡ 1
2 ln

(1−Dsh(R)
Dsh(R)

)
. (7.29)

This is the information theoretic value corresponding to the amplitude of half log-likelihood
ratios of a test-BSC with the noise tuned at capacity.

In Figure 7.6 we plot the curve DBPGD−r(β,R = 1/2) for the randomized algorithm.
The behavior of the underlying and coupled ensemble have the same flavor. The curves
are first decreasing with respect to β and then flatten. The minimum is reached in the
flattened region and as long as β is chosen in the flat region, the optimized distortion
is not very sensitive to this choice. We take advantage of this feature, and compute
the rate-distortion curve of the randomized decision rule at a predetermined value of β.
This has the advantage of avoiding optimizing over β. For reasons that are discussed in
Section 8.4 a good choice is to take βsh(R) given by Equ. 7.29. With these considerations
the distortion curve in Figure 7.4 is

DBPGD−r(R) = DBPGD−r(βsh, R). (7.30)
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Figure 7.7: C0.01(β) versus β. Empirical convergence probability for SCLDGM(p =
5, R = 0.5, L = 64, w = 3, ρ = 2000) and LDGM(5, 0.5, 128000) ensembles. Solid (resp.
dashed) lines are for the hard (resp. random) decision rule. Results are averaged over 50
instances.

7.3.3 Convergence

We have tested the convergence of the BPGD algorithms for both decision rules. We
compute an empirical probability of convergence Cε,T (β) defined as the fraction of
decimation rounds that results from the convergence condition (7.23). In other words
Cε,T (β) = 1 means that at every round of the decimation process the BP update rules
converge in less than T iterations to a fixed point of the BP equations (7.20) up to a
precision ε. Figure 7.7 shows Cε,T (β) at (ε, T ) = (0.01, 10) for the underlying and coupled
ensembles. The hard decision rule is represented by solid lines and the random decision
rule by dashed lines. The first observation is that both decision rules have nearly identical
behaviors. This is not a priori obvious since the decimation rules are different, and as a
result the graph evolves differently for each rule during the decimation process. This
suggest that the convergence of the algorithms essentially depends on the convergence of
the plain BP algorithm. The second observation is that the values of β where Cε,T (β)
drops below one are roughly comparable to the values where DBPGD−r flattens and where
DBPGD−h attains its minimum.
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8 A Perspective from the Cavity
Method

In this chapter1, we derive the phase diagram of the Gibbs distribution (7.8) using the
cavity method. It is natural to expect that the behavior of belief propagation based
algorithms should be related in one way or another to the phase diagram of the Gibbs
distribution. As we vary β the nature of the Gibbs measure and the geometry of the space
of its typical configurations changes at special dynamical and condensation thresholds βd
and βc (see Section 1.5).

In Section 8.1, we give a primer on the cavity method.

In Section 8.2, we show the technical derivations for the present problem.

In Section 8.3, we display the set of fixed-point equations needed to compute the
complexity of the coupled ensemble (Equations (8.51) on page 131 and (8.52) on page 131
and Equations (8.54) on page 131 and (8.55) on page 132). We will see that in the present
problem for β < βc there is a further simplification of the cavity equations. With this
extra simplification, the cavity equations reduce to standard density evolution equations
associated with a coupled LDGM code over a BSC test-channel (Equations (8.63) on
page 136 and (8.55) on page 132 ).

In Section 8.4, we discuss how the dynamical and condensation thresholds are affected
by spatial coupling. We also discuss some heuristic insights that enable us to understand
why the Shannon limit is approached with the BPGD algorithm for coupled ensembles
with large check degrees.

In Section 8.5, we discuss some remaining open problems.

1The material and the presentation of this chapter is based on [89].
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8.1 The Cavity Method

The treatment given here applies to single instances. Let Γ = (V,C,E) be a factor
graph which is assumed to be locally tree-like. We attach spins σj , j ∈ V , to variable
nodes and constraint functions ψa ({σi, i ∈ ∂a}), a ∈ C, to check nodes. We sometimes
use the notation σ∂a = {σi, i ∈ ∂a} as a shorthand. The formalism developed in this
appendix is valid for general spin variables belonging to a finite alphabet σj ∈ X . The
constraint functions depend only on the set of spins connected to a. We are interested in
the thermodynamic limit where |V | = n and |C| = m tend to infinity and the ratio m/n
is kept fixed. We consider the general class of Gibbs distributions of the form

µ (σ) = 1
Z

∏
a∈C

ψa (σ∂a) , (8.1)

where Z is the partition function. The free energy of an instance is defined as usual

f (β) = − 1
nβ

lnZ (β) . (8.2)

One of the goals of the cavity method is to compute this free energy in the limit n→ +∞.

Let us first outline the general strategy. For locally tree-like graphs, one can compute
the marginals for a given node by restricting the measure to a tree. In the absence of
long range correlations2 the marginal does not depend on the boundary conditions at
the leaf nodes, and the BP equations have one relevant solution. The BP marginals then
constitute a good description of the measure (8.1). In particular, the true free energy is
well approximated by replacing this solution in the Bethe free energy functional. As the
control parameters vary, long range correlations could appear. In such a situation the
marginals computed on a tree will depend on the boundary conditions at the leaf nodes,
and the BP equations will have many relevant solutions yielding nearly the same Bethe
free energy. The cavity method assumes that the measure (8.1) is then described by a
convex superposition of “extremal measures”. There could be a large number of extremal
measures. A good proxy for the extremal measures is given by the BP marginals. The
convex superposition of extremal measures yields a new statistical model on the same
factor graph, the so-called level-one model. Assuming that the level one model does not
display long range correlations, one can solve it using BP equations and the Bethe free
energy. Otherwise, the cavity method iterates the previous considerations and constructs
a level-two model. However, this usually becomes bewildering and one stops at the first
level. In the following paragraphs we give a concrete implementation of these ideas.

We recall that the BP equations are the set of fixed-point equations satisfied by messages

2More precisely point-to-set correlations [44].
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8.1. The Cavity Method

{νi→a, ν̂a→i} = (ν, ν̂),

ν̂a→i = ĝBP
(
{νj→a}j∈∂a\i

)
, νi→a = gBP

(
{ν̂b→i}b∈∂i\a

)
, (8.3)

where

ĝBP
(
{νj→a}j∈∂a\i

)
=
∑
σ∂a\i

ψa (σ∂a)
∏
j∈∂a\i νj→a (σj)∑

σ∂a
ψa (σ∂a)

∏
j∈∂a\i νj→a (σj)

gBP
(
{ν̂b→i}b∈∂i\a

)
=

∏
b∈∂i\a ν̂b→i (σi)∑

σi

∏
b∈∂i\a ν̂b→i (σi)

. (8.4)

When there is only one relevant solution, the BP marginal for σi is

µBP
i (σi) =

∏
a∈∂i νa→i(σi)∑

σi

∏
a∈∂i νa→i(σi)

. (8.5)

The set of messages is a proxy for the measure (8.1) in the sense that in principle one
can “reconstruct” the measure from this set. The Bethe free energy functional which
approximates f(β) is given by

fBethe (ν, ν̂) = 1
n

{∑
i∈V

Fi +
∑
a∈C

Fa −
∑

(i,a)∈E
Fai

}
(8.6)

where

Fi
(
{ν̂b→i}b∈∂i

)
= − 1

β
ln
∑
σi

∏
b∈∂i

ν̂b→i (σi)

Fa
(
{νj→a}j∈∂a

)
= − 1

β
ln
∑
σ∂a

ψa (σ∂a)
∏
j∈∂a

νj→a (σj)

Fai (νi→a, ν̂a→i) = − 1
β

ln
∑
σi

νi→a (σi) ν̂a→i (σi) . (8.7)

As explained in Section 1.5, in the presence of long range correlations this formalism is
too simplistic. The cavity method assumes that:

1. The Gibbs distribution (8.1) is a convex sum of extremal measures.

2. To leading exponential order, the number of solutions of the BP equations is equal
to the number of extremal measures.

3. The free energy of an extremal measure is well approximated by the Bethe free
energy of the BP fixed-point.

These assumptions suggest that the Gibbs distribution (8.1) is well approximated by the
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following convex superposition

µ (σ) ≈ 1
Z

∑
(ν,ν̂)∈BP

e−βnf
Bethe(ν,ν̂)µ(ν,ν̂) (σ) (8.8)

The measures µ(ν,ν̂) are the ones whose marginals are given by the BP marginals computed
from (ν, ν̂). They play the role of the “extremal measures”. The sum is over solutions
of the BP equations. In principle one should sum only over stable solutions, i.e., local
minima of the Bethe free energy. However at low temperatures these are expected to be
exponentially more numerous than the other critical points and it is assumed to be a
good approximation to sum over all BP solutions. The normalization factor yields the
partition function

Z ≈
∑

(ν,ν̂)∈BP

e−βnf
Bethe(ν,ν̂). (8.9)

In order to compute this partition function and uncover the properties of the convex
decomposition (8.8) we introduce the level-one statistical mechanical model. The dy-
namical variables of this model are the BP messages (ν, ν̂). According to (8.8), (8.9) the
probability distribution over (ν, ν̂) is

µlevel−1 (ν, ν̂) = e−βnf
Bethe(ν,ν̂)

Zlevel−1
I ((ν, ν̂) ∈ BP) , (8.10)

and
Zlevel−1 =

∑
(ν,ν̂)∈BP

e−βnf
Bethe(ν,ν̂), (8.11)

The level-one free energy is defined as usual,

flevel−1(β) = − 1
βn

lnZlevel−1. (8.12)

From (8.9) it should be clear that f(β) ≈ flevel−1(β). The average Bethe free energy, or
level-one internal energy, is given by

ϕint(β) = 1
n
〈fBethe[ν, ν̂]〉level−1 (8.13)

Here the bracket denotes the average with respect to (8.10).

One also needs to compute the Shannon-Gibbs entropy Σ(β) of µlevel−1. An important
“trick” is to replace the explicit β dependence in (8.10), (8.11), (8.12) by βx where x is
for the moment an arbitrary parameter3. This parameter turns out to play a crucial
role and is called the Parisi parameter. This gives us an x-dependent level-one auxiliary

3Note that there is also an implicit β dependence in fBethe[ν, ν̂].
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model

µlevel−1 (ν, ν̂;x) = e−βxnf
Bethe(ν,ν̂)

Zlevel−1(x)
I ((ν, ν̂) ∈ BP) , (8.14)

and
Zlevel−1(x) =

∑
(ν,ν̂)∈BP

e−βxnf
Bethe(ν,ν̂), (8.15)

and also
ϕlevel−1(β;x) = − 1

βxn
lnZlevel−1(x). (8.16)

It is then a matter of simple algebra to check that the Shannon-Gibbs entropy Σ(β) is
given by

Σ(β) = Σ(β;x) ≡ βx2 ∂

∂x
ϕlevel−1 (β;x) |x=1, (8.17)

and that
Σ(β) = β(ϕint(β)− flevel−1(β)). (8.18)

Considering formulas (8.11), (8.13) and (8.18), it is not hard to argue that enΣ(β) is
(to leading exponential order) the number of BP solutions with free energy ϕint(β)
contributing to the sum (8.11). The quantity Σ(β) (a kind of entropy) is called the
complexity. It is the growth rate of the number of extremal measures dominating the
convex decomposition (8.8) .

We explain later on how to concretely compute flevel−1(β), ϕint(β) and Σ(β). Let us
immediately describe how Σ(β) informs us about the convex decomposition of the Gibbs
distribution. We refer the reader to Figure 1.6 for a pictorial representation. For a large
class of problems one finds that Σ(β) = 0 for β < βd, which signals that only one extremal
measure contributes to the Gibbs distribution. At βd the complexity jumps to a non-zero
value and then decreases as a function of β till βc after which it takes on negative values.
In the range βd < β < βc where Σ(β) > 0 an exponentially large (with respect to n)
number of extremal measures with the same internal free energy ϕint(β) contribute to
the Gibbs distribution. Beyond βc one finds a negative complexity: this is inconsistent
with the fact that it is an entropy. In order to enforce this constraint correctly one is
forced to take the Parisi parameter 0 < x < 1 in (8.17). More precisely, one sets x to
the largest possible value (less than 1) such that Σ(β) = 0. With this prescription4 for
the correct value of x when β > βc, one computes the internal free energy and the free
energy and the complexity from the x-dependent level-one model. The complexity is zero
by construction which means that there exist at most a sublinear (believed to be finite)
number of extremal measures contributing to the Gibbs distribution. This phenomenon
is called condensation.

The nature of the thresholds βd and βc has been discussed in the introduction (see Sect.

4One can argue that the Parisi parameter is a kind of “Lagrange multiplier” that enforces the
non-negativity of the complexity in the level-one model.
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Figure 8.1: On the left, an example of an original graph Γ. On the right its corresponding
graph Γ1 for the level-one model.

1.5) and we do not come back to this issue here.

We now show how the (x-dependent) level-one model is solved in practice. The main
idea is to apply again the BP and Bethe equations for this model. The first step is to
recognize that, if Γ = (V,C,E) is the original factor graph, then the level-one model has
the factor graph Γ1 = (V1, C1, E1) described in Figure 8.1.

A variable node i ∈ V , becomes a function node i ∈ C1, with the function

ψ
(1)
i =

∏
a∈∂i

I (νi→a = gBP) e−xβFi . (8.19)

A function node a ∈ C remains a function node a ∈ C1 with factor

ψ(1)
a =

∏
i∈∂a

I (ν̂a→i = ĝBP) e−xβFa . (8.20)

An edge (a, i) ∈ E, becomes a variable node (a, i) ∈ V1. The dynamical variables are
now couples of distributions (νa→i, ν̂a→i). There is also an extra function node attached
to each variable node of the new graph, or equivalently attached to each edge of the old
graph. The corresponding function is

ψ
(1)
ai = exβFai . (8.21)

With these definitions, Equ. (8.14) can be written as

µlevel−1(ν, ν̂;x) = 1
Zlevel−1(x)

∏
i∈V

ψ
(1)
i

∏
a∈C

ψ
(1)
i

∏
ai∈E

ψ
(1)
ai . (8.22)

For the distributions (ν, ν̂) that satisfy the BP equations (8.3), some algebra leads to the
useful formulas e−xβ(Fa−Fai) = ẑxa→i

e−xβ(Fi−Fai) = zxi→a
(8.23)
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Figure 8.2: Messages are labeled by m if they are outgoing from a variable node in V1
and by m̂ if they are outgoing from a function node in C1.

where zi→a =
∑
σi

∏
b∈∂i\a ν̂b→i (σi)

ẑa→i =
∑
σ∂a

ψa (σ∂a)
∏
∂j∈a\i νj→a (σi)

(8.24)

The BP equations for (8.22) involve four kind of messages as shown in Figure 8.2.

Messages from a (new) function node to a (new) variable node satisfy

m̂a→ai '
∑

(ν,ν̂)\(νi→a,ν̂a→i)
ψ(1)
a

∏
aj∈∂a\ai

maj→a

=e−xβFai
∑

ν\νi→a

I (ν̂a→i = ĝBP) (ẑa→i)x
∏

aj∈∂a\ai
maj→a (8.25)

and

m̂i→ai '
∑

(ν,ν̂)\(νi→a,ν̂a→i)
ψ

(1)
i

∏
bi∈∂i\ai

mbi→i

=e−xβFai
∑

ν̂\ν̂a→i

I (νi→a = gBP) (zi→a)x
∏

bi∈∂i\ai
mbi→i. (8.26)

where the symbol ' means equal up to a normalization factor. Messages from a (new)
function node to a (new) variable node satisfymai→i ' exβFaim̂a→ai

mai→a ' exβFaim̂i→ai.
(8.27)

Notice that equations (8.25), (8.26) and (8.27) imply that mai→a (νi→a, ν̂a→i) (resp.
mai→i (νi→a, ν̂a→i)) is a constant function with respect to the argument ν̂a→i (resp. νi→a).
This allows us to make a simplification by defining the following distributionsQi→a (νi→a) = mai→a (νi→a, ν̂a→i)

Q̂a→i (ν̂a→i) = mai→i (νi→a, ν̂a→i) .
(8.28)
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Distributions Q and Q̂ are called cavity messages, and live on the edges of the original
factor graph Γ = (V,C,E). From now on we can forget about the factor graph Γ1 =
(V1, C1, E1). The cavity messages satisfy

Q̂a→i (ν̂a→i) '
∑
ν

I (ν̂a→i = ĝBP) ẑxa→i
∏

j∈∂a\i
Qj→a (νj→a)

Qi→a (νi→a) '
∑
ν̂

I (νi→a = gBP) zxi→a
∏

b∈∂i\a
Q̂b→i (ν̂b→i) . (8.29)

The Bethe free energy functional of the level-one model can be expressed as a functional of
the cavity messages (one way to determine this functional is to write down the functional
whose critical points are given by Equ. (8.29)). This is an approximation for the true
free energy (8.12) of the level-one model

fBethe
level−1(Q, Q̂;x) := 1

n

{∑
i∈V
Fi +

∑
a∈C
Fa −

∑
(i,a)∈E

Fai
}
, (8.30)

where

Fi
({
Q̂b→i

}
b∈∂i

)
= − 1

xβ
ln

∑
ν̂

e−xβFi
∏
b∈∂i

Q̂b→i


Fa
(
{Qj→a}j∈∂a

)
= − 1

xβ
ln

∑
ν

e−xβFa
∏
j∈∂a

Qj→a


Fai

(
Qi→a, Q̂a→i

)
= − 1

xβ
ln

∑
ν,ν̂

e−xβFaiQi→aQ̂a→i

 . (8.31)

In principle one has to solve the cavity equations (8.29) for 0 < x ≤ 1, and compute
the x-dependent free energy fBethe

level−1. From this free energy we obtain the complexity by
computing the derivative in equation (8.17). This allows us to determine the thresholds
βd and βc. For β < βc the free energy is given by fBethe

level−1|x=1. This function has no
singularities, which means that there are no static (thermodynamic) phase transitions
for β < βc and in particular at β = βd. In this phase one has Σ(β;x = 1) = 0 for
β < βd ≤ βc and Σ(β;x = 1) > 0 for βd ≤ β < βc. For β > βc one enforces a zero
complexity by setting the Parisi parameter to a value 0 < x∗ < 1 s.t. Σ(β;x∗) = 0. The
free energy is not analytic at βc, due to the change of x parameter. This a static phase
transition threshold.

In practice, as long as we are interested only in the range β < βc we can set x = 1. It is
then possible to simplify the cavity equations (8.29) and the level-1 free energy (8.30).
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8.2 Application to Spatially-Coupled LDGM codes

We apply the formalism of the cavity method to the Gibbs measure µβ(u|x) (7.8). Instead
of working with the alphabet {0, 1}, we find it convenient to use the mapping σi = (−1)ui
and Ja = (−1)xa to the alphabet {−1,+1}. With this change of variables, the Gibbs
measure (7.8) takes the form

µβ(u|x) = 1
Zβ

∏
a∈C

ψa (σ∂a) (8.32)

with
ψa({σi, i ∈ ∂a}) = e−β(1−Ja

∏
i∈∂a σi). (8.33)

The probability distributions νi→a(σi) and ν̂a→i(σi) are entirely characterized by their
means, tanh βηi→a and tanh βη̂a→i, as follows (we drop the subscripts)

ν(σ) = 1 + σ tanh βη
2 . (8.34)

With this parametrization, the BP equations (8.3) for the model (8.32) becomeη̂a→i = ĝBP({ηj→a}j∈∂a\i | Ja)
ηi→a = gBP({η̂b→i}b∈∂i\a),

(8.35)

where gBP({η̂b→i}b∈∂i\a) =
∑
b∈∂i\a η̂bi.

ĝBP({ηj→a}j∈∂a\i | Ja) = Ja
β atanh

(
tanh β

∏
j∈∂a\i tanh βηj→a

)
.

(8.36)

The Bethe free energy per check nodes (8.6) reads

fBethe
(
η, η̂

)
=− 1

β

(
ln
(
1 + e−2β

)
+ (R− 1) ln 2

)
− 1
βN

∑
a∈C

(1− |∂a|) lnZ1({ηj→a}j∈∂a | Ja)

− R

βM

∑
i∈V

lnZ2({η̂b→i}b∈∂i), (8.37)

where Z1({ηj→a}j∈∂a | Ja) = 1 + Ja tanh β
∏
i∈∂a tanh βηi→a

Z2({η̂a→i}a∈∂i) = 1
2
∑
s∈{−1,1}

∏
a∈∂i(1 + s tanh βη̂a→i).

(8.38)

127



Chapter 8. A Perspective from the Cavity Method

Since we have parametrized the BP messages by real numbers, the cavity messages Qi→a,
Q̂a→i become distributions on ηi→a, η̂a→i. The cavity equations (8.29) reduce to

Qi→a(ηi→a) '
ˆ ∏

b∈∂i\a
dη̂b→iQ̂b→i(η̂b→i)

× Zx2 ({η̂b→i}b∈∂i\a)δ
(
ηi→a − gBP({η̂b→i}b∈∂i\a)

)
(8.39)

and

Q̂a→i(η̂a→i) '
ˆ ∏

j∈∂a\i
dηj→aQj→a(ηj→a)

× Zx1 ({ηj→a}b∈∂i\a)δ
(
η̂a→i − ĝBP({ηj→a}j∈∂a\i | Ja)

)
. (8.40)

For the Bethe free energy of the level-one model one finds

fBethe
level−1

(
η, η̂;x

)
=− 1

β

(
ln(1 + e−2β) + (R− 1) ln 2

)
− 1
βxN

∑
a∈C

(1− |∂a|) ln
{ˆ ∏

i∈∂a
dηi→aQi→a(ηi→a)

× Zx1 ({ηi→a}i∈∂a | Ja)
}

− R

βxM

∑
i∈V

ln
{ˆ ∏

a∈∂i
dη̂a→iQ̂a→i(η̂a→i)

× Zx2 ({η̂a→i}a∈∂i)
}
. (8.41)

We are interested in the range β < βc for which the Parisi parameter is set to x = 1. In
this case the above equations greatly simplify. We first define average cavity messageshi→a = Av[Qi→a]

ĥa→i = Av[Q̂a→i],
(8.42)

where the functional Av[P ] is

Av[P ] = 1
β

atanh
{ˆ

dηP (η) tanh βη
}
. (8.43)

Thus tanh βhi→a and tanh βĥa→i are real valued messages and are averages of tanh βηi→a
and tanh βη̂a→i with respect to the cavity distributions Qi→a(ηi→a) and Q̂a→i(η̂a→i)
respectively. The free energy of the level-one model for x = 1 can be expressed in terms
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of these real valued messages, and one finds

fBethe
level−1

(
h, ĥ

)
=− 1

β

(
ln(1 + e−2β) + (R− 1) ln 2)

)
− 1
βN

∑
a∈C

(1− |∂a|) lnZ1({hj→a}j∈∂a | Ja)

− R

βM

∑
i∈V

lnZ2({ĥb→i}b∈∂i). (8.44)

Remarkably, the level-one Bethe free energy (8.44) is equal to the original Bethe free
energy functional fBethe

(
η, η̂

)
defined in (8.37), but now evaluated for the average fields

hi→a and ĥa→i. From the cavity equations (8.39)-(8.40) for x = 1, one can deduce after
some algebra that the average fields hi→a and ĥa→i satisfyĥa→i = ĝBP({hj→a}j∈∂a\i | Ja)

hi→a = gBP({ĥb→i}b∈∂i\a).
(8.45)

Remarkably, the average fields hi→a and ĥa→i satisfy the BP equations (8.35).

To summarize, when x = 1, fBethe
level−1 equals fBethe computed at a certain appropriate

BP fixed-point. This fixed point corresponds to messages tanh βhi→a, tanh βĥa→i which
are an average of the BP solutions tanh βηi→a, tanh βη̂a→i over the cavity distribu-
tions Qi→a(ηi→a) and Q̂a→i(η̂a→i). The messages tanh βηi→a, tanh βη̂a→i describe the
“extremal states” whereas the messages tanh βhi→a, tanh βĥa→i describe their convex
superposition.

8.3 Quenched Average and Density Evolution Equations

The discussion in Sections 8.1 and 8.2 is valid for a single instance. Unfortunately the
cavity equations (8.39) and (8.40) are complicated to implement in practice as they
involve distributions over real values. Furthermore, there is no known technique to solve
the averaged equations (8.45) as it requires to select a particular BP fixed-point among
an exponentially large set of solutions.

Instead of computing the free energy, internal free energy and complexity, we compute
their quenched average

f = lim
N→∞

EΓ,J
[
fBethe

level−1

]
, ϕint = lim

N→∞
EΓ,J [ϕint] , Σ = lim

N→∞
EΓ,J [Σ] . (8.46)

The quenched average is performed over the graph ensemble and the Bernoulli source. It
is expected that the free energy, internal free energy and complexity concentrate on their
quenched average.
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To perform the quenched average we assume that the cavity messages Qi→a(ηi→a) and
Q̂a→i(η̂a→i) can be considered as i.i.d. realizations of random variables Qz(η) and Q̂z(η̂).
The random variables depend only on the position z along the spatial dimension and not
on the direction of the edges i→ a and a→ i. This key assumption is partially justified
by the following reason: If one selects an edge (i, a) randomly, its neighborhood will be a
tree with high probability. Therefore in the limit N →∞, the messages Qi→a(ηi→a) and
Q̂a→i(η̂a→i) will converge in distribution to the random variables Qz(η) and Q̂z(η̂).

The distributions of the random variables Qz(η) and Q̂z(η̂) are denoted Qz and Q̂z. Note
that the cavity messages are already distributions over real numbers, so that Qz and Q̂z
are distributions of distributions. From the cavity equations (8.39), (8.40) it is easy to
formally write down the set of integral equations that these distributions of distributions
satisfy. These are the density evolution equations for the cavity message.

8.3.1 Fixed-Point Equations of the Cavity Method for β ≤ βc

Using the method of [16], we can simplify considerably the equation for the density
evolution for β < βc. The quenched free energy, internal free energy and complexity
can be expressed with only six distribution over real values qz(h), q̂z(ĥ), qσ=±1

z (η|h) and
q̂σ=±1
z (η̂|ĥ) . Two of those densities are the probability distribution for the average fields
hi→a and ha→i,

qz(h) =
´
DQz[Q]δ(h−Av[Q])

q̂z(ĥ) =
´
DQ̂z[Q̂]δ(ĥ−Av[Q̂]).

(8.47)

The four remaining densities are transforms, for σ = ±1, of the conditional distributions
qz(η|h) and q̂z(η̂|ĥ), q

σ
z (η|h) = 1+σ tanhβη

1+σ tanhβhqz(η|h)
q̂σz (η̂|ĥ) = 1+σ tanhβη̂

1+σ tanhβĥ
qz(η̂|ĥ),

(8.48)

where the conditional distributions qz(η|h) and q̂z(η̂|ĥ) are defined with the respect to
qz(h) and q̂z(ĥ), qz(η|h)qz(h) =

´
DQz[Q]Q(η)δ(h−Av[Q])

q̂z(η̂|ĥ)q̂z(ĥ) =
´
DQ̂z[Q̂]Q̂(η̂)δ(ĥ−Av[Q̂]).

(8.49)

It is convenient to define two functions g and ĝ which correspond to (8.36) in the case of
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density evolutiong(ĥ1, . . . , ĥr−1) =
∑r−1
i=1 ĥi

ĝ (h1, . . . , hp−1 | J) = Jβ−1 tanh−1(tanh β
∏p−1
i=1 tanh βhi

)
,

(8.50)

where J ≡ (−1)x is the random variable representing the source bits. Furthermore we
set P (r) = (p/R)r

r! e−p/R for the Poisson-degree distribution of code-bit nodes.

With the independence assumption on the cavity messages, relations (8.45) imply that
distributions qz (h), q̂z

(
ĥ
)
satisfy a set of closed equations5

qz (h) =
∞∑
r=0

P (r)
wr

w−1∑
y1,...yr=0

ˆ r∏
a=1

dĥaq̂z−ya(ĥa)δ(h− g(ĥ1, . . . , ĥr)) (8.51)

and

q̂z(ĥ) = 1
wp−1

w−1∑
y1,...,yp−1=0

ˆ p−1∏
i=1

dhiqz+yi (hi)
1
2
∑
J=±1

δ(ĥ− ĝ(h1, . . . , hp−1 | J)). (8.52)

Let σi = ±1 denote auxiliary “spin” variables. We introduce the conditional measure
over σ1, . . . , σl−1,

ν1(σ1, . . . , σl−1|J, h1, . . . , hp−1) = 1 + J tanh β
∏p−1
i=1 σj

1 + J tanh β
∏p−1
i=1 tanh βhi

p−1∏
i=1

1 + σi tanh βhi
2 .

(8.53)

The equations for distributions qσz (η|h) and q̂σz (η̂|ĥ) are

qσz (η|h)qz(h) =
∞∑
r=0

P (r)
wr

w−1∑
y1,...,yr=0

ˆ r∏
a=1

dĥadη̂aq̂
σ
z−ya(η̂a|ĥa)q̂z−ya(ĥ)

× δ(η − g(η̂1, . . . , η̂r))δ(h− g(ĥ1, . . . , ĥr)) (8.54)

5We use the convention that if z is out of range the corresponding distribution is a unit mass at zero.
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and

q̂σz (η̂|ĥ)q̂z(ĥ) = 1
wp−1

w−1∑
y1,...,yp−1=0

ˆ p−1∏
i=1

dhiqz+yi(hi)

× 1
2
∑
J=±1

∑
σ1,...,σp−1=±1

ν1(σ1, . . . , σp−1|Jσ, h1, . . . , hp−1)

× δ(ĥ− ĝ(h1, . . . , hp−1 | J))

×
ˆ p−1∏

i=1
dηiq

σi
z+yi(ηi|hi)δ(η̂ − ĝ(η1, . . . , ηp−1 | J)). (8.55)

Equations (8.51), (8.52), (8.54), (8.55) constitutes a closed set of fixed-point equations
for six probability distributions.

8.3.2 Complexity in Terms of Fixed-Point Densities

Let Z1(h1, . . . , hp | J) = 1 + J tanh β
∏p
i=1 tanh βhi

Z2(ĥ1, . . . , ĥr) = 1
2
∑
σ=±1

∏r
i=1(1 + σ tanh βĥi).

(8.56)

Weights Z1 and Z2 corresponds to (8.38) in density evolution. We are now ready to
give the expression for the complexity in terms of the densities qz(h), q̂z(ĥ), qσz (η|h) and
q̂σz (η̂|ĥ).

The expression of f is the simplest

−βf = ln(1 + e−2β) + (R− 1) ln 2

− l − 1
L

L∑
z=1

1
wp

w−1∑
y1,...,yp=0

ˆ p∏
i=1

dhiqz+yi(hi)

× 1
2
∑
J=±1

lnZ1(h1, . . . , hp | J)

+ R

L+ w − 1

L+w−1∑
z=1

∞∑
r=0

P (r)
wr

×
w−1∑

y1,...,yr=0

ˆ r∏
a=1

dĥaq̂z−ya(ĥa) lnZ2(ĥ1, . . . , ĥr). (8.57)

Recall formula (8.18) which expresses the complexity as

Σ(β) = β(ϕint(β)− flevel−1(β)). (8.58)
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Since we already know that f is given by (8.57), it remains to compute the internal free
energy in the Bethe approximation. For this purpose we use

ϕBethe
int (β) = ∂

∂x
(xfBethe

level−1(β;x))|x=1. (8.59)

We compute the x-derivative on (8.41), and average over the cavity distributions, the
graph ensemble and the Bernoulli source. To express ϕint we first need to define the
conditional measure over σ = ±1

ν2(σ|ĥ1, . . . , ĥk) =
∏k
a=1(1 + σ tanh βĥa)∏k

a=1(1 + tanh βĥa) +
∏k
a=1(1− tanh βĥa)

. (8.60)

After some algebra one finds that ϕint(β) is given by

−βϕint = ln(1 + e−2β) + (R− 1) ln 2

− p− 1
L

L∑
z=1

1
wp

w−1∑
y1,...,yp=0

ˆ p∏
i=1

dhiqz+yi (hi)

× 1
2
∑
J=±1

∑
σ1,...,σp=±1

ν1(σ1, . . . , σp|J, h1, . . . , hp)

×
ˆ p∏

i=1
dηiq

σi
z+yi(ηi|hi) lnZ1(η1, . . . , ηp | J)

+ R

L+ w − 1

L+w−1∑
z=1

∞∑
r=0

P (r)
wr

×
w−1∑

y1,...,yr=0

ˆ r∏
a=1

dĥaq̂z−ya(ĥa)
∑
σ

ν2(σ|ĥ1, . . . , ĥr)

×
ˆ r∏

a=1
dη̂aq̂

σ
z−ya(η̂a|ĥa) lnZ2(η̂1, . . . , η̂r). (8.61)

Thanks to (8.57), (8.61) the complexity Σ(β;L,w) of the coupled ensemble is computed,
one reads off the dynamical and condensation thresholds βd(L,w) and βc(L,w). The
corresponding quantities for the underlying ensemble are obtained by setting L = w = 1.

8.3.3 Population Dynamics

The fixed-point equations (8.51), (8.52), (8.54) and (8.55) cannot in general be solved in
closed form. To solve those equations numerically we use a method called population
dynamics.

The idea is to represent the densities qz(h), q±z (η|h), q̂z(ĥ), and q̂±z (η̂|ĥ) through a sample
called a population. We have two populations: a code-bit population and a check
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Algorithm 8.1 Population Dynamics for (8.51) and (8.52)
for z = 1 to L+ w − 1 do

for i = 1 to n do
Draw ĥ(z,i) uniformly from [−1,+1];

for t ∈ {1, . . . , tmax} do
for z = 1 to L+ w − 1 do

for i = 1 to n do
Generate a new h(z,i);
Choose p− 1 pair indices a1, . . . , ap−1 uniformly from nw pairs (y, j),
y ∈ [z − w + 1, z] and j ∈ {1, . . . , n};
if for some index k, ak = (y, j) and y < 1 then

Set ĥak = 0;
Set h(z,i) =

∑p−1
k=1 ĥak ;

for z = 1 to L do
for a = 1 to n do

Generate J randomly and generate a new ĥ(z,a);
Choose r − 1 indices i1, . . . , ir−1 uniformly from nw pairs (y, j),
y ∈ [z, z + w − 1] and j ∈ {1, . . . , n};
Compute ĥ(z,a) according to (8.52);

population. The code-bit population is constituted of L+w−1 sets labeled by z ∈ [1, L+
w−1]. Each set, say z, has a population of size n, constituted of triples: (h(z,i), η

+
(z,i), η

−
(z,i)),

1 ≤ i ≤ n. The total size of the code-bit population is (L+w− 1)n. Similarly, we have a
population of triples with size Ln for check nodes, i.e., (ĥ(z,a), η̂

+
(z,a), η̂

−
(z,a)), z = 1, . . . , L,

a = 1, . . . , n. As inputs, they require the population size n, the maximum number of
iterations tmax, and the specifications of the SCLDGM (p,R, L,w) ensemble. First we
solve the two equations (8.51) and (8.52) with Algorithm 8.1.

First we solve the two equations (8.51) and (8.52) with Algorithm 8.1. Then we solve
(8.54) and (8.55) with the Algorithm6 8.2. From the final populations obtained after
tmax iterations it is easy to compute the complexity and the thresholds βd, βc.

8.3.4 Further Simplifications of Fixed-Point Equations and Complex-
ity

It is immediate to check that qz(h) = δ(h) and q̂z(ĥ) = δ(ĥ) is a trivial fixed point of
(8.51), (8.52). When we solve these equations by population dynamics with a uniform

6In the next to last line marked (*) the chosen index is not in a valid range. In an instance of a
coupled ensemble, this happens at the boundary, in which the corresponding node has smaller degree.
In the message-passing equation we discard these indices or equivalently assume that their triples are
(0, 0, 0).
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Algorithm 8.2 Population Dynamics for (8.54) and (8.55)
for z = 1 to L do

for i = 1 to n do
Set η±(z,i) = ±∞ and draw h(z,i) from qz(h);

for t ∈ {1, . . . , tmax} do
for z = 1 to L do

for a = 1 to n do
Generate J randomly and generate a new triple (ĥ(z,a), η̂

+
(z,a), η̂

−
(z,a)):

Choose r − 1 indices i1, . . . , ir−1 uniformly from nw pairs (y, j),
y ∈ [z, z + w − 1] and j ∈ {1, . . . , n};
Compute ĥ(z,a) according to (8.52);
Generate a configuration σ1, . . . , σr−1 from ν1(. . . |+ J, hi1 , . . . , hir−1) in
(8.53);
Compute η̂+

(z,a) by plugging ησ1
i1
, . . . , η

σr−1
ir−1

in (8.55);
Generate a configuration σ1, . . . , σr−1 from ν1(. . . | − J, hi1 , . . . , hir−1) in
(8.53);
Compute η̂−(z,a) by plugging ησ1

i1
, . . . , η

σr−1
ir−1

in (8.55);

for z = 1 to L+ w − 1 do
for i = 1 to n do

Generate a new triple (h(z,i), η
+
(z,i), η

−
(z,i)): Choose p− 1 pair indices

a1, . . . , ap−1 uniformly from nw pairs (y, j), y ∈ [z − w + 1, z] and
j ∈ {1, . . . , n}; if for some index k, ak = (y, j) and y < 1 then

Set (ĥak , η̂+
ak
, η̂−ak) = (0, 0, 0);(*)

Set h(z,i) =
∑p−1
k=1 ĥak and η±(z,i) =

∑p−1
k=1 η̂

±
ak
;
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initial condition over [−1,+1] for ĥ, we find that for fixed degrees and β fixed in a finite
range depending on the degrees, the updates converge towards the trivial fixed point.
Up to numerical precision, the values of h, ĥ are concentrated on 0. It turns out that the
range of β for which this is valid is wider than the interval [0, βc]. At first sight this could
seem paradoxical, and one would have expected that this range of β is equal to [0, βc]. In
fact, one must recall that beyond βc the equations of paragraph 8.3.1 are not valid (see
Section 8.1), so there is no paradox. Theorem C.1 in Appendix C shows that, for a wide
class of initial conditions and given β, for large enough degree p the iterative solution
of (8.51), (8.52) tends to the trivial point. This theorem, together with the numerical
evidence, provides strong support for the exactness of the following simplification.

We assume that for β < βc, equations (8.51), (8.52) have a unique solution qz(h) = δ(h)
and q̂z(ĥ) = δ(ĥ). For h = ĥ = 0 the distributions in (8.54), (8.55) possess a symmetry
qσ=1
z (η|0) = qσ=−1

z (−η|0), q̂σ=1
z (η̂|0) = q̂σ=−1

z (−η̂|0). It is therefore natural to look for
symmetrical solutions, and set

q+
z (η) = qσ=+1

z (η|0), and q̂+
z (η̂) = q̂σ=+1

z (η̂|0). (8.62)

Finally, equations (8.54), (8.55) simplify drastically,

q+
z (η) =

∞∑
r=0

P (r)
wr

w−1∑
y1,...,yr=0

ˆ r∏
a=1

dη̂aq̂
+
z−ya(η̂a)δ(η − g(η̂1, . . . , η̂r)), (8.63)

and

q̂+
z (η̂) = 1

wp−1

w−1∑
y1,...,yp−1=0

ˆ p−1∏
i=1

dηiq
+
z+yi(ηi)

×
∑
J=±1

1 + J tanh β
2 δ(η̂ − ĝ(η1, . . . , ηp−1 | J)). (8.64)

Remarkably, these are the standard density evolution equations for an LDGM code over
a BSC test-channel with an amplitude of half log-likelihood ratios equal to β.

The quenched free energy (8.57) now takes a very simple form

−βf = ln(1 + e−2β) + (R− 1) ln 2. (8.65)

At this point let us note that this simple formula has been proven by the interpolation
method [110], for small enough β. Since it is expected that there is no (static) ther-
modynamic phase transition for β < βc, the free energy is expected to be analytic for
β < βc. Thus by analytic continuation, formula (8.65) should hold for all β < βc. This
also provides a posteriori support for the triviality assumption made above for the fixed
point. Indeed, a non-trivial fixed-point leading to the same free energy would entail
miraculous cancellations.
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When we compute the complexity, expression (8.65) cancels with the first line in ϕint
(see Equ. (8.61)). We find

Σ(β;L,w) =p− 1
L

L∑
z=1

1
w

w−1∑
y=0

Σe[q+
z+y, q̂

+
z ]

− l

L

L∑
z=1

Σv

[
q̂+
z

]
+ R

L+ w − 1

L+w−1∑
z=1

Σv

[
q+
z

]
, (8.66)

where

Σv[q+] =
ˆ
dη q+(η) ln(1 + tanh βη),

Σe[q+, q̂+] =
ˆ
dηdη̂ q+(η)q̂+(η̂) ln(1 + tanh βη tanh βη̂). (8.67)

For the underlying ensemble (L = w = 1) the complexity reduces to

Σ(β) = (p− 1)Σe[q+, q̂+]− pΣv[q̂+] +RΣv[q+]. (8.68)

The average distortion or internal energy (see (7.15), (7.16)) at temperature β is obtained
by differentiating (8.65), which yields the simple formula

1
2u = 1− tanh β

2 for β < βc. (8.69)

It has to be noted that this expression is only valid for β < βc. To obtain the optimal
distortion of the ensemble Dopt (see table 7.1) one needs to recourse to the full cavity
formulas in order to take the limit β → +∞.

It is much simpler to solve the simplified fixed-point equations (8.63), (8.64). The
population dynamics algorithm is almost the same as in Algorithm 8.1. The only
difference is that J is generated according to the p.d.f. (1 + J tanh β)/2 instead of
Ber(1/2). The big advantage is that there is no need to generate the 2r−1 configurations
σ1, ..., σr−1 which reduces the complexity of each iteration.

As expected the complexity obtained in either way is the same up to numerical precision.

8.3.5 Large Degree Limit

Inspection of the fixed-point equations (8.63) and (8.64) shows that the distributions7

q+(η) = δ+∞(η), and q̂+(η̂) =
∑
J=±1

1 + J tanh β
2 δ(η̂ − J). (8.70)

7Here we adopt the notation δ+∞ for a unit mass distribution at infinity.
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are a fixed-point solution in the limit p → +∞, R fixed. This is (partially) justified
by Theorem C.2 in Appendix C. The fixed point (8.70) leads to a complexity for the
underlying model for p→ +∞,

lim
p→+∞

Σ(β) = (R− 1) ln 2−
∑
J=±1

1 + J tanh β
2 ln

(1 + J tanh β
2

)
. (8.71)

The condensation threshold limp→+∞ βc is obtained by setting this expression to zero

1−R = lim
p→+∞

h2
(1 + tanh βc

2
)
, (8.72)

which is equivalent to

lim
p→+∞

βc = βsh ≡
1
2 ln

(1−Dsh(R)
Dsh(R)

)
. (8.73)

In the large degree limit the condensation threshold is equal to the amplitude of half-log-
likelihood ratios of a BSC test-channel with probability of error Dsh(R), i.e., tuned to
capacity. Moreover the average distortion or internal energy is given by

lim
p→+∞

1
2u(β) =

{
1
2(1− tanh β) β < βsh(R)
Dsh(R) β ≥ βsh(R)

(8.74)

8.4 The Predictions of the Cavity Method

8.4.1 Complexity and Thresholds of the Underlying and Coupled En-
sembles

We have computed the complexity and the thresholds from the cavity theory. These
have been computed both from the full cavity equations of Section 8.3.1 and from the
simplified ones of Section 8.3.4. Numerical values of the dynamical and condensation
thresholds are presented in Tables 8.1 and 8.2. Results are obtained with population sizes
n = 30000 (uncoupled), n = 500− 1000 (coupled), and iteration number tmax = 3000.

Since the free energies of the coupled and underlying ensembles are the same in the
limit of infinite length (known from Theorem 7.1) and the condensation threshold is
a singularity of the free energy (known from the cavity method), we can conclude on
theoretical grounds that

lim
L→+∞

βc(L,w) = βc(w = 1). (8.75)

The right-hand side of Equation (8.75) is the condensation threshold of the underlying
system that is equivalent to a coupled system with w = 1.
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Table 8.1: The numerical values of βd and βc for SCLDGM(p,R = 0.5, L, w = 3)
ensembles with p = 3, 4, and 5 and different values of L.

p β
uncoupled L

ensemble 32 64 128

3 βd 0.883 0.942 0.941 0.941
βc 0.940 0.958 0.948 0.946

4 βd 0.875 1.010 1.010 1.009
βc 1.010 1.038 1.023 1.017

5 βd 0.832 1.032 1.030 1.029
βc 1.032 1.067 1.048 1.039

Table 8.1 shows that the condensation threshold βc(L,w) of the coupled ensemble is
higher than βc for the uncoupled ensemble and decreases as L increases. The finite size
effects are still clearly visible at lengths L = 128 and are more marked for larger w. This
is not surprising since we expect the finite size corrections to be of order O(w/L).

Let us now discuss the behavior of the dynamical threshold. Table 8.2 displays the results
for the ensembles LDGM(p = 5, R = 0.5) and SCLDGM(p = 5, R = 0.5, L, w).

Table 8.2: The numerical values of βd and βc for SCLDGM(p = 5, R = 0.5, L, w)
ensembles with different values of L and w.

L β
w

1 2 3 4

128 βd 0.832 1.028 1.029 1.030
βc 1.032 1.038 1.039 1.043

256 βd 0.832 1.023 1.027 1.029
βc 1.032 1.035 1.037 1.038

The column w = 1 gives the dynamical and condensation thresholds of the underlying
ensemble, βd(w = 1) and βc(w = 1). We see that for each fixed L the dynamical threshold
increases as a function of w. Closer inspection suggests that

lim
w→+∞

lim
L→+∞

βd(L,w) = βc(w = 1). (8.76)

Equ. 8.76 indicates a threshold saturation phenomenon: for the coupled ensemble
the phase of non-zero complexity shrinks to zero and the condensation point remains
unchanged. This is analogous to the saturation of the BP threshold of LDPC codes
towards the MAP threshold [78]. It is also analogous to the saturation of spinodal points
in the Curie-Weiss chain [82]. Similar observations have been discussed for constraint
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satisfaction problems in [83].

8.4.2 Comparison of β∗ with βd

We systematically observe that the optimal algorithmic value β∗ of the BPGD-h algorithm
is always lower, but somewhat close to βd. For example for the uncoupled case p = 5 we
have (β∗, βd) ≈ (0.71, 0.832). For the coupled ensembles with (L = 64, w = 3) we have
(β∗, βd) ≈ (1.03, 1.038). In fact, in the coupled case we observe β∗ ≈ βd ≈ βc. Thus for
the coupled ensemble BPGD-h operates well even close to the condensation threshold.

This is also the case for BPGD-r as we explain in the next paragraph. We use this fact in
the next section to explain the good performance of the algorithm for coupled instances.

8.4.3 Sampling of the Gibbs Distribution with BPGD-r

Threshold saturation, equation (8.76), indicates that for L large, the phase of non-zero
complexity, occupies a very small portion of the phase diagram close to βc. This then
suggests that for coupled ensembles Markov chain Monte Carlo dynamics, and BPGD-r
algorithms are able to correctly sample the Gibbs measure for values of β up to ≈ βc.
Let us discus in more detail this aspect of the BPGD-r algorithm.

By the Bayes rule:

µβ(u | x) =
N∏
i=1

µβ(ui|x, u1, . . . , ui−1). (8.77)

Thus we can sample u by first sampling u1 from µβ(u1|x), then u2 from µβ(u2|x, u1) and
so on. Then, computing xa = ⊕i∈∂aui and the resulting average distortion, yields half the
internal energy u(β)/2. With the BPGD-r algorithm the average distortion is computed
in the same way except that the sampling is done with the BP marginals. So as long as
the BP marginals are a good approximation of the true marginals, the average distortion
DBPGD−r(β) should be close to u(β)/2. This can be conveniently tested because the
cavity method predicts the simple formula (8.69) for the internal energy.

In Figure 8.3 we observe DBPGD−r(β) ≈ (1 − tanh β)/2 for β < β′, with a value of β′

lower but comparable to βd. In particular for a coupled ensemble we observe β′ ≈ βd ≈ βc.
So Figure 8.3 strongly suggests that BPGD-r correctly samples the Gibbs distribution of
coupled instances all the way up to ≈ βc, and that BP correctly computes marginals for
the same range.
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Figure 8.3: The performance of the BPGD-r algorithm. The plot shows that the algorithm
can approximate average distortion quite precisely for β < β′ ≈ βd. The black curve shows
the average distortion u(β)/2 = (1− tanh β)/2 for β < βc. The results are obtained for
the underlying LDGM(5, 0.5, 128000) and coupled SCLDGM(5, 0.5, 64, 3, 2000) ensembles.
The results are averaged over 50 instances. Numerical values of various thresholds are
βd,un = 0.832, βd,cou = 1.030, βc = 1.032.

8.4.4 Large Degree Limit

According to the information theoretic approach to rate-distortion theory, we can view
the encoding problem as a decoding problem for a random linear code on a BSC (q) test-
channel with noise q = Dsh(R). Now, the Gibbs distribution (7.8) with β = 1

2 ln(1− q)/q
is a MAP-decoder measure for a channel problem with the noise tuned to the Shannon
limit. Moreover, for large degrees the LDGM ensemble is expected to be equivalent to
the random linear code ensemble. These two remarks suggest that, since in the case of
coupled ensembles with large degrees the BPGD-h encoder with optimal β∗ approaches
the rate-distortion limit, we should have

β∗ ≈ 1
2 ln 1− q

q
≡ 1

2 ln 1−Dsh(R)
Dsh(R) . (8.78)

In fact this is true. Indeed on the one hand, as explained above, for coupled codes we
find β∗ ≈ βd ≈ βc (even for finite degrees). On the other hand the analytical large degree
analysis of the cavity equations in Section 8.3.5 enables us to compute the complexity
and to show the remarkable relation

βc ≈
1
2 ln 1−Dsh(R)

Dsh(R) , for p� 1. (8.79)

These remarks also show that the rate-distortion curve can be interpreted as a line of
condensation thresholds for each R.
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8.5 Discussion

8.5.1 Summary

We have investigated a simple spatially-coupled LDGM code ensemble for lossy source
coding. No optimization on the degree distribution is required: the check degree is regular
and the code-bit degree is Poisson. We have shown that the algorithmic rate-distortion
curve of a low-complexity encoder based on BPGD enables us to approach the ultimate
Shannon rate-distortion curve, for all compression rates, when the check degree grows
large. The inverse temperature parameter (or equivalently, test-channel parameter) of the
encoder could be optimized. However we have observed numerically and we have argued
based on large degree calculations that a good universal choice is βsh(R), given by tuning
the test channel to capacity. We recall that for the underlying (uncoupled) ensemble the
same encoder does not perform well; indeed, as the degree grows large, the difference
between the algorithmic rate-distortion and Shannon rate-distortion curves grows. Insight
into the excellent performance of the BPGD algorithm for spatially-coupled ensembles
is gained by studying the phase diagram of the Gibbs measure on which the BPGD
encoder is based. We have found, by applying the cavity method to the spatially-coupled
ensemble, that the dynamical (inverse temperature) threshold βd saturates towards the
condensation (inverse temperature) threshold βc. For this reason the BPGD encoder can
operate close to the condensation threshold βc, which itself tends in the large degree limit
to βsh(R), the test channel parameter tuned at capacity. For the underlying (uncoupled)
ensemble the dynamical threshold moves in the opposite direction in the large degree
limit so that the BPGD algorithm cannot operate close to the Shannon limit.

8.5.2 Open Questions

We mention some open questions that are left out by the present study and would deserve
more investigations.

Tracking the Evolution of the Dynamical Threshold

For fixed degrees, the best value of the inverse temperature β∗ of the BPGD algorithm
is close to, but systematically lower, than the dynamical temperature βd. Although
the value of βd can be calculated by the cavity theory, here we determine β∗ by purely
empirical means and it is not clear what the theoretical principles that enable us to
determine its value are. As the graph is decimated the degree distribution changes and
the effective dynamical temperature of the decimated graphs should evolve to slightly
different values. It is tempting to conjecture that β∗ is the limit of such a sequence of
dynamical temperatures. A related phenomenon has been observed for the dynamical
threshold with respect to clause density for random constraint satisfaction problems in
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their SAT phase [111].

Analyzing the Decimation Process

The decimation process used in this chapter is hard to analyze rigorously because it is
not clear how to keep track of the statistics of the decimated graph. However we would
like to point out that a related process has been successfully analyzed in recent works
[112] for the K-SAT problem in the large K limit up to the dynamical threshold (in the
SAT phase). These methods could also be of use in the present case.

Proof of Threshold Saturation

Finally, whereas a rigorous control of the full cavity method is, in general, beyond present
mathematical technology, there are sub-problems for which progress can presumably
be made. For example, in the present case we have observed that the cavity equations
reduce (in the dynamical phase βd < β < βc) to density evolution equations for an LDGM
code on a BSC. The saturation of the dynamical temperature βd to the condensation
temperature βc appears to be very similar to the threshold saturation phenomenon of
channel coding theory. By now, we have a host of mathematical methods pertaining to
this effect for LDPC on general binary memoryless channels [78], [80]. We think that
these methods could be adapted to prove the saturation of βd towards βc. One extra
difficulty faced in the present problem is that the “trivial” fixed-point of density-evolution
equations of LDPC codes is not always present in the LDGM case.
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A The All-zero Codeword Assump-
tion for Symmetric Channels

The all-zero codeword assumption for symmetric channels is general for linear codes and
symmetric decoder. We mention [59] for an extensive proof. We take the opportunity
in this appendix to give an explanation of this assumption in the language of Gibbs
measures and spins systems. The proof is given for LDPC codes but in fact does not
require that the parity-check matrix is sparse.

We recall that a binary string x and its spin sequence representation σ are linked by the
transformation

σi = (−1)xi . (A.1)

We call σ a general codeword, σ0 the emitted codeword and s the received message
after transmission over the channel. We say that a channel is symmetric if its transition
probability satisfies

q (si | σi) = q (−si | −σi) . (A.2)

If we receive the message s, the probability that the codeword σ was sent is given by the
Gibbs measure

µLDPC (σ | h) = 1
ZLDPC

∏
a∈C

1 +
∏
i∈∂a

σi

∏
i∈V

ehiσi , (A.3)

where hi are the half log-likelihood ratios

hi (si) = 1
2 ln q (si | 1)

q (si | −1) . (A.4)

The probability distribution of the log-likelihood ratios is based on the distribution of
the received message

PS (s) =
∏
i∈V

q
(
si | σ0

i

)
. (A.5)
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We will show now that up to a change of variable in the Gibbs measure, the codeword
sent can be chosen as the all-zero codeword. We introduce the change of variable denoted
by a tilde

σ̃ = σ · σ0, (A.6)

were the product is realized componentwise. Notice first that the symmetry of the channel
(A.2) implies

hi (si)σ0
i = hi

(
siσ

0
i

)
. (A.7)

Therefore reparametrizing the codewords σ in the Gibbs distribution is equivalent as
reparametrizing the channel observation s

µLDPC (σ̃ | h (s)) =µLDPC (σ | h (s̃)) . (A.8)

The difference is that now the reparametrized channel observation is distributed as if the
the all-zero codeword was sent

PS (s̃) =
∏
i∈V

q
(
siσ

0
i | σ0

i

)
=
∏
i∈V

q (si | 1) . (A.9)
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B On the Number of Rooted Poly-
mers

The convergence criterion (4.32) in the polymer expansion requires an evaluation of the
“entropy” of rooted polymers. The term “entropy” has to be understood as the number of
polymers of a given size. The following lemma gives a bound on the entropy of polymers
on a d-regular graph. Its generalization to irregular bipartite graphs with degrees of
variable nodes and check nodes bounded by lmax and rmax is straightforward by setting
d = max (lmax, rmax).

Lemma B.1 (Bound on the number of rooted polymers). Let Γ = (V,E) be a d-regular
graph with vertex set V and edge set E. The number of polymers γ (connected subgraphs)
of size |γ ∩ V | = t rooted to any vertex x ∈ V is upper-bounded by∑

γ3x
I (|γ ∩ V | = t) ≤ edt.

Proof. A polymer γ 3 x is uniquely determined by one of its spanning tree Tγ plus the
complementary set of edges γ\Tγ . Figure (B.1) shows an example of this injective mapping.
We ask the following question: If T is a spanning tree, how many different polymers have
T as a spanning tree? In other words how many combinations of complementary edges
can be made once T is given? Let g be the graph spanned by T which contains the most
edges. As T is a tree, |T ∩ E| = |T ∩ V | − 1. Therefore the number of complementary
edges unspecified by a spanning tree is at most

|g \ T | = |g ∩ E| − |T ∩ E|
= |g ∩ E| − |T ∩ V |+ 1
= |g ∩ E| − |g ∩ V |+ 1

≤
(
d

2 − 1
)
|g ∩ V |+ 1. (B.1)

Denote by At (x) the number of polymers of size t rooted in x ∈ V and call Bt the
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Figure B.1: On the left: a polymer is represented with colored solid lines. A spanning
tree is shown in blue and the complementary edges in red. On the right: the spanning
tree is shown on the computational tree in blue with a possible representation of the
complementary edges in red.

number of rooted d-ary trees with size t. Based on the previous considerations

At (x) ≤ 2( d2−1)t+1Bt. (B.2)

To find a formula for Bt, we use a derivation based on generating functions similar to
the one of Catalan numbers in [113]. Define the generating function

B (z) :=
∑
t=0

ztBt. (B.3)

If one removes the root of a d-ary tree it splits the tree into d trees of smaller size. This
yields the following equation for the generating function

B = 1 + zBd. (B.4)

By using the Lagrange-Bürmann formula on Equation (B.4) we find

Bt = 1
t (d− 1) + 1

(
td

t

)
. (B.5)

Finally we can relax the bound (B.2) to have a simpler expression by noticing that

2( d2−1)t+1Bt ≤edt. (B.6)
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C Two Theorems for the Density
Evolution Equations

Theorem C.1 provides theoretical support for the simplifications of the cavity equations
discussed in Section 8.3.4.

Theorem C.1. Consider the fixed-point equations (8.51) and (8.52) for the individual
Poisson LDGM(p,R) ensemble with a fixed β. Take any initial continuous density q̂(0)(ĥ)
and consider iterations q̂(t)(ĥ). There exists p0 ∈ N such that for p > p0, limt→∞ ĥ

(t) = 0
almost surely.

The proof1 is presented in Section C.1. Note that p0 depends on β and R. However we
expect that as long as β < βc the result holds for all p ≥ 3 and R. This is corroborated
by the numerical observations. When we solve equations (8.51) and (8.52) by population
dynamics with q̂(0)(ĥ) the uniform distribution, we observe that for a finite range of β
depending on (p,R), the densities q(t)(h), q̂(t)(ĥ) tend to a Dirac distribution at the origin.
The range of β for which this occurs always contains the interval [0, βc] irrespective of
(p,R). These observations also hold for many other initial distributions. We note that
these observations break down for β large enough.

Theorem C.2 partially justifies (8.70) which is the basis for the computation of the
complexity in the large degree limit in Section 8.3.5.

Theorem C.2. Consider the fixed-point equations (8.63) and (8.64) associated with the
individual Poisson LDGM(l, R) ensemble for some p, R and β (w = 1 in the equations).
Let η̂(t) be a random variable distributed according to q̂+(t)(η̂) at iteration t. Assume that
the initial density is

q̂+(0)(η̂) =
∑
J=±1

1 + J tanh(β)
2 δ(η̂ − J). (C.1)

Then,
1It can be extended to other irregular degree distributions.
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1. For all t,

q̂+(t) (−η̂) = e−2βη̂ q̂+(t) (η̂) ,

q+(t) (−η) = e−2βηq+(t) (η) . (C.2)

2. For any δ > 0, ε > 0 and B > 0 , there exits l1 such that for l > l1 and all t.

P
{

1− ε ≤ η̂(t) ≤ 1
}
>

e2β

1 + e2β (1− δ), (C.3)

P
{
−1 ≤ η̂(t) ≤ −1 + ε

}
>

1
1 + e2β (1− δ). (C.4)

The proof is presented in Appendix C.2.

C.1 Proof of Theorem C.1

We first state two useful lemmas

Lemma C.1. Let the random variable X be distributed according to a Poisson distribution
with mean λ.

P(X <
λt

2 ) < exp(−λt10), t ≤ 1,

P(X >
3λt
2 ) < exp(−λt10), t ≥ 1. (C.5)

Proof. Use the Chernoff bound.

Lemma C.2. Let

ε1 = β
3p
2R (tanh ε0)(pR3)1/4

δ1 = exp(− p

10R ) + p

R
exp

(
−ε0
√
Rp

β
√

3π
)
. (C.6)

with ε0 = min(1/2, β/2). Consider the recursions for t ≥ 1

εt+1 = (t+ 1)β 3p
2R (tanh εt)(pR)1/4

,

δt+1 = exp
(
− p

10R (t+ 1)
)

+ p

R
(2
√
δt)p−1. (C.7)

There exists an integer p0 (depending only on R and β) such that for p ≥ p0,

1. εt ≤ 1
2t+1 for t ≥ 0.

150



C.1. Proof of Theorem C.1

2. δt < 2 exp(− p
5R t) for t ≥ 2.

Proof. Consider the first property. At t = 0, ε0 ≤ 1/2. Assume that εt−1 ≤ 1
2t for t ≥ 1,

then

εt = tβ
3p
2R (tanh εt−1)(pR3)1/4 ≤ tβ 3p

2R (εt−1)(pR3)1/4

≤ tβ 3p
2R ( 1

2t )
(pR3)1/4 =

tβ 3p
R

2t((lR3)1/4−1)
× 1

2t+1 . (C.8)

The proof is complete if tβ 3p
R < 2t(

4
√
pR3−1) for t ≥ 1. It is clear that this is true for p

large enough.

Now consider the second property. Clearly for p large enough such that

δ2 = exp
(
− p

5R

)
+ p

R
(2
√
δ1)p−1 ≤ 2 exp

(
− p

5R

)
. (C.9)

To complete the proof by induction, we remark that δt < 2 exp
(
− p

5R t)
)
< 1 implies

p

R
(2
√
δt)p−1 < exp

(
− p

5R (t+ 1)
)

(C.10)

for p large enough independent of t.

We now turn to the proof of Theorem C.1. It is organized in three steps:

1. We first show that for any small δ1 and ε1, one can find an integer p1 such that for
p ≥ p1

q1 ≡ P
{
|h(1)| ≤ ε1

β

}
≥ 1− δ1. (C.11)

2. We then show by induction on t ≥ 1 that

qt ≡ P
{
|h(t)| < εt

β

}
≥ 1− δt. (C.12)

3. Finally using Lemma C.2 we deduce that h(t) → 0 almost surely as t→ +∞.

Proof. [Proof of Theorem C.1]

We begin by noting that regardless of the initial distribution, q̂(t)(ĥ) has a symmetric
density due to the symmetric distribution of J . Moreover,

∣∣∣ĥ(t)
∣∣∣ ≤ 1 from (8.52). Thus,

Eq̂(t)(ĥ(t)) = 0 and Var(ĥ(t)) = Eq̂(t)(ĥ2) ≤ 1.
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Step 1: We set P (r) = e−λ λ
r

r! and λ = p/R. Let h(r,t) =
∑r
a=1 ĥ

(t)
a where ĥ(t)

a are i.i.d.
random variables with probability density q̂(t)(ĥ). Let σ2

0 = E((ĥ(0)
a )2) ≤ 1. According to

[114, Theorem 3.5.3] we have for any ε0 > 0. Thus, there exists r′(ε0, β) ∈ N such that
for r > r′,

P
{
|h(r,0)| < ε0

β

}
≥ ε0

β
√

2πr
. (C.13)

Take p such that λ = p/R ≥ p′/R = 2r′, then

q0 = P
{
|h(0)| < ε0

β

}
=
∞∑
r=0

P (r)P
{
|h(r,0)| < ε0

β

}

≥
3λ/2∑
r=λ/2

P (r)P
{
|h(r,0)| < ε0

β

}

≥ ε0

β
√

3πλ

3λ/2∑
r=λ/2

P (r)

>
ε0

β
√

3πλ
(1− 2e−

λ
10 ). (C.14)

The last inequality follows from lemma C.1. Thus for p large enough

q0 = P
{
|h(0)| < ε0

β

}
>

ε0

2β
√

3πλ
≡ 1− δ0. (C.15)

Recall ĥ(t+1) = 1
β tanh−1(J tanh β

∏p−1
i=1 tanh βh(t)

i

)
. From tanh−1(a tanh β

)
≤ aβ for

0 < a < 1, we have ∣∣∣ĥ(t+1)
∣∣∣ ≤ p−1∏

i=1
tanh

∣∣∣βh(t)
i

∣∣∣ . (C.16)

Define

Z(t)
p ≡ ln

p−1∏
i=1

tanh
∣∣∣βh(t)

i

∣∣∣
 =

p−1∑
i=1

ln
(
tanh

∣∣∣βh(t)
i

∣∣∣) . (C.17)

Note that Z(t)
p is always negative and if one of h(t)

i tends to zero, it diverges to −∞.
Consider t = 0. We will show that Z(0)

p has a large negative value with high probability.
Define

ui ≡

ui−1, if
∣∣∣h(0)
i−1

∣∣∣ > ε0
β ,

ui−1 + ln tanh ε0, otherwise,
(C.18)

with u0 = 0. One can check for later use that Z(0)
p ≤ up. Moreover, because of (C.15)
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one can consider up as a random walk (with negative jumps),

ui =

ui−1, with prob. 1− q0

ui−1 + ln tanh ε0, with prob. q0.
(C.19)

Let s = ln (tanh(ε0)). Using the Chernoff’s theorem [115, Page 151],

P
{ 1
p− 1

up
s
< λ−3/4

}
< exp

(
−(p− 1)D(λ−3/4||q0)

)
, (C.20)

where D(x||y) = x ln(xy ) + (1− x) ln(1−x
1−y ). Now, since

x ln( x
q0

) > x ln(x), (C.21)

and
(1− x) ln

( 1− x
1− q0

)
> (1− x) ln

(1− x
δ0

)
, (C.22)

we have

D(λ−3/4||q0) > −H2(λ−3/4) ln(2)− (1− λ−3/4) ln (δ0) , (C.23)

for δ0 defined in (C.15). By a large λ expansion of the right-hand side of (C.23):

−H2(λ−3/4) ln 2−(1− λ−3/4) ln δ0 = ε0

2β
√

3πλ
+ o( 1√

λ
). (C.24)

Thus, there exists p′′ ∈ N depending on R, β and ε0 such that for p > p′′,

P
{ 1
p− 1

up
s
< λ−3/4

}
< exp

(
−ε0(p− 1)

4β
√

3πλ

)
. (C.25)

By replacing s = ln tanh ε0 and λ = p
R ≈

p−1
R for large degrees,

P
{
up > (lpR)1/4 ln tanh ε0)

}
< exp

(
− ε0
√
Rp

4β
√

3π

)
, (C.26)

Note that the inequality in P(. . . ) is reversed since s < 0. Now recall Z(0)
p ≤ up.

Therefore,

P
{
Z(0)
p ≤ (pR)1/4 ln tanh ε0

}
≥ P

{
up ≤ (pR3)1/4 ln tanh ε0

}
≥ 1− exp

(
− ε0
√
Rp

4β
√

3π

)
. (C.27)
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Consequently,

P
{∣∣∣ĥ(1)

∣∣∣ ≤ (tanh ε0)(pR3)1/4}
≥ P

{
Z(0)
p ≤ (pR)1/4 ln tanh ε0

}
≥ 1− exp

(
− ε0
√
Rp

4β
√

3π

)
. (C.28)

From
∣∣∣h(r,1)

∣∣∣ =
∣∣∣∑r

a=1 ĥ
(1)
a

∣∣∣ ≤∑r
a=1

∣∣∣ĥ(1)
a

∣∣∣, we deduce

P
{∣∣∣h(r,1)

∣∣∣ ≤ r(tanh ε0)(pR3)1/4} ≥ P
{∣∣∣ĥ(1)

∣∣∣ ≤ (tanh ε0)(pR3)1/4}r
≥
{

1− exp
(
− ε0
√
Rp

4β
√

3π

)}r

≥ 1− r exp
(
− ε0
√
Rp

4β
√

3π

)
, (C.29)

for p large enough. Therefore we have

P
{∣∣∣h(1)

∣∣∣ ≤ 3
2λ(tanh ε0)(pR3)1/4

}
=
∞∑
r=0

P (r)P
{∣∣∣h(r,1)

∣∣∣ ≤ 3
2λ(tanh ε0)(pR3)1/4

}

≥
3λ/2∑
r=0

P (r)P
{∣∣∣h(r,1)

∣∣∣ ≤ 3
2λ(tanh ε0)(pR3)1/4

}

≥
3λ/2∑
r=0

P (r)P
{∣∣∣h(r,1)

∣∣∣ ≤ r(tanh ε0)(pR3)1/4}

≥
3λ/2∑
r=0

P (r)
(

1− r exp
(
− ε0
√
Rp

4β
√

3π

))

≥ 1− exp(−0.1λ)− λ exp
(
− ε0
√
Rp

4β
√

3π

)
. (C.30)

To summarize, we have obtained

q1 = P
{∣∣∣h(1)

∣∣∣ ≤ ε1
β

}
≥ 1− δ1. (C.31)

This completes step 1.

Step 2: The proof is by induction. Assume that

qt = P
{
|h(t)| ≤ εt

β

}
≥ 1− δt. (C.32)

We prove that this holds also for t+ 1. This mainly consists in repeating the derivations
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(C.15) to (C.31) for qt, εt and δt. We briefly repeat them here:

P
{∣∣∣ĥ(t+1)

∣∣∣ ≤ (tanh εt)(pR3)1/4}
≥ P

{
Z

(t)
l ≤ (pR3)1/4 ln (tanh εt)

}
≥ 1− exp

(
−(p− 1)D(λ−3/4||qt)

)
. (C.33)

Assume that δt � 1. From (C.23),

D(λ−3/4||qt) > −H2(λ−3/4) ln(2)− (1− λ−3/4) ln (δt) . (C.34)

If λ−3/4 < 1
2 (equivalently, p > 24/3R),

D(λ−3/4||qt) > − ln 2− 1
2 ln δt. (C.35)

Thus,

P
{∣∣∣ĥ(t+1)

∣∣∣ ≤ (tanh εt)(pR3)1/4}
≥ 1− (2

√
δt)p−1, (C.36)

and finally,

P
{∣∣∣ĥ(t+1)

∣∣∣ ≤ (t+ 1)3
2λ(tanh εt)(lR3)1/4

}

≥
3(t+1)λ/2∑

r=0
P (r)P

{∣∣∣h(r,t+1)
∣∣∣ ≤ (t+ 1)3

2λ(tanh εt)(pR3)1/4
}

≥
3(t+1)λ/2∑

r=0
P (r)P

{∣∣∣h(r,t+1)
∣∣∣ ≤ r(tanh εt)(pR3)1/4}

≥
3(t+1)λ/2∑

r=0
P (r)

(
1− r(2

√
δt)p−1

)
≥ 1− exp(−(t+ 1) λ10)− λ(2

√
δt)p−1. (C.37)

Or equivalently,
pt+1 = P

{
|h(t+1)| < εt+1

β

}
≥ 1− δt+1. (C.38)

This completes step 2.

Step 3: Using lemma C.2, for l large enough (depending on β and R, but independent
of t)

P
{∣∣∣h(t)

∣∣∣ > 1
β2(t+1)

}
≤ δt ≤ 2 exp

(
− p

5Rt
)
. (C.39)

The Borel-Cantelli lemma [114, Theorem 2.3.1] states that, h(t) → 0 almost surely if for
all α > 0,

∞∑
t=1

P
{∣∣∣h(t)

∣∣∣ > α
}
< +∞. (C.40)
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Let us verify that h(t) has this property. For any α, there is τ such that 1/2τ+1 < βα.
Therefore, for t ≥ τ ,

P
{∣∣∣h(t)

∣∣∣ > ε
}
≤ P

{∣∣∣h(t)
∣∣∣ > 1

2(t+1)β

}
< δt (C.41)

and hence,

∞∑
t=1

P
{∣∣∣h(t)

∣∣∣ > ε
}
≤ τ +

∞∑
t=τ

P
{∣∣∣h(t)

∣∣∣ > ε
}

< τ +
∞∑
t=τ

δt

< τ +
∞∑
t=τ

2 exp
(
− p

10Rt
)
< +∞. (C.42)

This completes step 3.

C.2 Proof of Theorem C.2

Proof. We first show the first property, which is called the Nishimori symmetry. Note
that it is satisfied by q̂+(0) and q+(0). The equations (8.63) and (8.64) are the density
evolution equations associated to an LDGM code over the BSC. It is known that the
Nishimori symmetry is preserved under density evolution recursions (e.g., see [59] for
similar properties in the case of LDPC codes).

Let us turn to the proof of the second property. First note that (C.3) implies (C.4).
Indeed

P{η̂(t) < −1 + ε} =
ˆ −1+ε

−1
q̂+(t)(η̂)dη̂

=
ˆ 1

1−ε
e−2βη̂ q̂+(t)(η̂)dη̂

≥ e−2βP{η̂(t) > 1− ε}

≥ 1
1 + e2β (1− δ). (C.43)

So we only have to prove (C.3). We will use induction. The induction hypothesis is (C.3)
for some δ > 0 and ε > 0 at iteration t. It is obviously true at t = 0. Let us first show
that

E(η(t)) = λE(η̂(t)) ≥ 2λs. (C.44)
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for s = 1
2(1− δ)(1− ε)(1− e−2β(1−ε))/(1 + e−2β). We have

E(η̂(t)) =
ˆ 1

−1
η̂q̂+(t)(η̂)dη̂

=
ˆ 0

−1
η̂q̂+(t)(η̂)dη̂ +

ˆ 1

0
η̂q̂+(t)(η̂)dη̂

= −
ˆ 1

0
η̂e−2βη̂ q̂+(t)(η̂)dη̂ +

ˆ 1

0
η̂q̂+(t)(η̂)dη̂

=
ˆ 1

0
η̂(1− e−2βη̂)q̂+(t)(η̂)dη̂

≥
ˆ 1

1−ε
η̂(1− e−2βη̂)q̂+(t)(η̂)dη̂

≥ (1− e−2β(1−ε))(1− ε)
ˆ 1

1−ε
q̂+(t)(η̂)dη̂

> (1− δ)(1− ε)1− e−2β(1−ε)

1 + e−2β . (C.45)

This proves (C.44).

By applying Hoeffding’s inequality [115] for λ/2 < r < 3λ/2,

P
{

r∑
a=1

η̂(t)
a < λ

s

2

}
= P

{
r∑

a=1
(η̂(t)
a − E(η̂(t))) < λ

s

2 − rE(η̂(t))
}

≤ P
{

r∑
a=1

(η̂(t)
a − E(η̂(t))) < λ

s

2 − 2rs
}

≤ P
{

r∑
a=1

(η̂(t)
a − E(η̂(t))) < −λs2

}

< exp(−λ
2s2

8r )

< exp(−λ s
2

12). (C.46)

From

P
{
η(t) < λ

s

2

}
=
∞∑
r=0

P (r)P
{

r∑
a=1

η̂(t)
a < λ

s

2

}

≤
λ/2∑
r=0

P (r) +
3λ/2∑
r=λ/2

P (r)P
{

r∑
a=1

η̂(t)
a < λ

s

2

}
+

∞∑
r=3λ/2

P (r). (C.47)

and Lemma C.1, we get

P
{
η(t) > λ

s

2

}
> 1− 2 exp

(
− λ

10

)
− exp(−λ s

2

12). (C.48)
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Now consider the density evolution equation (8.64). We have

P
{
η̂(t+1) >

1
β
atanh

(
tanh(β)

[
tanh(βλs2)

]p−1
)}

≥ P
{
J = 1, η(t)

1 >
λs

2 , . . . , η
(t)
p−1 >

λs

2

}
= 1 + tanh(β)

2

(
P
{
η(t) >

λs

2

})p−1

≥ 1 + tanh(β)
2

(
1− 2 exp

(
− λ

10

)
− exp(−λ s

2

12)
)p−1

≥ e2β

1 + e2β

(
1− (p− 1)

(
2 exp(− p

10R ) + exp(− ps2

12R )
))

(C.49)

Let

1− ε(p,R, β) = 1
β
atanh

(
tanh(β)

[
tanh(βs p2R )

]p−1
)
, (C.50)

and
∆(p,R) = (p− 1)

(
2 exp(−0.1 p

R
) + exp(− ps2

12R )
)
. (C.51)

Inequality (C.3) holds at t+ 1 , if ε(p,R, β) ≤ ε and ∆(p,R) ≤ δ. This is true for p > p1
large enough since ε(p,R, β) and ∆(p,R) are decreasing functions of p (for large values
of p).
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