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Abstract
Type 1 diabetes is an auto-immune disease that has a significant impact on patients’ health and

everyday life, and also on health care systems. Since their bodies are unable to control their

blood glucose concentrations, patients need to take over this cumbersome task manually and

live with the fear of hypo- and hyperglycemia. Counting carbohydrates, pricking their fingers

several times per day to measure their blood glucose concentration and injecting insulin are

part of their daily routine. This so-called "standard therapy", when applied carefully, leads to

acceptable glucose control. However, in order to restore the lost quality of life, to potentially

extend their life expectancy, and to avoid medical complications, today’s research focuses on

the design and the development of an artificial pancreas, a device that automatically controls

patient’s blood glucose concentrations.

Recent technological breakthroughs, such as insulin pumps and continuous glucose monitor-

ing devices, have paved the way for improved diabetes management, with minimal patient

involvement. Nevertheless, advanced blood glucose control methods fail to provide accept-

able treatment, whereas standard therapy, which only relies on two parameters, is capable of

successfully treating millions of patients. In this context, the aim of this thesis is to design a

novel diabetes treatment method that is based on the standard therapy parameters, but takes

advantage of the new technology.

In this thesis, the challenges that make glucose control difficult and limit the performances

of state-of-the-art control methods, are identified. They are addressed in four independent

steps that, when combined, define a new diabetes treatment strategy. First, new models are

developed with the objective of improving the quality of the predictions of blood glucose

concentration. Inspired by standard therapy knowledge, these simple, identifiable and reliable

models are shown to have excellent glucose prediction capabilities and high correlations with

physician-set therapy parameters. Meanwhile, they only rely on the identification of four

or five parameters. The second step corresponds to the development of a method to design

stochastic models, based on continuous deterministic models, motivated by the observed

intra-patient variability of blood glucose concentration. When constructed on the basis of

the new deterministic prediction models, the resulting stochastic models allow accounting

for many sources of uncertainty without requiring additional parameter identification. This

way, confidence intervals on predicted blood glucose concentrations are obtained and can

be used to make diabetes treatment safer and more robust. Since continuous blood glucose

measurements generally exhibit a high level of noise, these measurements have to be filtered

before being used for control purposes. This is why the third step proposes to use the stochas-
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tic model for the design of an extended Kalman filter. Finally, new diabetes-specific control

methods are investigated. Open- and closed-loop scenarios that allow successful meal rejec-

tions and maintain blood glucose levels close to a specified safe target, are directly derived

from the new proposed prediction models. It is observed that meal announcements improve

the performance of closed-loop glucose control, but are not mandatory, as the algorithm is

shown to successfully reject unannounced meals as well. This novel control approach has the

advantage of remaining simple as it only relies on two tuning parameters (with two additional

ones for every announced meal type), which are easily obtained using the new prediction

models. In other words, no manual tuning of the control algorithm is necessary.

All the proposed approaches are tested on real patient data, on the UVa/Padova simulator, or

on both and show excellent performance. In addition, the new closed-loop control algorithms

are compared to state-of-the-art controllers and mostly show slightly better results than far

more complex controllers.

Keywords: Type 1 Diabetes Mellitus, Modeling, Stochastic Modeling, Control, Extended

Kalman Filter, Insulin on Board
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Résumé
Le diabète de type 1 est une maladie auto-immune qui a des conséquences sur la santé et

la vie quotidienne des personnes atteintes, ainsi que sur les systèmes de santé publique.

Comme leur corps n’est plus capable de régler la glycémie de façon naturelle, les patients

doivent exécuter eux-mêmes manuellement cette tâche et vivent avec l’angoisse de l’hypo-

et de l’hyperglycémie. Compter les hydrates de carbone, se piquer le doigt plusieurs fois

par jour pour mesurer le taux de glycémie et injecter de l’insuline, font ainsi partie de leur

quotidien. Cette « thérapie standard » conduit, lorsqu’elle est appliquée consciencieusement,

à une qestion acceptable de la maladie. Cependant, pour diminuer les effets de la maladie

en termes de perte de qualité de vie, augmenter potentiellement l’espérance de vie et éviter

les complications médicales, les efforts de recherche se concentrent depuis plusieurs années

sur le développement d’un pancréas artificiel, i.e. un appareil dont l’objectif est le réglage

automatique de la glycémie.

Des progrès technologiques récents, comme le développement de pompes à insuline et d’ap-

pareils de mesure du glucose en continu, ouvrent la voie vers une amélioration du traitement

de la maladie en réduisant l’implication du patient à un minimum. Néanmoins, les méthodes

de commande avancée de la glycémie ne sont pas encore à même de fournir un traitement

acceptable, tandis que la thérapie standard, qui dépend uniquement de deux paramètres,

permet de traiter des millions de patients avec succès. Dans ce contexte, le but de cette

thèse est de concevoir des nouvelles méthodes de traitement du diabète qui se basent sur les

paramètres de la thérapie standard, tout en profitant des progrès technologiques récents.

Dans cette thèse, les défis soulevés par le contrôle automatique de la glycémie et qui limitent

les performances des techniques de commande avancée sont identifiés. Des solutions sont

proposées qui suivent quatre étapes indépendantes, qui, mises de concert, définissent une

nouvelle stratégie pour le traitement de diabète. En premier lieu sont développés deux nou-

veaux modèles, avec pour objectif l’augmentation de la qualité de prédiction des taux de

glycémie. Inspirés par la thérapie standard, ces modèles simples, identifiables et fiables, pré-

sentent d’excellentes capacités de prédiction de la glycémie et des corrélations élevées avec

les paramètres de thérapie fixés par des médecins. Ils présentent aussi l’avantage que seuls 4

ou 5 paramètres doivent être identifiés. Dans la deuxième étape, une méthode pour construire

des modèles stochastiques, basés sur des modèles continus et déterministes, est développée

afin de tenir compte de la grande variabilité intra-individuelle. Etant construit sur la base d’un

des nouveaux modèles de prédiction, ce modèle stochastique résultant permet de prendre

en compte de nombreuses sources d’incertitude, sans pour autant nécessiter l’identification
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Résumé

de paramètres supplémentaires. Ainsi, des intervalles de confiance sur le taux de glycémie

prédit sont obtenus qui permettent de rendre le traitement du diabète plus sûr et robuste.

Puisque les mesures continues de glucose sont généralement très bruitées, il est nécessaire

de les filtrer celles-ci avant de pouvoir les utiliser pour le contrôle de la glycémie. Pour cette

raison, au cours de la troisième étape, il est proposé d’utiliser le modèle stochastique pour la

construction d’un filtre de Kalman étendu. Finalement, des méthodes de commande auto-

matique spécifiques au traitement du diabète sont étudiées. Des scénarios en boucle ouverte

comme en boucle fermée sont dérivés directement des nouveaux modèles de prédiction.

Ils permettent de rejeter l’effet des perturbations dues aux repas et de maintenir le taux de

glycémie près d’une valeur de référence imposée. On peut observer qu’annoncer les repas

améliore la performance de la commande en boucle fermée, mais n’est en rien rédhibitoire,

puisque l’algorithme proposé est aussi capable de rejeter l’effet des repas non-annoncés. Cette

nouvelle approche a l’avantage de rester simple, puisqu’elle dépend uniquement de deux

paramètres à ajuster (avec deux paramètres supplémentaires par type de repas annoncé), qui

sont facilement obtenus à l’aide des nouveaux modèles de prédiction. En d’autres termes,

l’algorithme de commande n’a pas besoin d’être réglé manuellement.

Toutes les approches proposées dans cette thèse sont testées sur des données cliniques, sur le

simulateur UVa/Padova, ou sur les deux. De plus, les nouveaux algorithmes de commande

en boucle fermée sont comparés à des contrôleurs récemment publiés dans la littérature et

exhibent souvent des résultats légèrement meilleurs que des contrôleurs bien plus complexes.

Mots-clés : Diabète de type 1, modélisation, modélisation stochastique, commande auto-

matique, filtre de Kalman étendu, insuline active restante
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1 Introduction

1.1 Motivation

1.1.1 Diabetes Mellitus

Diabetes Mellitus is a metabolic disease characterized by elevated Blood Glucose (BG) concen-

trations causing acute symptoms such as polyuria (frequent urination), polydipsia (increased

thirst), and polyphagia (increased hunger). If these high BG concentrations stay untreated

- a condition called hyperglycemia - severe short-term complications including diabetic ke-

toacidosis and coma may occur. However, long-term complications due to prolonged hy-

perglycemia are currently the most expensive burden to health care systems and the biggest

detriment patient well-being. These complications include cardiovascular diseases, chronic

renal failure, and nerve damages, leading among others to blindness, ulceration, amputations,

and the need for dialysis.

In 2012, more than 371 million people (Internation Diabetes Foundation [2011]), i.e. 8.3%

of the adult world population, are deemed to suffer from diabetes, most of which in low-

and middle- income countries. This enormous, and constantly increasing (Danaei et al.

[2011]) prevalence generates global health care expenditures estimated at 465 billion USD

in 2011 (expected to rise to 595 billion USD by 2030). These figures highlight the primordial

importance of research in diabetes prevention and care.

For a healthy person, the regulation of BG concentrations can be described by the simplified

mechanism illustrated in figure 1.1. BG concentrations are kept in balance around 100 mg/dl

mainly because of the effects of two hormones: insulin and glucagon. These hormones are

produced by the beta- and alpha-cells of the pancreas, respectively. If BG concentration

increases, for instance because of a meal, insulin release is stimulated. This insulin mediates

the uptake of glucose from the blood to be stocked in the liver and muscles in the form

of glycogen, thus reducing BG concentrations to a normal level. If, on the other hand, BG

concentrations are low, glucagon is released by the pancreas. Glucagon stimulates the release

of the stocked glycogen from the liver and muscles to the bloodstream, thus increasing BG
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concentration. This explanation is, of course, an oversimplification as the exact mechanisms

are more complex and involve several hormones and external influences. Nevertheless, it is

widely admitted that insulin and glucagon are the most significant actors in glucoregulation.

Figure 1.1: Simplified version of the BG regulation mechanism in a healthy person.

Diabetes appears if this equilibrium is disrupted and BG concentration cannot be lowered in

an effective way anymore. Three main types of diabetes are defined, based on the cause of the

elevated BG concentrations:

• Type 1 Diabetes Mellitus (T1DM): Elevated BG concentrations are caused by an au-

toimmune destruction of insulin producing beta-cells. Consequently, the reduction or

absence of insulin production prevents excess glucose in the bloodstream to be stocked

inside the liver or muscles. This results in very high BG concentrations that are fatal

for the affected individual without treatment. Thus, exogenous insulin injections are

vital. T1DM generally first appears at a young age and Internation Diabetes Foundation

[2011] estimates that 78000 children develop T1DM every year. Nearly 10% of diabetic

people have T1DM.

• Type 2 Diabetes Mellitus (T2DM): A number of lifestyle factors such as diet, physical

activity, or stress, as well as genetic predispositions and medical conditions may lead to

insulin resistance. In this case, insulin has less effect than for a non-insulin resistant

person. This lead to an increase in insulin needs that cannot be met by the pancreatic

insulin production, and, in turn, to an insulin deficit with increased BG concentration.

2
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Depending on the severity of the insulin resistance, BG concentrations range from

mildly elevated, which is mostly treated by lifestyle changes and medication, to very

high, in which case exogenous insulin is needed. The vast majority of people, about

90%, have T2DM.

• Gestational diabetes: During pregnancy, 4% of women develop diabetes due to insuffi-

cient insulin production and use. While treated during pregnancy, gestational diabetes

usually disappears after giving birth.

With exogenous insulin treatment, a new difficulty arises: if too much insulin is injected, BG

concentrations can get too low. This condition, called hypoglycemia, is extremely dangerous

as severe cases may lead to seizures, coma, or in the worst case even death. Cryer et al. [2003]

give a detailed overview of hypoglycemia and related dangers and difficulties.

This thesis is on the treatment of T1DM. Clearly, this challenge should be addressed first

as results can later be extended to the treatment of T2DM and other types by considering

endogenous insulin production.

1.1.2 T1DM treatment

Until very recently, T1DM was a death sentence for affected people. This only changed with the

first extraction of animal-sourced insulin and the first insulin treatment by Banting et al. [1922].

This treatment was improved and led to a significant increase in patients’ life expectancy

(Joslin [1924]). Over the last century, the treatment kept improving (for example, through the

groundbreaking genetically engineered insulin synthesis using E. coli bacteria by Goeddel

et al. [1979]) together with the understanding of the disease, but it was only The Diabetes

Control and Complications Trial Research Group [1993] that showed the enormous benefit of

intensive insulin treatment. Keeping BG concentrations as close to normoglycemia as possible

significantly delays the onset and slows down the progression of retinopathy, nephropathy,

and neuropathy. Nathan et al. [2005] extended these results with longer observations on

cardiovascular diseases. As a result, the treatment of patients with T1DM consists in the

challenging task of reducing hyperglycemia as much as possible while completely avoiding

hypoglycemia.

In the following paragraphs different aspects of T1DM treatment are discussed. First the

necessary devices are described and secondly, the different treatment methods are explained.

Devices for T1DM treatment

For T1DM treatment, insulin needs to be infused and BG concentrations need to be measured

3
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Insulin administration Insulin can be administered by several means. Although syringes

have been used for a long time for injecting insulin boluses (single doses), they are now widely

replaced by insulin pens. For the last decades, the use of insulin pumps has become more and

more widespread. These devices allow almost continuous insulin infusion by giving boluses

up to every minute. Insulin may be administered (i) subcutaneously (SC), i.e. beneath the skin,

(ii) intraperitoneally (IP),i.e. into the membrane of the abdominal cavity, or (iii) intravenously

(IV), i.e. directly into the veins. The SC route is the standard for commercial insulin pumps

because of the low risk of infections, but has the drawback of relatively slow insulin uptake

times. Since fast insulin action reduces the amplitude postprandial BG excursions (as will

be shown later), faster IP delivery is being researched and shows promising results, but with

the risk of complications (Liebl et al. [2009]). IV infusion is the fastest as it is the closest to

healthy insulin delivery, but is only applicable within a clinical setting because of a high risk of

infection. In this thesis, therapy using Continuous Subcutaneous Insulin Infusion (CSII) is

investigated because of the possibility to infuse insulin almost continuously and because of

its widespread acceptance and use.

BG measurements Accurate BG measurements are key for appropriate treatment and avoid-

ance of hypoglycemia. Two main methods are commonly being used: Self Monitoring of Blood

Glucose (SMBG) and Continuous Glucose Monitoring (CGM). SMBG consists in measuring the

glucose concentration in a small drop of blood obtained by pricking the finger with a lancet.

This method is by far the most common because of its relatively good accuracy at reasonable

cost. The biggest drawback of this method is that for every measurement, the patient needs

to extract a blood drop - a painful procedure. As as results most patients do not take BG

measurements very frequently. CGM devices are an alternative that gives almost continuous

BG concentrations with less finger pricks, at the price of reduced accuracy and reliability.

Also, these devices are relatively expensive and have a time-lag that can be dangerous. These

disadvantages explain its slow progression on the market. This work considers both types of

measurements.

Diabetes treatment methods

Different T1DM treatment approaches, ranging from currently applied methods to active

research fields, are introduced in this paragraph.

Standard therapy Currently, standard therapy - as it will be called in this thesis - is the norm

when it comes to T1DM treatment. This therapy is also referred to as basal/bolus therapy or

Multiple Daily Injections (MDI), if performed using insulin pens or syringes. The principle is

to split insulin treatment into two parts as illustrated in figure 1.2.

• basal insulin is insulin that acts relatively uniformly throughout the day and should

keep patients fasting BG concentration close to the optimum. Patients using syringes or
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pens inject long-acting insulin once or twice a day while CSII-treated patients use the

insulin pump to adjust the basal rate in an "optimal" manner. Currently, the ability to

change the basal insulin whenever needed is a major advantage of CSII over syringes or

pens. A good overview of CSII treatment is given by Marcus [2013].

• bolus insulin is insulin that is injected in order to counteract the effect of meals. The

carbohydrates (CHO) contained in meals are processed by the digestive system and

release glucose into the bloodstream. In order to avoid hyperglycemia, this major

disturbance needs to be counteracted by injecting a well-chosen quantity of fast-acting

insulin using a syringe, pen, or insulin pump. This quantity is based on the quantity

of ingested CHO and the pre-meal BG concentration. To compute the correct insulin

amount, the patient has to take an SMBG measurement before each meal.

The Diabetes Control and Complications Trial Research Group [1993] that standard therapy

is effective. However, this method can be enhanced by taking into account the additional

information provided by CGM devices on the one hand, and by making meal rejections more

effective on the other hand. Indeed, according to Prud’homme et al. [2011] these have a lot

of room for improvement, as different meal speeds are not taken into account in standard

therapy.

Figure 1.2: Illustration of standard therapy.

Short introduction to systems and control Before describing more elaborate control meth-

ods, control-specific concepts and vocabulary are introduced. In the context of control, a

system, represented in figure 1.3, is an object of interest (it can be many different things) upon

which different actions can be taken - the inputs u - and that shows or gives different reactions

- the outputs y . The inputs are defined by the fact that they can be manipulated from outside

the system, while the outputs are defined by the property that they can be observed from

outside the system. Additionally, disturbances may apply to the systems. These are generally
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unknown, but have a measurable effect on the outputs. For example, in this thesis, the system

is part of the human endocrine system, the inputs are mainly insulin injection and meal

intake, the output is BG concentration, and the disturbance is the measurement noise or other

unknown excitations that have an effect on BG concentration.

Figure 1.3: Illustration of a system.

Often, the behavior of a system is studied and described mathematically. This description

is called a model, and it should reproduce the outputs of a system, based on the inputs,

as accurately as possible. However, quite often, models are not capable of capturing the

whole behavior of a system, either because it is too complex, or because disturbances are too

important.

A system is called static if its outputs at a given time are influenced by the inputs at that time,

only. In a dynamical system, however, the outputs are determined by current and past inputs.

A controller is used to adjust a system’s inputs, in order to obtain desired outputs. This system

is called controlled system. A controller itself can be considered as a system, whose output

is the controlled system’s input. If the controller’s inputs depend directly on the controlled

system’s outputs, then the controller is called a closed-loop controller, otherwise it is called

an open-loop controller. The output value that a closed-loop control algorithm is intended to

reach is called a setpoint.

Open-loop control In control theory, an open-loop controller is a controller that computes

system inputs based on the current system state and a model. In the context of T1DM treat-

ment, open-loop control means that future insulin infusions are computed using current

BG measurements and past insulin infusions, as illustrated in figure 1.4. Hence, standard

therapy is a good example of open-loop control applied at every SMBG measurement and

using a simple static model for BG prediction. However, other implementations than standard

therapy exist for open-loop control and the use of different BG prediction and state estimation

methods may improve treatment. These improvements should result in reduced hypo- and

hyperglycemia. Open-loop control is currently not a very active field of research, despite its

potential improvements over standard therapy.
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Figure 1.4: Illustration of open-loop control for T1DM treatment.

Closed-loop control In closed-loop control, a continuous or frequently sampled measure-

ment is used to compute the system input continuously or at the same sampling rate, respec-

tively. For closed-loop T1DM treatment, continuous measurements, i.e. a CGM device, is

required. The resulting feedback structure, shown in figure 1.5, potentially leads to dramatic

performance improvements and better disturbance rejection, although guaranteeing patient

safety is still an open issue. The goal of a closed-loop treatment is to reproduce the behavior of

a healthy pancreas as close as possible while minimizing patient involvement. Therefore, it is

also referred to as the Artificial Pancreas (AP). It should be noted that, strictly speaking, open-

loop control is actually closed-loop, as BG measurements are taken into account. However,

because of the ling and irregular sampling times, it is generally considered as open-loop.

Figure 1.5: Illustration of closed-loop control for T1DM treatment.

1.1.3 Motivation

Diabetes is a disease with an enormous human and economic impact, but its current treatment

is suboptimal, as it does not fully embrace the possibilities offered by insulin pumps and CGM

devices. Thus, research to improve the treatment has a lot of potential to positively affect

patients lives while reducing the health care burden. For these reasons, this thesis aims

at making the treatment of patients with T1DM more effective. For this purpose, new BG

prediction algorithms and new open- and closed-loop control strategies using the SC-SC route

(i.e. SC measurements and SC insulin infusion), are explored. The ultimate goal is the design

of an AP.

1.2 Challenges in control of T1DM

The quest for the AP has been ongoing for more than 3 decades and an enormous amount of

time and money was spent. Still, there is no AP commercially available. Among the numerous

scientific bottlenecks limiting the development of an AP, some are inherent to the difficulties
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associated with BG control. The main challenges encountered during AP development and

addressed in this thesis are described below.

1.2.1 Patient safety

BG control is vital and there is no room for mistakes. Patients’ lives are at stake and BG

control must be absolutely reliable and safe. This is why medical research is strictly regulated

by different agencies such as the American Food and Drug Administration (FDA). These

necessary, but heavy, regulations slow down the development process as clinical studies and

new products need to be thoroughly tested and approved.

1.2.2 Uncertainty

BG concentrations as well as BG measurements are subject to a great number of uncertainties

that make it very difficult to ascertain patient safety.

• Inter-patient variability: Patients differ significantly from one to another and need

to have an individualized treatment. These differences have physiological and life-

style related reasons and are significant: inter-patient variability for insulin absorption

may have a coefficient of variation (CV) between 20-45% in a clinical environment

(Heinemann [2002]). This uncertainty might even be higher for complete BG dynamics

(i.e. not only insulin absorption) and in an out-patient setting. For this reason, if a

model-based approach is used, it is necessary that the model parameters can be reliably

determined for any patient on the basis of the available measurements: the model

should be identifiable. An example of inter-patient variability is given in figure 1.6.

• Intra-patient variability: Even if the same treatment is applied and the same meals are

taken, the BG concentration profile of a patient can vary significantly over consecutive

and identical days. This glucose variability is related among others to changes in insulin

sensitivity, but also insulin therapy (Vora and Heise [2013]). Heinemann [2002] quantifies

this variability with a CV between 15 and 25% for insulin absorption in a clinical setting.

Such variability is considerable and may lead to hypoglycemia.

• Measurement noise: BG measurements, when using SMBG or CGM, are very noisy.

The ISO 15197 norm prescribes that 95% of measurements should be within 20% of

the exact value if the reference BG > 75 mg/dl and within ±15 mg/dl if BG ≤ 75 mg/dl.

However, neither most SMBG devices (Freckmann et al. [2010]), nor CGMs (Freckmann

et al. [2013]) currently fulfill this norm.

• Meal announcement errors: Most T1DM methods rely on meal announcements for

which patients need to estimate the CHO content of the meal they are about to ingest.

However, such an estimation is extremely difficult and even an experienced patient

may considerately under- or overestimate the CHO content. Kildegaard et al. [2007]
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Figure 1.6: Example of inter-patient variability. The figure shows CGM measurements from the
12 patients of the clinical study described in A.2, with exactly the same meal under standard
therapy. BG concentrations are normalized with their respective initial BG concentrations.

report an average intra-individual variation in meal announcements of 30%, which has

a significant impact on the performances of the treatment.

• Meal uptake rate variability: Depending on the meal, the rate of glucose appearance

in the bloodstream may vary considerably, as shown by Prud’homme et al. [2011]. This

is quantified by the Glycemic Index (GI) that can be accounted for when predicting

the effect of the meal. Nevertheless, this source of uncertainty remains and is mainly

addressed by the use of different sets of model parameters associated with the corre-

sponding meals.

1.2.3 Complexity of insulin-glucose dynamics

The relationship between insulin and glucose, i.e. the system to be controlled, is extremely

complex. Even if some models were designed with the goal to mimic the glucoregulatory

system with as much detail and physiological accuracy as possible (the model by Sorensen

[1985] being the most notable example), they still cannot fully explain the observed variability.

It is thus impossible to model the system in such a way that BG concentrations can be precisely

predicted.

1.2.4 Model identifiability

Most control methods use a model to predict BG concentrations. As this model needs to

be individualized, it is necessary that its parameters can be determined based on given

measurements: the model needs to identifiable. Mostly only BG measurements are available
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because other measurements, such as tracer measurements, are expensive and thus not

possible for a large population. This limitation prohibits the use of complex model structures

and limits BG prediction capabilities. Model identifiability needs to be considered during

model and experiment design.

1.2.5 Asymmetric control objective

Control theory mostly assumes that the control objective is symmetric around the setpoint

(the value the controller tries to reach). In other words, undershoots of the system output are

admissible if they allow faster convergence to the setpoint. However, the risk for a patient

is not a symmetric function of the deviation of BG concentration, and undershoots mostly

go hand in hand with hypoglycemia. In fact hypoglycemia is much more dangerous than

hyperglycemia. The work of Kovatchev et al. [2000] led to the definition of an indicator of

risk as a function of BG concentration. This risk function is depicted in figure 1.7, and is

described in more detail in appendix B.4. It can be observed that, for example, a concentration

of 50 mg/dl is as risky as a concentration of 240 mg/dl, while the risk is zero at 112.5 mg/dl.

Therefore, traditional control algorithms need to be applied with caution.
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Figure 1.7: The risk function quantifies patient risk as a function of BG concentration.

1.2.6 Time delay

Time delays are detrimental to control performance. Intuitively this is well illustrated by an

example given by Longchamp [2010]: Taking a shower is a case of closed-loop control as a

target water temperature should be reached by adjusting the tap and feeling the temperature

on the skin. This system has a time delay as the effect of the adjustment of the tap is not felt

instantaneously, but only after several seconds. As a consequence, while setting the water

temperature, one might over-adjust, but only feel this when the water gets too hot or cold. As
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a reaction, one tends to over-adjust in the other direction and come back close to the original

opening of the tap, hence creating an oscillating system fueled by over-adjustments. For T1DM

control such oscillation must be avoided as they may lead to hypoglycemia or even loss of

controller stability.

During T1DM treatment, time delays have two different origins:

• SC infusion During CSII, insulin is injected subcutaneously. Consequently, the insulin

needs to be transported from the SC compartment into the bloodstream and it takes

some time for the injected insulin to have an effect on BG concentrations. This delay is

generally estimated to be around 20 minutes.

• SC measurement When using a CGM device, BG concentration is measured within the

SC tissue, and not in the plasma. The glucose contained in the blood must first get into

the interstitial fluids, which takes some time. Recently, Basu et al. [2013] estimated this

delay to be 5 to 6 minutes for patients at fasting state (i.e. who did not eat or take an

insulin bolus in the recent past)). However these values might be larger when large BG

variations occur.

Overall, delays of up to 30 minutes between the insulin injection and the measurement of its

effect can be observed. This is a substantial duration, especially considering that, for example,

during exercise BG can drop easily by 60 mg/dl during 30 minutes (cf. figure C.1).

1.2.7 Control saturation

In closed-loop control, the control variable can generally take both, positive and negative

values around its operating point. However, insulin injection can only take positive values

as no insulin can be removed from the body. This saturation makes BG control difficult

because, again, BG concentration undershoots need to be avoided at any price. Such an input

saturation is a strong non-linearity that makes the application of standard control methods

inappropriate and dangerous.

In other words, BG concentration can be lowered by an AP, but they cannot be automatically

increased. The most common ways to increase BG concentration are through CHO intake

or a glucagon shot, but these need to be administered manually. El-Khatib et al. [2010] use a

second pump for automated glucagon injection, but this technique is not widely accepted,

yet.

1.3 Contributions

This thesis proposes to improve the treatment of T1DM while addressing most of the afore-

mentioned challenges using a complete method that leads to state-of-the-art BG control
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without the need of manual parameter tuning, while making physician supervision more

accessible. The contributions of this work are found in the fields of research discussed in

below:

1.3.1 Control-specific prediction models of T1DM patients

New control-oriented prediction models are proposed. These models allow the identification

of parameters that are directly linked to standard therapy parameters using exclusively BG

measurements. Two versions of the Therapy Parameter-based Model (TPM) were designed

to predict the effect of insulin injections and CHO intake on BG concentrations.

• TPM has only 4 parameters to identify and is best used for predicting BG concentrations

of patients within the University of Virginia/Padova simulator (UVa simulator) - the FDA

approved in silico simulator designed to test control algorithms, and described in A.1.

• TPM+ has 5 parameters to identify and is recommended for prediction of real patient’s

BG concentrations.

Additionally, in the context of this work, a model extension for predicting the effect of physical

activity on BG concentrations was proposed and is given in appendix C.

1.3.2 Stochastic Modeling

A method to design a stochastic model based on a given continuous deterministic model (not

forcibly T1DM related) is proposed and validated. This method reliably computes confidence

intervals on system states based on previous measurements.

This method is applied to the TPM to create the stochastic Therapy Parameter-based Model

(sTPM).

1.3.3 BG Estimation

An Extended Kalman Filter (EKF)-based Therapy Parameter-based Filter (TPF) is proposed

to process CGM data. It takes into account past insulin injections and CHO intake information

to generate improved BG estimations. The TPF is derived using the sTPM.

1.3.4 BG Control

Based on the TPM and the TPF, several novel control approaches are proposed using both,

open- and closed-loop control.

• Open-loop: Standard therapy was extended to reject meal disturbances in a more
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effective way, especially in the case of very slow acting meals i.e. with a low GI.

• Closed-loop: A new Therapy Parameter-based Controller (TPC) continuously rejects

announced and unannounced disturbances based on the TPM.

1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 discusses the design of deterministic models that leads to the TPM and TPM+.

These new models are identified and their fitting and prediction capabilities are assessed with

real clinical data as well as UVa simulator data.

In chapter 3, the method to build stochastic models based on parametric uncertainty is

introduced and applied to the TPM to obtain the sTPM. Results are then validated using both

clinical and UVa simulator data.

The use of an EKF in combination with the TPM or sTPM to improve the estimation of BG

concentrations given by CGM devices is discussed in chapter 4. The TPC is shown to be

effective in UVa simulator data.

All previous results are then combined in chapter 5 to provide a T1DM treatment strategy.

Open-loop control and closed-loop options are introduced and assessed with the UVa simula-

tor. Results are compared to state-of-the-art controllers.

Finally, a conclusion is drawn in chapter 6 and an outlook on possible future work is given.
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2 Deterministic Modeling

2.1 Introduction

The development of reliable BG prediction models, that can be used e.g. in bolus calculators,

educational tools, insulin pump suspension algorithms and closed-loop BG controllers, is

a very active research field and many prediction models are now available in the literature,

among which the most commonly used are undoubtedly compartmental models. These

models, whose complexities rise from the simplicity of the Bergman Minimal Model (BMM),

proposed by Bergman et al. [1979], to the complexity of the models of Hovorka et al. [2002] or

Dalla Man et al. [2007], e.g., show potentially good prediction capabilities as long as they can

be personalized (Fischer et al. [1987]). The personalization of the corresponding model pa-

rameters is only possible if, together with BG, additional measured quantities, such as insulin

concentrations and tracer measurements, are available. Unfortunately this is rarely the case

and prediction models that are identifiable with only BG measurements should be preferred.

This justifies the widespread use of black-box models, such as auto-regressive models (Finan

et al. [2009]), or Neural Networks (NN)(Daskalaki et al. [2011]). These models, however, have

the disadvantage that their parameters cannot be linked to physically observable quantities.

As a result, identification errors which result in unlikely parameters cannot be easily detected

and predictions may become dangerously corrupted.

In this context, one of the main contributions of this thesis is to propose new compartmental

models that can be identified using only BG measurements. Their simple linear structure,

together with their low number of model parameters and states, facilitates the identification

step and prevents fitting measurement noise. These new models also have the proven property

that their model parameters are related to the standard therapy parameters, which have

a physiological meaning. These are very valuable model properties for applications like

continuous glucose measurement signal filtering, BG control (automated pancreas or open-

loop control), state estimation, bolus calculators, or pump suspension algorithms.

This chapter starts by a review of the state of the art in modeling of the glucoregulatory system

in section 2.2. In section 2.3, the new therapy parameter-based models are presented and the
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link between its parameters and standard therapy parameters is discussed. In section 2.4, the

identification method, and the evaluation metrics are described. The validation method of the

new models is presented in section 2.5. This validation is performed in 3 successive steps: (i)

the models are fitted to the UVa simulator and study data, (ii) the correlation between model

and therapy parameters is verified, and (iii) model predictions are analyzed and compared.

We conclude the chapter in section 2.6 and give an outlook on future work.

Most of the research and results presented in this chapter were published by Bock et al. [2013].

2.2 State of the art in modeling of the glucoregulatory system

To improve the treatment of patients with T1DM it is essential to have a good understanding

of the dynamics of BG concentrations. As discussed before, this is made complicated by the

extreme complexity and variability of the system. Despite these difficulties, many models of

a wide range of complexity have been developed over the past decades. These models have

all been designed for a specific applications, even if some were rightfully used beyond their

initial scope. It is important to choose or design a model according to the intended use. The

different applications of glucose-insulin models are reviewed and, for each, the commonly

used models are given. Most of these models have a modular structure that is described, and,

subsequently, prediction models are discussed in more detail and their properties compared

to those requested for an appropriate prediction model.

2.2.1 Model applications

Several categories of models can be classified by decreasing complexity:

Physiological models The goal of this type of model is to follow the underlying principles of

the glucoregulatory system. This means that the system is represented in the most detailed

way, with all organs and associated transfer rates being modeled. As a consequence, these

models generally rely on a very large number of model parameters and equations. The

trouble is that these parameters are almost impossible to identify and population parameters

are used. Hence, the individualization of these models is nearly impossible. Examples are

developed by Sorensen [1985], or by Kim et al. [2007], who focus on the effect of exercise on

the glucoregulatroy system.

In silico simulation models This type of model aims at generating BG profiles of virtual

patients as a response to several stimuli, such as CHO intake or insulin infusions. This allows

testing different therapies and controllers in the context of pilot studies. As an example, the

UVa simulator by Kovatchev et al. [2009], based upon a model by Dalla Man et al. [2007] has

been accepted by the United States FDA to replace animal testing in preclinical studies and is
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currently widely used for testing closed-loop therapies. Another model that is frequently used

for this purpose was developed by Hovorka et al. [2002] and was implemented by Wilinska

et al. [2010]. Models used in this framework generally rely on many parameters, whose

identification requires complex and expensive experiments. For this reason, identification is

only performed to generate a population of virtual patients. The model equations generally

maintain a certain degree of physiological accuracy, i.e. the different states mostly represent

the actual concentrations in the human body. A comparative overview of the most common

simulation models is given by Colmegna and Sánchez Peña [2013].

Models for educational purposes Many people may not know how BG concentrations

change when CHO are ingested or insulin is injected. To make them aware of the conse-

quences of their different actions, educational simulators are used. These do not need to

be perfectly accurate, nor to be individualized, but should only allow the prediction of the

main tendencies. Most models qualify for this use, but there are also models, like the KADIS

model by Rutscher et al. [1994] or the AIDA model by Lehmann and Deutsch [1991] that were

specifically designed for this purpose.

Models for parameter identification In some cases it is important to determine the value

of a given physiological parameter that is deemed to be useful for therapy or research. One

way to obtain these values is to design a model that is sensitive to this parameter and to

use clinical data. The most well-known example is the BMM that is designed to estimate

insulin sensitivity. These models are generally tailored for a precise experimental setup (an

intravenous glucose-tolerance test in the case of the BMM) and a predefined parameter.

Prediction and control specific models One of the most interesting properties of a model

- and especially of those proposed in this thesis - is the ability to predict future BG values

based on past data. These predictions can be used for multiple purposes, such as model-

based control, bolus calculators, pump suspension algorithms and hypoglycemia warnings.

Generally speaking, when models give accurate BG predictions, they are very well suited for

BG control. As for the best model to use for this task, there is currently no consensus. Many

different and opposing options are available, which are discussed with more details in 2.2.3.

Again, important properties are that they should be identifiable on BG measurements only,

and computationally cheap, while being robust against inter- and intra-patient variability.

2.2.2 Model structures

Most models discussed previously are designed in a modular way. This means that they are

composed of several sub-models, which, in general, are interchangeable. In this section, the

most common sub-models are introduced.
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Glucose-insulin sub-models The glucose-insulin sub-model is the central part of T1DM

patient models. The inputs are the plasma insulin concentration and the meal related glucose

appearance rate, and the output is the BG concentration. The most used glucose-insulin

sub-models are the BMM by Bergman et al. [1981], the Hovorka model (Hovorka et al. [2002])

and parts of the model by Dalla Man et al. [2007].

Insulin absorption sub-models Insulin absorption sub-models provide the evolution of the

plasma insulin concentration as a function of subcutaneous or intravenous insulin injection.

The output of these models can thus directly be used as an input for the glucose-insulin

sub-model, whenever plasma insulin concentration is not measured. A good review is given

by Nucci and Cobelli [2000], and Wilinska et al. [2005].

CHO sub-models To model the effect of meals on BG concentrations, most sub-models

only focus on the CHO content of the ingested meal. The input of these sub-models is the

CHO ingestion rate while the output is the glucose appearance rate. These sub-models can be

combined with a glucose-insulin sub-model. Good examples are the Dalla Man Model, and

the control model by Hovorka et al. [2004].

Exercise sub-models Physical activity has a significant influence on BG concentrations. For

the moment, this is rarely taken into account by models. However, some models that quantify

the effect of exercise exist, even if their inclusion into a glucose-insulin sub-model can be

rather complex. Breton [2008], Hernández-Ordoñez and Campos-Delgado [2008], Roy [2008],

and Balakrishnan et al. [2013] have contributed to this field, and an exercise model, which is

discussed in appendix C, was designed during this thesis.

CGM sub-models As discussed in 1.2.6, CGM does not provide a direct measurement of

the BG concentration, but the BG concentration in the interstitial tissue. To account for the

dynamics between the different tissues and of the sensor itself, sub-models are being used.

The UVa simulator, for example, uses the model by Breton and Kovatchev [2008].

Other sub-models There are several other factors that influence BG concentrations and

some have been modeled. Examples are Free Fatty Acids by Roy [2008] or stress by Finan et al.

[2010].

2.2.3 Prediction and control specific models

Since the objective of this thesis is to improve the treatment of patients with T1DM using

control, the focus is on prediction- and control-specific models. Indeed, with most control
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methods, the quality of the prediction model has a critical influence on the control perfor-

mances: a rudimentary control algorithm with an accurate model generally outperforms a

perfect control method that is based on an inaccurate model. Hence, the availability of a

tailored model to do control is a necessary, but not a sufficient condition for all reasonable

model-based controller design.

The following specifications are required to address the challenges introduced in 1.2:

• Personalizable: Considering the large inter-patient variability (1.2.2), a prediction

model needs to be easily adaptable to each patient.

• Identifiable: It is necessary that the personalized parameters of a prediction model can

be identified (1.2.4) despite the large uncertainty. In order to improve patient safety

(1.2.1), reliable insulin action identification is the most important property.

• Acceptable predictions: Despite the high complexity of the glucoregulatory system

(1.2.3), the dynamics of a prediction model need to be good enough to lead to realistic

and acceptable BG predictions.

• Optional: Related to therapy parameters: A direct relation between personalized pa-

rameters and commonly used therapy parameters is highly desirable. This would allow

to either use physicians expertise to help tuning model parameters, or, conversely to

facilitate model parameter validation by physicians.

• Optional: Linear: Linearity is a property that makes control more convenient and leads

to many other useful properties. This feature is not mandatory, but desired if compatible

with the other properties.

A first step is thus to review existing prediction models and assess if they fulfill the necessary

specifications. In a second step, new models are designed, if required.

A recent and detailed review of models used for control was done by Balakrishnan et al. [2011]

and a review including model-based control methods can be found in Lunze et al. [2012].

Prediction models can be divided into two categories, black box models, which do not rely

on any physiological or other external knowledge and model structures, and grey box models

whose dynamics and parameters are based on incomplete knowledge of the system. White

box models, which rely solely on first principles, are not feasible in the context of modeling

the glucoregulatory system because of the very high system complexity.

Black box models

Different families of black box models exist and have been used for prediction and control of

BG concentration.
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Autoregressive (AR) models Autoregressive models have linear dynamics that are defined by

parameters, which are identified on training data. The main tuning parameter set by the user

is the order of the model. AutoRegressive models with eXogenous inputs (ARX) are also widely

used, as those by Finan et al. [2009], Stå hl and Johansson [2010], or Finan [2008]. Estrada

et al. [2010] used an ARX model with adaptive parameters, while Cescon [2011] developed an

Autoregressive–moving-average with exogenous inputs (ARMAX) model in her thesis. Bunescu

et al. [2013] used an AutoRegressive Integrated Moving Average (ARIMA) model in combination

with support vector regression.

The main advantages of autoregressive models are that they are simple to implement, need

minimal user input, and are computationally cheap. However, the main drawback is that the

different parameters do not have a direct physiological meaning that might be validated by

a physician, and meanwhile, often, identifications do not lead to reliable results, as shown

by Finan et al. [2009]. Finally, only short prediction horizons give results that are sufficiently

realistic.

Artificial NN Artificial NN are models used mainly in machine learning. Their structure

is inspired from nervous systems and allows reproducing nonlinear observations. In the

field of BG predictions, this is a very convenient tool, as more complex behaviors than with

autoregressive models can be obtained. Daskalaki et al. [2011] show that performance of

artificial NN is superior to ARX models for certain uses. Huang et al. [2010], and Zecchin et al.

[2012] have shown a performance gain when combining artificial NN with a gray box model.

Disadvantages of artificial NN are that its parameters do not have an explicit physiological

meaning, making it difficult to evaluate their pertinence. Additionally, the computational load

and the complexity of the controller design increase.

Support Vector Regression (SVR) Bunescu et al. [2013] used SVR to build prediction models.

However, this led to better performances than AR models only when combined with a grey

box model.

Grey box models

Grey box models are not based on first principles, but use available physiological knowledge,

leading to models of varying complexity. A great number of such models can be found in the

literature, but not all of them are suited for BG prediction and control. The most commonly

used (although not forcibly the most suited) ones are introduced here.

Bergman-based models Though Bergman et al. [1979] originally designed the BMM to

provide estimations of insulin sensitivities based on intravenous glucose tolerance tests in

dogs and subsequently in humans (Bergman et al. [1981]), it has been widely used for BG
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prediction and control in many different variants by Cormerais and Richard [2012], Percival

et al. [2008], François et al. [2003], Owens et al. [2006], Dua et al. [2006], Hughes et al. [2010].

What makes the BMM appealing for prediction and control is mainly its simple structure and its

widespread acceptance, although, to be used as a prediction model, it requires additional sub-

models for meal contributions, insulin dynamics and, optionally, physical activity (Bock et al.

[2011]). However, according to Pillonetto et al. [2003], the identification of BMM parameters is

only possible with a priori knowledge. Identifiability can be improved by using sub-models

(e.g. Kanderian et al. [2009]), provided the insulin concentration profile I (t ) is available. This

is unfortunately not the case in practice, as I (t ) is not measured, and the identifiability of the

BMM is still an issue.

Hovorka-based models Hovorka et al. [2002] designed a model based on tracer measure-

ments gathered from clinical experiments. This is a relatively complex model that is character-

ized by a triple insulin action. It was designed to reproduce the observations made on real

patients and was mainly meant to be used as a virtual patient, but is used quite frequently for

control as well. Hovorka et al. [2004] used it for nonlinear Model Predictive Control (MPC)

with online parameter estimation. Another example where the Hovorka model is linearized is

given by Boiroux et al. [2010a].

Using the Hovorka model as a prediction model is relatively difficult as the full model needs to

be identified on the basis of expensive tracer measurements. One alternative is to identify a

small subset of the model parameters, while using population values for the others.

Dalla Man-based models Dalla Man et al. [2007] developed a model to simulate the evolu-

tion of BG concentrations after meals for healthy and T2DM subjects and identified model

parameters based on triple tracer measurements that are collected in an extensive subject

database. Next, the model was extended to take into account subjects with T1DM by remov-

ing the endogenous insulin production and adding exogenous insulin infusion. The most

prominent use of this model is in the FDA approved UVa/Padova Type 1 Diabetes Metabolic

Simulator described in appendix A.1.

Although it is not a prediction model, the Dalla Man model is frequently the model used

for MPC. In the linear MPC by Magni et al. [2007], and in its improved version by Soru et al.

[2012], a linearized version of the Dalla Man model with mean population parameters is used.

Because it is impossible to identify individual model parameters, it is the control method that

is personalized, instead of the model. Bondia et al. [2011] used the Dalla Man model with

other sub-models to generate interval predictions.

The advantage of the Dalla Man model is that it is well accepted and leads to good results on

the UVa simulator because they are based on the same dynamics. Nevertheless, because of its

complex structure, it is impossible to identify parameters and predictions may prove to be
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inaccurate.

van Heusden model A control-specific model was designed in the frequency domain by

van Heusden et al. [2012]. Their goal was to obtain an accurate model close to the cutoff

frequency that improves robustness either for different individuals or for a whole population.

The optional individualization is done using only the patients Total Daily Insulin (TDI). This

model is an interesting option for the use in control, however its prediction capabilities are

limited (as the model is not designed to do predictions) and the effect of CHO intake is not

modeled.

2.2.4 Summary

Many prediction and control-specific models exist to date. However, so far, none fulfill all the

requirements necessary to do reliable control of BG concentrations as recalled in Table 2.1.

For this reason there is a need for a new identifiable model that is simple and gives acceptable

predictions.

AR ANN SVR BMM Hovorka Dalla Man van Heusden
Personalizable X X X X X X X
Identifiable X X X × × × N/A
Acceptable predictions × × × × × × ×
Related to therapy param. × × × X X X X
Linear X × × × × × X

Table 2.1: Comparative table of properties of state-of-the-art models. X indicates that a model
verifies a property, × indicates that it does not.

2.3 Therapy Parameter-based Model

In what follows, two models, the TPM and the TPM+, which fulfill the requirements defined

in 2.2.3, are derived from the BMM and the relationship between the TPM parameters and

physician-set therapy parameters is shown.

2.3.1 Model derivation

Bergman Minimal Model (BMM)

The initial point of the model design is the widely accepted BMM (cf 2.2.3). One variation of

its equations is as follows:

Ġ(t ) =−X (t )G(t )−SGG(t )+Uendo (2.1)

Ẋ (t ) =−p2(X (t )−S I Ip (t )) (2.2)
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where G is the BG concentration in mg ·dl−1, X is the insulin action in mi n−1, SG is the

glucose effectiveness at zero insulin in mi n−1, S I is the insulin sensitivity in U−1 ·mi n−1 · l ,

Uendo is the endogenous glucose production in mg ·dl−1 ·mi n−1, and p2 is the inverse of the

time constant of the insulin action in mi n−1. Ip is the plasma insulin concentration in U /l .

To be used as a prediction model, the BMM needs to be extended with sub-models to account

for insulin absorption an CHO intake .

Minimal model (MM)

Prud’homme et al. [2011] recently extended the BMM by substituting the insulin action and

insulin absorption models by a 2nd -order insulin action model and by adding the 2nd -order

linear carbohydrates (CHO) sub-model by Hovorka et al. [2004], resulting in the following set

of ODEs:

Ġ(t ) =−Kx X (t )G(t )−SGG(t )+Uendo +KgUG (t ) (2.3)

U̇G (t ) =−agUG (t )+agUG ,1(t ) (2.4)

U̇G ,1(t ) =−agUG ,1(t )+agUC HO(t ) (2.5)

Ẋ (t ) =−ax X (t )+ax X1(t ) (2.6)

Ẋ1(t ) =−ax X1(t )+axUI (t ) (2.7)

where the new states are the gut glucose absorption UG in g ·mi n−1, the intermediate gut

glucose absorption UG ,1 in g ·mi n−1, and the intermediate insulin action X1 in U ·mi n−1. X

is now given in U ·mi n−1. Additional model parameters are introduced: the meal sensitivity

Kg in mg ·dl−1 ·g−1, the inverse of the meal time constant ag in mi n−1, the insulin sensitivity

Kx in U−1 (different from S I ), and the inverse of the insulin absorption/action time constant

ax in mi n−1. The manipulated inputs are the subcutaneous insulin infusion, UI in U ·mi n−1

and the carbohydrate intake rate UC HO in g ·mi n−1. This model will be referred to as the

Minimal Model (MM) hereafter.

The fact that the insulin concentration - which is neither measured nor used - is not explicitly

modeled improves the identifiability of this model compared to models using the original

BMM insulin action of Equation (2.2).

However, the results presented by Prud’homme et al. [2011] show that, despite improved

identifiability and the use of prior knowledge, the resulting predictions are still unsatisfactory

and lead to sub-optimal insulin infusions. Another drawback of the MM lies in the behavior

induced by the bilinear term of Equation 2.3 (Equation 2.1 for the BMM). While according to

the term −Kx X (t)G(t), high BG values should lead to high insulin effect and vice-versa, the

opposite effect has been observed in practice (Unger and Grundy [1985]). Especially prolonged

hyperglycemia blunts the effect of insulin.
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Linear Minimal Model (LMM)

A simple yet effective approach to circumvent the limitations of both the BMM and MM is

to linearize the BG equation. As linearity is also advantageous for identification and control

purposes (Hernjak and Doyle III [2005]), several linearized versions of the minimal model are

available in the literature. Fernandez et al. [2007] have shown that the performances of both

the BMM and the LMM are comparable, though none fits all the available data. Linearized

minimal models were also used by Percival et al. [2008] for predicting BG, but with limited

success.

The LMM presented here and used thereafter is a linear version of the MM that reads:

Ġ(t ) =−Kx X (t )−SGG(t )+Uendo +KgUG (t ) (2.8)

U̇G (t ) =−agUG (t )+agUG ,1(t ) (2.9)

U̇G ,1(t ) =−agUG ,1(t )+agUC HO(t ) (2.10)

Ẋ (t ) =−ax X (t )+ax X1(t ) (2.11)

Ẋ1(t ) =−ax X1(t )+axUI (t ) (2.12)

with the insulin sensitivity Kx now being in mg ·dl−1 ·U−1,

Despite the removal of the bilinear term, the LMM is still not very efficient in terms of steady-

state predictions. In fact, if no insulin bolus is infused and no meal is ingested, steady-state

BG concentration is obtained by setting all inputs and time derivatives to 0 in Equations (2.8)

to (2.12) and reads:

Gss = Uendo

SG
(2.13)

Typical values of Gss are around 100 mg ·dl−1, when adequate basal insulin is infused (cf.

2.3.2).

As such, the steady-state BG concentration predicted by the LMM does not depend on a pa-

tient’s initial BG. In fact, all the aforementioned models predict recovery even when a patient

in hyperglycemic condition does not take counteractive actions. This is in contradiction with

practical observations that showed that in such a case, the patient will typically remain in

hyperglycemic condition (Cescon et al. [2013]). Also, the parameters Uendo and SG directly

influence the identification of insulin and meal parameters, which makes identification partic-

ularly prone to model mismatch - which is inevitable in such a high noise and disturbance-rich

environment. Indeed, the couples of insulin and meal time constants and sensitivities, i.e.

(ax ,Kx ) and (ag ,Kg ), respectively, are dependent. This latter issue is illustrated by figure 2.1,

where it is shown that the time constant 1/ax influences the amplitude of an insulin injection-

related drop in BG. To obtain meaningful model parameters the amplitude and the rate of the

effect of meal and/or insulin on BG concentration have to be decoupled, which furthermore

increases correlation with therapy parameters (cf. 2.5.1 and 2.5.2). Therefore this influence
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should be eliminated, making ax and ag independent of the respective response amplitudes.
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Figure 2.1: BG predictions using the LMM with the same insulin sensitivity Kx and inputs, but
two different time constants 1/ax .

Therapy Parameter-based Model (TPM)

To improve the LMM, it is proposed to remove Uendo and SG , leading to the following set of

ODEs:

Ġ(t ) =−Kx X (t )+KgUG (t ) (2.14)

U̇G (t ) =−agUG (t )+agUG ,1(t ) (2.15)

U̇G ,1(t ) =−agUG ,1(t )+agUC HO(t ) (2.16)

Ẋ (t ) =−ax X (t )+ax X1(t ) (2.17)

Ẋ1(t ) =−ax X1(t )+axUI (t ) (2.18)

The removal of Uendo and SG leads to the following changes in the properties of the resulting

dynamical model:

• After an insulin bolus or a meal, BG drops or rises, respectively, as a second-order

dynamical system.

• Gss only varies with Kx , Kg , and the initial BG concentration:

Gss =G(0)−KxUI ,tot +KgUC HO,tot (2.19)

where G(0) is the initial BG, UI ,tot =
∫ t f

0 UI (t)d t is the total amount of infused insulin

between the initial time and the final time t f , and UC HO,tot =
∫ t f

0 UC HO(t )d t is the total

amount of ingested CHO between the initial time and the final time t f .
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• As depicted in Figure 2.2, the sensitivities are now decoupled from their respective time

constants. The BG excursion amplitude depends on the amount of insulin and Kx only

and is independent of ax , while the BG excursion speed depends on ax only.

• The number of parameters to identify has been reduced from 6 to 4.
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Figure 2.2: BG predictions using the TPM with the same insulin sensitivity Kx and inputs, but
two different time constants 1/ax .

By coincidence, Kirchsteiger et al. [2011a] used the same model as the TPM to predict BG

concentrations on real patient data. However, neither a comparison to other models was

performed, nor a link to therapy parameters was established.

Percival et al. [2010] developed a similar model with first-order dynamics and a pure time

delay. However, the corresponding simulated BG profiles are not smooth and the time delay is

difficult to identify. Also, their correlation analysis showed that the identified parameters were

not significantly correlated to therapy parameters. Of note is that this model was also used by

Cescon et al. [2013] as a prediction model.

Cescon et al. [2012] used a similar model to the TPM, but proposed a first order sub-system

with integral behavior. This model was also considered as an alternative to the TPM, but

showed slightly inferior prediction capabilities. However, it may be a good choice if a model

with a low number of states is required.

Extended therapy parameter-based model (TPM+)

While stripping the LMM of its SG and Uendo parameters made steady-state properties more

realistic and predictions more accurate, in some cases it is advantageous to keep the SG

parameter in the model. This introduces a pole with time constant SG that replaces the
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integrator of the TPM. This is consistent with the observation made by Cescon et al. [2013]

that the integral effect of the model by Percival et al. [2010] may be replaced by a very slow

pole.

The proposed model is given as

Ġ(t ) =−Kx X (t )−SGG(t )+KgUG (t ) (2.20)

U̇G (t ) =−agUG (t )+agUG ,1(t ) (2.21)

U̇G ,1(t ) =−agUG ,1(t )+agUC HO(t ) (2.22)

Ẋ (t ) =−ax X (t )+ax X1(t ) (2.23)

Ẋ1(t ) =−ax X1(t )+axUI (t ) (2.24)

Two remarks are in order for frequently identified values of SG :

• SG = 0. In this case the TPM+ is the same as the TPM.

• SG very small. It can be derived from 2.13 that Gss is zero and hence BG always converges

to 0 mg/dl. This may be an unrealistic value, but as shown in 2.5.1 and 2.5.2, it is not

detrimental for diabetes treatment as it tends to underestimate BG concentration,

mostly leading to benign treatment decisions. The small value of SG guarantees a

relatively slow convergence to this value, such that therapy parameters may still be

identified and BG concentrations stay realistic on a moderate prediction horizon.

2.3.2 Standard therapy

In the following paragraphs, the principles of the standard bolus and insulin pump therapy

are described and it is shown how therapy parameters are related to the parameters of the

TPM and TPM+.

Standard therapy definition

Patients with T1DM:

• Take a SMBG measurement (Gm) before a meal, or whenever they suspect their BG to

be out of range,

• Compare Gm to the target BG (Gt ), and compute the difference: ∆G =Gm −Gt ,

• Compute the correction bolus as UI ,cor r =∆G/C F , with C F being the correction factor

in mg ·dl−1 ·U−1. Icor r may be negative if the patient plans to ingest a meal.

• Compute the meal bolus as UI ,meal = I 2C ·C HO, with I 2C being the insulin-to-carbohydrates

ratio in U · g−1, and C HO being the corresponding weight of carbohydrates in g .
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• Inject the bolus UI =UI ,cor r +UI ,meal using their insulin pump or pen.

Indeed, C F and I 2C correspond to the therapy parameters and are set by a physician. C F

quantifies the drop in BG resulting from a 1U insulin injection (U corresponds to the "insulin

unit", the international unit of insulin) at steady-state, while I 2C indicates how much insulin

should be injected per gram of ingested CHO. MS = I 2C ·C F can thus be defined as the meal

sensitivity, which indicates the increase in BG per gram of ingested carbohydrates.

From the viewpoint of systems theory, a way to interpret the standard therapy parameters MS

and C F is by assimilating them to the parameters of a static model, identified by physicians,

that maps the amount of insulin to the future steady-state BG.

Basal insulin

With an insulin pump, insulin may be infused almost continuously. This basal rate is useful

in that it counteracts circadian variations in insulin sensitivity, such as the dawn effect. It is

generally tuned by a physician in such a way that, in the absence of disturbances (such as

meals or physical activity), BG stays approximately at the target value throughout the day.

Hereafter, we will always assume a properly set basal rate. In this case, basal insulin is not

considered as an input, i.e. inputs correspond exclusively to insulin boluses.

The proper adjustment of the basal rate is all but trivial and requires an experienced physician

and lengthy patient observations. Currently, basal adjustments are also a field of research

with a strong impact on diabetes treatment, especially in the case of open-loop treatment. For

example methods such as run-to-run are proposed by Palerm et al. [2008].

Relation between therapy parameters and the TPM

Proposition 1. The TPM parameter Kx is equal to the therapy parameter C F .

Proof. If a 1U insulin bolus is infused at t = 0, UI (s) = 1 and, in the absence of previous insulin

boluses and meals, C F , according to the definition given in 2.3.2, is given as:

C F =−(G(∞)−G(0)) (2.25)

where G(∞) is the BG at steady-state and G(0) the initial BG.

Using the Laplace transform of the TPM equations 2.14, 2.17, and 2.18:

G(s) =− Kx

s
(
1+ 1

ax
s
)2 UI (s)+ 1

s
G(0) (2.26)
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Applying the final value theorem leads to:

G(∞) = lim
s→0

sG(s)

=− lim
s→0

Kx(
1+ 1

ax
s
)2 −G(0)

=−Kx −G(0)

Thus,

Kx =−(G(∞)−G(0)) =C F (2.27)

Proposition 2. The TPM parameter Kg is equal to the therapy parameter MS.

Proof. If 1g of CHO is ingested at t = 0, and in the absence of previous insulin boluses and

meals, MS, according to its definition (see Section 2.3.2), reads:

MS =G(∞)−G(0) (2.28)

The rest of the proof is straightforward and is similar to that of Proposition 1.

As shown, the therapy parameters C F and MS correspond by construction to the model

parameters Kx and Kg of the TPM, respectively. Both indicate how much BG will drop or rise,

respectively, in between consecutive steady states. In other words, the TPM may be considered

as a dynamical extension of the standard, static, therapy model. This property is illustrated in

Figure 2.3, while experimental verification of this link is presented in section 2.5.2.
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Figure 2.3: TPM simulations after an insulin bolus (left-hand side) and a meal (right-hand
side)

29



Chapter 2. Deterministic Modeling

The link between therapy and model parameters is very valuable, because TPM parameters

have a physical meaning that is recognized by physicians and may therefore be accepted more

easily. On the other hand, a priori knowledge of the physician-set therapy parameters can be

used, if available, to improve the reliability of the TPM parameters.

The relation between therapy parameters and TPM+ parameters cannot be shown in the

general case. In the case where SG equals zero, the TPM+ is equal to the TPM and the two

propositions hold. However, in the opposite, this cannot be verified, but the fact that TPM+

properties are very close to those of the TPM as long as SG is small explains a good correlation

with therapy parameters as shown in 2.5.1 and 2.5.2.

2.4 Validation Tools and Methods

This section describes the data used for the validation of the TPM and TPM+ as well as the

practical methods and tools.

2.4.1 Validation data

Data from two different sources is used:

• Simulated BG profiles generated with the UVa simulator show how the proposed models

perform on this widely accepted tool. More details concerning the UVa simulator are

given in appendix A.1 and the 4 day nominal scenario specified in A.1.1 is used for

cross-validation. The noiseless measurements of the 10 adults are used and are sampled

with a period of 15 minutes.

• Data from 10 of the 12 patients from the clinical study described in appendix A.2 are

used to validate the TPM and the TPM+ on real patient data.

2.4.2 Identification method

Model parameters identification is performed by minimizing the following weighted least

squares objective function J :

J (θ) =
D∑

d=1
αd Jd (θ) (2.29)

where θ is the vector of model parameters to estimate (θ = [ax ag Kx Kg ]T for the TPM, e.g.), D

is the number of days, αd is the weight associated to day d , and Jd is defined for each day d :

Jd (θ) =
Nd∑
i=1

(Gd ,i −Ĝd ,i (θ))2 (2.30)
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where Nd is the number of BG measurements for day d , Gd ,i and Ĝd ,i are the measured and

simulated BG concentrations on day d , respectively.

The optimal values θ∗ are such that they minimize the cumulated (and weighted) prediction

error:

min
θ

J (θ) =
D∑

d=1

(
αd

(
Nd∑
i=1

(Gd ,i −Ĝd ,i (θ))2

))
(2.31)

s.t. Model Equations (2.32)

where the Model Equations (Equations (2.14)-(2.18) for the TPM, e.g.) are integrated to

compute the predicted values Ĝd ,i (θ) at the sampling instant i of day d under the same

conditions than the corresponding measured values Gd ,i , for any choice of θ.

2.4.3 Reliable insulin action

Particular attention has to be paid to the estimation of insulin action, as, for instance, underes-

timating the insulin effect increases the risk of overdosing insulin. It is made more complicated

when meals and insulin boluses are taken simultaneously, since the effects of carbohydrates

and insulin cancel each other out, especially if they act at similar speeds. Note that this remark

further justifies the choice of slow meals in the context of the clinical study associated with

this thesis, as the meals taken by the subjects were mostly slower than the insulin actions.

This difficulty to identify insulin parameters - worsened by the high noise level - is depicted

in Figure 2.4. It is shown that when the meal and the bolus are taken simultaneously, the

simulated BG does not change significantly when Kx is doubled, while the right-hand side

plot shows the large sensitivity of the simulated BG profile to a change in Kx when the meal

and the bolus are taken separately. In other words, Figure 2.4 illustrates how difficult it is

to reliably identify Kx on the basis of BG measurements if the meal and the bolus are taken

simultaneously. Indeed, in such a case, it is possible to estimate the ratio
Kg

Kx
that corresponds

to I 2C , but not Kx (corresponding to C F ). This difficulty was also discussed by Finan et al.

[2007].

To circumvent this problem, the only solution is to perform insulin sensitivity tests, where a

bolus without a corresponding meal is infused.

2.4.4 Choice of metrics

In this validation, we propose to assess the quality of the LMM, the MM and the TPM by three

different indicators, Mean Absolute Difference (MAD), coefficient of determination (R2), and

Error Grid Analysis (EGA), which are detailed in the appendix B.
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Figure 2.4: Simulations of the TPM with simultaneous insulin bolus and meal (left) and
only an insulin bolus (right). The parameters are chosen as follows: ax = 0.04, ag = 0.03,
Kg

Kx
(= I 2C ) = 0.1 and Kx is chosen according to legend. The insulin bolus is 2U and the meal is

20g .

2.5 Validation

The validation of the TPM is performed with the UVa simulator data described in A.1 and

the clinical study data discussed in A.2 and follows 3 separate steps: (i) the data fits are

analyzed, (ii) the correlation between therapy and model parameters is checked, and (iii),

model predictions are evaluated.

2.5.1 UVa simulations

Data fit

The main difference between the TPM and the other models lies in the absence of endogenous

glucose production and glucose effectiveness at zero insulin, resulting in different behavior at

steady-state. The TPM+ also has a particular steady-state behavior, as it slowly converges to

the unrealistic value of 0 mg/dl. The UVa model, however, has a similar steady-state behavior

than the MM and LMM, which cannot be reproduced by the TPM or the TPM+. For this reason,

for this validation, no insulin sensitivity tests are considered with the UVa simulator since the

TPM and TPM+ do not have the appropriate dynamics to fit such data. This situation is not

optimal and may result in unreliable insulin action, as explained in 2.4.3, but the challenge is

the same for each tested model.

For the identification of UVa simulator data, the weight associated to the different days is equal,

i.e. αd = 1 for all days d . Data from the last 4 days (D = 4), i.e. the test days with meals and

insulin boluses, are used for the evaluation of fitting performance, leading to one parameter

set for each patient. Initial BG is computed via linear interpolation between the values just

before and right after the first measurement used for identification. The initialization of the
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other states is performed by propagating past model inputs.

Table 2.2 shows that LMM and the MM have comparable fitting capabilities on UVa simulator

data, while the TPM and TPM+ are slightly less accurate. This was expected since the number

of model parameters of the TPM and TPM+ are lower. However, as it will be seen in sections

2.5.1 and 2.5.1, this small decrease in the fitting capability is largely compensated by the

improvement in the identifiability of the parameters and in the prediction performances.

TPM TPM+ LMM MM
MAD in mg/dl 7.02 7.04 5.00 5.30

R2 in % 89.5 89.6 94.8 94.0

Table 2.2: MAD and R2 indicators (averaged over all patients) for the four investigated models
on UVa simulator data.
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Figure 2.5: Boxplot (cf. appendix B.9) of the MAD and R2 of the data fit of every patient (n=10).
Comparison between different prediction models on UVa simulator data.

Indeed, good model fits do not necessarily imply good model predictions. With a high number

of parameters, a model is typically able to generate many different BG profiles, leading to

good data fits even though the dynamics of the model are not appropriate. However, in such a

case, model predictions will not be good when the data set used for validation differs from

that used for identification. Conversely, a model with less parameters may have inferior fitting

capabilities but better predictions capabilities if its dynamics are more appropriate. This effect

increases with the presence of measurement noise (which is high in our case), because having

more parameters to identify increases the risk of fitting the noise. To summarize, a model

with more appropriate dynamics, but less parameters will have potentially worse data fits, but

better model predictions than a model with a high number of parameters, but less appropriate

dynamics. The variability on parameter identifications is similar for all models as shown in

figure 2.5 and shows few significant outliers.

The results for the TPM and TPM+ are almost identical. This is explained by the identified

values of the SG parameter for the TPM+ given in table 2.3. The identified values are always

very close to zero, showing that for UVa simulation data the TPM and TPM+ are equivalent,
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even though the TPM+ has one additional parameter to identify.

Adult 1 2 3 4 5 6 7 8 9 10
SG 10−5 8.7 ·10−7 10−7 10−7 10−7 6.5 ·10−5 10−7 4 ·10−5 0.00017 10−7

Table 2.3: Identified SG in 1/min for the TPM+. The parameter is constraint to the interval[
10−7,1

]
as it needs to be greater than 0, but may take relatively high values.

Correlation analysis

In this subsection, we experimentally verify the relation between the therapy parameters

provided in the UVa simulator and those identified using the models by analyzing their

correlation. As in 2.5.1, D equals 4 and αd equals 1 for all day d . It is not clear how the therapy

parameters provided in the UVa simulator were determined, but simulations tend to show

that they are accurate.

The results are summarized in Table 2.4 and illustrated in Figure 2.6.

Correction factor Ins-to-carb ratio Meal sensitivity
MM -0.20 (0.58) -0.02 (0.95)
LMM 0.14 (0.70) 0.98 (2.6·10−77) 0.11 (0.77)
TPM 0.91 (0.0002) 0.99 (1.6·10−8) 0.71 (0.2)
TPM+ 0.91 (0.0002) 0.97 (1.7·10−6) 0.67 (0.03)

Table 2.4: Different correlation factors and their relative p values (in brackets) between therapy
parameters provided in the UVa simulator and identified parameters on UVa simulator data
(n=10).

In the results of figure 2.6, it can be observed that for the LMM and the MM, there is one outlier

patient, who corresponds to Adult 9 of the UVa standard database. This subject was previously

identified as an abnormal subject by Cameron et al. [2011]. The structure of the two models

does not allow to identify this subject, which results in unrealistic parameter values. This

outlier heavily influences the comparison of correlation factors given in table 2.4. For this

reason, the correlation analysis without Adult 9 is shown separately in table 2.5.

Correction factor Ins-to-carb ratio Meal sensitivity
MM 0.77(0.014) 0.62 (0.075)
LMM 0.86 (0.0028) 0.99 (9.76·10−7) 0.69 (0.038)
TPM 0.90 (0.00078) 0.99 (1.01·10−7) 0.74 (0.023)
TPM+ 0.91 (0.00074) 0.99 (1.80·10−7) 0.73 (0.025)

Table 2.5: Different correlation factors and their relative p values (in brackets) between therapy
parameters provided in the UVa simulator and identified parameters on UVa simulator data
without Adult 9.

When not considering Adult 9, the identified parameters of all models (except Kg of the MM)

are correlated (p < 0.05) to their respective values given by the UVa simulator. However,
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Figure 2.6: Comparison of physician-set therapy parameters and identified model parameters
to illustrate correlation results on UVa simulator data (n=10).
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the correlation factors of the TPM and TPM+ are much higher than those of the other two

models, indicating that the TPM and TPM+ have the ability to reliably identifying therapy

parameters. These are excellent results for the TPM and TPM+, considering that no specific

insulin sensitivity tests are included in the identification. It should be noted that TPM and

TPM+ parameters for Adult 9 were correctly identified. The correlation factors for the LMM

are higher than those of the MM, indicating that its structure is more appropriate. Also, the

insulin-to-carbohydrates ratio is accurately identified by the LMM, which indicates that, as

discussed in 2.4.3, the LMM is not capable to reliably identify Kg and Kx in the absence of

insulin sensitivity tests.

Removing Adult 9 from the data fit analysis (2.5.1) does not significantly change the results,

since its data fits were only a little below average for all models.

Again, results for the TPM and TPM+ are very close. The reason is the same as discussed for

the data fits, where SG was close to 0 in most cases.

BG predictions

In this section, the prediction capabilities of the TPM and TPM+ are compared to those of the

MM and the LMM.

To obtain reliable results, the data used for the identification (training data) should not be

used for validation (validation data). In this study, we perform cross-validation: in the case

of UVa simulator data, model parameters are identified on 3 data sets and validated on the

4th, for all possible permutations of the data sets. Thus, we obtain 4 parameters sets with the

corresponding predictions for every subject, leading to a total of 40 different parameter sets.

Given a prediction horizon of h minutes, model predictions are done as follows:

• A validation data set with corresponding model parameters (identified on training data)

for a given patient and day is chosen.

• For every BG measurement we start by simulating the model h minutes earlier. The

initial BG values are set to the measured value preceding the h-minute simulation (this

is different to the identification because future values are assumed unknown). All other

states are initialized using simulations with model inputs, dating back several hours

before the beginning of the simulation.

• The BG value after the h-minute simulation is the predicted BG and coincides with an

experimental measurement point.

• The evaluation metrics are evaluated on all prediction points.

• Finally, the results are averaged over all parameters sets for comparison purposes.
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For comparison, we also show the results of a Zero Order Hold (ZOH) model, which is often

used as a reference. It consists in setting the predicted BG value to the initial BG value. In

other words, we consider constant BG concentrations over the prediction horizon.

Predictions are performed with horizons rising from h = 15 minutes to h = 165 minutes with

15 minute increments. The predictions of all models are compared in Figure 2.7, where (i)

the MAD, which measures the prediction fit quality, and (ii) the percentage of predictions in

Clarke EGA zone A, which quantifies patient safety, are depicted.
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Figure 2.7: MAD (top) and % in EGA zone A (bottom) of the averaged model predictions (n=40)
for the different prediction models and prediction horizons h on UVa simulator data. Mean
values are given on the left, standard deviations on the right.

For small prediction horizons (up to 60 minutes), the TPM and TPM+ give better MAD values

than all other models. For longer prediction horizons, the MM is the most effective, followed by

the LMM and the TPM and TPM+. The standard deviations are given to evaluate the variability

of the predictions and it shows that for short predictions, the TPM and the TPM+ are the most

consistent, while the MM is more reliable for longer prediction horizons.

The percentage in zone A of the Clarke EGA shows similar results. This is caused by the
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steady-state behavior of the MM that is closer to that of the UVa simulator model (which

always converges to a value independently of the inputs) than the TPM or the TPM+. All model

predictions, except for the ZOH, are within zones A and B of the EGA. Overall, the difference

between the different models is small.

If Adult 9 is disregarded, results do not change significantly.

It can be concluded that for predicting BG on UVa simulator data, the TPM is an excellent

choice because, despite having less parameters, worse data fits, and a model structure that is

not fully compatible with the UVa simulator model, it is superior or comparable to the other

models in terms of prediction performance and therapy parameter correlation.

2.5.2 Clinical data

Data fit

For the clinical study, the data fits are computed as described in 2.5.1, with a few differences: (i)

the model parameters are identified with D = 7 (i.e. the full data set is used). (ii) As discussed

in section 2.4.3, to be able to identify Kx , the sensitivity tests described in A.2 were performed.

However, 2 sensitivity test days out of 7 were insufficient. For this reason, the weight of the

insulin sensitivity test days was increased by 5 - the value that led to the best results. Thus, the

objective function defined in Equation (2.31) used α4 =α5 = 5 and αd = 1 otherwise. Ideally,

more sensitivity tests should be performed, so that they outweigh the meal tests.

Examples of data fits are given in Figure 2.8, while Table 2.6 compares the performances of the

TPM, the TPM+, the LMM, and the MM in terms of the MAD and R2 indicators.
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Figure 2.8: Example of data fits for different prediction models on clinical data.

The LMM and the TPM+ show the best fitting capabilities. Hence, the structure of the LMM

is more appropriate than the structure of the MM, as both have 6 parameters to identify.
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TPM TPM+ LMM MM
MAD in mg/dl 12.89 10.90 10.56 12.09

R2 in % 72.42 80.76 81.16 76.15

Table 2.6: MAD and R2 indicators (averaged over all patients) for the four investigated models
on clinical data.

However, the TPM+, with only 5 parameters to identify, has almost the same fitting capabilities

than the LMM and should therefore be preferred. The performances of the TPM and the MM

are comparable, with a slight advantage for the MM. Figure 2.9 depicts the variability of data

fits, that is the lowest for the LMM and the TPM+ and increases for the MM and the TPM. A

higher variability is due to a higher number of patients that were more difficult to fit. However,

it will be seen in sections 2.5.2 and 2.5.2 that this is not detrimental neither to parameter

identification nor to model prediction, the reason being that some patients have intrinsically

higher variability in their BG concentrations.

8

10

12

14

16

18

20

22

TPM TPM+ LMM MM

Data Fit

M
AD

 in
 m

g/
dl

50

60

70

80

90

TPM TPM+ LMM MM

Data Fit

R
2  in

 %

Figure 2.9: Boxplot (cf. appendix B.9) of the MAD and R2 of the data fit of every patient (n=10).
Comparison between different prediction models on clinical data.

While identifying the LMM, for 4 patients out of 10, the values of SG and Uendo collapsed to 0,

with the consequence that the LMM becomes identical to the TPM and that the corresponding

model fits are very close. A similar observation is made for the TPM+, where the SG parameter

converges to 0 for 3 out of 10 patients, as shown in table 2.7.

Patient 1 2 3 4 5 6 7 9 11 12
SG 0.0007 10−7 0.00003 10−7 0.0006 10−7 0.0008 0.0017 0.0006 0.0010

Table 2.7: Identified SG in 1/min for the TPM+. The parameter is constraint to the interval[
10−7,1

]
.
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Correlation analysis

The correlation analysis is performed similarly to the case of the UVa simulator data in section

2.5.1. The identification of the TPM and TPM+ parameters uses the full set of data, i.e. D = 7,

and the same α.

The results are summarized in Table 2.8 and illustrated in Figure 2.10.

Correction factor Ins-to-carb ratio Meal sensitivity
MM 0.16 (0.67) 0.57 (0.09)
LMM 0.47 (0.17) 0.78 (0.0077) 0.52 (0.13)
TPM 0.89 (0.00055) 0.89 (0.00055) 0.85 (0.002)
TPM+ 0.91 (0.0003) 0.79 (0.0062) 0.84 (0.002)

Table 2.8: Different correlation factors and their relative p values (in brackets) between
physician-set and identified parameters on clinical data.

The parameters of the MM are not correlated with the physician-set parameters and the

correlation of the CF is very low, indicating a dangerously unreliable insulin action. Also, the

identified values of Kx have some outliers with very high values (compared to the correspond-

ing physician-set counterparts), which can be due to high values of Uendo . The meal sensitivity

on the other hand has a higher correlation factor, although the results from Figure 2.10 show

that the Kg parameter has low sensitivity. High Kg values should lead to high Kx values (cf.

2.4.3), but this is not the case, probably due to high values of SG . The overestimation of the

meal effect has to be avoided as it can lead to the computation of potentially massive insulin

doses.

Similar results were found for the identification of Kg with the LMM. Though the correlation

of Kx and the correction factor are improved by the LMM structure, this improvement does

not lead to significant correlations.

Correlation results for the TPM and the TPM+ are very similar and all model parameters are

significantly correlated with the therapy parameters. In some cases however, the modeled

insulin sensitivity seems to underestimate the value set by the physician. At this point it is

hard to know whether the real value is overestimated by the physician (for safety purposes), or

underestimated by the model (or both). The TPM and TPM+ also slightly overestimate the I2C

set by the physician. In the context of BG control, this results in higher insulin injections. For

this study this is not detrimental as insulin boluses are generally too small during the standard

therapy experiments.

We can conclude that with the TPM and the TPM+, parameters are more reliably and safely

identified, compared to the LMM and MM. This is a clear hint that the TPM and TPM+

model structure is more appropriate for BG predictions. Conversely, this nice feature could

make these new models a valuable tool for assisting physicians in determining the therapy

parameters.
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Figure 2.10: Comparison of physician-set therapy parameters and identified model parameters
to illustrate correlation results on clinical data.

41



Chapter 2. Deterministic Modeling

BG predictions

The BG prediction analysis follows the principles described in section 2.5.1, but again with α

chosen as in 2.5.2. Also, the cross-validation leads to up to 7 parameter sets per patient and

thus to a total of 58 parameter sets.

Two examples of BG predictions with h = 90 are plotted in Figure 2.11, with on the left-hand

side a relatively good prediction and on the right-hand side a less successful one.
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Figure 2.11: Example of 90 minute predictions for different prediction models on clinical data.

As the BG concentration is initialized with real measurements, it is noisy. This directly influ-

ences BG predictions and can sometimes lead to wrong predictions. This does not preclude

the representativity of the comparison since the same initialization method is applied to every

tested model.

As can be seen in figure 2.12, according to the mean MAD and percentage of predictions in

zone A of the EGA, the TPM+ has better prediction performance and with smaller standard

deviations than all other considered models. The TPM and LMM are almost equal, the latter

only having a slightly lower standard deviation. The MM is less effective, especially with small

prediction horizons, where predictions are worse than with the ZOH. The mean percentage of

predictions in EGA zone A leads to a similar conclusion - this time the TPM being marginally

better and having smaller standard deviations than the LMM.

On average, 97% of predictions for TPM+, TPM and LMM are in zones A and B for the EGA.

This means that nearly no wrong treatment decisions would be taken, even for long prediction

horizons. The MM goes down to 94%, whereas the ZOH goes to 88%.

Predictions do not significantly differ between the four models - a difference occurs mainly

if, during the identification of a model, the global minimum of the identification problem

corresponds to physiologically unrealistic parameters. This happens mostly with the MM and

is due to the model dynamics that are not compatible with the measurements. These outliers
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Figure 2.12: MAD (top) and % in EGA zone A (bottom) of the averaged model predictions
(n=58) for the different prediction models on clinical data. Mean values are given on the left,
standard deviations on the right.
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result in worse average performance outcomes and are the main reason for the differences

between the different models in figure 2.12.

Overall, the TPM always shows superior or comparable prediction capabilities. This is particu-

larly interesting considering that only 4 parameters have to be identified. This compensates

for the slightly inferior fitting capabilities. The TPM+ on the other hand is superior to all other

tested models, but has 5 parameters to identify. Hence the TPM+ should be preferred for long

prediction horizons, while the TPM is the model of choice if computational resources are

scarce or prediction horizons are shorter.

As a concluding remark, it should be noted that the different days of the clinical study were

very similar, which most likely makes predicting BG easier. With more varied scenarios, some

of the tested models could prove inappropriate. It would therefore be interesting to test the

model in a more diverse setting, similar to the analysis on the UVa simulator data, however

this is not possible with the currently available data.

2.5.3 Comparison of results of the UVa simulator data and clinical data

The results obtained with the UVa simulator data and clinical data are consistent. Because

of improved BG predictions, parameter correlation, and the reduced number of parameters,

the TPM is the best choice on UVa simulator data and clinical data, while the TPM+ should

be preferred for long-horizon predictions for real patients. Another main difference between

results on the UVa simulator data and clinical data is the relative performance of the LMM

and the MM: LMM is better on clinical data, while the MM is better on UVa simulator data.

This is probably due to the fact that the MM dynamics are closer to the UVa simulator and to

its non-linearities, while the LMM dynamics are closer to real human glucose dynamics.

2.6 Conclusion

The TPM and the TPM+ measure up to the expectations of being reliable but simple prediction

models identifiable on BG measurements only. Stripping the models to a bare minimum (they

can hardly be any simpler) allows reliable parameter identification, even in the presence of the

characteristic high noise levels in BG measurements. We linked the model parameters directly

to physician-set therapy parameters and showed their strong correlation. This adds another

safety layer to the resulting model identification and the model may easily be personalized.

As expected, model fits were slightly worse than with other models - a result of the lower

number of parameters. However, model predictions were on par or better than the alternatives.

A higher number of parameters is therefore not necessary.

Predictions are used to calculate insulin doses and as such are critical for patient safety. If

carefully identified, the TPM and the TPM+ lead to reliable insulin sensitivity estimation, which

is rarely the case with the other models (identified under the same conditions). Additionally,
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the TPM and the TPM+ have the property of only predicting an increase of BG concentration

in case of a meal. The possibility of predicting an erroneous increase in BG is thus eliminated

and hypoglycemia might be avoided in certain cases, especially when used in closed-loop

controllers. Insulin infusions based on the TPM or the TPM+ are therefore safer than with

conventional models.

The properties of the four prediction models are summarized and compared in Table 2.9,

according to the features discussed in 2.2.3.

MM LMM TPM TPM+
Personalizable X X X X
Acceptable predictions × X X X
Acceptable data fits X X X X
Identifiable × X X X
Correlation with therapy parameters × × X X
Linear × X X X
Number of parameters to identify 6 6 4 5

Table 2.9: Comparative table of model properties. X indicates that a model verifies a property,
× indicates that it does not.

The TPM and the TPM+ have been tailor-made for the use in state estimation, predictive

control, and recommendation methods, e.g. MPC, optimal control, or pump suspension

algorithms. These applications are the topic of chapters 4 and 5.

Future work will address the following points:

• The available clinical data used for validation was very similar from one day to the other.

The TPM should be tested on more random test days to show its full potential.

• The TPM should be tested on different meals and the meal sub-model should be adapted

if necessary. Additionally, to address the meal uptake rate variability introduced in 1.2.2,

a meal library could be established, as proposed by Dassau et al. [2008].

• It was demonstrated that the TPM is an excellent tool to determine patient’s therapy

parameters and this property could be further developed to assist physicians in deter-

mining these parameters.

• The previous point may as well be reversed: T1DM patients should have good estimates

of their therapy parameters that were set by physicians. If the TPM is used on these

patients, the available therapy parameters can be used as prior knowledge to facilitate

model parameter identification and increase its robustness.
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3 Stochastic Modeling

3.1 Introduction

In chapter 2, many of the challenges identified in section 1.2 are addressed and overcome.

However, the large uncertainty described in section 1.2.2 makes accurate BG predictions

difficult and requires a probabilistic approach.

Inter-patient variability is taken into account by identifying individual model parameters for

each patient. However, this requires models with very specific properties such as the TPM.

Meal uptake rate variability can be addressed by identifying model parameters for different

types of meals and constructing a meal library (Dassau et al. [2008], Prud’homme et al. [2011]).

However, methods to quantify intra-patient variability are more difficult and rarely found in

the literature. Such methods aim to find confidence intervals on predicted BG concentrations.

One possibility to address this problem is by applying modal interval analysis (García-Jaramillo

et al. [2012], Gardeñes et al. [2001]), which leads to models computing the upper and lower

limits on BG, based on any deterministic model and on model parameter bounds. This

method is computationally efficient, but difficult to set up. Additionally, no experimental

verification, nor method to determine parameter intervals is given. Kirchsteiger et al. [2011b]

addressed the problem in a similar way by computing upper and lower bounds, based on TPM

parameter identification. Another approach is to add process noise to transform Ordinary

Differential Equations (ODEs) into Stochastic Differential Equations (SDEs) and to identify

the process noise amplitude as proposed by Klim [2009]. However, finding this amplitude is

not straightforward. A similar approach by Cameron [2010] uses a multi-model method, but is

computationally demanding. Finally, it is also possible to estimate uncertainties using linear

regression prediction methods. However, according to Cameron et al. [2008], this method is

only reliable for short prediction horizons of up to 20 minutes .

In this chapter a complete procedure to estimate the quality of BG predictions as a function

of time by constructing a stochastic model and quantifying model uncertainties is proposed.

The ODEs of a well-chosen continuous and deterministic model are transformed into SDEs

by adding parametric uncertainties. Model parameter uncertainties are estimated during
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standard parameter identification and, as a consequence, no additional parameters need to

be identified. The uncertainties are propagated using EKF theory.

This chapter is structured as follows: first, in section 3.2, the stochastic model, the uncertainty

estimation, and the covariance propagation are introduced. Then, in section 3.3 and the

proposed method is applied to the TPM. In section 3.4, predictions using the newly designed

sTPM are done and validated using simulated and clinical data. Finally, conclusions are drawn

and future work is proposed in section 3.6.

3.2 Stochastic modeling

3.2.1 Construction of a stochastic model

The construction of a stochastic model is based on a well-chosen deterministic model. The

latter one should be continuous and expressed as:

ẋ(t ) = fdet
(
x(t ),u(t ),θθθ

)
, (3.1)

where x is the vector of n states, t is the time, u is the m-dimension input vector, θθθ is a

vector containing p model parameters, and fdet is a differentiable function that defines

the model dynamics. In this chapter only, vectors and matrices are represented in bold.

One of the states in x should be the BG concentration. If this model is well chosen, it gives

appropriate BG predictions. Nevertheless, because of the random nature of human glycemia,

these predictions will rarely be accurate and a stochastic model is useful to evaluate the quality

of the deterministic predictions. For this reason, it is useful to turn the deterministic model

into a stochastic one of the form

ẋ(t ) = fsto
(
x(t ),u(t ),w(t ),θθθ

)
, (3.2)

where w(t ) ∼N (0,Q), Q is the covariance matrix of a multivariate zero-mean Gaussian, and

fsto is a differentiable function that defines the model dynamics. Now x(t ) is a random variable

whose distribution is analyzed and propagated through time.

The biggest challenge in estimating the quality of BG predictions is to model how the uncer-

tainty w(t) affects the BG concentration. Often a zero-mean univariate Gaussian is added

to the BG state and all other states remain unchanged Klim [2009]. It is difficult to choose

a numerical value for this Gaussian’s standard deviation σ and it requires additional and

computationally important identification steps. Moreover, with this approach, the uncertainty

is independent of model inputs, even though meal inputs are a more important source of

uncertainty than insulin injections, for example.

In order to define a meaningful and easy-to-identify alternative, it is proposed to consider

the parametric uncertainty of the model parameters. So, to obtain a stochastic model, θθθ is
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replaced by a normally distributed parameter vectorΘΘΘ in equation 3.1, defined as

ΘΘΘ∼N (θθθ,Q) (3.3)

∼θθθ+w(t ) (3.4)

In other words, a Gaussian term is added to every parameterΘi , such thatΘi = θi +wi , where

w =
[

w1 . . . wp

]T
has the covariance matrix Q. Thus the uncertainty on several parame-

ters can be correlated. The strong assumption that the parameters are normally distributed

presents the biggest drawback of the proposed method, as physiological parameters are often

found to be log-normally distributed Zhang and Popp [1994]. However, as shown in section

3.4, results are convincing.

If the deterministic model is linear with respect to its parameters, equation 3.2 can be written

as

dx(t ) = fdet
(
x(t ),u(t ),θθθ

)
d t + g

(
x(t ),u(t ),θθθ

)
dw(t ) (3.5)

where w is a standard Brownian motion vector of dimension p and covariance matrix Q, and

g is a deterministic function. fdet is called the drift function and quantifies the deterministic

part of the model, same as in equation 3.1. g is called diffusive function and quantifies the

uncertainty of the different states.

To simulate the stochastic model, the Euler-Maruyama scheme can be used, for instance. The

simulations could then be used for different Monte Carlo methods. These have the advantage

of giving accurate results, but at a high computational price.

3.2.2 Propagating uncertainties

If the complete distribution of the states is not necessarily needed, but the propagation

of its variance is sufficient, the computational burden of Monte Carlo simulations can be

considerably alleviated by propagating the covariance using EKF theory (Simon [2006]). The

model designed in the previous section is not forcibly linear. In the case of non-linearities,

finding the evolution of the states and its uncertainties needs the application of a non-linear

version of the KF. For this reason, the model is linearized along the estimated trajectory and A

and L are defined:

A(t ) = ∂ fsto(t )

∂x(t )

∣∣∣∣
x̂(t ),w0

(3.6)

and

L(t ) = ∂ fsto(t )

∂w(t )

∣∣∣∣
x̂(t ),w0

, (3.7)

49



Chapter 3. Stochastic Modeling

where x̂(t ) is the estimated state vector x(t ) at time t . The estimated trajectory has no process

noise, hence w0 = 0. Furthermore,

Q̃(t ) = L(t )QL(t )T . (3.8)

The state estimation is the same as for the deterministic model and the state covariance P(t )

propagates over time, giving the following set of equations to integrate:

˙̂x(t ) = fsto
(
x̂(t ),u(t ),w0,θθθ

)
(3.9)

Ṗ(t ) = A(t )P(t )+P(t )A(t )T + Q̃(t ), (3.10)

where w0 = 0. The initial conditions for x̂(t ) are set using BG measurements and state propa-

gation using past inputs, while the initial conditions for P(t) are determined by covariance

propagation using past inputs.

Using the covariance matrix, the standard deviation on the BG state can be isolated and

thus, its uncertainty estimated at every point in time. Furthermore, the distribution of the

uncertainty of the states over time is assumed to follow a normal distribution. This is a strong

assumption, but allows computing confidence intervals on BG concentration. It might not

hold for models with strong non-linearities, nevertheless, if the model is linear and linearly

parameterized, this is not an approximation and exact results are found.

The 95% confidence interval is defined by

P (x̂BG (t )−1.96σBG (t ) ≤ xBG (t ) ≤ x̂BG (t )+1.96σBG (t )) = 0.95, (3.11)

where x̂BG is the estimated BG state and σBG is the standard deviation of x̂BG . σBG =p
PBG ,

where PBG is the variance of x̂BG , whose value is found on the BG element of the diagonal of

P. The upper 95% confidence limit is thus x̂BG (t )+1.96σBG (t ) and the lower one is x̂BG (t )−
1.96σBG (t ).

In order to compute the confidence intervals, n(n+1)
2 additional differential equations need to

be integrated. Including the n equations from the deterministic model, a total of n(n+3)
2 ODEs

need to be integrated over the desired time horizon.

3.2.3 Parameter identification

The performance of the proposed stochastic model depends largely on the quality of the

estimated parameter vector θθθ and its covariance matrix Q. The following paragraphs show

how to find them.
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Estimation of θθθ

Similarly as in section 2.4.2, a non-linear weighted least squares method that minimizes the

objective function J is used to estimate θθθ for a given patient:

J (θθθ) =
N∑

i=1
Wi (Gi − x̂BG (θθθ, ti ))2 (3.12)

where N is number of available BG measurements, Gi is the i -th BG measurement, Wi is

the weight associated to the measurement Gi , and x̂BG (θθθ, ti ) is the predicted BG value at the

measurement time ti .

Finally the optimization problem may be written as:

min
θθθ

J (θθθ) (3.13)

s.t. ˙̂x(t ) = fdet
(
x̂(t ),u(t ),θθθ

)
. (3.14)

Thus, the deterministic model equations need to be integrated over an appropriate time

horizon and the resulting estimated glucose state is used to compute the value of the objective

function.

Estimation of Q

It is proposed to use the inverse of the Fisher information matrix III to estimate Q.

The Cramér-Rao bound gives a lower bound on Q:

Q ≥III−1. (3.15)

To estimate Q, it is assumed that the Cramér-Rao bound is attained

Q =III−1, (3.16)

where III is defined as

III = SBG (θθθ, ti )


W1

σ2
1

0 0

0
. . . 0

0 0 WN

σ2
N

SBG (θθθ, ti )T , (3.17)
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and σi is the standard deviation of the measurement error of the i th data point and

SBG (θθθ, ti ) = ∂x̂BG (θθθ, ti )

∂θθθ
(3.18)

are the partial derivatives of the estimated BG concentration with respect to the parameter

vector θθθ, which is a p × N matrix. They can be determined by integrating the sensitivity

equations with respect to θθθ at the measurement times ti :

˙S(θθθ, t ) = ∂ fdet
(
x(t ),u(t ),θθθ

)
∂x

S(θθθ, t )+ ∂ fdet
(
x(t ),u(t ),θθθ

)
∂θθθ

(3.19)

where S(θθθ, t ) = ∂x̂(θθθ,t )
∂θθθ

. These n ·p equations to integrate may be computed by hand or symbolic

mathematical software and are very useful to compute the gradient via forward sensitivity

analysis that can be used in the minimization of J .

3.3 Application to the TPM

The proposed method for estimating confidence intervals is illustrated by an application to

the TPM. This is not only an example, but the TPM is recommended as an excellent choice for

stochastic predictions. Of note is that the application to the TPM+ can be performed in an

analogous way.

3.3.1 TPM

As a reminder, the TPM equations (2.14 to 2.18) are

Ġ(t ) =−Kx X (t )+KgUG (t ) (3.20)

U̇G (t ) =−agUG (t )+agUG ,1(t ) (3.21)

U̇G ,1(t ) =−agUG ,1(t )+agUC HO(t ) (3.22)

Ẋ (t ) =−ax X (t )+ax X1(t ) (3.23)

Ẋ1(t ) =−ax X1(t )+axUI (t ). (3.24)

The state vector is defined as x =
[

G UG UG ,1 X X1

]T
, the model parameters vector

as θθθ =
[

Kg ag Kx ax

]T
, and the input vector as u =

[
UC HO UI

]T
.

3.3.2 Stochastic model for TPM

To turn the TPM into the stochastic TPM (sTPM), θθθ is replaced by its stochastic versionΘΘΘ (cf

equation 3.4), where the parameter uncertainty vector is defined as w =
[

wKg wag wKx wax

]T
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and wi is the uncertainty of parameter i . The sTPM can be written as:

Ġ(t ) =−(Kx +wKx )X (t )+ (Kg +wKg )UG (t ) (3.25)

U̇G (t ) = (ag +wag )(UG ,1(t )−UG (t )) (3.26)

U̇G ,1(t ) = (ag +wag )(UC HO(t )−UG ,1(t )) (3.27)

Ẋ (t ) = (ax +wax )(X1(t )−X (t )) (3.28)

Ẋ1(t ) = (ax +wax )(UI (t )−X1(t )) (3.29)

Since the TPM is linearly parameterized, therefore a drift and a diffusion function can be

defined according to equation 3.5. fdet is the deterministic part of equations 3.25 to 3.29 and

is thus the same as the deterministic TPM defined in equations 3.20 to 3.24:

fdet (t ) =


−Kx X (t )+KgUG (t )

−agUG (t )+agUG ,1(t )

−agUG ,1(t )+agUC HO(t )

−ax X (t )+ax X1(t )

−ax X1(t )+axUI (t )

 . (3.30)

The diffusion function, which models the uncertainties, is given by

g (t ) =


−wKx X (t )+wKg UG (t )

−wag UG (t )+wag UG ,1(t )

−wag UG ,1(t )+wag UC HO(t )

−wax X (t )+wax X1(t )

−wax X1(t )+waxUI (t )

 . (3.31)

Since the TPM is linear, the covariance propagation proposed in 3.2.2 is not an approximation,

but gives an exact result. Thus, equation 3.6 gives

A =


0 Kg 0 −Kx 0

0 −ag ag 0 0

0 0 −ag 0 0

0 0 0 −ax ax

0 0 0 0 −ax

 , (3.32)
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and equation 3.7 reads:

L(t ) =


UG (t ) 0 −X (t ) 0

0 UG ,1(t )−UG (t ) 0 0

0 UC HO(t )−UG ,1(t ) 0 0

0 0 0 X1(t )−X (t )

0 0 0 UI (t )−X1(t )

 . (3.33)

It should be noted, that A is time invariant, while L depends on the states. This introduces a

non-linearity in the covariance propagation equations, hence evaluating the stochastic model

of a linear and linearly parameterized model does not result in a set of linear equations.

The initial values for these equations may be found by propagating past model inputs. How-

ever, the initial uncertainty on the BG state, PBG ,0, should be set according to the relative

accuracy of the glucose meter. According to Freckmann et al. [2010], for the used SMBG

device, 95% of BG measurements are within r = 10% of the accurate value, while, according to

Damiano et al. [2012], r = 20% for CGM data (even though this value could be higher). Hence,

because the distribution is assumed to be Gaussian,

PBG ,0 =
(

rG0

1.96

)2

(3.34)

where G0 is the measured BG value at initial time.

The complete equations resulting from equation 3.10 are given in appendix F.

3.3.3 Relevance of the stochastic model

To illustrate the benefits of the stochastic model, examples based on model parameters

identified on CGM data from patients of the clinical study described in A.2 are considered.

Two different scenarios are analyzed: In both scenarios, the patient ingests 50g of CHO one

hour after the start of the experiment and applies standard therapy, i.e. infuses the amount of

insulin calculated using the insulin-to-carb ratio (cf. 2.3.2). The CGM measurement relative

error was chosen to be 20% corresponding to the ISO 15197 norm and a target BG of 100

mg /dl is used.

• Scenario 1: The chosen patient’s effect of insulin is faster than the effect of the meal

(ax > ag ). The deterministic TPM predicts safe treatment, however it does not take

into account any source of variability. Different realizations of the sTPM in figure 3.1

show that the treatment may lead to hypoglycemia in some cases. The 95% confidence

interval indicates that the risk of hypoglycemia is higher than 2.5 %.

• Scenario 2: If the effect of the meal is faster than the one of the insulin (ax < ag ), which

is the case for some of the patients, there is a significant risk of hyperglycemia, as

illustrated in figure 3.2.
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Figure 3.1: Scenario 1: Example of 5 realizations of the sTPM (left) and estimation of 95%
confidence interval (right).

Figure 3.2: Scenario 2: Example of 5 realizations of the sTPM (left) and estimation of 95%
confidence interval (right).

These two scenarios show that there is a risk of hypo- and hyperglycemia, respectively, if

standard therapy is applied. The proposed stochastic model allows to quantify this risk and

may allow reducing it.

3.4 Stochastic model validation

3.4.1 Validation data

The data used to evaluate the proposed stochastic model comes from two different sources: (i)

the nominal data set generated using the UVa simulator, defined in appendix A.1.1 and (ii) the

clinical study described in appendix A.2.
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3.4.2 Validation methods

Cross-validation

One should never use data for validation that was previously used for parameter identification.

Since 4 days of UVa simulator data and 7 or 6 days for study data (for SMBG and CGM data,

respectively) are available, cross-validation is performed. This consists in identifying model

parameters on all but one day and using the additional day for validation. This procedure is

done such that every day is used for validation once. This way, a maximum of 4 validations for

every adult on the UVa simulator can be obtained, which leads to a total of 40 experiments.

For clinical study data, this would add up to 70 (respectively 60 for CGM data), however,

because, for some patients some days were disregarded, the number of separate validations

is 58 (respectively 52 for CGM data). These results are then averaged in order to evaluate

performance.

Choice of identification and validation data

For each of the two data sources, two different measurements are available: the exact BG and

CGM for the UVa simulator, and SMBG and CGM measurements for clinical study data. This

means that there are 8 possible validation cases (cf table 3.1) depending on what measure-

ments are used for identification and validation. For the sake of brevity, only a few cases are

case data origin identification data validation data

1 UVa simulator exact BG exact BG
2 UVa simulator CGM exact BG
3 UVa simulator exact CGM
4 UVa simulator CGM CGM
5 clinical study SMBG SMBG
6 clinical study CGM SMBG
7 clinical study SMBG CGM
8 clinical study CGM CGM

Table 3.1: Possible validation cases

analyzed in detail. The main goal of the proposed method is to obtain probabilistic estimations

of the patient’s actual BG concentration. These estimations should be as exact as possible

when parameters are identified on measurements. For this reason, stochastic predictions

should always be compared with the most accurate measurement that is available. Therefore,

only cases 2,5, and 6 are analyzed in detail and the other cases are used to show particular

model properties.

The initialization of G and PBG is always done with respect to the measurements used for

identification. This means that if parameters are identified on CGM, exact, or SMBG data,

then G is initialized with CGM, exact, or SMBG measurements, respectively. PBG is initialized

according to equation 3.34 with r=20%, r= 0%, or r=10%, respectively.
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The way the data was collected plays a crucial role in analyzing the results. It is, for instance,

straightforward to decide whether exact data generated by the UVa simulator lies within

an estimated confidence interval or not. However, inexact measurements, such as CGM or

SMBG measurements, make this task more complicated. The measurement noise is normally

distributed and the variance for SMBG and CGM measurements Gi are σSMBG = 0.1Gi
1.96 and

σCGM = 0.2Gi
1.96 , respectively. This entails that it is impossible to give an exact value for the

percentage of BG concentrations within the predicted confidence interval. On the other hand,

it is possible to give its expected value, denoted p95%. Since the exact, and not the measured

BG concentration lies inside the confidence interval, is of interest, it can be assumed that

Ge,i ∼N (Gi ,σ2
i ), where Ge,i is the exact BG concentration at time ti . pi is the probability of

Ge,i being inside the confidence interval. If xBG and xBG are the upper and lower bounds of

the estimated confidence interval, respectively, then pi is given by the normal cumulative

distribution function:

pi = P (xBG ,i (t ) <Ge,i ≤ xBG ,i ) (3.35)

= P (Ge,i ≤ xBG ,i )−P (Ge,i ≤ xBG ,i ) (3.36)

where

P (X ≤ a) = 1

2

1+erf

 a −Gi√
2σ2

i


 (3.37)

Finally the expected value of the percentage of points within the confidence interval is

p = 1

N

N∑
i=1

pi (3.38)

If the stochastic model fulfills our assumptions and a 95% confidence interval is used, then

p ≈ 95%.

3.5 Results

3.5.1 Percentage of measurements inside confidence interval over complete data
set

First, in order to validate the proposed method for computing confidence intervals, the

accuracy of the stochastic predictions over the whole duration of the available data sets (i.e.

from ts to te ) is evaluated. Cross validation (cf 3.4.2) is performed and for every validation

data set the percentage of data points within the estimated confidence interval is computed

and averaged over all combinations and patients.
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UVa simulator data

Results for cases 1 to 4, defined in table 3.1, are given in table 3.2 and figure 3.3. Examples of

simulations over the complete time horizon are given in figure 3.4 for different cases. Cases 1

and 2 are most relevant, because they compare predictions to the exact BG concentration.

case % mean % median n
1 0 0 40
2 97.73 100 40
3 0 0 40
4 84.13 85.00 40

Table 3.2: Expected average and median percentage of prediction points within the 95%
confidence interval on the maximum prediction horizon.
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Figure 3.3: Boxplot (cf. appendix B.9) of percentage of measurements inside the 95% confi-
dence interval of all validation data sets (n=40) for cases 1-4.

• Case 1: In this case, exact measurements were used to identify model parameters.

When calculating Q using equation 3.17 and σi = 0 for all measurements, the Fisher

information matrix will be independent of both the model and the measurements. Q is

in fact a zero matrix and, as a consequence, the stochastic term of the stochastic model

is zero. Hence, the model simplifies to the deterministic TPM and it is impossible to

estimate confidence intervals. This can be explained by the fact that the parameter

covariance matrix is assumed to be equal to the inverse Fisher information matrix even

though it actually gives a lower bound on this matrix. If measurements are noiseless,

this lower bound is equal to zero because, if an appropriate model is available, the

model parameters can be identified perfectly. However, because of the model mismatch

betweeb the TPM and the UVa simulator model, this lower bound will not be reached.

Hence, it is recommended not to use the sTPM when using exact measurements.

• Case 2 evaluates the efficiency of using CGM data for identification through comparison
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3.5. Results

Figure 3.4: Examples for cases 1 to 4.

with exact BG concentrations. Results are very good, considering that the analysis on

the maximum prediction horizon is strongly dependent on the inaccurate initial BG

measurement. The percentage of points within the confidence interval is even too high,

which indicates that confidence intervals may be too large. However, a visual inspection

of figure 3.5 shows that the intervals are not overly large.

Some subjects from the UVa simulator population, such as adult 9 (which has already

been identified as a complicated patient in section 2.5), have dynamics that cannot

be reproduced by the TPM. Figure 3.5 shows that adult 9 has a pronounced two-peak

response to a meal. Hence, its dynamics are only partially captured by the TPM and the

confidence intervals are only partially appropriate. The proposed method thus only

performs well if the deterministic model is adapted to the data.

• Case 3 has little interest as CGM data would never be used if exact data was available.

Again uncertainty is estimated to be zero, for the same reasons as described for case 1.

• Case 4 is important because in a closed-loop setting only CGM is available. Similarly

to case 2, CGM noise has an important influence on BG initialization. Additionally, the

results depend on the different noise realizations during the experiment. Since this
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Figure 3.5: Examples for case 2 when validating over the complete data set.

realization is the same for all patients, the noise influence is not averaged out. Figure

3.6 gives an example that shows the negative influence of unfavorable noise realization,

which explains the low percentage values in table 3.2.

Figure 3.6: Examples for case 4 when validating over the complete data set. Both examples
show the negative influence of their identical noise realization.

Overall, the performance of the sTPM is very good on the UVa simulator when CGM data was

used for identification.

Study data

The results of the study data analysis are given in table 3.3 and figure 3.7. There is little

difference between validating on SMBG and CGM data, as both measurement types have a sig-

nificant level of noise. Results are generally slightly better with SMBG measurements, because

of the increased confidence in measurement accuracy. Only cases 5 and 6 are discussed in
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more detail as the discussion is analogous for cases 7 and 8.

The expected percentage of points within the 95% confidence interval is acceptable for data

identified using SMBG or CGM measurements. Several outliers, visible in figure 3.7, occur and

have a strong influence on the average value. Therefore, the median, which is more robust

against outliers, is also given.

case % mean % median n
5 71.25 73.38 58
6 78.80 89.68 52
7 63.58 67.38 52
8 74.80 79.67 52

Table 3.3: Expected average and median percentage of prediction points within the 95%
confidence interval on the maximum prediction horizon.
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Figure 3.7: Boxplot (cf. appendix B.9) of expected percentage of measurements inside the 95%
confidence interval of all validation data sets for cases 5 to 8.

For case 5, results are good, but not perfect, as the expected percentage of points within the

confidence interval is lower than 95%. A possible explanation is that the amplitude of the

SMBG measurement noise is underestimated.

Case 6 shows better results. This is due to the fact that the assumptions on measurement noise

are more appropriate. Nevertheless, results are not perfect, mainly because of the reduced

quality of the parameter identification on CGM measurements. This is illustrated in figure 3.8:

Case 5, identified on SMBG measurements, has better deterministic predictions, but narrower

confidence intervals than case 6, which is identified on noisier and unreliable CGM data.

As a conclusion, on real patient data, BG uncertainty can be predicted with acceptable accuracy

using SMBG, as well as CGM data. Analysis shows that, as expected, best results are obtained

for parameters identified on accurate and frequently sampled data. Ideally, SMBG data with
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increased sampling rate or CGM data on more days should be used.

Figure 3.8: Comparison of stochastic prediction for cases 5 and 6.

3.5.2 Stochastic predictions

The analysis of the results over the maximum prediction horizon performed in 3.5.1 is a good

indicator for uncertainty predictions performance. However, to get more insight, an analysis

of the performance over well-defined prediction horizons is performed. In particular, the

effects of measurement noise will be filtered out, leading to more representative results.

To do stochastic predictions, the following procedure is followed for every combination of

identified model parameters and validation data set, and for every measurement Gi in the

validation data set: A simulation is started h minutes before tGi , where tGi is the time of the

measurement Gi and h is the prediction horizon. The inputs are propagated to initialize the

insulin and CHO sub-systems and their respective covariance elements. The BG measurement

preceding tGi −h is used to define the initial BG and BG variance. As a consequence, to have

a BG measurement to initialize the model, tGi has to be greater than h + ti . The simulation

is then run for h minutes and the final BG and confidence interval are compared to the

measurement Gi . The results are then averaged for all measurement points, for all cross-

validation permutations, and for all patients. Finally, the resulting value of points within

the confidence interval and its standard deviation are plotted as a function of the prediction

horizon. As illustration, examples of 90-minute predictions are given in figure 3.9.

The results for different prediction horizons on UVa simulator data are given in figure 3.10. In

accordance with what was found in 3.5.1, case 1 and 3 cannot give confidence intervals and

percentages of points within are zero. Case 2 (the most relevant one) shows excellent results

over all horizons and case 4 gives good results that become even better when h increases. This

improvement is due to the vanishing influence of the initial BG, and to the more favorable

CGM noise realizations. The standard deviation indicates that the variability of the stochastic
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Figure 3.9: Examples for different cases on 90 minutes prediction horizon.

63



Chapter 3. Stochastic Modeling

predictions rises with low prediction horizons and reaches a maximum value for h > 150

minutes. This indicates that predictions are stable, even for long horizons. The overall level of

variability is acceptably small.
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Figure 3.10: Prediction results for UVa simulator results (cases 1-4) for different horizons.
Means and standard deviations evaluated on all 40 validation sets are given. Mean values are
given on the left, standard deviations on the right.

Figure 3.11 depicts the results obtained with study data. Again, these results are in agreement

with those of section 3.5.1: Cases 6 and 8 have a higher percentage of points within the 95%

confidence interval because the uncertainty was estimated to be larger with CGM measure-

ments. Cases 5 and 7 show a lower percentage of points within the confidence interval, but

this is caused by the SMBG measurement error that was probably larger than the used value

of 10%. The quality of the predictions is very good nevertheless, as the percentage of points

within the 95% confidence interval does not depend much on h. The standard deviation is

shown to increase with h. This is comparable to results on the UVa simulator. However, in this

case, the value of the standard deviation is higher, because of the higher variability and noise

level in the study data.

3.5.3 Other models

The proposed method to evaluate the prediction quality was also tested on other models

(figure 3.12). Results on the LMM, the MM, and the TPM+ (see 2.3.1) show acceptable results.

The TPM+ gives almost identical results than the TPM. However, since the other models, LMM

and MM, led to inferior deterministic predictions, the performance of the corresponding

stochastic model is also lower. The LMM, as defined in equations 2.8 to 2.12, does not have a

linear parameterization. Therefore, the application of the EKF is an approximation. The MM

is non-linear and results in additional approximations compared to the TPM.

These results show that the method performs well even in case of mild non-linearities, espe-

cially if the deterministic model has intrinsically good prediction capabilities, but also that the
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Figure 3.11: Prediction results for clinical study results (cases 5-8) for different horizons. Means
and standard deviations evaluated on all validation sets are given. Mean values are given on
the left, standard deviations on the right.

quality of the deterministic model plays an important role.
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Figure 3.12: Stochastic prediction results for different models for case 2 and case 6. Mean
values are given on the left, standard deviations on the right.
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3.6 Conclusion

A novel method, to construct a stochastic model based on parametric uncertainty and to

propagate these uncertainties, was presented and applied to the TPM. This new approach

allows computing confidence intervals on BG concentrations in a simple, yet effective way.

It performs as expected, although the designed stochastic models are always just as good as

their underlying deterministic models. As such, it is important that the latter be adapted to

the modeled system. Validation was performed on UVa simulator data, as well as clinical

data and results for both were good for the relevant cases. Since clinical data contains more

unpredictable events, estimation results were slightly worse than with UVa simulator data.

The estimation of BG uncertainty is an invaluable addition to improve diabetes treatment.

The use of the stochastic information allows reducing patient’s hypo- and hyperglycemia

risk, especially in combination with a CGM device. However, the expected percentage of

points within the 95% confidence interval is not 95% as it should be, if all assumptions were

satisfied. Hence, more than 5% of the points lie outside the estimated confidence interval.

This has numerous causes, such as non-Gaussian noise, different sources of non-linearities,

or exceptional intra-patient variability. Nevertheless, using the stochastic information is

beneficial in all circumstances: if the uncertainty is reliably estimated, patients can be treated

while considerably reducing hypo- and hyperglycemia risk. Furthermore, if the uncertainty is

estimated to be larger than it actually is, patients still have a lowered risk for large glycemic

deviations, but may need to take more SMBG measurements to reduce the conservatism of

the resulting recommendations of insulin injections. If uncertainties are underestimated, on

the one hand, treatment is still safer than without uncertainty estimations and, on the other

hand, if a CGM device is used, inaccuracies can immediately be detected and parameters can

be adapted accordingly.

The newly designed sTPM will be used for new applications in the two following chapters.

It should be noted that the application field of this new method is not limited to diabetes

management, but may be applied to any process in which a large uncertainty is present and

needs to be estimated. Also, the application is not limited to parametric uncertainty, but can

be extended to take input uncertainty into account. For example the uncertainty in meal

amounts, discussed in section 1.2.2, could be addressed.
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4 BG estimation

4.1 Introduction

One of the objectives of this thesis is to improve the treatment of diabetes using control

methods. However, in order to do control - may it be standard therapy, open-loop, or closed-

loop control - good quality BG, or full state estimation (i.e. estimating all states and not only

BG) are essential. The most straightforward way to obtain BG estimations is to use one of the

measurement devices described in 1.1.2: SMBG is commonly used for standard therapy or

open-loop control, while CGM is required for an AP, but is also useful for open-loop control.

However, with these devices, measurement noise contributes to the uncertainty that makes BG

control a challenge, as described in 1.2.2. The measurement noise is detrimental to treatment

and its impact should be minimized. Since SMBG measurements are taken irregularly with

potentially low sampling frequency, it is almost impossible to improve these measurements

significantly. CGM measurements, on the other hand, have a sampling time of about one

minute, but have a rather large noise level. This sampling time is much smaller than what

would be required for treatment, as an AP is usually sampled every 5 minutes, even though 20

minutes would be sufficient (cf. 5.3.3). Therefore, the redundant measurements can be used

to filter out high measurement noise and improve the BG estimates at the relevant instants.

For some closed-loop controllers, it is also necessary to have access to the full system state, in

which case, a complete state estimation using CGM measurements can be done.

In the literature, CGM data is almost always filtered or used for state estimation, and the

most commonly used technique is by far the Kalman filter (KF). There are many different

implementations such as, for example, a KF with adaptive signal-to-noise ratio by Facchinetti

et al. [2011]. Knobbe and Buckingham [2005] propose an EKF, i.e. a non-linear KF, and Kuure-

Kinsey et al. [2006] discuss a dual-rate KF that takes into account both CGM measurements

and SMBG calibration measurements. While most of these filters work relatively well, their

performance still depends on the underlying model. However, as discussed and shown in

chapter 2, the models, typically used for control or prediction, are not very well adapted to

these tasks and may lead to unacceptable results. Another drawback is that these models do
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not account for other available information like insulin infusions or meal intakes.

In this chapter, in order to improve the available BG concentration information, several well-

known estimation techniques of varying complexity are adapted for diabetes treatment. The

individualized TPM, TPM+, or sTPM that allow better model predictions and take inputs such

as meal announcements or insulin infusions into account are at the heart of these techniques.

The BG concentrations estimated using the proposed filters are shown to be superior for

diabetes treatment (evaluated using the Clarke EGA described in B.3) as demonstrated on the

UVa simulator.

This chapter is organized as follows: First, in section 4.2, the observability of the TPM and the

TPM+ is verified as this is a necessary condition for the application of moste state estimation

algorithms. Section 4.3 describes the different estimators that will then be compared on UVa

simulator data in section 4.5, using the methods described in section 4.4. Final considerations

are made and a conclusion is drawn in section 4.6.

4.2 Observability

The proposed model-based estimation techniques require the deterministic part of the model

to be observable - a property that is further defined below. A first step for checking model

observability is to put it into the standard linear state-space form.

4.2.1 State-space representation

The state-space representation was already introduced in equation 3.1 in its general form.

However, since the TPM and the TPM+ are linear, the linear state-space representation, which

is fully specified by the definition of 3 matrices, can be used.

The linear state-space equations are defined as follows where the output is considered to be

linear with respect to the states:

ẋ(t ) = Ax(t )+Bu(t ) (4.1)

y(t ) = Cx(t ), (4.2)

where A is the n-by-n state matrix, with n being the number of states, x is the n-by-1 state

vector, B is the n-by-m input matrix, with m being the number of inputs, u is the m-by-1 input

vector, y is the p-by-1 output vector, with p being the number of outputs, and C is the p-by-n

output matrix.

The two new control-specific models, designed in chapter 2, are given in this representa-

tion below. Since only BG concentration is assumed to be measured, the output is the BG

concentration state G .
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• TPM, as defined in equations 2.14 to 2.18: n = 4, m = 2, p = 1,

x(t ) =
[

G(t ) UG (t ) Ug 1(t ) X (t ) X1(t )
]′

(4.3)

u(t ) =
[

UC HO(t ) UI (t )
]′

(4.4)

y(t ) =G(t ) (4.5)

A =


0 Kg 0 −Kx 0

0 −ag ag 0 0

0 0 −ag 0 0

0 0 0 −ax ax

0 0 0 0 −ax

 (4.6)

B =


0 0

ag 0

0 0

0 0

0 ax

 (4.7)

C =
[

1 0 0 0 0
]

. (4.8)

y(t ) is no longer a vector, since only one output is considered.

• TPM+ as defined in equations 2.20 to 2.24: n = 4, m = 2, p = 1,

x(t ) =
[

G(t ) UG (t ) Ug 1(t ) X (t ) X1(t )
]′

(4.9)

u(t ) =
[

UC HO(t ) UI (t )
]′

(4.10)

y(t ) =G(t ) (4.11)

A =


−SG Kg 0 −Kx 0

0 −ag ag 0 0

0 0 −ag 0 0

0 0 0 −ax ax

0 0 0 0 −ax

 (4.12)

B =


0 0

ag 0

0 0

0 0

0 ax

 (4.13)

C =
[

1 0 0 0 0
]

. (4.14)
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4.2.2 Observability

A system defined by equations 4.1 and 4.2 is observable if, for any initial state x(0), there

exists a finite real number T , such that the knowledge of the input vector u(t) and of the

output vector y(t ), ∀ 0 ≤ t < T , allows determining the initial state x(0) in an unique way. This

property is shown to be verified if the observability matrix

O =



C

CA

CA2

...

C A(n−1)

 (4.15)

has full rank, i.e. its determinant is non-zero. For most estimation methods, observability is a

necessary condition. For this reason, the observability of the TPM and the TPM+ need to be

verified.

TPM For the TPM, the observability matrix is:

OT P M =


1 0 0 0 0

0 Kg 0 −Kx 0

0 −Kg ag Kg ag Kx ax −Kx ax

0 Kg a2
g −2Kg a2

g −Kx a2
x 2Kx a2

x

0 −Kg a3
g 3Kg a3

g Kx a3
x −3Kx a3

x

 (4.16)

This matrix has full rank as long as ax 6= ag and all parameters are non-zero.

TPM+ For the TPM+, the observability matrix is:

OT P M+ =


1 0 0 0 0

−SG Kg 0 −Kx 0

S2
G −Kg (SG +ag ) Kg ag Kx (SG +ax ) −Kx ax

−S3
G Kg a2

g +Kg SG (SG +ag ) −Kg ag (SG +2ag ) −Kx a2
x −Kx SG (SG +ax ) Kx ax (SG +2ax )

S4
G −Kg (SG +ag )(S2

G +a2
g ) Kg ag (S2

G +2SG ag +3a2
g ) Kx (SG +ax )(S2

G +a2
x ) −Kx ax (S2

G +2SG ax +3a2
x )

 (4.17)

Again, this matrix has full rank as long as ax 6= ag and all parameters, except SG , are non-zero.

When SG = 0, the TPM+ is indeed the TPM and OT P M+ =OT P M .

Consequently, the system is almost always observable, as it is unlikely that both time constants

are exactly identical. Parameters (SG excepted) are identified such that they cannot be zero. If

both time constants have similar values, some numerical problems may occur, though.
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4.3 Different BG estimators

Now that the conditions for observability have been verified, the different BG estimators that

will be compared on the UVa simulator in this chapter, can be introduced in the following

paragraphs, ordered by increasing complexity. Since these estimators are evaluated on UVa

simulator data, the TPM is used as a prediction model, but can be replaced by the TPM+ if real

patient data is to be used.

4.3.1 Low-pass filter

The most obvious and simple way to filter a noisy signal with high sample frequency is to use a

traditional low-pass filter, such as a Butterworth filter. This kind of filter damps all information

with a frequency higher than the so-called cutoff frequency. This results in a smoother signal,

but a delay will appear. The cutoff frequency ωc , which is the tuning parameter, should be

slightly higher than the frequency corresponding to the system’s smallest time constant. A

first-order filter is typically chosen to reduce filter latency. The problem with this approach is

that such a filter introduces a new delay that is relatively long if the cutoff frequency is low.

For this reason a model-based method is probably better suited for this purpose. Also, the

low-pass filter is sensitive to sensor dropouts because no model information is used. The

transfer function of the low-pass filter is:

H(s) = 1
1
ωc

s +1
. (4.18)

The time constant of the filter was chosen to be 10% faster than the fastest system time

constant (which is around 20 minutes on UVa simulator data).

4.3.2 Luenberger observer

A classical state-space observer such as the Luenberger observer is a common candidate for

determining unmeasured states or filtering measurements, and is used by Svensson [2013],

e.g.. The estimation achieved using the following continuous-time equations

˙̂x(t ) = Ax̂(t )+Bu(t )+L(y(t )−Cx̂(t )), (4.19)

where x̂ is the estimated state and L is the n-by-p observer gain matrix. In other words, a

Luenberger observer is based on open-loop observer that is corrected using the weighted

estimation error. A schematic representation of this observer is given in figure 4.1.

The performance of this estimator depends, on the one hand, on the model that is being

used (in this case the new prediction models), and, on the other hand, on the tuning of the L

matrix. In the context of this thesis, as only BG concentration is measured, p equals 1 and,

therefore, L is a vector of dimension 5. This means that the system to be observed has multiple
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-

Figure 4.1: Luenberger observer

inputs and a single output (MISO system). As a consequence, the Ackermann formula and the

duality between controller and observer may be used to find the observer gain L (Longchamp

[2010]). When using the Ackermann formula, the observer dynamics are specified by placing

its poles. In a continuous-time setup, the closer the values of the poles are to −∞, the closer

the observer is to being a dead-beat observer and to exactly following the measurements.

The performance of the observer relies crucially on the placement of the poles. However, a

dead-beat observer is not desired, as our measurements are noisy and our model is not perfect.

The model should have some influence on the estimator behavior, hence, the poles need to be

closer to 0, but still negative. The goal is to find the right balance between CGM measurements

and model-based predictions to generate the best possible BG concentration estimate. An

identical value, corresponding to a time constant of 40 minutes, was chosen for all 5 poles as

this value has shown the best results.

4.3.3 Kalman Filter (KF)

The Luenberger observer is a deterministic observer that does not take into account neither

the quality of model predictions, nor the quality of the measurements. This is manually and

indirectly tuned by the user. As a consequence, the Luenberger observer may still be improved

and its tedious tuning may be simplified by the use of a KF.

The KF, described among many others by Simon [2006], is a well-known filter that allows

making estimations using weighted contributions from both model predictions and mea-

surements. The weights are determined by the specified measurement and process noise

covariance matrices, R and QK F , respectively. The discretized KF is applied to the discrete
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system defined by:

xk =Φxk−1 +Γuk−1 +wk−1 (4.20)

yk = Cxk +vk (4.21)

E(wk w′
j ) = QK Fδk− j (4.22)

E(vk v′j ) = Rδk− j (4.23)

E(wk v′j ) = 0, (4.24)

whereΦ and Γ are the discretized matrices corresponding to A and B, respectively. xk , uk , wk ,

and yk are x(t ), u(t ), w(t ), and y(t ) at the k th sampling time. v(k) is the measurement noise at

the k th sampling time. wk and vk are Gaussian random variables whose covariance matrices

are defined by equations 4.22 to 4.24 and are thus uncorrelated. δk− j is the Kronecker delta

that equals 1 if k = j and 0 otherwise.

The discrete-time KF is given by equations 4.25 to 4.21, for each sampling time k.

P−
k =ΦP+

k−1Φ
′+QK F (4.25)

Kk = P−
k C(P−

k C′+R)−1 (4.26)

x̂−k =Φx̂+k−1 +Γuk−1 (4.27)

x̂+k = x̂−k +Kk (yk −Cx̂−k ) (4.28)

P+
k = (I−Kk C)P−

k (4.29)

ŷk = Cx̂+k , (4.30)

where Pk is P(t) at t = tk , and K is the Kalman filter gain. Since, during one KF iteration, Pk

and x̂k are updated, the superscripts − and + denote the values before and after the variable

update, respectively.

In this work, the discrete-time KF equations are applied to the TPM in discretized state-space

formulation. The discretization at a 1-minute sampling time, corresponding to the UVa

simulator, is evaluated numerically. Initial values are chosen as follows:

x̂+0 =
[

G0 0 0 0 0
]′

(4.31)

P+
0 =


σ2

G ,0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (4.32)

where, G0 is the initial measurement of BG, and σ2
G ,0 is the variance attributed to G0.
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The two tuning parameters QK F and R are chosen as follows:

QK F =


QBG 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 (4.33)

QBG = cf. table 4.1 (4.34)

R = 100. (4.35)

The value of QBG is determined using the Root Mean Square Error (RMSE) of 1-minute ahead

predictions on UVa data, which reflects how well the TPM allows doing short predictions for

each patient. A generic value of 0.04 (mg/dl)2 also gives good results whenever a personaliza-

tion is not possible. The value of R is found by assuming that 95% of measurements are within

20% and that the average BG concentration is approximately 100 mg/dl:

R =
(

0.2

1.96
100

)2

≈ 102. (4.36)

It should be noted that a KF assumes a white Gaussian noise for both process and measurement

noise. However, this is only an assumption, as both of these noises are known to be correlated.

For example, the CGM noise in the UVa simulator is generated using the model developed by

Breton and Kovatchev [2008] that uses colored noise.

Adult 1 2 3 4 5 6 7 8 9 10√
QBG 0.297 0.234 0.205 0.159 0.147 0.186 0.299 0.227 0.228 0.195

Table 4.1: Square root of QBG for all 10 patients in mg/dl.

4.3.4 Extended Kalman Filter with the sTPM (EKF)

The sTPM explicitly models process noise as a function of time. Specifically, after a bolus or a

meal, the confidence in the model decreases, as the outcome becomes less predictable. This

information may directly be used in a KF. However, the sTPM, as described in chapter 3, is not

linear because of the time and state dependence of the stochastic term. For this reason, an

EKF has to be used. As already mentioned, the sTPM being linearly parameterized, this is not

an approximation.

The sTPM can be expressed as:

xk =Φxk−1 +Γuk−1 +Lk−1wk−1 (4.37)

yk = Cxk + vk , (4.38)
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where Lk is the discrete version of L(t) defined in equation 3.33 that depends on xk and uk .

The process noise is now defined by E(wk w′
j ) = Qδk− j .

Because the EKF can account for non-linearities, the measurement noise variance can be

expressed as a function of BG concentration, based on the ISO 15197 norm that imposes a

20% error:

Rk =
(

0.2

1.96
Gk

)2

, (4.39)

where Gk is the BG concentration at the k th sample. As a consequence, high BG measurements

have higher uncertainty than lower ones.

The EKF is given by the following equations:

P−
k =ΦP+

k−1Φ
′+Lk−1QL′

k−1 (4.40)

Kk = P−
k C(P−

k C′+ ŷk Rk ŷk )−1 (4.41)

x̂−k =Φx̂+k−1 +Γuk−1 (4.42)

x̂+k = x̂−k +Kk (yk −Cx̂−k ) (4.43)

P+
k = (I−Kk C)P−

k (4.44)

ŷk = Cx̂+k . (4.45)

Q is determined using the inverse Fisher information matrix as described in section 3.4. Initial

values for x and P are the same as for the KF.

4.3.5 Extended Kalman Filter with sTPM and added process noise - the Therapy
Parameter-based Filter (TPF)

As the noise level in the EKF can be shown to be insufficient (section 4.5), the process noise

used for the KF and for the EKF can be combined to have a more realistic noise term. In this

case, the noise term Lk−1wk−1 is augmented by increasing the dimension of Lk and Q by one.

This can easily be done by adding a term to equation 4.40. This new EKF will be referred to as

Therapy Parameter-based Filter (TPF). Its equations can be written as:

P−
k =ΦP+

k−1Φ
′+Lk−1QL′

k−1 +QK F (4.46)

Kk = P−
k C(P−

k C′+ ŷk Rk ŷk )−1 (4.47)

x̂−k =Φx̂+k−1 +Γuk−1 (4.48)

x̂+k = x̂−k +Kk (yk −Cx̂−k ) (4.49)

P+
k = (I−Kk C)P−

k (4.50)

ŷk = Cx̂+k , (4.51)
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where QK F is given in equation 4.33. Initial values for x and P are the same as for the KF.

4.4 Methods to compare CGM filters

As was already explained in section 2.5 and 3.4, the data used to determine model parameters

should never be used to validate results. For this reason, separate sets of training data and

validation data are generated using the UVa simulator. The methods are not tested on real

patient data because no accurate reference measurements are available. As such, this analysis

is limited to the UVa simulator and results are only valid within this scope. Therefore, the

TPM and the sTPM are used, rather than the TPM+ that would be recommended on real

patient data. To compare the results for different filters, several metrics are necessary that are

discussed in this section.

4.4.1 Training data

The proposed filters (except the Butterworth filter) are based on models, whose parameters

need to be identified for every subject out of the 10-patient database of the UVa simulator. For

this reason, the model parameters are identified on different sensitivity test days, which are

specified in more detail in appendix A.1.2. These test days consist in 3 insulin sensitivity and 3

meal sensitivity tests, performed to obtain reliable insulin action (cf. 2.4.3).

As explained in 2.5.1, neither the TPM, nor the TPM+ is able to fit sensitivity test data, because

their dynamics are not fully compatible with the UVa simulator model. Nevertheless, it is

possible to fit these models on sensitivity test data when the BG measurements taken after

the maximum or minimum of the meal or insulin sensitivity test, respectively, are discarded.

This procedure leads to accurate model parameters that have very reliable insulin action. To

identify the parameters, an analogous procedure to that of section 2.4.2 was used.

Simulated CGM measurements are used for parameter identification. This makes the identifi-

cation of the parameter covariance matrix possible, with the approach of section 3.2.3.

4.4.2 Validation data

To validate and compare the proposed filtering algorithms, 4 consecutive days of UVa simulator

data are available. These are described in more detail in appendix A.1.1 and consist in 3

standard therapy days and one day with "random" insulin infusions and meal intakes. The

simulated CGM results are filtered and compared to the exact BG values.

The validation relies on 3 scenarios, each leading to slightly different results and showing

advantages and drawbacks of the different formulations:

• Scenario 1: Data from the third standard therapy day illustrates how the filters compare
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in a setting with little excitation.

• Scenario 2: An experiment on the random day shows how the filters perform in a setting

with rich inputs.

• Scenario 3: A continuous data set comprising all 4 uninterrupted validation days gives

an overview of the overall performance and is indeed the most meaningful scenario.

4.4.3 Metrics

The percentage of points within zone A of the Clarke EGA (B.3)is used primarily as a metric,

since it is the most clinically relevant one, i.e. it provides direct information on the quality of

the treatment. The MAD (B.1) is analyzed in order to have a more rigorous comparison, as the

EGA is partly an empiric tool.

4.5 Comparison results

The next step is to run the proposed filters with previously identified parameters on the

different scenarios, defined for the validation data sets, and compare the outcomes using EGA

and MAD.

4.5.1 Scenario 1

For the first scenario, a standard therapy meal experiment from the third day of the validation

data set is considered. Results are given in figure 4.2 and are illustrated in figure 4.3.

The Butterworth filter leads to worse results than the raw CGM measurements. This is caused

by the long time delay (of about 30 minutes) observed after a meal-induced rise in BG con-

centration. Results for the other filters show that taking into account the inputs and using an

appropriate model solves this problem. The Luenberger observer has good filtering properties,

but is unmatched by the KF. Surprisingly, results for the EKF are bad. This may be explained by

analyzing figure 4.3: the EKF has excellent filtering properties shortly after the meal, when

uncertainty on model predictions is high, as modeled by the sTPM. However, 7 hours after the

meal, the BG concentrations start to rise again - a behavior that is not forcibly observed on real

patients and that the TPM is not capable of reproducing - while a relatively high confidence

in the model is assumed. As a consequence, the filtered BG concentration does not follow

the CGM signal, but stays close to the concentrations predicted by the TPM. For this reason,

additional process noise needs to be considered (in addition to the one estimated by the

sTPM). Therefore, in order to add some uncertainty that would account for the observed

model mismatch, the process noise used for the KF is added to the EKF to create the TPF. With

this scenario, the performance of the resulting filter is comparable to that of the KF. Indeed,

the KF has a better percentage in EGA zone A while the TPF has a lower MAD.

77



Chapter 4. BG estimation

60

70

80

90

100

CGM
Butterworth

Luenberger KF EKF TPF

%
 in

 E
G

A 
zo

ne
 A

Scenario 1

6

8

10

12

14

16

18

CGM
Butterworth

Luenberger KF EKF TPF

M
AD

 in
 m

g/
dl

Scenario 1

Figure 4.2: Boxplot (cf. appendix B.9) of average percentage in zone A of the EGA and Boxplot
of average MAD for scenario 1, corresponding to day 3 of the validation data set.
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Figure 4.3: Example of a BG profile on scenario 1 for adult 5.
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4.5.2 Scenario 2

Scenario 2 incorporates frequent system excitation as opposed to scenario 1 and its single

meal. The results are given in figure 4.4 and are illustrated in figure 4.5.

In this case the EKF has the best filtering properties for the two metrics, closely followed by

the TPF. These results can be explained by the more accurate TPM predictions for this data set

combined with the larger confidence intervals due to the richer input data. As a consequence,

these filters should be very well suited for an application in an AP, as inputs are very rich in

this case, too. The KF and Luenberger observer also exhibit good performance and improve

the results compared to raw CGM measurements, while the simple low-pass filter shows some

weaknesses.
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Figure 4.4: Boxplot (cf. appendix B.9) of average percentage in zone A of the EGA and Boxplot
of average MAD for scenario 2, corresponding to day 4 of the validation data set.
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Figure 4.5: Example of a BG profile on scenario 2 for adult 6.
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4.5.3 Scenario 3

For this scenario, which considers all 4 consecutive validation days, the results are given in

figure 4.6 and are illustrated in figure 4.7.

This scenario leads to the most general results, whereas the previous scenarios are intended

to show the different properties of the filters. The TPF has the most accurate and the most

reliable BG estimation properties and should therefore be used in the context of BG control. If

a simpler estimator is required, the KF also performs well on most data sets.
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Figure 4.6: Boxplot (cf. appendix B.9) of average percentage in zone A of the EGA and Boxplot
of average MAD for scenario 2, corresponding to day 4 of the validation data set.

4.6 Conclusion

The previous sections have highlighted the benefits of the use of the TPF for a well-performing

AP, and, at the same time, nicely illustrate a possible application of the sTPM. The new filter,

based on the EKF and the new sTPM, with additional added process noise, proves to be the

best and most versatile filter for estimating the BG concentrations based on UVa simulator-

generated CGM measurements. This is especially true for rich input signals commonly used

in an AP. However, in the case of less rich inputs, the simpler KF is shown to be comparable in

terms of performance.

Several remarks need to be made concerning the preceding analysis:

• The TPF was validated on simulated UVa data, only. It is unknown whether results are

applicable to real patients, especially considering the limitations of the UVa metabolic

model and CGM error model. While results are very promising and are used for further

testing on the UVa simulator, additional experiments and validations need to be per-

formed to determine the best filter for a real patient. For instance, the addition of the

process noise in the TPF might become unnecessary, as the TPM’s dynamics are closer
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to those of a real patient.

• The proposed TPF relies on meal announcements and insulin infusion profiles. However,

in a real setting, meal announcements may be absent or wrong. In this case, the TPF

would not perform properly anymore and would underestimate the effect of a meal.

While this would lead to lower post-prandial insulin doses using an AP, BG control would

be less effective, but would, nevertheless, remain safe. On the other hand, the TPF can

be used to detect such unannounced meals by determining when the estimated BG

concentration is not consistent with the measured BG concentration anymore. Similarly,

sensor anomalies and unexpected BG excursions can be detected and, thus, necessary

counteractive measures can be taken.

• The measurement noise considered in the TPC is assumed to be white, uncorrelated,

Gaussian noise. However, the noise modeled in the UVa simulator by Breton and

Kovatchev [2008] is clearly correlated. Hence, the use of a KF with correlated noise, as

described by Simon [2006], for example, should be investigated.

• In section 2.5, the initial states of the TPM and the TPM+ were fixed using noisy CGM or

SMBG measurements. The TPF can be used to improve this initialization and potentially

the resulting data fits, parameter correlation, and model predictions.
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5.1 Introduction

The central part of T1DM treatment is the control algorithm, which needs to be safe (avoid

hypoglycemia) and perform well (minimize hyperglycemia). Currently, standard therapy

(described in section 2.3.2) is the most common treatment. However, there is room for

improvement for two main reasons.

First, standard treatment does not make full use of the available continuous insulin infusion

capabilities offered by insulin pumps and does not systematically take into account the

information from CGM devices. For this reason, a tremendous research effort for developing

an AP is currently being done and involves a number of institutions funded, for instance, by

the European Commission (AP@home, DIAdvisor), or the JDRF (iAP).

Secondly, the quality of a patient’s treatment depends largely on the patient’s know-how for

the estimation of CHO, and on the willingness to take frequent measurements and calculate

the corresponding insulin doses. For this reason, an automatization procedure requiring

minimal patient involvement could substantially improve the treatment of the patients.

There are two main control approaches to improve T1DM treatment (which were briefly

introduced in section 1.1.2):

• Open-loop control is characterized by the absence of fully automated BG treatment

decisions. The patient or the physician determine and/or validate every insulin injection

and function as a final safety layer. Standard therapy is a form of open-loop control that

has proven to perform with reasonable performance. Nevertheless, improvements in the

form of bolus calculators are being developed and are partially already implemented on

commercial insulin pumps. While these bolus calculators are valuable tools for T1DM

patients, the potential of the insulin pumps and the CGM devices are not fully exploited

so far. For these reasons, a TPM-based open-loop control algorithm is presented and

tested on the UVa simulator.
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• Closed-loop control is defined by the possibility of the controller to actively take treat-

ment decisions. It is generally characterized by the use of CGM readings to generate

almost continuously adapted insulin infusions. Considering the frequency of the CGM

readings, it is impossible for anyone to validate insulin doses, and the system needs

to be fully autonomous. Only for some variants, patients are required to announce

meals. Despite the huge and prolonged effort to develop an out-patient AP, no device

is commercially available for now. Since the AP has become technically possible with

new CGM augmented insulin pumps, the bottleneck are BG control algorithms and the

strong regulations to certify such potentially harmful devices. The number of proposed

algorithms is large and first versions of closed-loop controllers are being successfully

tested on humans, although a close review reveals that most APs have a large potential

for improvement. In what follows, the TPM is used to design control approaches that

are simple and reliable, and, which are tested on the UVa simulator.

The unavailability of the AP can be explained by the challenges identified in section 1.2. The

inter-patient variability, the meal uptake variability, the complexity of the system, and the

identifiability have already been addressed in this thesis by developing the TPM and the TPM+.

The stochastic model reduces the effects of intra-patient variability, meal announcement

errors, and system complexity, while improving patient safety. The TPF filters part of the

measurement noise without adding time delay. The remaining open issues, which are the

asymmetric control objective, the time delay and the saturation, will be resolved in this chapter,

while patient safety is further improved.

This chapter is organized as follows: First, in section 5.2, the state of the art in open-loop

control is discussed and TPM-based improvements are derived and tested. In section 5.3,

current closed-loop approaches are analyzed and a new controller, the TPC, is designed,

tested, and compared to state-of-the-art controllers. Then, an outlook on other TPM- and

sTPM-based approaches is given in section 5.4, and conclusions are drawn in 5.5.

5.2 Open-loop control

5.2.1 State of the art

Standard therapy as described in section 2.3.2 is a very effective and well accepted open-

loop control strategy. A first step in making this therapy more reliable is to integrate a bolus

calculator into the BG meter. This helps patients with diabetes to compute their insulin bolus

correctly, based on their CF and I2C. Recently, more and more insulin pump manufacturers

have been offering hybrid devices with coupled insulin pump and SMBG (or recently even

CGM) meter. This allows so-called "smart" insulin pumps, which not only compute the

appropriate insulin bolus based on standard therapy, but also verify if no insulin is being

stacked. Insulin stacking occurs when a patient applies standard therapy while there is

still some active insulin in the bloodstream. This is quite likely to happen since even fast-
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acting insulin keeps on acting after several hours. The excess insulin administrated because

of stacking is a very likely cause of hypoglycemia. The currently available smart insulin

pumps use the concept of Insulin On Board (IOB), introduced by Ellingsen et al. [2009], which

quantifies how much insulin is active in the body. This method is effective, but there are

no guidelines to tune the insulin action duration (the only parameter), even though this

parameter may vary significantly from one patient to another. Zisser et al. [2008] give an

overview over current smart insulin pumps.

While smart insulin pumps are simple, yet effective ways to obtain appropriate BG control,

more complex methods potentially lead to improved results and were already explored 15 years

ago by Hejlesen et al. [1997], e.g. . In this context, a model-based optimal control approach is

often adopted, such as proposed by Prud’homme et al. [2011], for which, BG concentrations

are predicted over a prolonged horizon and an insulin infusion profile is computed in order to

minimize a BG-specific cost function. This approach allows optimizing BG control following

various, especially slow or "difficult", meals. However, optimal control-based methods were

shown to lead to inappropriate results, mostly as a result of inappropriate BG prediction

models and unreliable insulin action (cf. 2.4.3).

A first improvement of open-loop control strategies is obtained by using the information

provided by CGM devices. The efficacy of CGM-augmented standard therapy is shown to

improve T1DM treatment to the point of potentially justifying healthcare reimbursement

(Heinemann and Devries [2013]). By using a BG estimator, as discussed in chapter 4, CGM

measurements can also be used to obtain more accurate BG estimations. Vereshchetin et al.

[2013] proposed this approach to treat MDI users, while Patek et al. [2011] applied it in an

optimal control setting. Additionally, the CGM data can be used to generate different alarms

in case of dangerous situations that would typically remain unnoticed otherwise.

Considering the large potential for improvement, in the context of this thesis, open-loop

controllers are designed with the objective of enhancing standard therapy and potentially

taking CGM information into account.

5.2.2 TPM-based open-loop therapy

The main difficulty in designing an optimal control approach in open-loop control is the

choice of an appropriate BG prediction model. For this reason, the TPM, a new prediction

model was developed in chapter 2. In this section a novel open-loop therapy is deduced

directly from the TPM equations, rather than using the TPM for optimization. Because of the

TPM’s simple structure, the optimal treatment can be determined analytically.

Feed-forward meal disturbance rejection

The principle of feed-forward control is to compute current and future system inputs based

on prior knowledge. In this case, this translates to computing the required insulin infusion
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based on a prediction model. Generally speaking, and especially in the presence of complex

models, it is impossible to do this analytically. However, with the TPM, this becomes indeed

possible and an "optimal meal rejection" can be computed using the Laplace transform.

The TPM is defined in equations 2.14 to 2.18, which can be written in the Laplace domain:

G(s) =− Kx

s( 1
ax

s +1)2
UI (s)+ Kg

s( 1
ag

s +1)2
UC HO(s). (5.1)

The insulin action and meal effect time constants are defined as τx = 1
ax

and τg = 1
ag

, respec-

tively. Thus, equation 5.1 can be rewritten as

G(s) =− Kx

s(τx s +1)2 UI (s)+ Kg

s(τg s +1)2 UC HO(s). (5.2)

If I (s) =− Kx

s(τx s+1)2 is defined as the system to be controlled, i.e. the glucose-insulin sub-system,

and D(s) = Kg

s(τg s+1)2 as the system disturbance (corresponding to the meal disturbance), equa-

tion 5.2 can be written as:

G(s) = I (s)Ui (s)+D(s)UC HO(s). (5.3)

This is graphically represented in figure 5.1. It is possible to determine the feed-forward

Figure 5.1: Insulin-glucose system with meal disturbance.

control U0(s) such that the disturbance is perfectly canceled. This is possible because the

meal input UC HO is assumed to be known with sufficient accuracy. Hence, U0(s) is found by

equating the system output with feed-forward control with the disturbance-free system (cf.

figure 5.2):
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Figure 5.2: Insulin-glucose system with meal disturbance and feed-forward control.

I (s)(UI (s)+U0(s)UC HO(s))+D(s)UC HO(s) = I (s)UI (s) (5.4)

I (s)UI (s)+U0(s)UC HO(s)I (s)+D(s)UC HO(s) = I (s)UI (s) (5.5)

U0(s)I (s) =−D(s) (5.6)

U0(s) =−D(s)

I (s)
. (5.7)

Using the definition of D(s) and I (s), equation 5.7 becomes

U0(s) =−D(s)

I (s)
(5.8)

=
Kg

s(τg s+1)2

− Kx

s(τx s+1)2

(5.9)

=−Kg

Kx

(τx s +1)2

(τg s +1)2 (5.10)

=−I 2C
(τx s +1)2

(τg s +1)2 (5.11)

This feed-forward control U0(s) perfectly counteracts any announced meal disturbance.

Marchetti et al. [2008] propose a very similar feed-forward control, where the feed-forward is

a first-order system with different time constants than in 5.11.

The expression of U0(s) can be transformed back into the time domain if UC HO is an impulse.

This is the case if meal duration is considered as being infinitely small. This approximation

allows finding an analytic time-domain solution for the optimal meal rejection. Since the

Laplace transform of a Dirac impulse δ(t) is 1, UC HO(s) = 1 if 1 g of CHO are ingested at the
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initial time (t = 0). Using any symbolic computation software, one obtains:

U0(t ) = I 2C

(
τ2

x

τ2
g
δ(t )+ (τg −τx )

(τg t −τx t +2τgτx )

τ4
g

e
− t
τg

)
(5.12)

= I 2C

(
τ2

x

τ2
g
δ(t )+ (τg −τx )2

τ4
g

te
− t
τg +2τx

τg −τx

τ3
g

e
− t
τg

)
(5.13)

The solution from equations 5.12 and 5.13 needs to be scaled to the total amount of CHO

ingested, when more than 1 g is ingested.

Equation 5.13 consists of three terms:

• The first term is a bolus that is given simultaneously to the meal. It can be observed

that this bolus is smaller than I2C (for δ = 1 g), if insulin action is faster than CHO action

(τx < τg ), the same if the two time constants are identical, and larger if τg < τx .

• The second term is always greater than or equal to 0 and is part of an insulin infusion

profile.

• The third term is positive if τx < τg and negative otherwise. It is the second part of an

insulin infusion profile.

Using the final value theorem, it can be observed that
∫ ∞

0 U0(t )d t = I 2C . This means that the

total amount of insulin is always equal to I 2C , the optimal bolus that would have been infused

for standard therapy.

However, depending on the value of q = τx
τg

, the ratio of the two time constants, several cases

can be distinguished:

• q < 1: In this case, insulin acts faster than the meal effect and the therapy resulting from

the TPM leads to an initial bolus q · I 2C , smaller than I2C, followed by a positive insulin

infusion profile that perfectly counteracts the meal disturbance.

• q = 1: In this case, insulin action and meal effect have the same time constant and an

optimal bolus at the same time as the meal is enough to counteract the meal disturbance.

In fact the second and third terms of equation 5.13 are 0.

• q > 1: This case is more complex: In fact, the meal acts faster than the insulin, which

entails that it is impossible to perfectly counteract the meal disturbance. Since the

TPM is linear, the optimal profile computed in equation 5.13 leads to an initial bolus

that is greater than I 2C , followed by a partially negative insulin infusion. In fact the

second term of equation 5.12 is negative for 0 < t < 2τx
q−1 , where t is the time after

the meal. Since the required insulin infusion becomes negative, this treatment is not

recommended and might become dangerous, because of controller saturation. Indeed,
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the initial bolus is larger than I 2C , but negative insulin is not infused because of the

input saturation - in the case of basal insulin, a slightly negative infusion makes sense -

resulting in hypoglycemia. As a conclusion, if q > 1 standard therapy should be applied.

It is impossible to do better, while maintaining patient safety. In fact, the option to

infuse insulin before the meal intake may result in improved treatment outcomes, but

is considered unsafe (as a patient may be prevented from taking a planned meal) and

does not have an analytic solution.

Finally, feed-forward control using the TPM can be summarized:

If q ≤ 1 : U0(t ) = I 2C

(
τ2

x

τ2
g
δ(0)+ (τg −τx )2

τ4
g

te
− t
τg +2τx

τg −τx

τ3
g

e
− t
τg

)
else U0(t ) = I 2C ·δ(0).

Using an analogous development, feed-forward control for the TPM+ can be shown to be

identical.

Feed-forward using TPM or TPM+ has only advantages over standard therapy. A next step is

to verify whether identified parameter values from the clinical study data and UVa simulator

data allow this advantage over standard therapy. The value of q depends, on the one hand,

on the insulin absorption and action rates of an individual, and, on the other hand, on the

individual and meal-specific CHO absorption rate. To evaluate typical values of q , parameter

values for the different available data sets (cf. appendix A) are given for all patients for the

different data sets:

Clinical study data The clinical study was designed to test optimal control solutions in

open-loop. During the study design, it was already clear that such a method would only make

sense for relatively slow meals. For this reason, a meal with low GI was chosen. Identified TPM

and TPM+ model parameters are given in table 5.1 and 5.2, respectively. They show that, for

the study data, only 4 or 5 out of 10 patients, for the TPM and TPM+, respectively, can have

perfect disturbance rejection using a variable insulin infusion profile, while the others would

rely on standard therapy to reject meals.

Patient 1 2 3 4 5 6 7 9 11 12
τx 52 48 72 197 26 37 49 37 89 53
τg 69 69 55 33 44 34 46 37 102 35
q 0.77 0.69 1.29 6.03 0.60 1.07 1.07 1.00 0.87 1.53

Table 5.1: Identified time constants for TPM on study data in minutes, and their corresponding
q . If q < 1, it is marked as bold.
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Patient 1 2 3 4 5 6 7 9 11 12
τx 62 48 73 197 28 37 51 46 110 61
τg 83 69 57 33 54 34 49 50 131 37
q 0.75 0.69 1.29 6.03 0.52 1.08 1.05 0.93 0.84 1.67

Table 5.2: Identified time constants for TPM+ on study data in minutes, and their equation q .
If q < 1, it is marked as bold.

UVa simulator sensitivity tests In the UVa simulator there is only the choice for one type of

meal: a quite fast meal, as seen in table 5.3. The model parameters are those used in chapter 4

and were identified on CGM measurements taken during the sensitivity test days specified

in appendix A.1.2. Parameter values from table 5.3 show that q > 1 for all patients and, thus,

having a variable insulin infusion profile as feed-forward control does not make sense, and

that standard therapy should therefore be preferred.

Adult 1 2 3 4 5 6 7 8 9 10
τx 96 53 51 56 62 71 56 63 79 65
τg 23 38 27 27 26 46 37 21 30 27
q 4.13 1.39 1.89 2.11 2.39 1.54 1.51 3.04 2.60 2.37

Table 5.3: Identified time constants for TPM on UVa simulator data in minutes, and their
equation q . If q < 1, it is marked as bold.

Complex feed-forward insulin profiles are only useful if insulin action is faster than the

meal effect. However, this is rarely the case, as shown above. Therefore, in most cases,

standard therapy is the best choice for feed-forward control. This justifies the development

of faster acting insulin and insulin delivery methods, which is a very active research field.

Improvements were obtained with super-fast inhaled insulin by The Doyle Group and the

Sansum Diabetes Research Institute [2013], by heating the insulin injection site (Raz et al.

[2009]), or through IP insulin infusion. This paves the way for more effective T1DM treatment.

Setpoint adaptation

It has been shown that, according to the TPM and the TPM+, it is impossible to maintain a

constant BG after a meal, if the insulin action is slower than the meal action (q > 1). As a

consequence, it is physically impossible to maintain the target BG concentration over time

using current insulins. For this reason, after a meal, the setpoint should be modified in order

to be reachable and to avoid giving massive insulin doses. In the following paragraphs this

setpoint adaptation is derived from the TPM and the TPM+.

Default setpoint The setpoint for BG control has to be set by a physician, according to

his personal knowledge of a given patient. In this thesis, the value of 112.5 mg/dl is chosen,

because it is the value that minimizes the Blood Glucose Risk Index (BGRI), defined in appendix
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B.4. Svensson [2013], or Weinzimer et al. [2008], propose to use different setpoints during the

night to avoid nocturnal hypoglycemia.

Setpoint adaptation Two separate cases are distinguished for determining if, and how, the

setpoint should be adapted.

• τx ≤ τgτx ≤ τgτx ≤ τg , i.e. q ≤ 1: In this case it is straightforward to find the setpoint value. Since

the disturbance rejection is able to perfectly counteract the meal effect, the setpoint is

constant and equal to the optimal BG concentration, i.e. 112.5 mg/dl if the BGRI is to be

minimized.

• τx > τgτx > τgτx > τg , i.e. q > 1: This case is far more common than the previous one and is systematic

on the UVa simulator. To have perfect rejection of the meal disturbance, negative insulin

would need to be administered, following a large bolus. Since this is not possible, the

standard bolus should be given. However, this entails that it is not possible to keep BG

constant anymore and the setpoint should be adapted such that it can be followed.

To compute this setpoint adaptation, the increase in BG resulting from feed-forward

control needs to be calculated. It consists of the sum of the disturbance and the resulting

BG from the feed-forward control. Hence, the setpoint adaptation S(s) is:

S(s) =U0(s)I (s)UC HO(s)+D(s)UC HO(s) (5.14)

= (U0(s)I (s)+D(s))UC HO(s). (5.15)

Since q > 1, U0(s) = I 2C , and equation 5.15 can be rewritten:

S(s) = (I 2C · I (s)+D(s))UC HO(s). (5.16)

For the TPM:

ST P M (s) =
(

I 2C

(
− Kx

s(τx s +1)2

)
+ Kg

s(τg s +1)2

)
UC HO(s) (5.17)

= Kg

s

(
1

(τg s +1)2 − 1

(τx s +1)2

)
UC HO(s) (5.18)

= Kg

s

(
(τx s +1)2 − (τg s +1)2

(τg s +1)2(τx s +1)2

)
UC HO(s) (5.19)

= Kg
(τx −τg )

[
(τx +τg )s +2

]
(τg s +1)2(τx s +1)2 UC HO(s). (5.20)

UC HO can be approximated by an impulse input if the duration of the meal is very

small. In this case, the calculations can be done by choosing an amplitude of 1 and an

impulse time equal to 0, because the linearity allows scaling and time-shifting. Hence,
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UC HO(t) = δ(t), and UC HO(s) = 1. In this case, the inverse Laplace transform leads to

the time-domain response:

ST P M (t ) = Kg

[(
1+ t

τx

)
e−t/τx −

(
1+ t

τg

)
e−t/τg

]
. (5.21)

The same calculations are made for the TPM+, for which IT P M+(s) = − Kx

(s+SG )(τx s+1)2 is de-

fined as the system to be controlled, i.e. the glucose-insulin sub-system, and DT P M+(s) =
Kg

(s+SG )(τg s+1)2 as the system disturbance. Equation 5.2 can be written as:

GT P M+(s) = IT P M+(s)Ui (s)+DT P M+(s)UC HO(s), (5.22)

and the appropriate setpoint adaptation is:

ST P M+(s) = Kg
s

s +SG

(τx −τg )
[
(τx +τg )s +2

]
(τg s +1)2(τx s +1)2 UC HO(s). (5.23)

The time domain solution for the TPM+ may be computed using symbolic software, but is not

given here, as the expression is relatively complex.

Summary Finally, the BG concentration setpoint GSP is defined as the target BG concentra-

tion plus the setpoint adaptation:

GSP (s) =Gt +S(s). (5.24)

Hence, for the TPM:

If q ≤ 1 : GSP (s) = 112.5mg /dl

else GSP (s) = 112.5mg /dl +Kg
(τx −τg )

[
(τx +τg )s +2

]
(τg s +1)2(τx s +1)2 UC HO(s),

while for the TPM+:

If q ≤ 1 : GSP (s) = 112.5mg /dl

else GSP (s) = 112.5mg /dl +Kg
s

s +SG

(τx −τg )
[
(τx +τg )s +2

]
(τg s +1)2(τx s +1)2 UC HO(s).

Corrective insulin

In the previous paragraphs, an optimal meal disturbance rejection has been designed, based

on the TPM or the TPM+. This new method either leads to a perfect meal rejection, or to an

adaptation of the controller setpoint. Nevertheless, this method only works well, if the model

is sufficiently close to the real BG concentrations. However, it is known that, because of the
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huge system complexity and uncertainty, the TPM and TPM+ will only lead to an approximate,

yet reliable prediction. For this reason, a corrective insulin dose should be computed at every

insulin injection, using the same concept as in standard therapy (cf. 2.3.2). This corrective

insulin dose UI ,cor r can be improved using the new models, by taking into account the system’s

initial state.

The TPM without the meal sub-model, corresponding to I (s) is given by

Ġ =−Kx X (t ) (5.25)

Ẋ (t ) =− 1

τx
X (t )+ 1

τx
X1(t ) (5.26)

Ẋ1(t ) =− 1

τx
X1(t )+ 1

τx
UI (t ). (5.27)

The Laplace transform with non-zero initial conditions leads to

sG(s) =−Kx X (s)+G0 (5.28)

sX (s) =− 1

τx
X (s)+ 1

τx
X1(s)+X0 (5.29)

sX1(s) =− 1

τx
X1(s)+ 1

τx
UI (s)+X1,0, (5.30)

where G0, X0, and X1,0 are the respective initial conditions for the different states.

Hence,

G(s) =−Kx
X (s)

s
+ G0

s
(5.31)

X (s) = X1(s)+τx X0

τx s +1
(5.32)

X1(s) = UI (s)+τx X1,0

τx s +1
. (5.33)

Substituting equation 5.33 into equation 5.32:

X (s) = UI (s)+τx X1,0 +τx (τx s +1)X0

(τx s +1)2 , (5.34)

and substituting equation 5.34 into equation 5.31, the full expression for G , for all initial

conditions, is obtained.

G(s) =−Kx

(
UI (s)+τx X1,0 +τx (τx s +1)X0

s(τx s +1)2

)
+ G0

s
(5.35)

=− Kx

s(τx s +1)2 UI (s)−Kx
τx X1,0 +τx (τx s +1)X0

s(τx s +1)2 + G0

s
(5.36)

= I (s)UI (s)−τx Kx
X1,0 + (τx s +1)X0

s(τx s +1)2 + G0

s
(5.37)
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This means that the complete expression for G is the sum of I , the insulin subsystem with

initial conditions set to zero, and two further terms setting the initial conditions.

Next, this expression is used to find the insulin quantity necessary to reach the BG concentra-

tion setpoint. The setpoint should be reached at least when time goes to infinity:

GSP =G(∞). (5.38)

Using the final value theorem:

GSP = lim
s→0

sG(s) (5.39)

= lim
s→0

(
− Kx

(τx s +1)2 UI (s)−Kxτx
X1,0 + (τx s +1)X0

(τx s +1)2 +G0

)
(5.40)

= Kx (lim
s→0

UI (s))−Kxτx (X1,0 +X0)+G0. (5.41)

Hence,

lim
s→0

UI (s) =− 1

Kx
(GSP −G0)−τx (X1,0 +X0), (5.42)

and from the definition of the Laplace transform:

lim
s→0

UI (s) =
∫ ∞

0
UI (t )d t . (5.43)

Finally,∫ ∞

0
UI (t )d t =− 1

Kx
(GSP −G0)−τx (X1,0 +X0). (5.44)

This means that, according to the TPM, the total amount of insulin that needs to be adminis-

tered in order to reach the BG concentration setpoint is composed of two terms:

1. the difference between the setpoint and current BG concentration divided by Kx (which

is the same as the C F ), which corresponds exactly to the correction term of standard

therapy.

2. the opposite of the sum of X and X1 at the initial time, multiplied by the insulin time

constant τx . The next step is to show how these initial values of X and X1 can be

estimated using insulin infusion history.

X and X1 are taken from the Laplace transform of the TPM equations:

X (s) = X1(s)

τx s +1
(5.45)

X1(s) = UI (s)

τx s +1
. (5.46)
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Thus,

X (s)+X1(s) = X1(s)

τx s +1
+ UI (s)

τx s +1
(5.47)

= UI (s)

(τx s +1)2 + UI (s)

τx s +1
(5.48)

= τx s +2

(τx s +1)2 UI (s). (5.49)

Therefore, in Laplace domain, the second term of equation 5.44 corresponds to:

τx (X (s)+X1(s)) = τ2
x s +2τx

(τx s +1)2 UI (s), (5.50)

and is evaluated at time t = 0 using past insulin injections information.

Finally, the quantity of corrective insulin to be injected at time t = 0 is

UI ,cor r =− 1

Kx
(GSP −G0)−τx (X1,0 +X0), (5.51)

because, considering the dynamics of the TPM that make insulin overshoots impossible,

the fastest way to reach the setpoint BG concentration is by infusing the insulin as early as

possible.

The same calculation cannot be done for the TPM+. In fact,∫ ∞

0
UI (t )d t =−∞, (5.52)

because the TPM+ converges to 0 if times goes to infinity. Hence, a constant negative insulin

infusion would be required after some time. Nevertheless, using UI ,cor r in the context of the

TPM+ can still be recommended, as long as SG is sufficiently small.

Insulin on board

IOB is a concept that was introduced by Ellingsen et al. [2009], and was already described in

the state of the art in section 5.2.1. There are several methods to predict how much insulin

stays active in the bloodstream after a given time. They range from linear to non-linear curves,

but almost all rely on a single time constant. The difficulty is to estimate this time constant

such that a compromise between performance and safety is obtained. For this reason, it is

proposed to use the TPM to evaluate the IOB, based on the identified model parameters. IOB

is the amount of injected insulin UI (s)
s , minus the insulin that has already acted − I (s)

Kx
·UI (s),
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corresponding to the drop in BG divided by the insulin sensitivity:

IOB(s) = UI (s)

s
+ I (s)

Kx
·UI (s) (5.53)

=
(

1

s
− 1

s(τx s +1)2

)
·Ui (s) (5.54)

Thus,

IOB(s)

UI (s)
=

(
1

s
− 1

s(τx s +1)2

)
(5.55)

= τ2
x s2 +2τx s

s(τx s +1)2 (5.56)

= τ2
x s +2τx

(τx s +1)2 (5.57)

This value corresponds exactly to the expression of the right hand side term of equation 5.50

and corresponds to the second term of the corrective insulin UI ,cor r that can now be written

as

UI ,cor r =− 1

Kx
(GSP −G0)− IOB(0), (5.58)

where IOB(0) is the insulin on board at the initial time. It should be noticed that IOB only

depends on the time constant τx .

Open-loop control summary

An open-loop control strategy was derived from the TPM, leading to an optimization-free,

model-based treatment that augments standard therapy by adding safety and performance

enhancements, and does not rely on CGM. This treatment will be referred to as the Therapy

Parameter-based Controller in Open-Loop (TPC OL).

It is composed of 3 new parts that are added to standard therapy:

1. Meal disturbances are rejected by the following feed-forward control administered after

the meal intake time and multiplied by the mass of ingested CHO:

If q ≤ 1 : U0(t ) = I 2C

(
τ2

x

τ2
g
δ(t )+ (τg −τx )2

τ4
g

te
− t
τg +2τx

τg −τx

τ3
g

e
− t
τg

)
else U0(t ) = I 2C ·δ(t ).

This enhances performance, especially in the case of a slow meal (q < 1).

2. The BG concentration setpoint is adapted by adding the term S(s) to the target BG
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concentration:

With the TPM : S(s) = Kg
(τx −τg )

[
(τx +τg )s +2

]
(τg s +1)2(τx s +1)2 UC HO(s)

With the TPM+ : S(s) = Kg
s

s +SG

(τx −τg )
[
(τx +τg )s +2

]
(τg s +1)2(τx s +1)2 UC HO(s).

This improves patient safety because it reduces the injected insulin bolus if a meal is

taken while the previous meal has still an effect.

3. Finally the insulin on board is subtracted from the standard therapy correction factor.

IOB(s) = τ2
x s +2τx

(τx s +1)2 UI (s) (5.59)

5.2.3 CGM augmented open-loop control

The proposed open-loop strategy can be applied using exclusively SMBG measurements.

However, if CGM measurements are available, they can be directly integrated into the existing

strategy using the TPF of chapter 4. This filter can be used to improve BG estimation at the

treatment time.

5.2.4 Implementation on the UVa simulator

To evaluate the proposed open-loop control method, a clinical study would need to be carried

out. However, since this is not possible within this thesis, the treatment strategy is evaluated

on the UVa simulator described in detail in appendix A.1. The nominal scenario, detailed in

E.1, is used for this validation. Several points need to be specified first:

Target BG concentration The target BG concentration Gt is 112.5 mg/dl in this thesis. This

value was chosen because it is the value that minimizes the patient risk according to Kovatchev

et al. [2000], as further explained in appendix B.4.

Basal rate correction For the new open-loop controller, the basal rate is adjusted such that

the target BG concentration of 112.5 mg/dl is obtained when no meals and no additional

insulin affect the system. The personalized basal rates are given in table 5.4.

Evaluated open-loop controllers

The open-loop controllers that are evaluated on the UVa simulator are:
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Adult UI ,b in U/h
1 1.500
2 1.600
3 1.733
4 1.048
5 1.683
6 1.850
7 1.450
8 1.396
9 1.450

10 1.501

Table 5.4: Adjusted basal rates to have a Gss of 112.5 mg/dl.

UVa simulator standard therapy (UVa ST) The results from the new open-loop strategy are

tested against the standard open-loop algorithm implemented by default in the UVa simulator.

The basal rate is the predefined basal rate that keeps the unperturbed subject at a given basal

BG concentration, which is around 140 mg/dl (cf. A.1). The meal bolus is given by multiplying

the given I2C with the amount of ingested CHO. No corrective insulin is injected. This means

that this method is fully open-loop, since it does not rely on any measurements at all.

Standard therapy based on TPM parameters (TPM ST) UVa ST is not the standard therapy

described in 2.3.2, because no corrective insulin is given. For this reason, standard therapy

using the parameters identified with the TPM and the adjusted basal rate are applied to the

UVa simulator. This should indicate how standard therapy performs on the UVa simulator. It

should be noted that there is still a difference compared to the original standard therapy in

that, on the simulator, CGM measurements are used instead of SMBG measurements. This

should have a negative effect on performance, as CGM is less accurate than SMBG. The model

parameters result from the sensitivity tests described in A.1.2 and were already used in chapter

4.

TPM-based open-loop control (TPC OL) The TPC OL is constructed as in 5.2.2. The same

parameter set than for the TPM ST is used. Again, simulated CGM measurements are used,

since no SMBG measurements are available in the UVa simulator.

TPM-based open-loop control with TPF (TPC TPF-OL) This controller is the same as the

TPC OL, with the exception that the TPF is used for estimating BG concentrations, instead of

using raw CGM data.
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5.2.5 Results using the UVa simulation

Simulation results for UVa ST and TPM ST are given in table 5.5. The control methods are

evaluated based on the BGRI (cf. appendix B.4) and the percentage of time within target

and below target (more detail in appendix B.6). According to all averaged metrics, standard

therapy performs not as well as the measurement-free UVa ST. Indeed, for the UVa ST, the

average BGRI and the time spent in hypoglycemia are lower, while the time spent within the

target range is higher. This holds when results are averaged over all patients, as well as when

the atypical adult 9 is discarded. The main reason is the increase in the basal insulin for the

TPM ST, combined with the large oscillations observed on the UVa simulators dynamics (as

illustrated in A.1). Both of these bring BG concentrations closer to, and sometimes beyond,

the hypoglycemic limit. It should be noted that in 7 out of 10 patients, TPM ST has a better or

comparable BGRI than the UVa ST, and the three outliers are responsible for the increased

average BGRI. A slightly lower basal insulin rate would probably improve these results.

BGRI % in tar % below tar
Adult ST UVa ST TPM ST UVa ST TPM ST UVa ST TPM

1 3.14 6.15 92.85 83.13 0 16.87
2 1.41 5.23 100 82.05 0 17.95
3 1.41 0.79 100 100 0 0
4 1.9 1.45 91.7 94.9 0 0
5 1.29 1.02 100 100 0 0
6 2.8 2.87 89.93 88.62 0 11.38
7 1.19 1.59 100 95.35 0 4.65
8 1.33 1.06 100 100 0 0
9 4.33 4.67 83.17 84.69 8.64 9.79

10 3.08 1.9 88.23 98.47 0 1.53
Av. 2.19 2.67 94.59 92.72 0.86 6.22

Av. No 9 1.95 2.45 95.86 93.61 0.00 5.82

Table 5.5: Results for all adults of the UVa simulator under for standard therapy on the nominal
scenario.

5.2.6 Conclusion

A complete open-loop strategy has been developed starting from the TPM equations. This

strategy extends the existing standard therapy by introducing new performance enhancing and

patient risk reducing measures. The method may be interpreted as an augmented bolus calcu-

lator and could easily be implemented in an insulin pump, thanks to its low computational

cost.

However, simulations revealed that standard therapy does not perform well on the UVa

simulator. This shows the simulator’s limits, as this therapy works well on real patients.

Nevertheless the UVa simulator provides some insight into how control methods perform.
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5.3 Closed-loop control

5.3.1 State of the art

A detailed review of existing closed-loop control methods is not be given here, as the number

of such algorithms and related simulation and clinical studies is huge. The aim of this section

is rather to introduce the different available options for the design of an AP algorithm and

to give examples. This will justify the choices made and the goals set for the design of the

proposed control algorithms.

For a more detailed review, the interested reader is referred to recent works by Lunze et al.

[2012] for a technical review, or by Bequette [2012] for a broader overview. Cobelli et al. [2011]

review the past efforts in designing an AP, introduce the current projects and give an outlook

on future works. Renard et al. [2013] make an update of recent progress in the development of

an AP, with focus on the advances in out-patient studies.

In the following paragraphs, different aspects of closed-loop BG control are discussed and

recent examples are given.

Degree of automation

According to the definition of closed-loop control in this thesis (cf. section 5.1), an AP is a

device that takes control actions without previous patient interaction. Therefore, there are

many different degrees of automation and complexity that define several classes of APs.

Pump suspension algorithms are probably the most simple and intuitive forms of an AP. These

algorithms shut of the basal insulin infusion if certain conditions such as the passing of a low

BG concentration threshold, or hypoglycemia predictions, are met. Devices with automated

pump shutoff are currently on the market, and have recently been approved by the FDA. For

this reason, the manufacturer, Medtronic [2013], is marketing their pump suspend algorithm

as "the world’s first breakthrough in Artificial Pancreas technology". This very simple solution

(even though more complex variations, such as proposed by Cameron et al. [2012], for example,

exist) is only a first step towards reaching the full potential of an AP.

A next degree of automation are overnight BG controllers that control nocturnal BG con-

centrations and actively administer insulin when required. BG concentrations are easier to

manage overnight than during the day, as no major system disturbances occur. Overnight

controllers are currently being investigated and many studies have recently been published,

such as those by Elleri et al. [2011], by O’Grady et al. [2012], by Capel et al. [2013], or by Nimri

et al. [2013].

A further degree in automation is reached using a full AP with meal announcements, meaning

that insulin infusion is completely automatized and the patient only provides information on

his meal intakes and, possibly, on his physical activity. As a consequence, the involvement is
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the same as with a standard therapy, but the treatment quality is potentially improved. This is

the most common type of AP currently investigated.

A fully automated AP is the last step in the development of closed-loop control. In this case,

the patient does not have to take any action at all - as if he had an artificial pancreas. These

controllers should eventually reproduce the functionality of a healthy pancreas and allow

patients with T1DM to live their lives without the limitations of diabetes. Unfortunately, with

the current limitations of the SC-SC route and its resulting time delays, the performance of a

healthy pancreas cannot be reached.

Type of controller

The type of controller is an important choice to make for the design of an AP. A short overview

is given below.

Proportional-Integral-Derivative (PID) controller The classical PID controller is by far the

most used controller and is often applied for BG control, as well. Many PID tuning methods

exist - the recent variants by Weinzimer et al. [2008], or by Lee et al. [2013] should be noted. The

PID is a very simple and well-accepted controller that has a few important drawbacks, when

it comes to resolving the challenges in BG control of section 1.2. Indeed, the PID controller

is not well suited for systems with large time delays (1.2.6), or with control saturation (1.2.7).

Additionally, the PID controller is designed for symmetric problems, which makes safe control

more difficult (1.2.5) and requires robust design methods, resulting in reduced performance.

However, PID controllers may give acceptable results, if appropriate feed-forward is applied

and no large, unexpected BG excursions occur.

Model Predictive Control (MPC) MPC is the most promising control algorithm for the use

in BG control. It allows considering constraints, saturations, asymmetric control objectives,

and non-linear models. MPC has none of the drawbacks of the PID controller. This explains

why MPC is currently the most used for BG controller and is implemented in various forms as

illustrated by the following recent examples:

• Soru et al. [2012] use a linear unconstrained MPC using the linearized Dalla Man model

• Zarkogianni et al. [2011] use an adaptive non-linear MPC

• Grosman et al. [2011] introduce a multi-zone MPC that has a different behavior depend-

ing on the patient’s glycemia

• Cameron et al. [2011] model the prediction uncertainty and use it to minimize patient

risk.
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With MPC, an optimization problem is solved at every sampling time. A given cost function

is minimized in order to compute optimal insulin infusions. This cost function relies on

model-based predictions and is generally minimized under constraints, e.g. saturation.

However, as promising as the MPC concept is, results still lag behind expectations. The main

reason is the lack of appropriate prediction models - the most critical part in MPC - as will be

explained below. Another drawback is that MPC is computationally expensive, and the price

increases with the number of constraints, model non-linearities, and model order.

Other controllers Many other approaches are being tried for BG control, but are used much

less. Examples are Error Dynamics Shaping (EDS) proposed by Cormerais and Richard [2012],

fuzzy logic used by Miller et al. [2011] or partially by Zarkogianni et al. [2011], or robust

methods, such as sliding mode control, as described by Abu-Rmileh and Garcia-Gabin [2012].

Choosing the model

Almost all of the applied methods are, to some extent, model-based. Therefore, the crucial

question on what model to use arises. The different available models were discussed in detail

in 2.2.3. The impact of an inappropriate prediction model was experienced by Dassau et al.

[2012], whose MPC only gave benign insulin infusions because of an IOB safety measure.

Another example is the MPC by Soru et al. [2012] that needs therapy parameter-based feed-

forward control to work properly - which contradicts the concept of the MPC. In fact, the

model of an MPC should give appropriate insulin doses, even in the presence of a meal. If

feed-forward is used, a much simpler controller is typically sufficient.

In some cases, the model is not identifiable on BG measurements only, or appropriate training

data is not available. Population model parameters can be used in this case, or, as proposed by

Soru et al. [2012], the cost function may be personalized. Considering the large inter-patient

variability, these solutions are generally sub-optimal and should therefore only be used if

personalized model parameters cannot be obtained.

Meal announcements

Currently, T1DM patients always need to estimate the CHO content of meals and deduce

the amount of insulin to infuse. When designing an AP, one needs to decide whether the

AP should to do this task itself. Meal announcements go hand in hand with feed-forward

control, while unannounced meals are more difficult to reject and lead to higher postpran-

dial BG concentration peaks. If meals are not announced, meal detection algorithms (e.g.

citeBoiroux2010a), or probabilistic meal predictors (e.g. Hughes et al. [2010]), can lead to

better BG control. Weinzimer et al. [2008], or Campetelli et al. [2013] consider the option to

infuse feed-forward insulin 15 or 60 minutes before the meal, respectively. If the ingested meal

has a high GI (i.e. a fast meal), this improves results even further, but increases the risk of
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hypoglycemia, if the meal is finally not taken.

Adaptive methods

Adaptive methods are used for two main different purposes, i.e. either to account for the shift

in parameter values that naturally occurs over time, or to reject disturbances. The first case

can be done by methods such as run-to-run (R2R), as investigated by François et al. [2003], or

Daskalaki et al. [2012]. In this case, parameters only change slowly with time constants of the

order of days. This is an important feature that makes frequent re-identifications of model

parameters useless and improves treatment quality. However, the changes in parameters need

to be closely monitored to avoid safety problems. In the second case, the time constant of

parameter changes are much shorter and parameters may vary significantly in a very short

time. Such a method is proposed by Turksoy et al. [2013], for instance. Zarkogianni et al.

[2011] adapt MPC parameters using NN and fuzzy logic when model predictions are no longer

accurate. Since parameters change in the order of minutes, it is impossible to check the validity

of parameters, thus adding another risk factor to the treatment.

Controller validation

The ideal way to evaluate the performance of a controller is to do a clinical study. Some

MPCs were recently tested within the context of large scale projects, such as AP@home, the

iAP project, or others (Elleri et al. [2012], Dassau et al. [2012], Luijf et al. [2013]). Even the

feasibility of out-patient AP use (Kovatchev et al. [2013]), or closed-loop control for T2DM

(Kumareswaran et al. [2013]), is being explored. Unfortunately, most researchers do not have

the funds and the expertise to do clinical studies. For this reason, the UVa simulator, described

in appendix A.1, is an alternative to showcase the potential of a given control algorithm. Many

simulation studies were done either on the 100- or the 10-patient population, and published.

Nevertheless, these results are only an indicator for potentially good results and clinical studies

are still required to validate the most promising methods.

Conclusion of the state of the art: BG control goals

Designing a controller for diabetes treatment involves making choices beforehand. In the

previous section, some of the most important aspects were introduced. Considering the

advantages and disadvantages of these different points, this thesis aims at finding or designing

the "best" control method, based on the TPM that was specifically developed for this use

in chapter 2. The controller should be able to handle scenarios with announced and unan-

nounced meals. In other words, control should be better if a patients announces his meal,

but is should remain acceptable whenever he does not. For the time being, a method with

fixed parameters is considered, but can be extended to an adaptive scheme, with large time

constants. As a clinical study is not possible within this small-scale project, the proposed
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controllers are validated on the UVa simulator.

5.3.2 Closed-loop controllers

The different controllers that are tested on the UVa simulator, are introduced in this section.

All these controllers are based on the open-loop controller TPC OL introduced in the previous

sections. The core idea is that the TPC OL gives appropriate feed-forward control and adapts

the setpoint accordingly. The most important insulin doses will be given by the feed-forward,

and, hence, the controller should never need to take excessive control action. Thus it should

only focus on setpoint tracking.

Proportional controller

The proportional controller is simple, but effective. It is a special case of the PID controller,

where the integral and derivative terms are zero. The controller multiplies the tracking error

by a gain Kp :

UI ,cor r (s) = KP
(
GSP (S)−Ĝ(s)

)
. (5.60)

The gain of the controller KP is chosen as:

KP =− 1

τ ·Kx
(5.61)

where Kx is the insulin sensitivity and τ is the controller time constant in minutes. This

controller is depicted in figure 5.3. The controller gain is thus inversely proportional to the

correction factor, i.e. the more sensitive the patient is to insulin, the less insulin will be

injected. The introduction of the time constant τ is necessary to tune the aggressiveness of the

controller. In fact, if the time constant is chosen to be smaller than τx , the closed-loop system

tries to reject disturbances faster than in open-loop, which would inevitably lead to undesired

BG concentration undershoots. Therefore, τ should be greater than τx . A value between 150

and 350 minutes should perform well and the best value can b determined manually.

Figure 5.3: Proportional controller.

Steady-state error At this point, a question that may arise with the use of a proportional

controller without an integral term (as well as the controllers presented in what follows), is
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whether there is steady-state error, i.e. a difference between setpoint and BG concentration

when the closed-loop system is at steady state. As explained by Longchamp [2010], steady-

state error is zero, if the type of the open-loop system K (s)H(s) is greater or equal than one.

The type is defined as the number of integrators in the transfer function, where K (s) is the

transfer function of the controller and H (s) is the open-loop transfer function of the controlled

system. If H(s) corresponds to the TPM:

K (s)H(s) = KP I (s) (5.62)

=−KP
Kx

s(τx s +1)2 , (5.63)

which contains an integral term 1
s and, hence, there will not be any steady-state error. However,

the real patient dynamics are sometimes closer to the TPM+ dynamics and in that case:

K (s)H(s) =−KP
Kx

(s +SG )(τx s +1)2 (5.64)

whose type is 0, potentially leading to steady-state errors. The same goes for an application on

the UVa simulator that does not have integral dynamics, either. To get rid of the steady-state

error, an integrator term could be added to the controller. However, this leads to decreased

controller robustness and the control saturation possibly leads to integral windup. An anti-

reset windup helps in the latter case, but the decreased patient safety does not justify the use

of an integral term.

Finally, this approach does not eliminate the steady-state error, it, however, reduces its effect.

The key is that, if feed-forward control at steady-state is set to maintain the BG concentration

at the target, then steady-state error is zero at this target BG. In other words, there will be no

steady-state error at the target BG, if basal insulin infusion is set to stabilize the patient at this

concentration. This can easily be done on the UVa simulator through the choice of the basal

rate (cf. table 5.4). For real patient data, this is more difficult as a physician needs to tune

the basal rate, or it can set by more complex methods, such as R2R proposed by Palerm et al.

[2008].

Therapy Parameter-based Controller (TPC)

Concept description The TPC is a new control algorithm that is directly inspired by standard

therapy and, more specifically, by the concept of the corrective bolus. In standard therapy,

at certain times, such as before meals, BG concentration is measured and, according to the

difference to the target BG, corrective insulin UI ,cor r (t) is administered. As described in

section 2.3.2, this corrective bolus is computed as:

UI ,cor r (t ) = e(t )

Kx
, (5.65)
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where e is the difference between the setpoint and the measured BG. The idea of the TPC is to

apply this treatment, not only at specific times, but at every sampling time (or continuously).

In other words this leads to a proportional controller with gain 1
Kx

. Of course, the application

of this controller can be dangerous:

• The controller gain is large compared to other PID controllers. This will most likely lead

to BG concentration undershoots.

• Negative insulin boluses are only possible to a very limited extent, depending on the

basal insulin infusion. Larger negative boluses cannot be administered and control

needs to avoid any BG concentration undershoots to maintain patient safety.

• This controller does not account for the time delays (∼ 20 min) in insulin action. This

can lead to insulin stacking, where full correction boluses are given despite active insulin

being on board. This is a serious issue, even for patients following standard therapy, and

is unacceptable for the described controller.

To prevent this insulin stacking, the TPM allows estimating by how much BG concentration is

expected to drop, using the IOB introduced in 5.2:

IOB(s) = τ2
x s +2τx

(τx s +1)2 UI (s) (5.66)

The transfer function to compute IOB is defined as:

HIOB (s) = τ2
x s +2τx

(τx s +1)2 . (5.67)

Now, to obtain the TPC, the computed insulin amount is reduced by the amount of active

insulin:

UI (s) = e(s)

Kx
−HIOB (s)UI (s) (5.68)

(1+HIOB (s))UI (s) = e(s)

Kx
(5.69)

UI (s) = e(s)

Kx (1+HIOB (s))
. (5.70)

The TPC, which is depicted in figure 5.4, can also be interpreted as a closed-loop version of

the TPC OL that is evaluated at specified sampling times. The estimation of the current BG

may come directly from the CGM device, or may be filtered by the TPF, depending on what

information is available. IOB can be estimated using the TPF and equation 5.71, which results

in an estimate that is corrected by CGM measurements.

IOB(s) = τx (X̂ (s)+ X̂1(s)), (5.71)
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Figure 5.4: The TPC.

where the hat indicates that values are estimated by the TPF. Nevertheless, in this thesis, IOB is

estimated in open-loop, i.e. by integrating equation 5.66. This is considered to be safe, as this

prevents unmodeled dynamics or CGM dropouts from having an effect on the safety-critic

IOB estimate.

Note that, as represented in figure 5.4, the computed insulin dose that is the difference between

the corrective insulin and the insulin on broad, need to be divided by the sampling time Ts in

order to transform the required bolus into an insulin infusion rate.

One of the main advantages of the TPC is that it does not require any manual tuning. The two

only parameters, Kx and τx can reliably identified using the TPM.

It is necessary to put the saturation directly into the controller in order to have correct IOB

estimations. It should be remarked that the IOB value may be negative, in the case where

insulin infusions are lower than the basal rate. This has the consequence that the controller

shows less overshoots when recovering from low BG concentrations than a pump suspension

algorithm.

Wang et al. [2010] proposed a similar approach combined with a meal detection algorithm,

while León-Vargas et al. [2013] proposed to use IOB in combination with a PD controller and

an adaptive scheme.

Meal rejection The TPC may be used with or without meal announcements. In the absence

of meal information, the TPC is applied as such, but if information is available, feed-forward

control and setpoint adaptation (described in section 5.2.2) can be used. This adds two

parameters (Kg and ag ) to the controller, for each considered type of meal. There is also the

option of using meal detection algorithms (Boiroux et al. [2010b]).

Comparison with classical PID control The TPC has some very interesting properties thst

a classical PID controller is unable to obtain. The main advantage of the TPC is that it gives

a relatively aggressive first bolus and stays defensive afterwards. As a consequence, this
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controller is perfectly suited for rejecting unannounced meals with relatively small reaction

times. The PID, on the other hand, needs to be tuned robustly, because it is prone to large

oscillations otherwise. As a consequence, PID controllers always react slowly to perturbations

such as meals, and, thus, performance is considerably reduced.

However, as there is always a compromise between performance and robustness, the TPC

also has some disadvantages. The TPC manages the rejection of real perturbations very well,

but is sensitive to sensor noise. This means that, if a CGM is used, there is a risk that the

controller gives too much insulin if there is a short spike in CGM readings. This is mostly

benign except when the patient already has a relatively low BG concentration. However,

the impact of this drawback may be reduced using good CGM filters and possibly two CGM

devices simultaneously, as it has been proposed in recent studies (Kovatchev et al. [2013], for

example).

If the TPC is still too aggressive, several measures can be taken:

• Kx can be increased.

• τx can be increased.

• The lower 95% confidence estimate of the BG concentration can be used instead of the

estimated average BG.

5.3.3 Evaluation using the UVa simulator

Implementation

The implementation of the TPC is the same as for the TPC OL given in 5.2.4, with the exception

that it is generally sampled with Ts = 5 minutes and uses CGM measurements. The analyzed

scenario is described in E.1 and is used as a nominal scenario on which all available controllers

are evaluated and compared.

The sampling time was chosen, because this is the most used value in control-related pub-

lished works. However, considering the dominant time constant, this choice might not be the

best: because CGM measurements are noisy with frequencies higher than the glucoregulatory

system cutoff frequency, measurement noise is not filtered and leads to a noisy input signal.

In control theory, the sampling frequency ωs is chosen such that 10ω0 < ωs < 20ω0, where

ω0 is the closed-loop system’s cutoff frequency (Longchamp [2010]). When considering the

sampling period Ts this can be written as τC L
3.2 < Ts < τC L

1.6 , where τC L is the closed-loop time

constant. τC L is expected to be close to, or larger, than the TPM’s fastest time constant, i.e. the

minimum of τx and τg . According to table 5.1, this should be around 20 minutes on clinical

study parameters and, according to table 5.3, around 15 minutes on the UVa simulator. These

values may need to be adapted for each patient.

To compare the different controllers, the BGRI (defined in appendix B.4) and the percentage
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of time spent in hypo- an normglycemia (as specified in appendix B.6) are provided. Average

values are given with and without adult 9. In fact, for some controllers, this subject becomes

unstable and suffers from irreversible hypoglycemia. Since this adult is often considered as an

outlier, results are more meaningful if this subject is discarded.

Tested controllers

The seven following controllers (described in section 5.3.2) are evaluated with the UVa simula-

tor. The implementation scheme is given in figure 5.5, where the "Controller", and "Filter"

blocks are modified according to the chosen controller configuration.

S(s)

Figure 5.5: Closed-loop controller with announced meal and filter.

• P - proportional controller with announced meals and unfiltered CGM data.

• P TPF - proportional controller with announced meals. CGM data is filtered by the TPF

(described in section 4.3.5).

• TPC - TPC with announced meals and unfiltered CGM data.

• TPC KF - TPC with announced meals. CGM data is filtered by the KF (described in

section 4.3.3).

• TPC TPF - TPC with announced meals. CGM data is filtered by the TPF (described in

section 4.3.5).

When meals are not announced, the complete controller can be represented as in figure 5.6.

This time, only the "Controller" block needs to be changed to correspond to the different

controller variants.

• P NM - P with No Meals announced. CGM data remains unfiltered.
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Figure 5.6: Closed-loop controller without meal announcement.

• TPC NM - TPC with No Meals announced. CGM data remains unfiltered.

Determination of τ for the P controller

A first step is to find the best value of the time constant τ, used for the P controller. Several

values for τ are tested on the simulator and compared using the percentage of time spent in

different regions and the BGRI.

Adult 9 was excluded when calculating the BGRI, because his treatment significantly improved

with increasing τ, which is in contradiction with all the other patients. This did not influence

the time spent in different regions much.

The value for τ is chosen equal to 250 minutes because it gives consistently good results, as

illustrated in figure 5.7.
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Figure 5.7: Averages of different metrics as a function of τ.

Announced meals

First, the controllers are compared when meals are announced. Results are given in tables 5.6,

5.7, and 5.8. The OL has a considerably higher BGRI than all there controllers and the time

spent in target is relatively low. Hence, it can be concluded that all controllers perform better

than the default open-loop controller provided within the UVa simulator. P gives respectable

results, considering its very simple nature, but surprisingly, the addition of a CGM filter does

not lead to a lower BGRI. The different TPC variants give the best results on all metrics, except

for time spent in hypoglycemia, even if this time is extremely low. Adding a CGM filter the TPC

leads to excellent results. Several remarks are in order:
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• The time spent in hypoglycemia is higher when using the designed controllers, com-

pared to standard open-loop control, while time in target is higher. This means that

hyperglycemia was significantly reduced. If time in hypoglycemia needs to be reduced,

an increased setpoint value can be used.

• Out of the 10-adult population, several patients are more difficult to control:

– Most of the time, Adult 9 is unstable. This is caused by the highly unusual dynam-

ics of this individual, characterized by a very large second postprandial peak in

BG concentrations, as can be observed in figure 5.8 at midnight. This problem

could be solved if a different meal model was used for computing the setpoint

adaptation. For instance, a double peak model with higher order could be fitted to

the measurements.

Figure 5.8: Results for Adult 9 on nominal scenario with TPC TPF.

– Adult 1 also has a double-peak meal response similar to Adult 9. However, in

this case, this second peak is smaller and would normally not lead to bad results.

For Adult 9, the second peak coincides with a very unfavorable CGM reading,

which amplifies the second peak such that it leads to an insulin injection. The

combination of these circumstances leads to mild nocturnal hypoglycemia. Since

the same seed was used for all CGM noise simulations, the unfavorable CGM

measurements will be found for all the investigated controllers at this time.
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Figure 5.9: Results for Adult 1 on nominal scenario with TPC TPF.

Adult OL P P EKF TPC TPC KF TPC EKF
1 3.14 2.22 2.3 2.64 1.84 1.77
2 1.41 0.82 1.3 0.89 0.60 0.57
3 1.41 1.06 1.05 0.89 0.89 0.86
4 1.90 1.24 1.39 1.00 0.94 0.95
5 1.29 1.01 0.74 0.74 0.69 0.68
6 2.80 1.81 1.69 1.08 1.07 1.06
7 1.19 1.20 1.19 0.39 0.50 0.51
8 1.33 0.57 0.69 0.86 0.62 0.59
9 4.33 6.24 6.21 889.70 1509.33 16.94

10 3.08 1.74 1.71 1.51 1.48 1.47
Av. 2.19 1.79 1.83 89.97 151.80 2.54

Av. No 9 1.95 1.30 1.34 1.11 0.96 0.94

Table 5.6: Comparison of BGRI for all adults on nominal scenario.
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Adult OL P P EKF TPC TPC KF TPC EKF
1 92.85 94.31 92.99 89.66 93.13 93.61
2 100 100 94 100 100 100
3 100 98.47 98.58 100 100 100
4 91.7 93.61 93.93 94.79 94.52 94.52
5 100 98.72 100 100 100 100
6 89.93 96.49 94.59 100 100 100
7 100 100 100 100 100 100
8 100 100 100 100 100 100
9 83.17 79.07 81.99 51.82 51.68 81.85

10 88.23 95.28 96.11 97.36 97.67 97.95
Av. 94.59 95.60 95.22 93.36 93.70 96.79

Av. No 9 95.86 97.43 96.69 97.98 98.37 98.45

Table 5.7: Comparison of % within target for all adults on nominal scenario.

Adult OL P P EKF TPC TPC KF TPC EKF
1 0 1.28 4.76 9.55 6.07 5.62
2 0 0 6 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 2.08 5.41 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 8.64 10.1 10.03 46.03 45.44 12.08

10 0 0 0 0 0 0
Av. 0.864 1.35 2.62 5.56 5.15 1.77

Av. No 9 0 0.37 1.80 1.06 0.67 0.62

Table 5.8: Comparison of % below target for all adults on nominal scenario.
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Unannounced meals

The ultimate goal of an AP is to be completely autonomous and to rely on no user input, like

meal announcements. For this reason, the controllers are also tested without meal announce-

ments, which makes the problem more challenging. In this case, results cannot be compared

to standard therapy, since the latter relies on meal announcements. Also, the previously used

CGM filters cannot be used anymore, because they rely on meal announcements, too. An

option to explore then is to use meal detection algorithms. Comparative results are given in

table 5.9, and an example of a typical BG concentration profile is given in figure 5.10.

As expected, BG excursions are bigger. However, the TPC performs much better than the

P controller now, while the difference was less pronounced in the case announced meals.

This illustrates that a PID controller requires a good feed-forward control, and that the TPC

has excellent meal rejection properties, even when meals are not announced. Also, for the

TPC, time spent in hypoglycemia is barely more elevated when meals are not announced

than when they are. This shows the TPC’s good safety properties with respect to unexpected

perturbations.

BGRI % in tar % below tar
Adult P NM TPC NM P NM TPC NM P NM TPC NM

1 4.79 4 78.31 81.05 10 10.59
2 3.02 1.66 84.24 96.63 0 0
3 5.21 2.12 67.65 89.07 4.58 0
4 7.46 3.49 69.7 85.21 0 0
5 4.25 1.96 81.53 89.55 0.66 0
6 9 5.29 54.15 76.36 6.56 0
7 4.47 1.95 75.49 88.79 1.74 0
8 1.71 1.18 100 100 0 0
9 19.14 746.51 48.91 45.89 12.08 46.06

10 6.86 4.13 59.46 77.72 5.8 4.13
Av. 6.59 77.23 71.94 83.03 4.14 6.08

Av. No 9 5.20 2.86 74.50 87.15 3.26 1.64

Table 5.9: Results of the nominal scenario without meal announcements comparing the
proportional controller (P NM) and the TPC (TPC NM).

Increased sampling time

Previously, it was deduced that a sampling time of 15 minutes should be appropriate on the

UVa simulator. A comparison between previous results with Ts = 5 and simulations with

Ts = 20 minutes is given in table 5.10. It shows that increasing the sampling time from 5 to

20 minutes has a negligible effect on BG control quality. Since 20 minutes is more than the

required 15 minutes, results show that the TPC is robust, even when the measurements are

slightly under-sampled.
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Figure 5.10: Example of a BG concentration profile for adult 5 on the nominal scenario with
the TPC NM (unannounced meals).

Nevertheless, for the sake of comparison, Ts is kept equal to 5 minutes since this is, again, the

most used value in the literature.

5.3.4 Comparative study

The UVa simulator is used by a number of researchers to asses the performance of their

closed-loop controllers. Unfortunately, comparisons are difficult to perform for the following

reasons:

• Even though Patek et al. [2009] published some guidelines, unfortunately, the use of the

UVa simulator is not standardized and everyone uses different scenarios.

• Two different versions of the simulator exist: one with 300 subjects and one with 30 sub-

jects, each composed to equal parts of adults, children and adolescents. The 300 subject

simulator is not available for everyone and is reserved mainly for the iAP consortium.

As a consequence, their results cannot be compared to others in a fair way.

• It is common that the 30 subject simulator is customized, in order to introduce circadian

variations, for example. This allows testing the robustness of a controller, but makes fair

comparisons impossible.

Finally, only seven publications that use the 10 adults of the unmodified 30-subject simulator

can be found so far. However, for four of these seven publications, those by the Doyle group, a
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BGRI % in tar % below tar
Adult Ts = 5 Ts = 20 Ts = 5 Ts = 20 Ts = 5 Ts = 20

1 1.77 1.81 93.61 93.13 5.62 6.07
2 0.57 0.66 100 100 0 0
3 0.86 0.92 100 100 0 0
4 0.95 0.96 94.52 94.52 0 0
5 0.68 0.67 100 100 0 0
6 1.06 1.12 100 100 0 0
7 0.51 0.63 100 100 0 0
8 0.59 0.59 100 100 0 0
9 16.94 17.77 81.85 81.43 12.08 12.25

10 1.47 1.49 97.95 98.85 0 0
Av. 2.54 2.66 96.79 96.79 1.77 1.83

Av. No 9 0.94 0.98 98.45 98.50 0.62 0.67

Table 5.10: Results for the TPC TPF on the nominal scenario with announced meals but
different controller sampling times.

simulator with different subjects than the version used in this thesis seems to have been used.

Results are very bad compared to other publications, and the difficult patients, identified

above, do not coincide. For this reason, these works were not considered (see appendix D).

In the end, three publications with plausible results were kept, for which comparisons are

discussed in this section.

Zarkogianni controller

Zarkogianni et al. [2011] propose the Insulin Infusion Advisory System (IIAS), which is based

on a non-linear MPC. They use a hybrid model, composed of two compartmental models for

SC insulin kinetics and gut glucose absorption, respectively, and recurrent NN to combine

them with CGM measurements. The cost function penalizes hyper- and hypoglycemia, while

parameters are tuned on-line using an adaptive fuzzy logics-based approach.

Detailed specifications of the scenario are given in E.2. The simulated results are given in

tables 5.11 and 5.12. The default open-loop control implemented in the UVa simulator is given

as well and allows verifying that identical UVa simulator versions where used.

Accurate meal announcement As a first experiment, the controller is tested with accurate

meal announcements. When comparing the three TPC variants, it can be observed that results

improve with the complexity of the CGM filter. This is illustrated by the value of the time spent

within the different zones and the risk indexes, but also by the reduced standard deviations.

When comparing the best variant of the TPC to the IIAS, results are mostly on par. Only the

average BGRI is a clearly better with the TPC. This is due to the BG concentrations being closer
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to the target BG for a longer time, which can also be deduced from the reduced standard

deviations of mean BG concentrations.

As expected, open-loop control is inferior to the closed-loop methods.

Meal overestimated by 40% Zarkogianni et al. demonstrate their controller’s robustness

to meal estimation errors by overestimating meals by 40%. Results for the TPC TPF, where

the announced meal is 1.4 times the actual meal, are given for comparison. In this case, as

expected, the TPC TPF has a lower mean BG concentration, because more insulin was injected

at meal time. The TPC TPF can effectively reject such mismatches.

The results for the IIAS are very good, but are less intuitive. Against expectations, mean BG is

increased, while pre- and post-meal BG concentrations are lowered compared to exact meal

announcements.

Meal underestimated by 40% Zarkogianni et al. also simulated the case where meal an-

nouncements are underestimated, i.e. only 60 % of the actual meal is announced. Results for

the TPC TPF are excellent, and, as expected mean BG concentrations are bigger than for the

correct announcements. As a consequence, the time spent in hypoglycemia is reduced, while

time in hyperglycemia is slightly increased.

Results for the IIAS are inferior to the TPC EKF, and characterized by an increase in hypo-

as well as hyperglycemia. As a consequence, most other metrics give worse, but acceptable

results.

Conclusion The TPC generated slightly better control results than the IIAS despite being

considerably simpler and computationally more efficient. If BG concentrations below target

should be avoided, the setpoint of the TPC may be increased. However, when meal announce-

ments were underestimated, the IIAS showed some weaknesses, while the TPC TPF could

successfully cope with both, under- and overestimation.

It should be noted that Zarkogianni et al. compared their results to those by Wang et al. [2009]

and those by Grosman et al. [2010]: These were added to the comparisons in appendix D.

Cameron controller

Cameron et al. [2011] have developed the Extended MPC (EMPC) that explicitly minimizes

the risk of hypo- and hyperglycemia by estimating BG prediction uncertainty. A complex

multi-model approach was developed to detect meals and to predict BG concentrations and

uncertainty. The cost function depends directly on a risk, computed using the uncertainty

and a newly defined risk function, close to the one introduced by Kovatchev et al. [2000].
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Mean BG Pre meal BG Post meal BG % below target
Correct

TPC 114.72 (6.17) 109.46 (9.08) 128.53 (11.31) 2.64 (5.16)
TPC KF 115.62 (5.38) 109.85 (9.52) 130.30 (9.98) 1.79 (3.94)

TPC TPF 115.83 (5.36) 110.07 (9.56) 130.55 (9.91) 1.57 (3.64)
IIAS 112.25 (9.06) 114.27 (12.31) 139.78 (9.19) 0 (0)

Open-Loop 130.50 (6.92) 124.4 (6.65) 145.16 (10.8) 1.14 (3.61)
40% over
TPC TPF 107.67 (6.11) 103.03 (10.32) 119.73 (9.81) 3.85 (5.1)

IIAS 117.54 (7.91) 105.57 (8.99) 132.26 (12.68) 1.01 (1.51)
40% under

TPC TPF 124.28 (5.85) 115.98 (9.59) 141.45 (11.62) 1.37 (3.28)
IIAS 120.28(10.61) 110.11 (11.13) 137.44 (14.3) 5.15 (5.07)

Table 5.11: Simulation results by Zarkogianni et al. compared to the TPC. Part 1. The mean
value is given and the standard deviation is given in parentheses.

% above tar % within tar LBGI HBGI BGRI
Correct

TPC 0.68 (1.36) 96.69 (5.08) 1.06 (1.82) 0.53 (0.29) 1.59 (1.89)
TPC KF 0.73 (1.40) 97.48 (4.08) 0.68 (0.95) 0.56 (0.31) 1.24 (1.11)

TPC TPF 0.74 (1.39) 97.69 (3.83) 0.61 (0.78) 0.57 (0.31) 1.17 (0.95)
IIAS 2.51 (2.76) 97.49 (2.76) 0.35 (0.35) 1.09 (0.64) 1.45 (0.66)

Open-Loop 3.68 (3.78) 95.17 (5.59) 0.30 (0.48) 1.65 (0.71) 1.96 (0.91)
40% over
TPC TPF 0.27 (0.82) 95.88 (5.06) 1.46 (1.44) 0.34 (0.20) 1.80 (1.47)

IIAS 2.4 (3.13) 96.58 (2.83) 0.72 (0.34) 0.92 (0.62) 1.64 (0.66)
40% under

TPC TPF 2.05 (3.10) 96.58 (4.69) 0.40 (0.56) 1.12 (0.55) 1.51 (0.92)
IIAS 4.36 (4.43) 90.48 (6.66) 0.99 (0.41) 1.27 (0.86) 2.26 (1.1)

Table 5.12: Simulation results by Zarkogianni et al. compared to the TPC. Part 2. The mean
value is given and the standard deviation is given in parentheses.
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Cameron et al. compare their EMPC to a classical MPC and a PID controller. Additionally,

they give an optimized basal/bolus (BB) insulin injection that was found using retrospective

optimization. Hence, BB is considered an upper limit in possible performance.

Adult 9, who already caused inconsistent results on the nominal scenario, was discarded by

Cameron et al. as an outlier with unlikely dynamical properties, and was not used for analysis.

They also use a modified BGRI, proposed by Magni et al. [2007], which they consider more

relevant for control purposes. To be able to perform comparisons, the same metric is adopted

here (detailed in B.4), for this scenario, only.

The comparisons of the controllers tested by Cameron et al. and the TPC NM (meals are not

announced in the Cameron scenario) are given in tables 5.13 and 5.14. When considering

the average percentage of time spent in the different regions, the TPC NM performs very well,

surpassing all controllers used by Cameron et al. and the % within target almost reaches

the level of BB. However, because different risk indexes were used, TPC NM performance is

inferior to the EMPC in terms of BGRI. This is due to the fact that the modified BGRI is 0 for a

BG concentration of 140 mg/dl but the target BG of the TPC NM is set to 112.5 mg/dl. For this

reason, the target BG was raised to 140 mg/dl (though basal insulin was left unchanged). This

reveals to be a drastic increase, because, even if the modified BGRI is lower for the TPC NM

Gt = 140 than for the EMPC, percentages of time spent in different regions are worsened. As a

compromise, a value with a target BG concentration of 125 mg/dl was tried and it surpassed

the EMPC for all considered metrics.

controller mean BG pre meal BG % bel tar % bel 50mg/dl % within tar
PID 156 142 0 0 72.6

MPC 151 135 0.15 0 79.4
EMPC 147 135 0.7 0 84.3

BB 140 127 0 0 92
TPC NM 134 131 0.14 0 90.3

TPC NM Gt = 125 142 139 0 0 85.2
TPC NM Gt = 140 153 150 0 0 78.6

Table 5.13: Simulation results by Cameron et al. compared to the TPC NM. Part 1.

controller LBGI (mod) HBGI (mod) BGRI (mod) BGRI
PID 0.61 2.38 2.99 N/A

MPC 1.19 1.86 3.05 N/A
EMPC 1.1 1.41 2.51 N/A

BB 0.49 0.78 1.27 N/A
TPC NM 2.06 0.90 2.96 2.58

TPC NM Gt = 125 1.10 1.31 2.41 3.23
TPC NM Gt = 140 0.45 1.99 2.44 4.39

Table 5.14: Simulation results by Cameron et al. compared to the TPC NM. Part 2.
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Cormerais controller

Cormerais and Richard [2012] apply EDS to the BMM and validate it on the UVa simulator.

EDS is a nonlinear state feedback method that is based on the idea of imposing certain

dynamic properties to the error. The BMM was identified on UVa simulator-generated training

data. One parameter, the aggressiveness of the controller, needs to be tuned manually, and

additionally, the target BG concentration is manually adjusted to obtain improved results.

All of these values are set using a "trial and error procedure" through different tests on the

simulator that would as well be applicable to a real patient, without endangering him. The

proposed controller does not need any meal announcements. However, it is unclear how all

the necessary state estimations are performed.

Cormerais and Richard use two different scenarios to demonstrate their controller’s abilities:

a 1 day and a 7 day scenario.

1 day scenario This scenario is defined in appendix E.4 and is composed of a single day

with 3 typical meals. Results are in tables 5.15 and 5.16. The TPC NM shows lower averaged

performance for all given metrics. Since the pre-meal BG concentration is about the same

for both controllers, but the post-meal BG concentration is much higher, the main difference

lies within the meal rejection capabilities of both controllers. Considering that meals are

not announced, EDS results are outstanding. In order to obtain comparable post-meal and

maximum BG concentrations, the target BG concentration of the TPC NM was reduced to

100mg/dl. However, in this case, the risk of hypoglycemia increases.

mean BG pre m BG post m BG % bel tar % ab tar % bel 50mg/dl
Cormerais 126.58 104.21 164.52 0.0 4.3 0.0

TPC NM 130.02 104.67 181.84 0.5 8.7 0.0
TPC NM Gt = 100 119.87 94.19 169.52 1.9 6.0 0.0

Table 5.15: Simulation results by Cormerais and Richard compared to the TPC on the 1 day
scenario. Part 1.

% within tar LBGI HBGI BGRI min BG max BG
Cormerais 95.7 0.11 1.45 1.56 91.1 187.7

TPC NM 90.8 0.24 2.11 2.35 83.1 202.8
TPC NM Gt = 100 92.1 0.57 1.43 2.00 74.9 189.6

Table 5.16: Simulation results by Cormerais and Richard compared to the TPC on the 1 day
scenario. Part 2.

7 day scenario This second scenario is designed to show the robustness of EDS with respect

to meal variability. The meal amounts and meal times are randomly modified and meals of up

to 120g of CHO are ingested. This puts an increased strain on the tested controllers and, as

shown in tables 5.17 and 5.18, leads to higher BGRI values. In this case, the different versions
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of the TPC NM show an important deficiency, caused again by adults 9 (that was manually

tuned in EDS to be stable). For this reason, averaged metrics where adult 9 was not considered

are compared in tables 5.19 and 5.20. In this case, results for the TPC NM are acceptable, but

still inferior to EDS that allows very narrow BG control.

7 days mean BG pre m BG post m BG % bel tar % ab tar % bel 50mg/dl
Cormerais 124.63 104.82 165.64 0.00 6.63 0.00

TPC NM 118.69 98.72 170.68 9.54 9.89 7.08
TPC NM Gt = 100 108.73 89.00 159.54 13.13 7.08 7.33

Table 5.17: Simulation results by Cormerais and Richard compared to the TPC on the 7 day
scenario. Part 1.

7 days % within tar LBGI HBGI BGRI min BG max BG
Cormerais 93.37 0.35 1.59 1.94 75.57 232.25

TPC NM 80.57 110.48 2.12 112.60 58.10 249.59
TPC NM Gt = 100 79.80 100.80 1.53 102.33 50.98 237.30

Table 5.18: Simulation results by Cormerais and Richard compared to the TPC on the 7 day
scenario. Part 2.

7 days no 9 mean BG pre m BG post m BG % bel tar % ab tar % bel 50mg/dl
Cormerais 123.18 102.48 165.48 0.00 6.09 0.00

TPC NM 127.44 105.52 183.99 2.75 10.56 0.05
TPC NM Gt = 100 116.75 95.10 171.98 6.48 7.59 0.31

Table 5.19: Simulation results by Cormerais and Richard compared to the TPC on the 7 day
scenario with adult 9 excluded. Part 1.

7 days no 9 % within tar LBGI HBGI BGRI min BG max BG
Cormerais 93.91 0.35 1.46 1.82 75.94 230.82

TPC NM 86.69 0.76 2.26 3.02 64.56 252.63
TPC NM Gt = 100 85.92 1.54 1.63 3.16 56.66 239.97

Table 5.20: Simulation results by Cormerais and Richard compared to the TPC on the 7 day
scenario with adult 9 excluded. Part 2.

EDS conclusion EDS is a very promising control strategy for the use on the UVa simulator.

Performance metrics show irreproachable results. Compared to the well-performing TPC NM,

EDS has the drawback of needing manual parameter tuning that requires expert knowledge

and a trial and error approach. Additionally, it is based on the BMM that was shown to have

inappropriate dynamics for the use in real patients, so EDS performance would need to be

validated in a clinical setting.
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5.4 Outlook on sTPM-based BG control

The TPC, based on the deterministic TPM, shows promising results on the UVa simulator, but

several sTPM-based control methods and applications have the potential to improve diabetes

treatment even further. These approaches are shortly introduced, but not covered in detail in

this thesis.

5.4.1 Pump suspension

The sTPM introduces the possibility to monitor the uncertainty of the BG concentration on

top of simple BG predictions. This can be put to good use in the context of pump suspension

algorithms. The recently FDA-approved algorithm by Medtronic [2013], for example, suspends

the insulin pump if the BG concentration passes a predefined threshold. Because of the

important delays in the system (cf. 1.2.6) this preventive action may occur too late and

hypoglycemia may occur, even tough to a lesser extend. Model predictions could thus be

used to predict and avoid future hypoglycemia by acting before its occurrence (Cameron

et al. [2012]). The sTPM allows adding an additional layer to such a suspension algorithm by

predicting the risk of hypoglycemia, instead of the simple prediction of the most likely BG

concentration. The TPF would be an ideal candidate to give such predictions, although the

algorithm that defines the needed actions still has to be developed.

5.4.2 Open-loop optimal control using sTPM

In section 5.2, the optimal feed-forward control for meal disturbance rejection has been

designed. However, if the additional uncertainty information provided by the sTPM was

taken into account, the optimal feed-forward control would change, depending on the chosen

cost function. To solve this problem, an optimization would need to run after each SMBG

measurement in order to compute the optimal insulin infusion (Prud’homme et al. [2011]).

For example, good results would be expected by minimizing the cost function JsT P M on a

control and prediction horizon hc :

JsT P M (UI ) =
Nc∑

k=0
(kov(G(k,UI ))+kov(G(k,UI ))), (5.72)

where Nc is the number of samples within hc , kov is the Kovatchev risk function given in

appendix B.4, G is the estimated upper 95% confidence limit, G is the estimated lower 95 %

confidence limit, and UI is the insulin infusion profile. This cost function would ensure that

the patient’s risk is minimal. If uncertainty would be zero, the method would impose a target

BG of 112.5 mg/dl, while this value would increase with uncertainty.
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5.4.3 MPC using sTPM

Just like the TPC is a regularly sampled version of the TPC OL, an MPC is a regularly sam-

pled version of open-loop optimal control. This means that the open-loop optimal control

method using the sTPM, described in the previous paragraph, can be generalized to give an

MPC based on the sTPM. This stochastic Therapy Parameter-based Controller (sTPC) would

explicitly minimize the patient risk in a similar way as Cameron et al. [2011] and improve

safety, compared with the TPC.

5.4.4 SMBG measurement reminder

The sTPM provides a quality evaluation for BG predictions. This property can be used for a

SMBG measurement reminder. If the confidence in predictions gets too low, the patient could

be asked to take a SMBG measurement. A drawback of such a method is that, if a patient’s

parameters are prone to be relatively uncertain, these reminders may be given at a high

frequency, which may be annoying for the patient. However these frequent measurements

could be used to update the model parameters, thus reducing the number of future reminders.

This idea can be extended using CGM measurements: the TPF can be run to update uncer-

tainties and, when CGM measurements start falling outside the confidence region, a new

calibration SMBG measurement can be requested.

5.4.5 Meal and fault detection

A CGM device, in combination with the TPF, can be used for detecting unexpected BG mea-

surements. If stochastic model predictions do not coincide with the CGM measurements

anymore, the patient may, for example, have taken a meal, have been doing some exercise, or

have a problem with his insulin pump, or CGM device. Detecting unannounced meals, and

reminding patients to announce them, may lead to improved BG control as suggested by the

results of section 5.3.3.

5.5 Conclusion

The new TPM equations were used to construct an optimal open-loop control strategy that

allows keeping BG concentrations as close to the target BG as possible. The resulting TPC OL

adds three features to conventional standard therapy:

• Feed-forward for meal disturbance rejection.

• Setpoint adaptation in case a meal disturbance cannot fully be rejected.

• Improved insulin correction using TPM-based IOB.
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The open-loop control strategy was then extended to construct a closed-loop controller,

referred to as the TPC, which applies TPC OL at each CGM sampling time. Additionally, the

TPF was used to filter CGM measurements and improve BG estimation. This AP is a very

simple and effective method that requires minimal computational resources. The tuning

of these controllers can be fully automatized and no manual tuning is necessary. However,

manual tuning is still possible, because only two intuitive parameters need to be set in the

TPC NM, while two more for every additional type of meal to be announced.

The open challenges defined in the state of the art (5.3.1) are addressed by the new controllers:

the combination of the methods introduced in the TPC OL and TPC is designed such that

hyperglycemia is rejected as fast as possible while always avoiding BG concentrations lower

than the setpoint. Hence the asymmetric control objective is considered directly in the

controller’s structure. As a consequence, BG concentrations that are lower than the setpoint

should never occur and negative insulin infusions should never be required, if the TPM is

accurate. Nevertheless, if this happens, because of unmodeled effects, required negative

insulin infusions will be small and can be applied by reducing the basal rate. Using this

mechanism, the negative effect of the control saturation is reduced to a minimum. Finally,

the time delay of the effect of insulin infusions on the BG concentration is taken into account

through the time constant of the IOB.

The new controllers were evaluated on the UVa simulator, showing that

• Standard therapy, which is successfully used for real patients, shows bad performance

on the UVa simulator, revealing one of the limits of the simulator. TPC OL probably does

not lead to much better results.

• The TPC gives excellent results on the UVa simulator with both announced and unan-

nounced meals, reducing patient risk (lower BGRI) and improves treatment quality

(increased % of time in target range). These results are confirmed by a comparison

with other published controllers that are considerably more complex, but show slightly

inferior results, with the exception of EDS that shows better results.

Several remarks are in order:

• The TPC OL and TPC are based on the TPM and are the best possible solutions with

this model. However, since it is not accurate, resulting control will not be perfect, either.

However, since the TPM is the model showing best prediction capabilities (cf. chapter

2), the derived controllers perform quite well.

• Controller testing is only done on the UVa simulator. While this gives first insight into a

controller’s behavior, it is not a reliable measure of controller performance. The results

are only valid within the UVa simulator framework, but will be different for real patients.

This is especially true for TPM-based controllers, as there is a significant mismatch
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between the TPM and the UVa model. It should be noted that almost all published

model-based controllers rely on models that are adapted to the UVa simulator model

dynamics. In particular, the EDS procedure is based on the BMM, whose dynamics are

closer to the UVa simulator model’s. Hence EDS performance may be lower for real

patients.

• The CGM noise simulated in the UVa simulator is based on a random number generator

(Breton and Kovatchev [2008]). This generator uses a seed upon which the sequence

of random numbers is based. As a consequence, the UVa simulator results depend

significantly on the chosen seed. Unfortunately, most studies with the UVa simulator do

not specify which seed was used, which makes it impossible to reproduce the results

and makes comparisons rather difficult. Probably, most authors used the default seed

which is random and different for each simulation. Svensson [2013] mentions that the

same seed was used for all simulations, but does not provide it. In this work, for single

repetition experiments, the seed was always set to 1, allowing valid comparisons within

the scope of this work.

However, to get truly comparable results, simulations should be repeated until the

average of a metric over all repetitions stays stable. The necessary number of repetitions

is determined using figure 5.11, which shows the evolution of the average risk index error

(taken with respect to the last found value) as a function of the number of repetitions for

Adult 1 and a PID controller. It can be seen that after about a hundred repetitions this

error is less than 2%, which is considered to be sufficient. This figure may also depend

on the different controllers and scenarios, and the 100 repetitions should be checked for

consistency. Ideally, all simulations in this thesis should have been repeated at least 100

times, especially to have a fairer comparison with other controllers. Unfortunately, this

was not possible mainly because of computation time considerations.
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Figure 5.11: Relative BGRI error as a function of the number of repetitions for Adult 1 and a
PID controller.
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• The proposed control algorithms are relatively safe since they are directly inspired by

standard therapy (considered as safe), but have additional safety measures such as the

IOB and the adapted setpoint. Nevertheless, safety cannot always be guaranteed and,

for unfortunate circumstances or, in case of unexpected BG dynamics, excessive insulin

doses may be administered. The example of adult 9 illustrates this danger, even though

his meal response appears to be exceptional. A sTPM-based control algorithm may be

able to supply this final security layer.
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6 Conclusion

6.1 Summary

This thesis proposes an AP that tackles most important challenges of BG control (section 1.2) by

using standard therapy, a reliable and widely used treatment method. The therapy parameters

are explicitly introduced into the proposed method in order to create a well-accepted, intuitive,

and reliable treatment option.

Several components, sharing the concept of therapy parameters, were developed and com-

bined to create a complete treatment approach: the AP is fully specified and does not need

any additional, manual tuning. The only requirement is an appropriate data set to identify the

model parameters. The components are the following:

• Prediction models (TPM and TPM+) directly based on therapy parameters.

• BG estimator for filtering CGM measurements (TPF) based on the prediction models.

• Open- and closed-loop control algorithm (TPC) based on the prediction models.

These components address several of the above-mentioned challenges, as illustrated in table

6.1. The uncertainty is split into different categories that are separately addressed by some of

the proposed components: Inter-patient variability is considered by identifying parameters for

every individual instead of using population parameters. Hence, the therapy is individualized

and differences between patients have no influence on their therapy. Intra-patient variability

is not taken into account in the proposed controller, yet, measurement noise is being filtered

out using the TPC. Meal announcement errors are not taken into account directly, either.

However, it was shown that the TPC has good performance, even if meals are not announced

at all, making the TPC robust against meal announcement errors. Meal uptake variability is

considered by identifying new model parameters for every type of meal, and, indirectly, by the

meal rejection properties of the TPC. This is done analogously to the individual identification

for the different patients, but cannot be demonstrated in this thesis, because the necessary
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data is missing. The complexity of the dynamics is not completely accounted for, but, as the

TPC has excellent disturbance rejection capabilities, the influence of unexpected dynamics

is reduced. The identifiability is greatly improved by the proposed structure of the TPM and

the TPM+. Additionally, the quality of the identification can easily be verified by comparing

identified parameters to therapy parameters. The asymmetric control objective is taken into

account by the TPC, which was specifically designed to perform well in this particular setting.

Indeed, the TPC is intended to prevent overly large insulin injections, and, hence, to prevent

BG concentrations from reaching a hypoglycemic state. The time delay effects are addressed

by the use of the IOB, which uses a model that takes into account the time delay in order to

estimate how much insulin is still going to act in the future. Additionally, the TPF reduces

the influence of the time delay on the BG estimation, when compared to conventional filters.

Finally, the control saturation is generally avoided because of the TPC’s capability to reduce

BG concentration undershoots. This goes hand in hand with the asymmetric control objective.

Challenge TPM(+) TPF TPC Combined sTPM
Patient safety (X) (X)
Uncertainty

Inter-patient variability X X
Intra-patient variability X
Measurement noise X X X
Meal announcement errors (X) (X) X
Meal uptake variability X (X) X

Complexity of dynamics (X) (X) (X)
Identifiability X X X
Asymmetric control objective X X
Time delay (X) X X
Control saturation X X

Table 6.1: Comparison of identified challenges with the different components designed in this
study. X indicates that the challenge is explicitly addressed, while (X) indicates that its effect
is indirectly, or incompletely reduced.

These components are combined to create a very efficient BG control method, as shown on

the UVa simulator. Nevertheless, some open challenges remain: the intra-patient variability

and the meal announcement errors have not yet been accounted for.

For this reason, a stochastic term was modeled and added to the TPM, resulting in the sTPM.

This allows quantifying the uncertainty on BG concentrations by propagating parameter

and input uncertainties, as well as measurement noise. This way, some of the unmodeled

complexity of the system are also considered and opens the way to even safer control methods.
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6.2 Perspectives

This thesis results in a promising control algorithm built upon a new reliable prediction model.

Nevertheless, patient safety may still be improved. Therefore, the ultimate goal of designing

an AP usable in an outpatient setting has not yet been fully reached and several further steps

are suggested for future work.

A first solution to use this controller in combination with an independent safety supervision

module, such as proposed in the modular framework introduced by Patek et al. [2012].

Another option to further improve patient safety is to design a control algorithm that directly

uses the information generated by the sTPM to compute safer insulin infusions. Such a

sTPC could be based on optimal control or MPC, as explained in section 5.4. If the pieces of

the puzzle could be gathered, a safe closed-loop control algorithm might be attainable, as

illustrated in table 6.2:

Challenge TPM(+) TPF sTPM sTPC Combined
Patient safety X X
Uncertainty

Inter-patient variability X X
Intra-patient variability X X
Measurement noise X X X
Meal announcement errors X X
Meal uptake variability X X

Complexity of dynamics (X) (X)
Identifiability X X
Asymmetric control objective X X
Time delay (X) X X
Control saturation X X

Table 6.2: Comparison of identified challenges with a future sTPM-based controller (sTPC).
X indicates that the challenge is explicitly addressed, while (X) indicates that its effect is
indirectly, or incompletely reduced.

Nevertheless, the system complexity is so huge that it will never be possible to be completely

protected against unexpected BG excursions. Its influence can only be reduced by an appro-

priate and sufficiently robust control algorithm.

Other points need to be addressed in the future:

• Model parameters are known to drift over time, as a patient’s physiological parameter

also change. For this reason, an adaptive parameter estimation should be implemented

on the TPM. This method may also allow initializing the controller without the need for

a training data set.

• The TPC was tested exclusively on the UVa simulator and is therefore only validated
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in the light of the known limitations of this simulator. In order to truly validate the

proposed algorithms, they would need to be tested on real patients. It should be noted

that the TPM was designed on real patient data and not on UVa simulations. As a

consequence, the potential of the TPM and of related control methods is certainly

higher on real data.

• The effect of exercise is one of the external disturbances with a significant effect on BG

concentrations and whose cause may be measured. For this reason, an exercise model

that follows the design methods of the TPM should be designed.

• The proposed models and controllers should not only be tested on the adult population

of the UVa simulator, but also on the children and adolescents. Good results would

indicate good robustness of the proposed methods, because these patients are more

difficult to control, because of their increased insulin sensitivity and variability.
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A.1 UVa/Padova simulator

The FDA-approved in silico testing of diabetes control strategies in order to replace pre-clinical

animal testing. The approved software is called the UVa/Padova simulator (referred to as the

UVa simulator in this thesis) and is based on a high-order model by Dalla Man et al. Dalla

Man et al. [2007]. This simulator, also known as the Type 1 Diabetes Metabolic Simulator, is

currently the most important benchmark for control strategy evaluation, and it is important

for proposed methods to perform well on generated simulator data.

The UVa simulator exists in two versions: a 300- and a 30-subject version. The larger version is

reserved for selected research groups only, while the smaller version is used in this work. Out

of the 30 available subjects, there are 10 adults, 10 children, and 10 adolescents. Only the 10

adults are considered here for the following reasons: (i) It is computationally more efficient to

do the first tests on less subjects, (ii) children and adolescents are more difficult to control and

the simplest case should be analyzed first, and (iii) most published controllers were validated

on adult data only (as for the ones compared in section 5.3.4).

The UVa simulator allows interactions with the virtual subject population by setting an insulin

injection rate (the insulin profile can be adapted at a sampling time of 1 minute and at incre-

ments of 0.05 U/h) or by determining the CHO intake rate. Only a single type of mixed meal is

available. The provided outputs are BG concentrations, both exact and CGM measurements.

An example of such an output is given in figure A.1. The CGM measurements are based on a

model by Breton and Kovatchev [2008] that uses the exact values to generate the noisy ones

colored noise and a stochastic process. This stochastic process is simulated based on the

initial seed of a random number generator. In this thesis, this seed was always chosen equal to

1.

The dynamics of the underlying model are non-linear and relatively complex. Nevertheless,

insulin and meal sensitivities only change to limited degree over the BG concentration range.

For this reason, the developers are able to provide values for CF and I2C that are appropriate.
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In addition to these two parameters, corresponding basal insulin and steady-state BG values

are given (cf table A.1). These indicate the BG concentration that is reached if the indicated

basal insulin is infused.

In the UVa simulator software, so-called scenarios need to be defined on which experiments

are run. These can either provide the timing and amounts of the complete model inputs (CHO

and inuslin) to be used for data generating tests, or just give meal information and rely on a

closed-loop controller to provide insulin infusions. In this thesis, a nominal scenario and a

sensitivity test scenario are used to generate identification data and are specified in sections

A.1.1 and A.1.2, respectively.

Adult Gss in mg/dl UI ,b in U/h
1 138.56 1.267
2 136.45 1.369
3 147.10 1.425
4 150.69 0.887
5 142.67 1.179
6 135.64 1.724
7 135.26 1.371
8 143.23 1.141
9 145.08 1.133

10 152.83 1.018

Table A.1: Default steady-state parameters in the UVa simulator

To illustrate several properties of the simulator, a data set from the nominal scenario is shown

in figure A.1. A first observation is that CGM noise sometimes takes highly unlikely values,

such as after 10h for example. At this time exact BG concentration rises by 5 mg/dl, while the

CGM measurements show a rise of 60 mg/dl - more than 10 times the actual excursion and a

relative error in BG concentration of nearly 50 %. Of course such noise levels make BG control

difficult and require the controllers to be highly robust. Another observation can be made

when an "optimal" bolus is given with a meal, as observed after 33 and 57 hours. This results in

considerable BG concentration undershoot 2-3 hours after the meal that take around 10 hours

to recover. These undershoots have an amplitude as big as the BG peak caused by the meal.

This phenomenon is generally not observed to such an extent for real patients and makes BG

control more difficult, again.

The UVa simulator has several limitations, because not all of a patients dynamics are captured

by the model. Some of these limitations are that:

• Only a single type of meal is available, even though there are important differences from

one type of meal to another.

• The model is completely deterministic and therefore, the intra-patient variability cannot

be modeled. In other words, if a patient does the same things two days in row, his exact
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Figure A.1: Example of UVa simulation of Adult 6 on nominal day scenario.

BG concentration will be the same on both days.

• The model parameters are time-invariant. As a consequence, effects related to the

circadian rhythm, like the dawn phenomenon (increased BG concentration early in the

morning) are not modeled.

• Disturbances, other than meals, such as physical activity or stress, are not modeled,

thus ignoring these potentially dangerous situations.

Overall, the absence of some sources of uncertainty is balanced by the increased an sometimes

unexpected randomness of the CGM noise. This reduces the effect of some of the limitations

and makes the simulator more realistic.

A.1.1 Nominal data set

Four consecutive days with meal and insulin inputs as defined in table A.2 are generated.

These are then seperated into 4 days with start and end times also given in table A.2. These

experiments result in BG concentrations that have a wide range, such that the non-linearities

of the UVa simulator model are not avoided.

The 10 available adults were used and basal rates were set to the default values in the UVa

simulator (cf A.1).

These 4 days have been chosen in the following way:

• The first three days are similar. An insulin bolus and a meal are taken simultaneously.

The insulin bolus is chosen such that it decreases BG concentrations by the specified
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d ts te ∆I tI ∆M tM TM

1 8 AM 4 PM 10 8 AM 10 8 AM 10
2 8 AM 4 PM 70 8 AM 70 8 AM 20
3 8 AM 4 PM 120 8 AM 120 8 AM 10
4 8 AM 11 PM 100 10 AM 80 8 AM 10

5 2 PM 20 2 PM 15
10 3 PM 10 6 PM 20
15 4 PM

Table A.2: UVa simulator protocol. Day d , experiment start time ts , experiment end time te ,
the insulin bolus induced drop in BG ∆I in mg /dl , the time of the insulin bolus tI , the CHO
induced rise in BG ∆M in mg /dl , the time of the CHO intake tM , and the meal duration TM in
minutes are given.

amount, calculated using the C F that is given in the simulator. The meals are then given

such that they counteract these boluses based on the I 2C provided in the simulator.

• The fourth day spans the whole palette of BG concentrations and incorporates different

amounts of carbohydrate ingestion and insulin injections. The goal is to have a day that

differs from the others in order to make validation more difficult.

A.1.2 Sensitivity test days

The sensitivity test days are generated in the same way as the first three days of the nominal

test. However, this time, the meals and insulin doses where not taken simultaneously, but on

separate days, as specified in table A.3. The goal of this experiments is to observe the effect of

meals and insulin desperately and over a broad range of possible amounts.

d ts te ∆I tI ∆M tM TM

1 8 AM tmi nBG 10 8 AM
2 8 AM tmi nBG 70 8 AM
3 8 AM tmi nBG 120 8 AM
4 8 AM tmaxBG 10 8 AM 10
5 8 AM tmaxBG 70 8 AM 20
6 8 AM tmaxBG 120 8 AM 10

Table A.3: UVa simulator protocol. Day d , experiment start time ts , experiment end time te ,
the insulin bolus induced drop in BG ∆I in mg /dl , the time of the insulin bolus tI , the CHO
induced rise in BG ∆M in mg /dl , the time of the CHO intake tM , and the meal duration TM in
minutes are given. tmi nBG and tmaxBG are the times at which the minimum or the maximum
BG concentration is reached, respectively

134



A.2. Clinical study

A.2 Clinical study

Clinical data used in this thesis is extracted from a mono-center and open-label study, designed

to evaluate an investigational meal bolus advice method, similar to that of Prud’homme

et al. [2011]. 12 subjects with type 1 diabetes mellitus followed the same 10-day procedure,

summarized in table A.4:

• Clinical habituation phase: The objective of the 3 preliminary days was to get the

subjects used to the clinical environment and changes in their daily routine. Meanwhile,

physicians adjusted the therapy parameters. On day 3, an additional basal rate test

was performed to verify and adapt the basal rate. The patients’ basal rate was carefully

tuned by physicians such that, without insulin infusions or CHO ingestion, BG stays

approximately constant across the day. Data from these days is not considered on this

thesis.

• Sensitivity tests: On days 1 and 2, insulin sensitivity tests were performed, i.e. patients

received an isolated insulin shot, followed by BG monitoring. The goal was to observe

the effect of insulin without the influence of any meal disturbance, which is key for

obtaining reliable insulin action parameters (2.4.3). Whenever necessary, the basal rate

was slightly reduced a few hours before the test, so that at 8:30 AM a corrective bolus

could be infused. Until 11:30 AM, the sampling period for SMBG measurements was set

equal to 15 minutes.

• Standard therapy days: On days 3 and 4, standard therapy was applied (2.3.2). At 9:00

AM, the subjects received the test meal and infused their standard insulin bolus. BG was

measured every 30 minutes until 4:00 PM.

• Optimized insulin infusion days: On days 5 to 7, optimized insulin patterns were infused

under the same meal and BG measurements conditions than before. The therapy

consisted of small insulin boluses, potentially administered every 30 minutes until 2:00

PM.

day ts te Ts CGM Wi

1,2 8:30 AM 11:30 AM 15 X 5
3,4 9:00 AM 4:00 PM 30 X 1
5,6 9:00 AM 4:00 PM 30 X 1
7 9:00 AM 4:00 PM 30 × 1

Table A.4: Clinical study protocol. The experiment start time ts , experiment end time te , SMBG
sampling interval Ts in minutes, availability of CGM data, and the chosen measurement point
weight Wi (cf 3.2.3) are specified.

SMBG measurements were performed with Accu-Chek® Combo meters, and CGM measure-

ments with a Dexcom® SEVEN® PLUS. It should be noted that CGM data is not available on

day 7.
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The test meals were always the same fatty, heavy and long-lasting meals (750 kcal with 25-30%

carbohydrates, 15-20% protein, and 55-60% fat). This is a very slow acting meal, i.e. a meal

with low GI where the rise in BG is slow, chosen intentionally to show the benefits of an insulin

infusion pattern, which only exists if the insulin action is faster than the meal effect.

The following data were not considered for model validation:

• Data collected after a hypoglycemic intervention.

• Data collected after the intake of medication.

• Data with very high variability and unexplained BG excursions.

Of note is that this corresponds to the exclusion of 2 subjects. Overall, the standard therapy

parameter I2C was often underestimated leading to high BG concentrations, most likely due to

the slow nature of the selected meal. Therapy parameter values were updated on a day-to-day

basis. However, in this thesis, only one single therapy parameter value is considered per

patient.

The insulin sensitivity tests have a weight Wi that is 5 times the weight of the other days. This

increased importance given to the identification quality of the insulin subsystem is vital to

have a reliable identification of insulin action.

The data from this study are very well suited to analyze parameter correlations and compare

deterministic and stochastic model predictions since:

• insulin sensitivity tests were performed (cf. 2.4.3).

• the patients had the same meal several times on consecutive days, which prevents that

parameters change significantly over the course of the study.

• the basal rates and therapy parameters were very well adjusted by physicians.

• two different insulin infusion strategies were used.

The latter is interesting in that, generally speaking, if all study days are similar, models that

have good data fits generate good predictions even if they have inappropriate dynamics. On

the other hand, an even more diversified study design with, e.g., modified meal sizes, more

patients and more insulin sensitivity test days, would improve the quality of the data further.
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In this thesis, many different metrics are used, in order to quantify the quality of data fits,

BG predictions and control performance. A good overview of many metrics is given by Del

Favero et al. [2012]. Additionally, Del Favero et al. propose an extension of existing metrics to

incorporate a glucose specific penalty, although this is not necessary in this thesis, since hypo-

and hyperglycemia conditions rarely occurred in the data sets. In the following sections, the

different metrics used along this document are introduced.

B.1 MAD

The MAD, in mg/dl, is used to compare data fits, as well as model predictions resulting from

the different investigated models. It is defined as:

MAD = 1

N

N∑
t=1

|G(t )−Ĝ(t )| (B.1)

where N denotes the number of samples. It measures the mean absolute deviation between

an estimated and an exact BG concentration. Hence, the lower its value, the better the results.

B.2 R2

The coefficient of determination R2 in % is used to compare data fits, as well as model predic-

tions resulting from the different investigated models. It is defined as:

R2 = 100

(
1−

1
N

∑N
t=1(G(t )−Ĝ(t ))2

1
N

∑N
t=1(G(t )−Ḡ)2

)
(B.2)

where Ḡ is the average BG: Ḡ = 1
N

∑N
t=1 G(t ). A value of 100% is equivalent to a perfect fit, while

bad fits may have negative values. This method is more sensitive to outliers, because of its

quadratic term.
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B.3 EGA

As BG predictions are thought to be, in the ideal case, used in the same way as BG measure-

ments, they should also be evaluated using the EGA ,proposed by Clarke et al. [1987], which is

used to assess the performances of BG meters. BG measurements are compared to reference

BG measurements and are classified via a grid, represented in figure B.1 that rates resulting

treatment decisions.
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Figure B.1: Clarke EGA. Figure based on MATLAB code by Edgar Guevara Codina.

• If the measurement is "clinically accurate", i.e. if it deviates by no more than 20%,

it is classified in zone A. If 95% of the measurements are in zone A, the BG meter is

approximately achieving the standards of the ISO 15197 norm. However, as shown by

Freckmann et al. [2010], many current BG meters do not fulfill this norm.

• If a measurement is "clinically appropriate", i.e. if it would lead to benign or no treat-

ment, it is classified in zone A and B.

• All other zones are considered potentially dangerous and should therefore be avoided.

Clearly, it is highly desired to obtain as many predictions in zone A as possible, and to avoid

zones other than A or B.
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B.4 BGRI

The BGRI was introduced by Kovatchev et al. [2000] and is well recognized as a reliable

indicator of the clinical adequacy of a BG profile. As such the BGRI is implemented in the UVa

simulator as one of the main performance metrics. It is defined using a risk function r given

in equation B.4 and represented in figure 1.7.

f (G) = 1.509
[
(ln(G))1.084 −5.381

]
(B.3)

r (G) = 10 f (G)2 (B.4)

This function attributes a risk to every BG concentration G . The risk is zero at 112.5 mg/dl and

increases as G deviates from this target value. This increase is asymmetric as the risk during

hypoglycemia is higher than for hyperglycemia. Kovatchev et al. define the target BG range

between 70 and 180 mg/dl, which corresponds to a risk value of 7.7.

The BGRI is defined as the average r (G):

BGRI = 1

n

n∑
i=1

r (Gi ) (B.5)

The BGRI can be split into HBGI and LBGI such that HBGI + LBGI = BGRI, where the contribu-

tions to the score come from values above or below the target of 112.5 mg/dl, respectively.

The BGRI is a very convenient tool to compare algorithms applied to the same experimental

scenarios. However, if the scenarios are different, the BGRI has little value.

As mentioned in section 5.3.4, Cameron et al. [2011] used a modified BGRI, proposed by Magni

et al. [2007], and defined by

f (G) = 3.5506
[
(ln(G))0.8353 −3.7932

]
(B.6)

r (G) = 10 f (G)2, (B.7)

for which zero risk is at 140 mg/dl.

B.5 RMSE

The RMSE, in mg/dl, is used to compare data fits, as well as model predictions resulting from

the different investigated models. It is defined as:

RMSE =
√√√√ 1

N

N∑
t=1

(G(t )−Ĝ(t ))2 (B.8)
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where N denotes the number of samples. It measures the square root of the mean square error

between an estimated and an exact BG concentration. Hence, the lower its value is, the better

are the results.

B.6 Percentage of time spent within a range of BG concentrations

A simple and comprehensive way to asses the controller performance is to compute the

percentage of time within given BG concentration ranges. Common ranges are:

• target range: 70-180 mg/dl. This is the range as much time as possible should be spent

in. This is in accordance with target defined by Kovatchev et al. [2000].

• hypoglycemia: < 70 mg/dl. Time spent below target should be minimized as there is an

increased risk of hypoglycemia.

• hyperglycemia: > 180 mg/dl. Time spend above target should be short in order to avoid

hyperglycemia.

• severe hypoglycemia ( < 50 mg/dl) should be avoided at all price since it puts patients

in acute danger.

B.7 Mean BG concentrations

The mean BG concentration over a complete data set, pre-meal, and post-meal are given

for some comparisons. The mean BG is an indicator of treatment performance, as a low

mean indicates that hyperglycemia was well avoided. However, it needs to be verified that

no hypoglycemia occurs. Mean pre- and post-meal BG concentrations should be low as well.

They allow getting more insight into how the treatment is when it comes to meal rejection and

target tracking. Average pre-meal BG corresponds to the average BG during the our preceding

the meal, while average post-meal BG is the average BG between the first and second hour

after the meal.

B.8 Minimum and maximum BG concentration

These metrics simply give the minimum and the maximum BG concentration during the

experiment. The minimum BG should be high, and most importantly greater than the hypo-

glycemic threshold, while the maximum should remain low. These two values are generally

used for the Control-Variability Grid Analysis (CVGA) introduced by Magni et al. [2008] and

modified by Soru et al. [2012], which plots the minimum and maximum against each other for

every patient in a population. However, this metric is not used in this thesis, because the 10

patient population is to small to lead to meaningful results.
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B.9 Boxplot

Boxplots are used several times in this thesis to compare data from a certain number of

experiments. For each box, the central, red line is the median, the edges of the box are the

25th (q1) and 75th (q3) percentiles, the whiskers extend to the most extreme data points

not considered outliers, and outliers are plotted individually using red crosses. Points are

considered as outliers if they are larger than q3 +1.5(q3–q1) or smaller than q1–1.5(q3–q1).
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C A Minimal Exercise Extension for
Models of the Glucoregulatory System

In the context of this thesis, a model extension for the effect of exercise was developed and

published (Bock et al. [2011]). The development of this model is recalled and applied to the

new prediction models designed in chapter 2.

C.1 Introduction

Exercise can have lowering and increasing effects on BG concentrations and patients need to

adapt their treatment to stay within the above mentioned bounds if they want to exercise, as

explained by Zinman et al. [2004]. However, the necessary adaptions are difficult to estimate

and, thus, the risk of hypoglycemia is increased during exercise. In this context, models

predicting the effect of exercise can be very useful tools for helping patients to adjust their

treatment.

Only a few models for exercise are available in the literature, examples are Dalla Man et al.

[2009], Roy and Parker [2007], Kim et al. [2007], Hernández-Ordoñez and Campos-Delgado

[2008], Balakrishnan et al. [2013]. Their level of complexity varies strongly, but the number of

parameters is typically high, which makes their identification, using only BG measurements,

difficult.

For this reason, a minimal exercise extension for existing models of the glucoregulatory system

that is based on observations from a clinical study is proposed. This extension introduces

two additional parameters, that can be identified using only BG measurements, and one

intensity-independent exercise input. Patient specific parameters are shown to be necessary

to account for the considerable inter-patient variability.

This chapter is organized as follows: In Section C.2, the clinical study is described and analyzed.

The model extension and the parameter identification method are described in Section C.3.

Results are discussed in Section C.4, while conclusions are drawn in Section C.5.
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C.2 Clinical Study

C.2.1 Protocol

Twelve patients with T1DM using continuous subcutaneous insulin injection (CSII), 6 female,

6 male, ages 20-45, were monitored during a 2-day in-patient period. During this time, BG

concentrations were measured intravenously every 5 minutes and heart rate (HR) was recorded

every 5 seconds. Insulin management was performed by the patients themselves. The protocol

for both days was identical except for the exercise, which was executed at 65% of maximum

HR for the first day and 75% for the second. These exercise periods, performed on cycle

ergometers, started at 16h00 and lasted 30 minutes. Among the 12 patients recruited for this

study, only 7 presented data that were not corrupted by low BG interventions.

C.2.2 Analysis

The drop in BG appears to be linear during the effort, as can be observed in figure C.1. For

this reason, the most interesting parameter is the slope of the linear part, as illustrated in

figure C.1. A linear regression is performed and its dependence on several factors, such as

exercise intensity, gender, age, body mass index (BMI), insulin concentrations and initial BG

concentrations, is tested. The slope is calculated within a time frame of 30 minutes.
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Figure C.1: Blood glucose concentration and heart rate for patient 9 on day 2. Illustration of
linear regression (red line). 1 mmol/l corresponds to 18 mg/dl.

Intuitively, one would expect that the drop in BG depends on exercise intensity. In fact, this

assumption, which is used by nearly all existing exercise models, is somehow contradicted by

this clinical study, for the ranges of exercise intensities considered. Figure C.2 shows that the

slopes for each patient, except patient 10, are similar for both intensities, and the drop in BG

will be considered to be independent of the intensity. Under this assumption, two equivalent

data sets are available for each patient. The results presented in figure C.2 also show that the

slope varies strongly between patients. Thus, individual identification will be performed. Note
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Figure C.2: Comparison of slopes for different patients. Values for both exercise sessions and
their mean are shown. 1 mmol/l corresponds to 18 mg/dl.

that drawing general conclusions regarding the sensitivity of the slope to the factors discussed

below would require more data.

C.3 Modeling and Parameter Estimation

C.3.1 Model Extension

According to Derouich and Boutayeb [2002], exercise leads to increases in several variables of

the glucoregulatory system:

• Insulin sensitivity, which quantifies the effect of insulin on BG concentrations.

• Glucose effectiveness at zero insulin, which gives the glucose uptake.

• Utilization of insulin, i.e. the rate of elimination of insulin.

Trying to model all these effects simultaneously results in a model that is difficult to identify,

as time constants of these effects are similar. Therefore, the effect of exercise is modeled

as an increase in glucose effectiveness at zero insulin Se , as reported by Minuk et al. [1981].

The proposed sub-model can, thus, be used as an extension for all models incorporating the

concept of insulin independent glucose uptake and can be incorporated into the TPM and

TPM+.

Se should be 0 when no exercise is performed and have a positive value in the opposite case.

The effect of exercise is not instantaneous and therefore a time constant for Se is introduced.
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The dynamic behavior of Se is defined in equation (C.1).

Ṡe (t ) =−ae Se (t )+Ke aeUe (t ) (C.1)

Where ae (the inverse of the time constant in min−1) and Ke (the exercise sensitivity in min−1)

are the two additional parameters that have been introduced.

As a consequence of the independence on exercise intensity, the new input Ue = 0 if no exercise

is performed and 1 otherwise, and thus, Ke represents the amplitude of the increase in glucose

uptake, while ae shows how fast the effect appears and disappears.

C.3.2 Parameter Identification

An appropriate model of the glucoregulatory system is needed to identify the resulting new

parameters. A modified version of the BMM is used. During exercise, the insulin infusion is

constant. Therefore, the effect of insulin is considered constant during this period and can

be combined with the glucose effectiveness at zero insulin into the new parameter Si ns+G .

Endogenous glucose production is assumed to be constant during exercise (Minuk et al.

[1981]). The complete model extension corresponds to equations (C.1) and (C.2).

Ġ(t ) =− (Si ns+G +Se (t ))G(t )+Si ns+GGb (C.2)

Where G is the BG in mg/dl and Gb is the basal BG chosen equal to 100 mg/dl. The term

Si ns+GGb is the endogenous glucose production.

Firstly, Si ns+G is identified for each day and each patient using the data collected before the

exercise session, and a standard least squares approach. This allows taking into account

differences in insulin infusion that may occur from one day to another.

Then, in a second step, ae and Ke are identified using the Iterative Two Stage (ITS) method

(Vicini and Cobelli [2001]). As the exercise effect is supposed to be identical for the two days,

only one couple (ae , Ke ) is identified for each patient.

However, as the sensitivity for ae is low, an empirical value can be chosen without loss of

prediction capabilities, as shown in figure C.3, and better coefficients of variation are obtained.

A value of 0.1 min−1 is proposed.
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C.4. Results and Discussion

C.4 Results and Discussion

C.4.1 Model Fits

Parameters for all 7 patients without hypoglycemic intervention are given in table C.1. These

parameters are consistent as the coefficients of variation are below 100% for nearly all patients

and the population mean’s coefficient of variation is low. All model fits, as for example shown

in figure C.3 for patient 9, are acceptable. Nevertheless, high variability within some patients

can still be observed.
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Figure C.3: Model fit for patient 9 for both days. 1 mmol/l corresponds to 18 mg/dl.

Pat. N. 1 3 4 6 8 9 10 Mean

ae 0.0262 0.0173 0.0173 0.0289 0.0548 0.0508 0.0266 0.0317
(ITS) (66) (120) (126) (62) (42) (46) (66) (47)
Ke 0.0195 0.0089 0.0089 0.0231 0.0239 0.0206 0.0197 0.0178
(ITS) (45) (96) (101) (40) (25) (28) (45) (35)
Ke 0.0097 0.0043 0.0042 0.0117 0.0183 0.0164 0.0100 0.0107
(ae = 0.1) (19) (45) (77) (23) (17) (18) (18) (51)

Table C.1: Identified parameters for all patients and respective coefficients of variation (%)

C.4.2 Application to new prediction models

The minimal exercise extension can be applied to the controllers designed in chapter 2. Since

the TPM+ incorporates the concept of glucose effectiveness at zero insulin, its glucose equation

2.20 can be rewritten with the exercise extension as:

Ġ(t ) =−Kx X (t )− (SG +Se (t ))G(t )+KgUG (t ) (C.3)

The TPM is the TPM+, where SG = 0. Therefore, the exercise effect can be added to the TPM by
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modifying the BG equation 2.14:

Ġ(t ) =−Kx X (t )+KgUG (t )−Se (t )G(t ) (C.4)

C.4.3 Model Limitations

The proposed model extension is strongly based on observations collected during a clinical

study. However, this study only covers a small subset of possible exercise setups in terms of

exercise duration or intensity and exercise types.

• Because exercise duration was 30 minutes, the extension is only applicable for exercise

with limited durations. In fact, after about 90 minutes, the physiological processes

change since the hepatic glycogen stocks are depleted Ahlborg et al. [1974]. Hence, the

exercise effects are no longer captured by the proposed extension after 90 minutes.

• The exercise intensity was set to 65 and 75% of the maximal heart rate, i.e. in the

aerobic range. However, at higher intensities, the anaerobic threshold is passed and BG

dynamics change Marliss and Vranic [2002].

• The type of exercise that is performed might change the exercise parameters. As only

data from cycling are available, this cannot be verified.

• The middle and long term effects of exercise on insulin sensitivity are not taken into

account in this extension. However, it is shown that these changes in insulin sensitivity

can be detected up to 2 days after the exercise session Mikines et al. [1988], but also over

several weeks when regular exercise is performed Nishida et al. [2004].

C.5 Conclusion

A model extension for predicting the evolution of BG concentrations during exercise has

been proposed. This model was found to be identifiable and in accordance with the clinical

study. Additionally, as the exercise input is independent of exercise intensity, no additional

measurement device is necessary. Implementations should lead to an improved quality of life

for patients suffering from T1DM. Future work will include an extension of the proposed model

to longer durations and a broader range of exercise intensities. For this purpose, additional

clinical studies will have to be carried out. The performance of the exercise extension on the

TPM and TPM+ would need to be tested as well. The alternative model, following the TPM

principles can be tested as well. If the insulin and meal sub-models are not considered, the

equations are

Ġ(t ) =−Se (t ) (C.5)

Ṡe (t ) =−ae Se (t )+ae Se,1(t ) (C.6)

Ṡe,1(t ) =−ae Se,1(t )+aeUe (t ). (C.7)
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D Additional UVa comparisons

Recently, the Doyle group published several controllers validated on 10 adults of the UVa

simulator. However, the adults they considered are different from those in the 10 adult

population analyzed in this thesis. Nevertheless, the comparison with the proposed controllers

of chapter 5 are given below.

D.1 Wang controller

Wang et al. [2009] tested an adaptive basal therapy on 10 adults and 10 adolescents of the

UVa simulator. Their scenario is described in appendix E.7. The method consists in applying

standard therapy, but with a controller to adjust the basal rate. In this sense, it is close to the

TPC, although the allowed variations of the basal rate are limited. Zarkogianni et al. [2011]

also compared the IIAS to the results by Wang et al.

Results from all TPC versions are consistently good and slightly better than those from the

IIAS. The adaptive basal therapy has the worst performance even if it performs reasonably

well.

% below tar % above tar % within tar BGRI
TPC 0.13 (0.40) 0.36 (1.08) 99.51 (1.11) 0.77 (0.27)

TPC KF 0 (0) 0.65 (1.44) 99.36 (1.44) 0.79 (0.26)
TPC TPF 0 (0) 0.67 (1.48) 99.33 (1.48) 0.79 (0.27)

Adaptive basal therapy 0.5 (1.4) 1.3 (2.8) 98.2 (2.7) 1.7 (0.59)
IIAS 0 (0) 0.6 (1.52) 99.4 (1.52) 0.99 (0.43)

Table D.1: Adaptive basal therapy compared to the TPC and IIAS. Mean and standard deviation
for 10 adults is given.
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D.2 Grosman controller

The Zone MPC (zMPC) proposed in Grosman et al. [2010] is regularly used by the Doyle group

(for instance Svensson [2013] proposes an extension of the zone MPC). The scenario is given

in appendix E.8. The idea is to keep BG concentrations in a given zone rather than at a precise

setpoint. In table D.2, results for announced and unannounced meals are given for different

zones and a conventional MPC controller, and compared to the TPC and IIAS by Zarkogianni

et al. [2011].

For unannounced meals, the zMPC is considerably better than the default standard therapy im-

plemented in the UVa simulator. However, the TPC NM gives another important improvement

over all controllers proposed by Grosman et al. and is even better than their announced-meal

controllers. The huge difference suggests that Grosman et al. used a different set of 10 adults

on the UVa simulator.

For announced meals, all TPC variations are considerably better than MPC and zMPC. The

TPC and the IIAS are equivalent.

mean BG max BG min BG % above tar
Unannounced meals

default open-loop (exp 1) 180 (27) 314 110 50
zMPC bounds 80-140mg/dl (exp 2) 171 (22) 291 85 44

zMPC bounds 100-120mg/dl (exp 3) 160 (23) 280 83 36
MPC setpoint 110mg/dl (exp 4) 155(23) 274 76 32

TPC NM 131 (6) 212 76 11
Announced meals

zMPC bounds 80-140mg/dl (exp 5) 152 (28) 267 66 28 (21)
zMPC bounds 100-120mg/dl (exp 6) 141 (29) 262 62 21 (19)

MPC setpoint 110mg/dl (exp 7) 136 (29) 258 59 18 (19)
TPC 118 (5) 169 80 1.2 (2.1)

TPC KF 118 (5) 170 83 1.2 (2.0)
TPC TPF 118 (5) 170 84 1.2 (2.0)

IIAS 118 (7) N/A N/A 0.8 (2.1)

Table D.2: Zone MPC compared to TPC and IIAS. Mean and standard deviation for 10 adults is
given.

D.3 Lee controller

The controller proposed by Lee et al. [2013] is a PID controller with feed-forward. The sce-

nario is given in appendix E.6 and comparison results in table D.3. Two versions of the PID

controller are given here: (i) ID 12 is the controller with the best performance, but was rejected

because hypoglycemia was not completely avoided. (ii) ID 17 is the controller with the best

performance that completely avoids hypoglycemia. This controller was considered as the best

by the authors.
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D.4. Svensson controller

On the very simple proposed scenario, the TPC performs much better than the PID controller.

Even when meals are not announced for the TPC, its results are superior. It can be assumed

that the patients used in the UVa simulator are not the same as used for this work.

% below tar max BG % above tar % in tar
Lee ID 12 1.34 (2.9) 179 (19.3) 1.69 (2.4) 97 (4.4)
Lee ID 17 0 (0) 183 (19.6) 3.52 (5.1) 96.5 (5.1)

TPC KF 0 (0) 154 (12.1) 0 (0) 100 (0)
TPC NM 0 (0) 180 (20) 1.74 (2.1) 98.3 (2.1)

Table D.3: Controller proposed by Lee et al. compared to TPC. Mean and standard deviation
for 10 adults is given.

D.4 Svensson controller

Svensson [2013] proposes a modification of the zMPC used by Grosman et al. [2010]. However,

it is clear that the UVa simulator version (v3) has different subjects than the one used in this

work. This becomes clear by comparing the patient characteristics given by Svensson [2013]

to the ones from the version used here. Interestingly, Svensson mentions that the same CGM

noise seed was used for all simulations, which no one else talks about.
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E Scenarios

In this thesis, different scenarios are used in order to compare proposed controllers to pub-

lished experiments. These are defined here.

E.1 Nominal Scenario

This scenario is considered as the default scenario in this thesis. It consists in two identical,

consecutive days that represent a typical day. These are the default parameters, as some

of them, like the sampling time, or meal announcements may change as specified in the

concerned sections.

Property
Population 10 Adults (sometimes #9 not considered)

Meal announcement Yes
Sampling time 5 min

Initial BG Basal BG
Duration 48 hours

Start Time 0 a.m. day 1
End time 12 p.m. day 2

Meal details cf table E.2
CGM seed 1

Metrics BGRI
percentage in different ranges

Table E.1: Nominal scenario protocol

Time 7 a.m. 12 a.m. 4 p.m. 7 p.m. 7 a.m. 12 a.m. 4 p.m. 7 p.m.
Amount 30 g 80 g 25 g 90 g 30 g 80 g 25 g 90 g
Duration 10 min 20 min 10 min 20 min 10 min 20 min 10 min 20 min

Table E.2: Nominal scenario meal details
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E.2 Zarkogianni Scenario

Zarkogianni et al. [2011] use a non linear MPC with a double deterministic model and Neural

Network coupled to a fuzzy logic adaptive scheme to control blood glucose. Their scenario is

summarized in tables E.3 and E.4.

Property
Population 10 Adults

Meal announcement Yes
Sampling time 5 min

Initial BG Basal BG (supposedly)
Duration 48 hours

Start Time 0 a.m. day 1
End time 12 p.m. day 2

Meal duration 15 min (5 min for 5g meal) (not specified)
Meal details cf table E.4

Metrics % in different regions
LBGI, HBGI, BGRI

population mean and standard deviation

Table E.3: Zarkogianni scenario protocol

Time 7 a.m. 12 a.m. 4 p.m. 6 p.m. 11 p.m. 7:30 a.m. 1 p.m. 6:30 p.m.
Amount 45 g 70 g 5 g 80 g 5 g 40 g 85 g 60 g

Table E.4: Zarkogianni scenario meal details

E.3 Cameron Scenario

Cameron et al. [2011] tested their MPC controller on the scenario specified in tables E.5 and

E.6.

E.4 Cormerais Scenario 1 day

Cormerais and Richard [2012] use two different scenarios, one of which is a one day scenario

specified in tables E.7 and E.8.

E.5 Cormerais Scenario 7 days

The second scenario used in Cormerais and Richard [2012] is specified in table E.9. This

scenario is quite complex with very diverse meal times and amounts. For the complete

schedule, please refer to the article.
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E.5. Cormerais Scenario 7 days

Property
Population 9 Adults (#9 not considered)

Meal announcement No
Sampling time 5 min

Initial BG 140 mg/dl
Duration 36 hours

Start Time 6 a.m. day 1
End time 6 p.m. day 2

Meal duration 20 minutes
Meal details cf table E.6

Metrics modified BGRI, HBGI and LBGI
mean BG, pre-meal and post-meal BG

percentage in different ranges

Table E.5: Cameron scenario protocol

Time 9 a.m. 1 p.m. 5:30 p.m. 8 p.m. 9 a.m. 1 p.m
Amount 50 g 70 g 90 g 25 g 50 g 70 g

Table E.6: Cameron scenario meal details

Property
Population 10 Adults

Meal announcement No
Sampling time 5 min

Initial BG 100 mg/dl (from figures)
Duration 24 hours

Start Time 0 a.m. day 1
End time 12 p.m. day 1

Meal duration 20 minutes (not specified)
Meal details cf table E.8

Metrics (per patient) % in different regions
LBGI, HBGI

mean BG

Table E.7: Cormerais 1day scenario protocol

Time 7 a.m. 1 p.m. 7 p.m.
Amount 50 g 70 g 80 g

Table E.8: Cormerais 1day scenario meal details

155



Appendix E. Scenarios

Property
Population 10 Adults

Meal announcement No
Sampling time 5 min

Initial BG 100 mg/dl (from figures)
Duration 7 days

Start Time 0 a.m. day 1
End time 12 p.m. day 7

Meal duration 20 minutes (not specified)
Meal details cf table Cormerais and Richard [2012]

Metrics (per patient) % in different regions
LBGI, HBGI

mean BG

Table E.9: Cormerais 7day scenario protocol

E.6 Lee Scenario

Lee et al. [2013] tested their PID controller on the following scenario. Details are given in table

E.10 and E.11.

Property
Population 10 Adults

Meal announcement Yes
Sampling time 5 min

Initial BG Basal BG (supposedly)
Duration 31 hours

Start Time 0 a.m. day 1
End time 7 a.m. day 2

Meal duration 20 minutes (not specified)
Meal details cf table E.11

Metrics % in different regions
maximum BG

population mean and standard deviation

Table E.10: Lee scenario protocol

Time 7 a.m.
Amount 50 g

Table E.11: Lee scenario meal details
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E.7. Wang Scenario

E.7 Wang Scenario

Wang et al. [2009] use an adaptive basal therapy as closed-loop algorithm and the scenario

given in tables E.12 and E.13.

Property
Population 10 Adults

Meal announcement Yes
Sampling time 5 min

Initial BG Basal BG (supposedly)
Duration 24 hours

Start Time 0 a.m. day 1
End time 12 p.m. day 1

Meal duration 20 minutes (not specified)
Meal details cf table E.13

Metrics % in different regions tg=60-180
BGRI

Table E.12: Wang scenario protocol

Time 7 a.m. 12 a.m. 6 p.m.
Amount 40 g 75 g 60 g

Table E.13: Wang scenario meal details

E.8 Grosman Scenario

Grosman et al. [2010] apply the zMPC developed by the Doyle group to the UVa simulator.

They use the scenario specified in tables E.14 and E.15.
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Property
Population 10 Adults

Meal announcement Both
Sampling time 5 min

Initial BG Basal BG
Duration 24 hours

Start Time 0 a.m. day 1
End time 12 p.m. day 1

Meal duration 15 minutes (not specified)
Meal details cf table E.15

Metrics mean BG with standard deviation
min and max BG

time above 180 mg/dl
number of hypoglycemic events

Table E.14: Grosman scenario protocol

Time 7 a.m. 1 p.m. 8 p.m.
Amount 75 g 75 g 50 g

Table E.15: Grosman scenario meal details
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F Stochastic TPM equations

The covariance propagation equations for the TPM are given below. If combined with the

deterministic TPM (equations 2.14 to 2.18), the complete stochastic model can be simulated.

The time dependence is not indicated in order to simplify the notation.

ṖG ,G =QKx ,Kx X 2 −2QKg ,Kx XUG +QKg ,Kg U 2
G +2Kg PG ,UG −2Kx PG ,X (F.1)

ṖG ,UG = Kg PUG ,UG −Kx PUG ,X −ag PG ,UG +ag PUG ,UG ,1 +X Qag ,Kx (UG −UG ,1)

−UGQKg ,ag (UG −UG ,1)
(F.2)

ṖUG ,UG = 2ag PUG ,UG ,1 −2ag PUG ,UG +Qag ,ag (UG −UG ,1)2 (F.3)

ṖG ,UG ,1 = Kg PUG ,UG ,1 −Kx PUG ,1,X −ag PG ,UG ,1 −XQag ,Kx (UC HO −UG ,1)

+UGQKg ,ag (UC HO −UG ,1)
(F.4)

ṖUG ,UG ,1 = ag PUG ,1,UG ,1 −2ag PUG ,UG ,1 −Qag ,ag (UC HO −UG ,1)(UG −UG ,1) (F.5)

ṖUG ,1,UG ,1 =Qag ,ag (UC HO −UG ,1)2 −2ag PUG ,1,UG ,1 (F.6)

ṖG ,X = Kg PUG ,X −Kx PX ,X −ax PG ,X +ax PG ,X1 +XQKx ,ax (X −X1)

−UGQKg ,ax (X −X1)
(F.7)

ṖUG ,X = ag PUG ,1,X −ag PUG ,X −ax PUG ,X +ax PUG ,X1 +PUG ,X (X −X1)(UG −UG ,1) (F.8)

ṖUG ,1,X = ax PUG ,1,X1 −ax PUG ,1,X −ag PUG ,1,X −PUG ,X (X −X1)(UC HO −UG ,1) (F.9)

ṖX ,X = 2ax PX ,X1 −2ax PX ,X +Qax ,ax (X −X1)2 (F.10)

ṖG ,X1 = Kg PUG ,X1 −Kx PX ,X1 −ax PG ,X1 +XQKx ,ax (X1 −UI )−UGQKg ,ax (X1 −UI ) (F.11)

ṖUG ,X1 = ag PUG ,1,X1 −ag PUG ,X1 −ax PUG ,X1 +Qag ,ax (X1 −UI )(UG −UG ,1) (F.12)

ṖUG ,1,X1 =−ag PUG ,1,X1 −ax PUG ,1,X1 −Qag ,ax (X1 −UI )(UC HO −UG ,1) (F.13)

ṖX ,X1 = ax PX1,X1 −2ax PX , X1 +Qax ,ax (X −X1)(X1 −UI ) (F.14)

ṖX1,X1 =Qax ,ax (X1 −UI )2 −2ax PX1,X1 (F.15)
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Zone-MPC : Clinical Inspired Control Algorithm for the Artificial Pancreas. In 18th IFAC

World Congr., pages 5–10, Milano, 2011.

L Heinemann. Variability of insulin absorption and insulin action. Diabetes Technol. Ther., 4

(5):673–682, 2002.

L Heinemann and J H Devries. Evidence for continuous glucose monitoring: sufficient for

reimbursement? Diabet. Med., October 2013. ISSN 1464-5491. doi: 10.1111/dme.12341.

URL http://www.ncbi.nlm.nih.gov/pubmed/24152416.

O K Hejlesen, S Andreassen, R Hovorka, and D A Cavan. DIAS - the diabetes advisory system:

an outline of the system and the evaluation results obtained so far. Comput. Methods

Programs Biomed., 54(1-2):49–58, September 1997. ISSN 0169-2607.

166

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=382885&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=382885&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2909531&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2909531&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/24152416


Bibliography

M Hernández-Ordoñez and D U Campos-Delgado. An extension to the compartmental

model of type 1 diabetic patients to reproduce exercise periods with glycogen depletion and

replenishment. J Biomech, 41(4):744–752, 2008.

N Hernjak and F J Doyle III. Glucose control design using nonlinearity assessment techniques.

AIChE J., 51(2):544–554, February 2005. ISSN 0001-1541. doi: 10.1002/aic.10326.

R Hovorka, F Shojaee-Moradie, P V Carroll, L J Chassin, I J Gowrie, N C Jackson, R S Tudor,

A M Umpleby, and R H Jones. Partitioning glucose distribution/transport, disposal, and

endogenous production during IVGTT. Am. J. Physiol. Endocrinol. Metab., 282(5):E992–1007,

2002. ISSN 0193-1849. doi: 10.1152/ajpendo.00304.2001.

R Hovorka, V Canonico, L J Chassin, U Haueter, M Massi-Benedetti, M O Federici, T R Pieber,

H C Schaller, L Schaupp, T Vering, and M E Wilinska. Nonlinear model predictive control of

glucose concentration in subjects with type 1 diabetes. Physiol. Meas., 25(4):905–920, 2004.

ISSN 0967-3334. doi: 10.1088/0967-3334/25/4/010.

H-P Huang, S-w Liu, I-L Chien, and C-H Lin. A Dynamic Model with Structured Recurrent

Neural Network to Predict Glucose-Insulin Regulation of Type 1 Diabetes Mellitus. In Dyn.

Control Process Syst., number Dycops, pages 228–233, Leuven, 2010.

C S Hughes, S D Patek, M Breton, and B P Kovatchev. Anticipating the next meal using

meal behavioral profiles: A hybrid model-based stochastic predictive control algorithm for

T1DM. Comput. Methods Programs Biomed., pages 1–11, June 2010. ISSN 1872-7565. doi:

10.1016/j.cmpb.2010.04.011.

Internation Diabetes Foundation. IDF Diabetes Atlas, 5th edn. Technical report, International

Diabetes Federation, Brussels, Belgium, 2011. URL http://www.idf.org/diabetesatlas.

E P Joslin. The treatment of diabetes mellitus. Can. Med. Assoc. J., pages 808–811, 1924.

S S Kanderian, S A Weinzimer, G Voskanyan, and G M Steil. Identification of Intraday Metabolic

Profiles during Closed-Loop Glucose Control in Individuals with Type 1 Diabetes. J. Diabetes

Sci. Technol., 3(5):1047–1057, January 2009. ISSN 1932-2968.

Jonas Kildegaard, Jette Randlø v, Jens Ulrik Poulsen, and Ole K Hejlesen. The impact of non-

model-related variability on blood glucose prediction. Diabetes Technol. Ther., 9(4):363–71,

August 2007. ISSN 1520-9156. doi: 10.1089/dia.2006.0039.

J Kim, G Saidel, and M Cabrera. Multi-Scale Computational Model of Fuel Homeostasis During

Exercise: Effect of Hormonal Control. Ann Biomed Eng, 35(1):69–90, January 2007.

Harald Kirchsteiger, Giovanna Castillo Estrada, Stephan Pölzer, Eric Renard, and Luigi del Re.

Estimating Interval Process Models for Type 1 Diabetes for Robust Control Design. In 18th

IFAC World Congr., pages 11761–6, Milano, Italy, 2011a.

167

http://www.idf.org/diabetesatlas


Bibliography

Harald Kirchsteiger, Stephan Pölzer, Rolf Johansson, Eric Renard, and Luigi del Re. Direct

continuous time system identification of MISO transfer function models applied to type 1

diabetes. IEEE Conf. Decis. Control Eur. Control Conf., (1):5176–5181, December 2011b. doi:

10.1109/CDC.2011.6161344. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6161344.

S Klim. Predictive tools for designing new insulins and treatment regimens. PhD thesis, DTU,

2009.

Edward J Knobbe and Bruce Buckingham. The Extended Kalman Filter for Continuous Glucose

Monitoring. Diabetes Technol. Ther., 7(1):15–28, 2005.

B P Kovatchev, M Straume, D J Cox, and L S Farhy. Risk analysis of blood glucose data: A

quantitative approach to optimizing the control of insulin dependent diabetes. J. Theor.

Med., 3(1):1–10, 2000. ISSN 1027-3662.

B P Kovatchev, M Breton, C Dalla Man, and C Cobelli. In Silico Preclinical Trials: A Proof of

Concept in Closed-Loop Control of Type 1 Diabetes. J. Diabetes Sci. Technol., 3(1), November

2009. ISSN 1573-4978.

B P Kovatchev, E Renard, C Cobelli, Howard C Zisser, Patrick Keith-Hynes, Stacey M Anderson,

Sue A Brown, Daniel R Chernavvsky, Marc D Breton, Anne Farret, Marie-Josée Pelletier,

Jérôme Place, Daniela Bruttomesso, Simone Del Favero, Roberto Visentin, Alessio Filippi,

Rachele Scotton, Angelo Avogaro, and Francis J Doyle III. Feasibility of Outpatient Fully

Integrated Closed-Loop Control First studies of wearable artificial pancreas. Diabetes Care,

36:1851–8, 2013. doi: 10.2337/dc12-1965. URL http://care.diabetesjournals.org/content/

36/7/1851.short.

Kavita Kumareswaran, Hood Thabit, Lalantha Leelarathna, Karen Caldwell, Daniela Elleri,

Janet M Allen, Marianna Nodale, Malgorzata E Wilinska, Mark L Evans, and Roman Hovorka.

Feasibility of closed-loop insulin delivery in type 2 diabetes: a randomised controlled study.

Diabetes Care, 2013. doi: 10.2337/dc13-1030.

Matthew Kuure-Kinsey, Cesar C Palerm, and B Wayne Bequette. A dual-rate Kalman filter for

continuous glucose monitoring. In 28th IEEE EMBS Annu. Int. Conf., volume 1, pages 63–6,

New York City, January 2006. ISBN 1424400333. doi: 10.1109/IEMBS.2006.260057.

Joon Bok Lee, Eyal Dassau, Dale E Seborg, and F J Doyle III. Model-Based Personalization

Scheme of an Artificial Pancreas for Type 1 Diabetes Applications. In 2013 Am. Control Conf.,

pages 2917–2922, Washington, DC, USA, 2013. ISBN 9781479901760.

E D Lehmann and T Deutsch. A Physiological Model of Glucose-Insulin Interaction. In Physiol.

Model., volume 13, pages 2274–75, 1991.

Fabian León-Vargas, Fabricio Garelli, Hernán De Battista, and Josep Vehí. Postprandial blood

glucose control using a hybrid adaptive PD controller with insulin-on-board limitation.

168

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6161344
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6161344
http://care.diabetesjournals.org/content/36/7/1851.short
http://care.diabetesjournals.org/content/36/7/1851.short


Bibliography

Biomed. Signal Process. Control, 8(6):724–732, November 2013. ISSN 17468094. doi: 10.1016/

j.bspc.2013.06.008. URL http://linkinghub.elsevier.com/retrieve/pii/S1746809413000931.

A Liebl, R Hoogma, E Renard, P H L M Geelhoed-Duijvestijn, E Klein, J Diglas, L Kessler, V Melki,

P Diem, J-M Brun, P Schaepelynck-Bélicar, and T Frei. A reduction in severe hypoglycaemia

in type 1 diabetes in a randomized crossover study of continuous intraperitoneal compared

with subcutaneous insulin infusion. Diabetes. Obes. Metab., 11(11):1001–8, November 2009.

ISSN 1463-1326. doi: 10.1111/j.1463-1326.2009.01059.x. URL http://www.ncbi.nlm.nih.

gov/pubmed/19740082.

Roland Longchamp. Commande Numérique de Systèmes Dynamiques. Lausanne, Switzerland,

ppur edition, 2010. ISBN 978-2-88074-880-7.

Yoeri M Luijf, J Hans DeVries, Koos Zwinderman, Lalantha Leelarathna, Marianna Nodale,

Karen Caldwell, Kavita Kumareswaran, Daniela Elleri, Janet M Allen, Malgorzata E Wilinska,

Mark L Evans, Roman Hovorka, Werner Doll, Martin Ellmerer, Julia K Mader, Eric Renard,

Jerome Place, Anne Farret, Claudio Cobelli, Simone Del Favero, Chiara Dalla Man, Angelo

Avogaro, Daniela Bruttomesso, Alessio Filippi, Rachele Scotton, Lalo Magni, Giordano

Lanzola, Federico Di Palma, Paola Soru, Chiara Toffanin, Giuseppe De Nicolao, Sabine

Arnolds, Carsten Benesch, Lutz Heinemann, and on behalf of the AP@home Consortium.

Day and Night Closed-Loop Control in Adults With Type 1 Diabetes Mellitus: A comparison

of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus

patient self-management . Diabetes Care, October 2013. doi: 10.2337/dc12-1956. URL

http://care.diabetesjournals.org/content/early/2013/10/22/dc12-1956.abstract.

Katrin Lunze, Tarunraj Singh, Marian Walter, Mathias D. Brendel, and Steffen Leonhardt. Blood

glucose control algorithms for type 1 diabetic patients: A methodological review. Biomed.

Signal Process. Control, pages 1–13, October 2012. ISSN 17468094. doi: 10.1016/j.bspc.2012.

09.003.

L Magni, D M Raimondo, L Bossi, C Dalla Man, G De Nicolao, B P Kovatchev, and C Cobelli.

Model predictive control of type 1 diabetes: an in silico trial. J. Diabetes Sci. Technol., 1(6):

804–812, November 2007. ISSN 1932-2968.

L Magni, D M Raimondo, C Dalla Man, M Breton, S Patek, G De Nicolao, C Cobelli, and B P

Kovatchev. Evaluating the efficacy of closed-loop glucose regulation via control-variability

grid analysis. J. Diabetes Sci. Technol., 2(4):630–5, July 2008. ISSN 1932-2968.
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the effects of subcutaneous insulin administration and carbohydrate consumption on blood

glucose. J. Diabetes Sci. Technol., 4(5):1214–28, January 2010. ISSN 1932-2968.

G Pillonetto, G Sparacino, and C Cobelli. Numerical non-identifiability regions of the minimal

model of glucose kinetics: superiority of Bayesian estimation. Math. Biosci., 184(1):53–67,

July 2003. ISSN 00255564. doi: 10.1016/S0025-5564(03)00044-0.

Thierry Prud’homme, Alain Bock, Gregory Francois, and Denis Gillet. Preclinically assessed

optimal control of postprandial glucose excursions for type 1 patients with diabetes. In 2011

IEEE Int. Conf. Autom. Sci. Eng., pages 702–707. IEEE, August 2011. ISBN 978-1-4577-1730-7.

doi: 10.1109/CASE.2011.6042510.

Itamar Raz, Ram Weiss, Yevgeny Yegorchikov, Gabriel Bitton, Ron Nagar, and Benny Pesach.

Effect of a local heating device on insulin and glucose pharmacokinetic profiles in an

171

http://www.ncbi.nlm.nih.gov/pubmed/22875230
http://www.ncbi.nlm.nih.gov/pubmed/22875230
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2516944&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2516944&tool=pmcentrez&rendertype=abstract


Bibliography

open-label, randomized, two-period, one-way crossover study in patients with type 1

diabetes using continuous subcutaneous insulin infusion. Clin. Ther., 31(5):980–7, May

2009. ISSN 0149-2918. doi: 10.1016/j.clinthera.2009.05.010. URL http://www.ncbi.nlm.nih.

gov/pubmed/19539098.

Eric Renard, Claudio Cobelli, and Boris P. Kovatchev. Closed loop developments to im-

prove glucose control at home. Diabetes Res. Clin. Pract., September 2013. ISSN

01688227. doi: 10.1016/j.diabres.2013.09.009. URL http://linkinghub.elsevier.com/retrieve/

pii/S0168822713003240.

A Roy. Dynamic Modeling of Free Fatty Acid, Glucose, and Insulin during Rest and Exercise in

Insulin Dependent Diabetes Mellitus Patients. PhD thesis, University of Pittsburgh, 2008.

A Roy and R S Parker. Dynamic Modeling of Exercise Effects on Plasma Glucose and Insulin

Levels. J Diabetes Sci Technol, 1(3):338–347, 2007.

A Rutscher, E Salzsieder, and U Fischer. KADIS: Model-aided education in type I diabetes.

Comput. Methods Programs Biomed., 41(3-4):205–215, 1994.

Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, vol-

ume 54. Wiley-Interscience, 2006. ISBN 0471708585.

J T Sorensen. A physiologic model of glucose metabolism in man and its use to design and assess

improved insulin therapies for diabetes. PhD thesis, Massachusetts Institute of Technology,

1985.

P Soru, G De Nicolao, C Toffanin, C Dalla Man, C Cobelli, and L Magni. MPC based Artificial

Pancreas: Strategies for individualization and meal compensation. Annu. Rev. Control, April

2012. ISSN 13675788. doi: 10.1016/j.arcontrol.2012.03.009.

F Stå hl and R Johansson. Observer Based Plasma Glucose Prediction in Type I Diabetes. In

IEEE Multi-Conference Syst. Control, volume 4, pages 1620–1625, 2010.

Andreas Svensson. Model Predictive Control with Invariant Sets in Artificial Pancreas for Type 1

Diabetes Mellitus. Master, Linköping, 2013. URL http://liu.diva-portal.org/smash/get/diva2:

632180/FULLTEXT01.pdf.

The Diabetes Control and Complications Trial Research Group. The effect of intensive treat-

ment of diabetes on the development and progression of long-term complications in insulin-

dependent diabetes mellitus. New Engl J Med, 329(14):977–86, September 1993. ISSN

0028-4793. doi: 10.1056/NEJM199309303291401.

The Doyle Group and the Sansum Diabetes Research Institute. Successful Trial of In-

haled Insulin a Major Advancement in Treatment of Type 1 Diabetes, 2013. URL http:

//engineering.ucsb.edu/news/730.

B B Tiger. How to kiss a Stuffelkätzchen. Ingl. Bast., 14th of October 2012

172

http://www.ncbi.nlm.nih.gov/pubmed/19539098
http://www.ncbi.nlm.nih.gov/pubmed/19539098
http://linkinghub.elsevier.com/retrieve/pii/S0168822713003240
http://linkinghub.elsevier.com/retrieve/pii/S0168822713003240
http://liu.diva-portal.org/smash/get/diva2:632180/FULLTEXT01.pdf
http://liu.diva-portal.org/smash/get/diva2:632180/FULLTEXT01.pdf
http://engineering.ucsb.edu/news/730
http://engineering.ucsb.edu/news/730


Bibliography

K Turksoy, E S Bayrak, L Quinn, E Littlejohn, and A Cinar. Multivariable Adaptive Closed-

Loop Control of an Artificial Pancreas Without Meal and Activity Announcement. Diabetes

Technol. Ther., 15(5), April 2013. ISSN 1557-8593. doi: 10.1089/dia.2012.0283. URL http:

//www.ncbi.nlm.nih.gov/pubmed/23544672.

R H Unger and S Grundy. Hyperglycemia as an inducer as well as a consequence of impaired

islet cell function and insulin resistance: implications for the management of diabetes.

Diabetologia, 28:119–121, 1985.

K van Heusden, E Dassau, H Zisser, D Seborg, and F Doyle. Control-relevant models for

glucose control using a priori patient characteristics. IEEE Trans. Biomed. Eng., 7:1839–1849,

November 2012. ISSN 1558-2531. doi: 10.1109/TBME.2011.2176939.

Paul Vereshchetin, Marc Breton, and Stephen D Patek. Mealtime Correction Insulin Advisor for

CGM-Informed Insulin Pen Therapy. In 2013 Am. Control Conf., number i, pages 2923–2928,

Washington, DC, USA, 2013. ISBN 9781479901760.

P Vicini and C Cobelli. The iterative two-stage population approach to IVGTT minimal

modeling: Improved precision with reduced sampling. Am J Physiol-Endoc M, 280(1 43-1):

E178–E186, 2001.

J Vora and T Heise. Variability of glucose-lowering effect as a limiting factor in optimizing

basal insulin therapy. A review. Diabetes. Obes. Metab., March 2013. ISSN 1463-1326. doi:

10.1111/dom.12087.

Youqing Wang, Matthew W Percival, Eyal Dassau, Howard C Zisser, Lois Jovanovic, and

Francis J Doyle. A novel adaptive basal therapy based on the value and rate of change

of blood glucose. J. Diabetes Sci. Technol., 3(5):1099–108, September 2009. ISSN 1932-

2968. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2769919&tool=

pmcentrez&rendertype=abstract.

Youqing Wang, Eyal Dassau, Howard Zisser, Lois Jovanovič, and Francis J Doyle. Automatic
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Glossary

Several acronyms are used during this thesis. For quick reference, they are listed here with a

link to their first mention and further explanations.

Acronyms

Abbreviation Explanation Details
AP Artificial Pancreas 1.1.2, 5.1
AR Autoregressive 2.2.3
ARIMA AutoRegressive Integrated Moving Average 2.2.3
ARMAX AutoRegressive–Moving-Average with eXogenous inputs 2.2.3
ARX AutoRegressive with eXogenous inputs 2.2.3
BB Basal/Bolus 5.3.4
BMM Bergman Minimal Model 2.1,2.3.1
BG Blood Glucose 1.1.1
BGRI Blood Glucose Risk Index 5.2.2, B.4
CF Correction Factor 2.3.2
CGM Continuous Glucose Monitoring 1.1.2
CHO Carbohydrates 1.1.2
CSII Continuous Subcutaneous Insulin Infusion 1.1.2
CV Coefficient of Variability 1.2.2
CVGA Control-Variability Grid Analysis B.8
EDS Error Dynamics Shaping 5.3.1, 5.3.4
EGA Error Grid Analysis B.3
EKF Extended Kalman Filter 1.3.3, 4.3.4
EMPC Extended Model Predictive Control 5.3.4
FDA Food and Drug Administration 1.2.1
GI Glycemic Index 1.2.2
HBGI High Blood Glucose Risk Index B.4
HR Heart Rate C.2.1
I2C Insulin-to-Carbohydrates ratio 2.3.2
IIAS Insulin Infusion Advisory System 5.3.4
IOB Insulin On Board 5.2.1, 5.2.2
IP Intraperitoneal 1.1.2
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Glossary

Abbreviation Explanation Details
IV Intravenous 1.1.2
KF Kalman Filter 4.1, 4.3.3
LBGI Low Blood Glucose Index B.4
MAD Mean Absolute Difference 2.4.4, B.1
MDI Multiple Daily Injections 1.1.2
MISO multiple inputs - single output 4.3.2
MM Minimal Model 2.3.1
MPC Model Predictive Control 2.2.3, 5.3.1
NN Neural Networks 2.2.3
ODE Ordinary Differential Equation 3.1
PID Proportional-Integral-Derivative 5.3.1
R2 coefficient of determination 2.4.4, B.2
RMSE Root Mean Square Error
SDE Stochastic Differential Equation 3.1
SMBG Self Monitoring of Blood Glucose 4.3.3, B.5
SC Subcutaneous 1.1.2
sTPC stochastic Therapy Parameter-based Controller 5.4.3
sTPM stochastic Therapy Parameter-based Model 3.3.2
T1DM Type 1 Diabetes Mellitus 1.1.1
T2DM Type 2 Diabetes Mellitus 1.1.1
TDI Total Daily Insulin 2.2.3
TPC Therapy Parameter-based Controller 5.3.2
TPF Therapy Parameter-based Filter 1.3.3, 4.3.5
TPM Therapy Parameter-based Model 2.3.1
TPM+ Extended Therapy Parameter-based Model 2.3.1
U insulin Unit 2.3.2
UVa University of Virginia A.1
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Glossary

Variables

Variable Units Explanation
A N/A state matrix
αd unit-less weight associated to day d
ae mi n−1 inverse of the exercise constant
ag mi n−1 inverse of the meal time constant
ax mi n−1 inverse of the insulin absorption/action time constant
B N/A input matrix
C N/A output matrix
C F mg ·dl−1 ·U−1 correction factor
D unit-less number of day
D(s) N/A TPM meal perturbation subsystem in Laplace domain
δ (discrete) unit-less Kronecker delta
δ (continuous) unit-less Dirac impulse
∆G mg ·dl−1 BG concentration error (Gm −Gt )
∆I mg ·dl−1 insulin induced drop in BG
∆M mg ·dl−1 CHO induced rise in BG
e mg ·dl−1 BG concentration error
fdet N/A deterministic model function / drift function
fsto N/A stochastic model function
g N/A diffusive function
G mg ·dl−1 BG concentration
Γ N/A discrete-time input matrix
Ĝ mg ·dl−1 estimated BG concentration
G mg ·dl−1 upper 95% confidence interval limit
G mg ·dl−1 lower 95% confidence interval limit
Ḡ mg ·dl−1 average BG
G0 mg ·dl−1 initial BG concentration
Ge,i mg ·dl−1 exact BG concentration at time ti

Gm mg ·dl−1 measured BG concentration
Gt mg ·dl−1 target BG concentration
GSP mg ·dl−1 BG concentration setpoint
Gss mg ·dl−1 steady-state BG concentration
GT P M+ mg ·dl−1 BG concentration modeled by the TPM+
h mi n prediction horizon
H(s) N/A system transfer function
HIOB N/A transfer function of IOB
hc mi n control and prediction horizon
I (s) N/A TPM glucose-insulin subsystem in Laplace domain
I N/A Fisher information matrix
IT P M+ N/A glucose-insulin subsystem for TPM+
I 2C U · g−1 insulin to CHO ratio
IOB U insulin on board
Ip U /l plasma insulin concentration
J N/A objective function
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Glossary

Variable Units Explanation
Jd mg 2 ·dl−2 objective function on day d
JsT P M unit-less risk-based cost function
K N/A Kalman filter gain
K (s) N/A controller transfer function
Kg mg ·dl−1 · g−1 meal sensitivity
Kp U ·mg−1 ·dl ·mi n−1 gain of proportional controller
Kx mg ·dl−1 ·U−1 insulin sensitivity/correction factor
Kx in MM U−1 insulin sensitivity
L N/A Luenberger observer gain matrix
m unit-less number of inputs
n unit-less number of states
n unit-less number of samples
N unit-less number of BG measurements
Nd unit-less number of BG measurements on day d
Nc unit-less number of samples within hc

ω0 r ad/s system cutoff frequency
ωc r ad/s cutoff frequency
ωs r ad/s sampling frequency
p unit-less number of parameters
P N/A state covariance matrix
p95% unit-less average expected probability of being in 95% confidence interval
p95%,i unit-less expected probability of being in 95% confidence interval for Gm,i

PT P M+ N/A meal perturbation sub-system for TPM+
PBG mg 2 ·dl−2 variance of BG state
PBG ,0 mg 2 ·dl−2 initial variance of the BG state
Φ N/A discrete-time state matrix
p2 mi n−1 inverse of the insulin action time constant in BMM
q unit-less quotient of time constants
Q N/A process noise covariance matrix
QBG mg 2 ·dl−2 variance of process noise on BG state
r % relative error of BG meter
R N/A measurement noise covariance matrix
S N/A setpoint adaptation
S N/A sensitivity of states
SBG N/A sensitivity of BG state
σBG mg ·dl−1 standard deviation of BG state
σCGM mg ·dl−1 standard deviation of CGM measurement
Se mi n−1 exercise-induced increase in SG

SG mi n−1 glucose effectiveness at zero insulin
Si ns+G mi n−1 combination of insulin and SG effect
σ2

G ,0 mg 2 ·dl−2 variance of G0

σi mg ·dl−1 standard deviation of measurement error of i th data point
σBG mg ·dl−1 standard deviation of BG state
σSMBG mg ·dl−1 standard deviation of SMBG measurement
S I U−1 ·mi n−1 · l insulin sensitivity in BMM
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Glossary

Variable Units Explanation
ST P M+ N/A setpoint adaptation for the TPM+
t mi n time
θ N/A vector of model parameters
te mi n end time
t f mi n final time
tI time time of insulin bolus
tM time time of meal intake
TM mi n meal intake duration
tmi nBG mi n time at which minimum BG is reached
tmaxBG mi n time at which maximum BG is reached
τ mi n proportional controller time constant
τC L mi n closed loop system time constant
τg mi n meal time constant
τx mi n insulin action time constant
Ts mi n sampling time
ts mi n start time
u N/A input vector
U0 U ·mi n−1 feed-forward insulin injection
UC HO g ·mi n−1 carbohydrate intake rate
UC HO,tot g total amount of ingested CHO
Ue unit-less exercise input
Uendo mg ·dl−1 ·mi n−1 endogenous glucose production
UG g ·mi n−1 gut glucose absorption
UG ,1 g ·mi n−1 intermediate gut glucose absorption
UI U ·mi n−1 subcutaneous insulin infusion rate
UI ,tot U total amount of infused insulin
UI ,cor r U corrective insulin infusion
UI ,meal U meal rejection insulin infusion
v N/A measurement noise
w N/A process noise
Wi unit-less weight associated to BG measurement i
x N/A state vector
x̂ N/A estimated state vector
X U ·mi n−1 insulin action
X̂ U ·mi n−1 estimated insulin action
X in BMM mi n−1 insulin action
xBG mg ·dl−1 BG state
xBG mg ·dl−1 lower bound of the estimated confidence interval
xBG mg ·dl−1 upper bound of the estimated confidence interval
x̂BG mg ·dl−1 estimated BG state
X0 U ·mi n−1 initial insulin action
X1 U ·mi n−1 intermediate insulin action
X1,0 U ·mi n−1 initial intermediate insulin action
X̂1 U ·mi n−1 estimated intermediate insulin action
y N/A output vector
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