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Abstract
Photonic crystal nanocavities are promising and versatile systems, with applications in

telecommunications, quantum computing, cavity quantum electrodynamics, and optical

biosensing. However, the realization of these cavities tailored to specific experimental re-

quirements continues to be a formidable challenge. In this thesis, the physics and radiation

loss mechanisms in slab photonic crystal cavities are explored theoretically through Bloch

mode expansion and finite element methods. The fundamental limitations behind the re-

alization of high quality factors in the presence of disorder are identified and a novel fast

evolutionary method of cavity design is explored for tailoring photonic crystal cavities. Such

tailored cavities were designed and optically characterized for achieving unique experimental

conditions. In the first case, a specifically designed hollow circular cavity with high qual-

ity factor (2000) in water is used for demonstrating µW power on-chip optical trapping of

nanometre sized dielectric particles for tens of minutes. The strength of the perturbation

due to a single particle is of the order of a few line widths of the cavity mode that results in

interesting back-action effects, which are theoretically and experimentally confirmed in this

thesis. This new phenomenon paves the way for several interesting experiments concern-

ing the dynamics of the trap, single particle cooling and non-conservative force fields. This

successful resonant trapping mechanism is also extended to a lab-on-a-chip type integrated

optical device for single particle detection, manipulation, and analysis. In the second case

of tailoring the cavities, new designs are proposed for obtaining very high quality factors in

extremely small modal volumes. These designs possess significantly high experimental quality

factors (418,000) and also display nonlinear operations such as optical bistability at extremely

low (µW) input powers. In addition to these experiments, the thesis also reports the design

and characterization of photonic crystal devices on a gallium nitride substrate. The spectral

advantages offered by gallium nitride allow for placing the operating wavelength of cavities

anywhere from visible (400 nm) to near infrared (1600 nm), which can be utilized to perform

various light-matter interaction experiments. In this context, cavities with quality factors more

than 5000 were shown for both visible and near infrared wavelengths. The dispersion and

propagation characteristics of ridge waveguides and photonic crystal waveguides in gallium

nitride are also studied and shown in detail.
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Résumé
Les nanocavités à cristaux photoniques sont des structures prometteuses et polyvalentes

pouvant avoir des applications pour les télécommunications, le calcul quantique, l’électro-

dynamique quantique en cavité et la biodétection optique. Cependant, la mise en oeuvre

de ces cavités, adaptées à un besoin expérimental spécifique, constitue un défi formidable.

Dans cette thèse, la physique et les mécanismes de pertes par radiation au sein des cavités à

cristaux photonique planaires sont explorés à l’aide de développement en mode de Bloch et de

méthodes numérique par éléments finis. Les limites fondamentales derrière la réalisation de

cavités à fort facteur de qualité en présence de désordre sont identifiées. De telles cavités ont

été développées et caractérisées optiquement pour atteindre des conditions expérimentales

uniques. Dans le premier cas, une cavité circulaire spécialement ajustée avec un fort facteur de

qualité lorsque il est immergé dans l’eau (2000) est utilisée pour démontrer le piégeage optique

de nanoparticules diélectriques sur puce à des puissances de l’ordre du µW. L’amplitude de

la perturbation due à une particule unique est de l’ordre de quelques largeurs de raie du

mode de cavité. Cette perturbation donne lieu à d’intéressants effets de rétroaction, qui sont

confirmés de manière théorique et expérimentale dans cette thèse. Ce nouveau phénomène

permet d’entrevoir une série d’expériences novatrices concernant la dynamique du piège, le

refroidissement de particule unique et les champs de force non-conservatives. Ce mécanisme

de piégeage résonant est aussi appliqué sous la forme d’un dispositif optique de type “Lab-on-

Chip” pour la détection, manipulation et l’analyse de particules uniques. Dans le deuxieme

cas de développement de cavités, de nouveaux structures sont proposées pour obtenir de très

forts facteurs de qualités, combinés à de très petits volumes de mode. Ces cavités possèdent

des facteurs de qualités expérimentaux très élevés (418,000) et permettent la mise en évidence

d’effets non-linéaires, tels que la bistabilité optique, à des puissances extrêmement faibles

(µW). En plus de ces expériences, cette thèse discute les conception et la caractérisation de

structures à cristaux photoniques en nitrure de gallium. Les avantages offerts par le nitrure

de gallium dans le domain spectral permettent de choisir la longueur d’onde d’opération des

cavités indifféremment entre le proche ultra violet (400 nm) et le proche infrarouge (1600 nm).

Cette propriété peut-être particulièrement utile pour la réalisation de diverses expériences

relevant de l’interaction matière-rayonnement. Dans ce contexte, des cavités possédant les

facteurs de qualité supérieurs à 5000 ont été obtenues aussi bien dans le domaine visible que

dans le domaine infrarouge. Les propriétés de dispersion et de propagation de guides d’ondes

de type ruban ainsi que de guides d’ondes à cristaux photoniques ont aussi été étudiées en

détails.
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Introduction

The tailoring of electromagnetic radiation within a sub-wavelength periodic structure has

ushered a wide spectrum of investigations over the past two and half decades. These investiga-

tions primarily began with the understanding of physics behind the formation of bandgaps for

various lattice parameters and dielectric materials during the late eighties and early nineties.

The photonic bandgap effect has been understood by drawing heavy parallelisms with the

electronic bandgap properties from solid state physics. In a similar fashion to electronics,

impurity states (perturbation in the periodic lattice) leading to light localization was revealed

in the early nineties leading to the development of extremely small optical microcavities using

the photonic bandgap effect. Following this, various investigations have been performed to

localize light in one, two and three dimensional photonic crystal structures.

Meanwhile, the compatibility with standard microelectronics fabrication technologies lead

to the rise of a special type of photonic crystal fabricated on a silicon-on-insulator wafer.

These devices were termed “slab photonic crystals” as they were made on a planar slab with a

two dimensional photonic crystal pattern inscribed on them although they were truncated

to a finite thickness in the vertical direction. Within these slab photonic crystal devices, a

waveguiding mechanism was also demonstrated with the formation of a line defect in a perfect

crystal lattice. This waveguide mode had the ability to confine light using both the index guided

mechanism and the photonic bandgap effect exhibiting very interesting dispersion properties

near the band edge, which is popularly known as “slow light” owing to the reduction in the

group velocity of the propagating mode.

The slab photonic crystal devices offer a number of exciting features such as: extremely high

spatial and temporal confinement of light and extremely small modal volumes apart from

their direct compatibility with standard microelectronics fabrication processes. The design of

cavities with high quality factors has been pursued through various semi-analytical methods

and through parametric optimization of the position or radii of holes in the photonic crystal

lattice. These high quality factor cavities and waveguides have been thoroughly investigated

and characterized during the past decade, which has unravelled their properties such as slow

light, energy transport, self-collimation effects, Anderson localization and enhanced nonlinear

light-matter interactions. These devices have also been used as a platform to investigate a

plethora of novel physical phenomena spanning the domains of quantum information, cavity

quantum electrodynamics, photonic integrated circuits and optical sensors.
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This thesis aims to further the above-mentioned understanding of slab photonic crystal

devices in order to extend their applicabilities to specific light-matter interaction experiments.

In this context, elaborate numerical modelling of photonic crystal cavities is performed with a

combination of finite element methods, plane wave, guided mode and Bloch mode expansion

methods. These methods are crucial for calculating quality factors, effects of infiltration of

liquids or single particles, mode overlap ratios, band edge states, electric field distributions

and waveguide dispersions. These calculations were important to the design of photonic

crystal devices tailored to specific experimental requirements.

In the first experiment, optical trapping of sub-µm sized dielectric particles is addressed.

Single particle optical trapping originated in the 1970s using strong gradient forces at the waist

of a laser beam. The challenges imposed by diffraction limit and the prohibitive input powers

required to trap smaller particles has propelled researchers towards several integrated on-chip

optical tweezer systems. In this thesis, for maximizing the interaction of a 500 nm sized

particle with the trapping field, a 700 nm sized hollow circular cavity is chosen and is used to

demonstrate resonant optical trapping successfully. Finite element methods are extensively

used in order to assist the design of the cavities and for analyzing the particle perturbation

and back-action effects. As predicted by calculations, the strong perturbation due to a single

particle in the cavity is measured along with particle-cavity back-action phenomena that

eventually leads to the existence of two distinct trapping regimes based on input wavelength.

Exclusivity and wavelength selective trapping are also demonstrated subsequently.

In the second experiment, a fast evolutionary method in conjunction with mode expansion

methods is used to address the problem of global optimization of cavity quality factors. This

thesis proposes a new ultrahigh quality factor (1.95 million) H0 nanocavity design that has an

extremely small modal volume (0.34 (λn )3). These cavities are experimentally characterized

resulting in loaded quality factors of up to 418,000. In addition to this, nonlinear optical effects

leading to optical bistability are observed for µW input optical powers.

The above-described experiments use a silicon-on-insulator platform for fabricating the struc-

tures. It is well-known that the spectral absorption of silicon acts as a hurdle in achieving

cavities at visible wavelengths. Moreover, the two photon absorption at near-infrared wave-

lengths acts detrimentally when high optical power applications are envisaged. In order to

address both these issues, gallium nitride is chosen as an alternate platform on which photonic

crystal cavities and waveguides are fabricated using a unique approach. Experiments confirm-

ing quality factors of up to 5000 are reported for both visible and near infrared wavelengths. In

addition to cavities, fully suspended ridge waveguides and photonic crystal waveguides were

used in the near infrared wavelengths on gallium nitride and first measurements of loss and

dispersion are reported.
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The text is organized in five self-consistent chapters in the following manner.

Chapter 1 introduces the basic concepts related to this thesis in a brief manner. Photonic

bandgap effects, cavity defect mode formation and waveguide defects are explained and

illustrated. It also mentions the important historical developments in the progress of 2D

photonic crystals. Finally, a few specific light-matter interaction experiments involving 2D

photonic crystal cavities are surveyed in the broader context of this thesis.

Chapter 2 constitutes the numerical analysis work related to this thesis. The different numer-

ical methods that were utilized during the progress of the work are clearly explained from

their basic principles. The application of these methods is then shown with results including

cavity designs, quality factors, dispersion diagrams and mode volume calculations that were

collected during the course of the thesis. A conclusive numerical study on the influence of

disorder in high-Q factor photonic crystal cavities is also elaborated.

Chapter 3 explains the first light-matter interaction experiment conducted in this thesis. It

assembles all the results regarding the resonant optical trapping phenomena performed with

specifically designed hollow circular photonic crystal cavities. The calculations and design of

the cavities is explained and the experimental results pertaining to trapping, particle cavity

perturbation are detailed. The physics of back-action and the existence of unique trapping

regimes is revealed. The integrated nature of the traps is used to demonstrate wavelength

selective on-chip traps.

Chapter 4 reports the second light-matter interaction experiment from this thesis. It proposes

a novel ultrasmall H0 nanocavity design that comes from a global evolutionary optimization

technique. The design and optical characterization of these cavities is reported in detail

including the coupling mechanisms. The application of the cavity to ultralow power nonlinear

optical effects is also presented.

Chapter 5 extends the photonic crystal effects through the scaling of Maxwell’s equations to a

second semiconductor platform using Gallium Nitride as a substrate. The novel fabrication

procedure for making this device is elaborated and the detailed numerical and experimental

results pertaining to both the visible and near-infrared gallium nitride photonic crystal devices

are presented.

The conclusions and future outlook obtained from the course of this work are summarized at

the end of this thesis. The projects in this thesis are supported by the Swiss National Science

Foundation (SNSF) and the National Center for Competence in Research - Quantum Photonics

framework.
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1 Photonic crystals and light-matter
interactions

This chapter serves as the introductory chapter to this thesis and will attempt to introduce all

the necessary concepts in a concise fashion. Section 1 introduces the concept of photonic

crystals and briefly surveys its historical development. Section 2 follows up with the mathe-

matical treatment of light propagation in these devices. Section 3 elaborates on the physics

behind the formation of optical cavities and waveguide modes in photonic crystals. Section 4

talks about the notion of a quality factor and its relevance in photonic crystal cavities. Section

5 is dedicated to showcase the broad range of light-matter interaction experiments performed

with the aid of photonic crystal devices.
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Chapter 1. Photonic crystals and light-matter interactions

1.1 Photonic crystals: Historical progress

The path of scientific and technological progress from time immemorial has based itself

mostly on the understanding and manipulation of matter enveloping us. This manipulation

was reserved to macroscopic objects such as wood, steel and iron for centuries until the

advancements of twentieth century opened the doors towards microscopic manipulation of

condensed matter. The electrical and electronic properties of solid-state matter have given

rise to a variety of new materials such as superconductors, semiconductors and ceramics.

The conduction of electrons within any solid material is possible owing to the existence of a

specific property that does not scatter the flow of electrons. This property can be understood

by deriving the band structure of a material medium, which is formed due to the overlap of

all discretized energy levels of individual atomic orbitals. The energy bands also have gaps

between them leading to forbidden energy levels for the passage of the electrons. These

bandgaps can cover all the directions of the crystal lattice if this potential is sufficiently

strong. In a similar manner to electrons, an omnidirectional bandgap for light propagation

would require a periodic dielectric potential in order to fully suppress the propagation of light

through the medium. This requires a detailed understanding of the physics of electromagnetic

radiation. The propagation of electromagnetic radiation has been analyzed ever since the days

of the advent of Maxwell’s equations in 1861. These equations have given a profound insight

into the mechanism of the nature of light and electromagnetic wave propagation. Similar

to the control of electrons in semiconductor circuits, the controlled manipulation of light in

small dimensions has been a long pursuit but has remained elusive due to the complex nature

of optical confinement in microscopic dimensions. The first attempts of such confinement

go back to 1887 when Lord Rayleigh discovered the effect of light propagation through a

one-dimensional periodic structure giving rise to stop bands for specific frequencies. However,

these one dimensional structures had neither an omnidirectional bandgap nor a very large

refractive index contrast.

Incidentally, 100 years after Lord Rayleigh’s discovery, two theoretical papers [1, 2] appeared

in the Physical Review Letters in 1987 referring to the creation of the photonic bandgap as is

known currently. John explained this effect from the point of view of localizing photons inside

an index modulated lattice while Yablonovitch proposed a scheme to use the electromagnetic

bandgap to inhibit spontaneous emission inside a lattice (Figure 1.1). The term photonic

crystals was originally coined by Yablonovitch in his article in 1989 [3] where he refers to this

structured dielectric medium as a photonic crystal. The article read “Furthermore, this has

enabled us to use sophisticated microwave homodyne detection techniques to measure the

phase and amplitude of the electromagnetic Bloch wave functions propagating through the

photonic crystal [3]”. This term since then broadly refers to the area of 2D or 3D periodic

structures that have a very large refractive index contrast (> 2), which is considerably different

from the well-established field of one dimensional layered structures of the past 125 years.

The two above-mentioned works kick-started a flurry of attempts for demonstrating the

effect experimentally at microwave wavelengths using face-centred-cubic crystals [3]. In
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1.1. Photonic crystals: Historical progress

Figure 1.1: The first predictions of a photonic bandgap effect from 1987. a) John showing a peudogap
of strongly localized photons in a lattice with permitivity modulation [1]. b) Yablonovitch proposing
a scheme to have an electromagnetic bandgap to have inhibited spontaneous emission [2].

the very same period during the early nineties, there was an inconsistency in the theoretical

understanding of the bandgap in the face-centred-cubic structures leading to contradicting

claims of presence or absence of this effect [4–8]. However, this issue was put to rest with

detailed analysis and further numerical calculations that followed. The first experimental

measurement of photonic bandgaps arrived in the early 1990s with the demonstration of

bandgaps at microwave frequencies for 2D photonic crystal structures [9–11]. For instance,

in the experiment of [11], 0.74 mm diameter and 100 mm long alumina ceramic rods were

arranged in a square lattice with a lattice constant of 1.87 mm. The measurements for both

TE and TM polarizations were performed confirming the presence of a bandgap predicted by

plane wave expansion calculations. In addition to these initial structures, newer designs based

on a woodpile photonic crystal were proposed and demonstrated successfully for infrared

wavelengths [12]. The extension of the effect to smaller wavelengths, though exciting, was

rather prevented by the absence of relevant fabrication techniques. This lead to the interest

in the self-assembled opal structures fabricated from colloidal solutions [13–17]. The first

fabrication and measurement of 2D photonic crystals operating at near-infrared wavelengths

was reported by Krauss and co-workers [18, 19] and by Lin and co-workers for the case of 3D

photonic crystals [12]. The bandgap effect was also implemented in optical fibres leading to

a new type of fibres called photonic crystal fibres (PCF) [20]. The effect of impurity states in

a perfectly periodic lattice also leads to interesting properties in the bandgap similar to the

case of electronic states, which opened up the possibility of optical cavities that confine light

in the photonic crystal [21]. All the above-mentioned woodpile, photonic crystal fibre and

opal structures, in-spite of possessing interesting characteristics were quite challenging to

implement in integrated applications. In view of this issue, the concept of planar 2D photonic

crystals was introduced [22, 23]. These devices are referred to as 2D photonic crystals because

they have the photonic crystal effect acting in two dimensions and total internal reflection

acting along the vertical direction. This slab photonic crystal structure is the main focus of

this thesis and all the following chapters concentrate on furthering the understanding of these

devices. The historical developments concerning the development of 2D planar photonic

crystals will be introduced contextually in the later sections of this chapter.
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Chapter 1. Photonic crystals and light-matter interactions

1.2 Mathematical treatment of light propagation in PhCs

The properties of light inside a photonic crystal can be understood with the help of solutions

to the Maxwell’s equations in a periodic medium that is given by the Bloch’s theorem. In the

case of a medium with no charges and currents, the Maxwell’s equations describing light

propagation are given by

∇.D = 0 (1.1)

∇.B = 0 (1.2)

∇×E = −∂B

∂t
(1.3)

∇×H = ∂D

∂t
(1.4)

where E and H are the electric and magnetic fields in the medium, D and B are displacement

and magnetic induction fields respectively. If the field strengths are small enough and if the

dielectric function is scalar, the linear isotropic formulation can be used. Ignoring frequency

dependence of the dielectric function, we can write the following constitutive relations:

D(r) = ε0ε(r)E(r) (1.5)

B(r) = µ0µ(r)H(r) (1.6)

n(r) = √
ε(r)µ(r) (1.7)

where n is the refractive index, ε0 is the free space permittivity, µ0 is the free space magnetic

permeability, µ(r) and ε(r) are the magnetic permeability distribution and electric permittivity

distribution in the medium respectively. Taking into account all the above equations and by

assuming harmonic propagation (frequency ω and wavevector k) and transverse electromag-

netic waves (∇·H(r) = 0), the last two of the Maxwell’s equations can be decoupled to obtain

the well-known linear eigenvalue Helmholtz equation that is given by

[
∇× 1

ε(r)
∇×

]
H(r) = ω2

c2
H(r) (1.8)

The knowledge of the magnetic field can then be used to derive the electric field components

at any eigenfrequency ω0 as

E(r) = i

ω0ε0ε(r)
∇×H(r) (1.9)

Equation 1.8 has to be solved for finding the modes H(r) and their corresponding frequencies

for a given permittivity distribution ε(r). The left hand side is a differential operator acting on

a function, whose eigenvalues are proportional to the square of their mode frequencies. Since

the operator is linear, the superposition of modes is also part of the solution set.
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1.2. Mathematical treatment of light propagation in PhCs

In order to visualize the solution space for any propagation medium, such as a simple dielectric

waveguide, the dispersion diagram is often used as shown in figure 1.2b. This diagram plots

the eigenmodes that are obtained for various frequencies with respect to the wavevector (k||)
along the propagation direction. The slab structure for the reasons of symmetry can have both

Transverse Electric (TE) and Transverse Magnetic (TM) modes. TE modes are those that have

in-plane electric field plane components and a vertical magnetic field component.

Figure 1.2: Illustration of the dispersion diagram for a simple planar waveguide. a) The optical
waveguide with the refractive indices for the core (n1) and cladding (n0). b) The dispersion diagram
with the in-plane wave vector and frequency (ω) showing the different orders of modes and electric
field mode profiles (vertical cross section) and the radiating continuum outside the cladding light
line.

Figure 1.2b shows the first, second and third order TE modes that can propagate inside the slab

structure. Other higher order modes are also possible and are not shown here. It can also be

seen that at each frequency, there can be more than one possible spatial mode present in the

structure depending on the frequency. The specific mode cut-off frequencies are determined

by the thickness of the slab structure. The shaded area in blue corresponds to the modes

that are present in the light cone that represent the continuum of radiating modes. The line

separating these modes from the discrete guided modes is referred to as the light line.

In order to extend the understanding of this simple dispersion diagram to a periodic structure,

symmetry and periodicity arguments have to be invoked. A simple case of dielectric mod-

ulation is illustrated in figure 1.3. In the first case, where there is no dielectric modulation,

the dispersion is linear for such a homogenous medium and the artificial periodicity induced

by a period "a" folds the modes at every periodic boundary. This also means that the line

from the negative side of the wavevector axis gets folded from 2π
a . The negative axis physically

means that there is a forward and backward propagating solution for the same k value. This

backward line crosses the forward line at π
a as shown in figure1.3a that corresponds to the

positive half of the Brillouin zone. There is no bandgap possible in this type of structure, when

there is no perturbation. However, if the dielectric guide is modulated with a perturbation in

refractive index, the situation at the Brillouin zone edge at k = π
a starts to change. It can be
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Chapter 1. Photonic crystals and light-matter interactions

seen in figure1.3b that there exists a set of frequencies for which no real solutions can exist for

all k, meaning that there are no allowed propagating states in the system. All these solutions

are imaginary and hence purely evanescent. It can be imagined as if the reflections occurring

from each of the interfaces of the modulated media lead to a constructive interference and

results in a complete reflection of the input light.

The variational theorem and the principle of orthogonality need to be applied to further

understand the spatial profiles of the modes. In order to not violate the symmetry of the

system, only two standing waves are possible at the crossing point (k = π
a ). These modes can

be localized only either in the high or low dielectric medium. As the variational principle

tries to minimize the energy, it localizes the low frequency modes in high dielectric regions

and vice versa. This results in two different frequencies for these modes resulting in the

formation of a bandgap as shown in figure 1.3b. The next higher eigenvalue corresponds to

the higher harmonic mode that can satisfy the variational principle but also simultaneously

satisfy orthogonality with the previous mode and so on.

Figure 1.3: Illustration of bandgap effect in a 1D photonic crystal. a) In the absence of perturbation,
the modes can be artificially folded at the π

a point but with no bandgap. b) In the presence of
a periodic perturbation in index, a splitting of the modes occur that results in the opening of a
bandgap.

In the case of a periodic perturbation like inside a photonic crystal medium, the field H(r) can

be expanded by the well-known Bloch’s formalism. This gives us

H(r, t) = ei(kr−ωt)Hk(r) (1.10)

This translates to the fact that the wave vector is periodic in the direction of the periodicity

such that k = k+ 2π
a . The periodicity allows the bands to be folded by a period equivalent to

2π
a , where a is the periodicity of the perturbation in dielectric distribution. In this context, the
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1.2. Mathematical treatment of light propagation in PhCs

two modes that were degenerate in figure 1.3a at the crossing are going to be split when there

is the introduction of periodicity. The lower state is going to be localized in the high refractive

index dielectric while the higher state will be localized in the low refractive index dielectric.

This periodicity can also be extended to multiple dimensions and the Bloch theorem applies

in the same manner. This means that only the computations pertaining to the primitive

cell that repeats itself needs to be performed in order to obtain the complete band diagram.

The region in the dispersion diagram that is between k =−π
a and k = π

a in the case of a one

dimensional periodicity represents the first Brillouin zone. In the presence of additional

symmetries in the crystal, more redundant regions can be identified leaving the so called

irreducible Brillouin zone. The exact solutions for this problem can only be computed through

numerical techniques and are presented in chapter 2 in detail.

In a surprising similarity with solid state physics, the behaviour of electrons in a semiconductor

crystal is governed by a similar eigenvalue equation that is obtained from the Schrödinger

equation[−ħ2

2m
∇2 +V (r)

]
φ(r) = Eφ(r) (1.11)

where ħ is the reduced Planck’s constant, m is the mass of the electron, V(r) is the crystal field,

φ(r ) denotes the wave function of the electron and E gives the total energy. In this case the

solutions to φ(r ) are in the form of Bloch waves. These waves have an amplitude modulated

function given by the same periodicity as the lattice under study. Equations 1.8 and 1.11 are in

similar form and are looking for solutions representing the distribution of a function in space.

The solutions exist in a periodically modulated material function (crystal field in the electronic

case and dielectric permittivity in the photonic case). The operators preceding the left hand

side of the equations are normally called the Maxwell operator and Hamiltonian operator

respectively. The Hermitian nature of these operators results in real eigenvalues which are the

electron energy and the square of the mode frequency respectively. The understanding of the

physics of solid-state electronics has highly favoured the development of photonic bandgap

physics as the formation of bandgaps, doping of defect states in bandgaps and the behaviour

of reciprocal spaces give rise to a variety of analogies between the two systems.

In the case of quantum mechanics, the lowest eigenstates are found in the low potential

region while in photonic crystals, the lowest modes will have their electric fields concentrated

in the region of high dielectric constant. One of the primary differences between the two

systems is the fact that the Maxwell’s equations allow for the scaling of the dimensions of

the lattice parameters and the corresponding eigenfrequencies are scaled accordingly, which

is not the case with the Schrödinger equation. This feature allows for the translation of the

bandgap effects in a variety of materials and to a range of frequencies that can prove useful

to a number of exciting experiments. For example, the fabrication of near-infrared photonic

crystals would require sub micrometer features but a microwave photonic crystal would only

need a millimetre size feature to observe similar effects.
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Chapter 1. Photonic crystals and light-matter interactions

1.3 Defects in 2D photonic crystals: Cavities and waveguides

Cavities

As explained in the previous section, a periodic dielectric modulation results in a bandgap

for one or both polarizations of the electric field. 2D photonic crystals are very interesting

because of the established fabrication techniques for the case of planar waveguide structures.

In this context, in order to obtain a complete bandgap for both TE and TM polarizations, a

triangular lattice photonic crystal is used as illustrated in figure 1.4a. In this thesis, all the

reported devices follow this configuration, i.e, a triangular lattice of air holes embedded on a

freestanding dielectric membrane. The associated bandgap is also shown in the figure showing

Figure 1.4: Photonic bandgap for a triangular lattice and formation of a cavity mode. a) A bulk
photonic crystal with the air and dielectric bands enclosing the bandgap. b) The creation of a small
defect by reducing the hole radius that results in a discrete state formation in the bandgap.

the lower dielectric band and the higher air band at low and high frequencies respectively. The

creation of a defect such as removing a single hole creates a perturbation in the bulk periodicity

resulting in a localized eigenmode in this spatial region. This leads to the presence of one

or more discrete states in the bandgap of the bulk dispersion. This can also be intuitively

understood by imagining the holes around the defect creating a reflecting mirror for the

confined mode. This “point-like” defect can be created by two ways. One example is illustrated

in figure 1.4b. The first possibility is through removal of a hole from a perfect triangular lattice

in a slab as shown in figure 1.4b. This results in an increase in the presence of dielectric

media, i.e., a positive value for ∆ε. Perturbation theory shows that for such a positive value,

the corresponding frequency shift is negative and a discrete mode can fall into the bandgap

from the bottom of the upper air band. The second possibility is through an increase in

the size of a single hole in the periodic lattice. This results in a decrease in the presence of

dielectric content leading to a negative value of for ∆ε. Perturbation theory shows that for

such a negative value, the corresponding frequency shift is positive and a discrete mode arises

out of the top of the lower dielectric band. The creation of a defect in the lattice breaks the

translational symmetry of the crystal but also has its local symmetries. The strength of light

localization often depends on the size of the bandgap and where the mode is localized. An
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1.3. Defects in 2D photonic crystals: Cavities and waveguides

intuitive understanding of localization was presented by Stanley and co-workers [24] where

a one dimensional Bragg reflector made of alternating layers of GaAs and AlAs was used. In

the case of insertion of a λ
2 impurity layer, a transmission peak is found in the exact center

of the band gap with the highest finesse. Further increase in the layer thickness results in

the moving of this peak towards either of the bands with lower finesse. It was also shown

that this mid-gap impurity could have the lowest gain threshold for a laser resonator. The

larger the defect, the more the higher order modes are pulled into the band gap leading to

multiple mode cavities. The different type of cavity modes are also visualized in the following

figure 1.5. A slow increase in the defect hole radius can lead to the formation of different

mode profiles namely, the monopole, dipole, quadrupole and hexapole cavities [23, 24]. The

Figure 1.5: Different types of cavity modes in a 2D photonic crystal with square lattice of dielectric
pillars in air. The increase in the defect radius brings the higher order modes into the bandgap
leading to the creation of dipole, quadrupole and hexapole modes respectively. Reprinted from [25].

complete understanding of the spatial mode formation in photonic crystals involves group

theory and symmetry and can be referred here [26–28]. In the case of higher order modes such

as hexapole modes, there is the formation of degenerate pairs and non-degenerate modes.

When two modes are degenerate, they have exactly the same frequency. However, this is not

possible to find in the experiment owing to the fact that there is a splitting of these states

due to disorder in fabrication. It is also not possible with plane wave expansions (as will be

explained in chapter 2) to obtain the degenerate modes with exactly the same frequency as

the number of plane waves used for computation limits this. In the case of a triangular lattice,

point like defect cavities have a C6v symmetry, denoting rotational invariance by 60 degrees

from the center of the cavity. According to group theory, doubly degenerate modes must be

present in such a symmetric system [26]. In simpler words, the degeneracy of modes and

the rotational properties are very closely related. If the modes are monopole or hexapole,

then their shapes with respect to the centre are invariant under rotational operations and

hence they are non-degenerate [28]. This will be explained in the case of a hexapolar circular

cavity in chapter 3. Meanwhile, the dipole and quadrupole like eigenstates end up having

doubly degenerate modes. In this case, a given state can be rotated by an angle and added

with a second rotated state in order to obtain a pair of degenerate states whose combination

preserves the C6v symmetry. If a cavity defect has multiple modes, they can then be grouped

into nondegenerate monopole or hexapole and doubly degenerate dipole or quadrupole

modes respectively.
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Chapter 1. Photonic crystals and light-matter interactions

Waveguides

Guiding of optical radiation is possible with planar integrated waveguides that work on the

basis of total internal reflection. In order to create a waveguide mode in a PhC, a row of

holes can be removed creating a line defect. This results in the creation of a mode that is

guided through this spatial region from one end of the photonic crystal to the other end akin

to an optical waveguide but confined by the photonic crystal lattice [29, 30]. This discrete

guided band falls inside the band gap and is popularly known as a photonic crystal waveguide.

Depending on the number of rows that are removed, it can be labelled as a W1, W2 or Wn

waveguide. These multiple rows removal might result in the appearance of more than one

guided mode resulting in a multimodal PhC waveguide. The biggest difference between

the point defect and the line defect is the behaviour with respect to wave vector k. This is

made possible by preserving the translational symmetry in the propagation direction. This

mechanism can be interesting for various applications, for example, to be able to couple light

into a photonic crystal cavity leading to completely integrated photonic crystal devices as will

be shown in the later chapters of this thesis. It can also be imagined that in the case of pillar

type photonic crystals, this mode can be localized in air and hence can be very useful for light-

matter interaction applications with its enhanced overlap and for making sharp bends with

low losses [31, 32]. The various possible waveguide modes present in a photonic crystal slabs

Figure 1.6: Slab photonic crystal linear defect band diagrams. a) Band diagram of slab photonic
crystal showing light cone and discrete states that are fully delocalized in the slab. b) Band diagram
of line defect in the slab photonic crystal giving rise to slab bands and discrete guided modes lying in
the band gap. Their mechanism depends on whether dielectric is added or removed from the system.
Reprinted from [33].

were studied and reported in detail by Johnson and co-workers [33]. It is easily understood

that conventional waveguides in integrated optics use total internal reflection for confinement.

Their thickness can be optimized to make them single mode as multiple modes can lead

to lossy propagation. The light that is guided in such a waveguide is limited by radiation

losses. One possible way to have a waveguide with no radiation losses would be to use a three

dimensional photonic crystal effect and confine light in all directions, which is challenging to

fabricate eventhough some have been studied [34–36]. The truncation of the waveguide in

the vertical direction brings up an interesting concept called the “light cone” or “light line” as
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1.3. Defects in 2D photonic crystals: Cavities and waveguides

shown in figure 1.6a. This region constitutes the continuum of radiation modes that pervade

the structure. The allowed modes in the slab are the discrete modes that are below the light

cone. These modes are fully contained by the slab due to its higher effective index than the

surrounding air and decay exponentially far away from the slab. The bandgap in this slab

band diagram (figure 1.6a) is not a true band gap as there are still radiation modes present in

those frequencies. It is exactly this reason as to why cavity modes that were introduced before

decay because they are coupled to these radiation modes. The horizontal axis of these band

diagrams represent the wavevector along the symmetry points Γ, M and K in the irreducible

Brillouin zone and the vertical axis correspond to reduced frequency scaled by the lattice

parameter. It is important to remember that increasing the thickness of the slab gives rise to

the presence of higher order modes that could prevent the bandgap from occurring completely

for one or both polarizations. In the case of having a substrate below the slab, the bandgap

Figure 1.7: Waveguide modes within a line defect photonic crystal. 3D calculations of the corre-
sponding W1 waveguide dispersion relation. The shaded region in blue corresponds to the near-
infrared wavelength range. The laterally even and odd modes can be seen. Lower inset: band
structure of the corresponding bulk structure (shaded region in yellow shows the bandgap of a
perfect bulk photonic crystal slab). Upper inset: overhead view of the computational super-cell that
constitutes the W1 waveguide. Reprinted from [37].

properties might not be altered as long as a sufficient buffer region is created [38]. It must be

noted that asymmetry can completely alter the bandgap properties as will be explained in the

section on disorder in chapter 2. The difference between figure 1.6a and figures 1.6b is that

the creation of the linear defect changes the slab band diagram resulting in slab bands, which

is a projection of the bands of the unperturbed slab on that of the Brillouin zone of the linear

defect. The guided modes can only exist in the bandgap and they can be truly guided. They

can be of two types just like in the case of cavities, by adding or removing dielectric material.

In the case of a standard W1 waveguide with one row of holes removed, the spatially even-like

mode falls into the bandgap from the air band as shown in the computed W1 band diagram in

figure 1.7 [37].
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Chapter 1. Photonic crystals and light-matter interactions

1.4 The notion of Q-factor in photonic crystal cavities

The quality factor Q is a dimensionless number that is used to denote the losses present in

any resonant cavity. The term was widely used in the context of electronic tank circuits and

microwave resonances and later has also migrated into optical cavities. This quantity will

be repeatedly used in the rest of this thesis for differentiating light confinement in various

cavities.

In the formal definition, it denotes the ratio of energy stored in the system to the energy lost

per cycle in the system at the resonance frequency ω0

Q = ω0Estor ed

Pdi ssi pated
(1.12)

The physical interpretation is that the cavity can sustain “Q” number of oscillations before

decaying by a factor of 1/e. If a finite amount of energy is input into the system, the total

energy decay can be monitored in time and the number of oscillations for this decay can be

ascertained. This is also one of the preferred methods used in certain numerical methods

such as FDTD as will be explained in chapter 2. The Fourier transform of such a time decaying

field resembles a Lorentzian function whose shape is given by

F (ω) = 1

(ω−ω0)2 + ( ω0
2Q )2

(1.13)

This means that in the case of the light radiated from a cavity, the full width at half maximum

of the cavity-radiated spectrum can be used to directly estimate the Q. It has to be noted that

several factors can affect the Q-factor of a slab photonic crystal cavity through the different

possible loss mechanisms. This can be defined in a simplistic sense as:

1

Q
= 1

Qi ntr i nsi c
+ 1

Qdi sor der
+ 1

Qcoupli ng
(1.14)

where Qi ntr i nsi c denotes the radiative and absorptive losses associated to the cavity and

material system and Qdi sor der denotes the increase in the losses due to the presence of

structural disorder that will be explained further in chapter 2. Qcoupli ng on the other hand

depends on how light can be non-invasively input into the cavity mode. A waveguide, for

instance, can be used to couple the light into the microcavity through evanescent coupling

and this coupling strength can also influence the measured Q-factors. This issue will be treated

in detail in chapter 4.

The ability to obtain tuneable and robust high Q-factor cavities has been of tremendous

importance for various experiments involving photonic crystals. A very high-Q cavity ensures

a long photon life time in wavelength-scale spatial dimensions that opens up exciting frontiers

for light-matter interaction experiments as will be overviewed in the following section.
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1.5. Light-matter interaction experiments with 2D photonic crystals

1.5 Light-matter interaction experiments with 2D photonic crystals

Planar photonic crystal devices have been used in a plethora of experiments in the past two

decades since their inception. This spans from enhancing light extraction in LEDs [39–42],

increasing efficiency in solar cells [43–47] to performing optomechanics experiments with

photonic crystal cavities [48, 49]. However, in the context of the contributions in this thesis, a

subset of relevant experimental domains are reviewed in detail in the following subsections.

1.5.1 Chemical and biological sensing

CMOS integration has paved way to a number of devices that can be potentially made into

"Lab-on-a-chip" style systems that can offer both compactness and elevated performance

in sensitivity to analyte detection [50]. The principle revolves around integrating a number

of sensor elements in the same platform in a cost-effective manner that can then be used to

multiplex a variety of sensing operations. The basic biosensor device for biological applica-

tions uses biochemistry and physics in order to identify the specimen under study while in

chemical detection; a specific physical property can be tracked. There are numerous trans-

duction mechanisms such as piezoelectric, electrochemical, mass sensitive and optical. In

most optical sensors, the detection mechanism is based on a refractive index shift and this has

been exploited in a number of methods as reviewed in [51]. In an initial work by Chow and

Figure 1.8: Photonic crystals for biological and chemical sensing. Transmission measurements
indicating the resonance shift of the cavity mode a) PhC cavity used for detecting difference in
refractive index of optical fluid [52]. b) Slotted photonic crystal cavity used for detecting chemical
concentration. The variation with respect to slot sizes 171 nm (1), 166 nm (2) and 152 nm (3) is
shown [53]. c) PhC cavity transmission showing red shift after oxidation and silanization (1), after
glutaraldehyde attachment (2) and infiltration of bovine serum albumin (BSA) molecules (3) [54].

co-workers as shown in figure 1.8a [52], a microcavity was formed by reducing the diameter

of a hole and this cavity mode was used to detect the changes in the refractive index due to
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Chapter 1. Photonic crystals and light-matter interactions

an optical silicone fluid up to an index difference of 0.002. This value has been considerably

increased by adapting structures that can have a larger overlap with the medium as demon-

strated by Di Falco and co-workers by employing a slotted photonic crystal cavity shown in

figure 1.8b [53]. There was also a report of extending the sensing experiments to the scale of

detecting single proteins within a photonic crystal microcavity by Lee and co-workers [54].

The sensitivity of such a refractive index based optical sensor is quantified by the number S

S = ∆λ

∆n
= Γ λ0

ne f f
(1.15)

where ne f f is the effective index of the cavity mode, λ0 is the resonance wavelength, Γ is the

overlap of the mode with the medium, ∆λ is the shift of the resonance wavelength and ∆n is

the associated change in refractive index. PhC cavities due to their increased confinement

of radiation interact with the analyte and the change in the mode property can be tracked

leading to a very sensitive measurement system. Various implementations of optical sensors

based on photonic crystals can be found here [55]. As many other physical parameters

Figure 1.9: Error-free optical sensing in photonic crystal cavities. a) FDTD calculations showing
the transmission spectrum and cavity field profile. b) SEM image of fabricated device with the
three cavities placed one after another. c) The spectrum before and after immunoglobulin binding.
Reprinted from [56].

such as temperature and pressure can also simultaneously act on the refractive index of the

medium [57], it is important to decouple these influences with the help of a reference system

to eliminate erroneous measurements. One way of doing this is to have multiple cavities

on the same device, which was explored by Pal and coworkers for detecting the binding

of human immunoglobulin [56] as shown in figure 1.9. In most cases, the signal to noise

ratio determines the detection limit achievable by the system and this problem has to be

addressed by a careful design of the measurement apparatus [58]. The advantages offered by

the photonic crystals include high sensitivity and small footprint and this is being combined

with the emergence of novel microfluidic systems that can bring very small concentrations of

analyte to the measurement area [59, 60].
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1.5.2 Nonlinear optical effects

Historically, experiments concerning nonlinear optics had to wait until the invention of

the ruby laser in 1960 by Maiman and co-workers [61]. The initial work in experimental

nonlinear optics started with the demonstration of second-harmonic generation by Franken

and co-workers in 1961 [62]. In this work, with an intense excitation at a wavelength of 694.3

nm, second harmonic generation at 347.2 nm in crystalline quartz was demonstrated. The

conversion efficiency was rather low in this work but this was increased over the following

years with the aid of higher intensity lasers and appropriate phase matching techniques. This

was also followed by the reporting of third harmonic generation in calcite by Terhune and

co-workers in 1962 [63]. These experiments were quite important at that time as they were

able to generate a coherent light output with a coherent light input. The demonstration of

stimulated raman scattering also came in 1962 through Woodbury and co-workers where they

used a ruby laser and nitrobenzene as the gain medium [64].

In an other seminal work in 1976, Gibbs and co-workers reported an interesting development

regarding optical bistability inside a sodium-filled Fabry-Perot interferometer [65]. The system

was constructed using a 11-cm long FP interferometer with Sodium vapour at 10−4 to 10−5

Torr pressure in the 2.5 cm region midway between the mirrors. The optical beam diameter

was about 1.65 mm and a maximum power of 13 mW. The mirror reflectivities were around 90

percent. In the presence of a nonlinear medium within the cavity, the round trip phase shift

φ= 4πnL
λ carried the refractive index term which had the contribution of the nonlinear index.

This resulted in a hysteresis plot with respect to input power. This behaviour was explained

using the fact that there was the effect of both nonlinear dispersion and nonlinear absorption

inside the medium. In this experiment, it was envisioned that optical memories, limiters and

amplifiers were possible in the future. This work also set the note for the plethora of research

work that followed for studying these effects in various integrated optical devices. An exhaus-

tive discussion of the experiments and analytical models used for studying optical bistability

can be referred from the comprehensive textbook on this topic by Gibbs [66]. The achievement

of nonlinearities were extended to smaller systems for lowering the threshold powers required

to achieve these effects. The first demonstration of such microoptical nonlinearities was

performed with liquid microdroplets. A droplet can be regarded as an optical microcavity in a

dielectric due to the whispering gallery mode that it exhibits. This was studied by Ching and

co-workers in 1987 [67]. Following this work, several groups attempted to recreate the nonlin-

ear effects inside these microdroplets and silica microspheres and succeeded [68, 69]. These

systems were very interesting, nevertheless, they were quite impractical as they could only be

used in research environments. Since the beginning of the 1990s, cavities that were of the size

of the order of one wavelength of light were starting to be fabricated. In a signifcant work by

Armani and co-workers [70], a process for producing silica toroid-shaped microresonators-on-

a-chip with Q-factors in excess of 100 million was reported. These devices with their extremely

high confinement of optical energy made possible the lowering of nonlinearity thresholds to

the tens of µW power range. Ring resonator devices have also been widely studied in order to

enhance the nonlinearities [71–74]. In the context of the previously mentioned arguments,
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a photonic crystal cavity is also expected to have a high density of optical energy stored in

very small volumes leading to enhancement of intensity dependent nonlinear effects. This

enhancement can be of several orders of magnitude larger than the classical devices. The

highly integrable nature of these devices along with the ease of coupling light into them makes

them a strong candidate for observing enhanced nonlinear optical phenomena.

The interest in the photonic crystal community was spurred with several theoretical studies

and predictions since the 2000s, particularly from the group of Joannopoulos [75–83]. Fol-

lowing these predictions, a seminal work by Barclay and co-workers [84] showed the various

nonlinearities present in a 2D PhC device in silicon. Further investigations were also reported

Figure 1.10: Green light emission illustrated in a slow light photonic crystal waveguide showing a
pulse at frequencyω getting spatially compressed when it enters the waveguide and a third harmonic
signal is extracted out of the device at a specific angle. The right side photographs show the emission
visible to the naked eye during the experiment. Reprinted from [85].

concerning nonlinear and adiabatic control of cavities [86], optical bistability and all-optical

switching [87–94], all-optical modulation [95] and third harmonic generation [96]. In the

case of silicon, the picture is quite complex due to several processes. When two photons are

absorbed at infrared wavelengths, they enable an electron to leave the valence band to reach

the conduction band. This electron-hole pair that has been created by Two Photon Absorption

(TPA) is later absorbed leading to Free Carrier Absorption (FCA) and subsequently results in

a change in the refractive index of the system. Meanwhile, the optical Kerr effect has a third

order dependence with respect to incident intensity that also creates a change in the refractive

index of the system. It has been found that the sign of the change in refractive index is nega-

tive for free carrier related dispersion and positive for thermal and optical Kerr effect related

dispersion [84]. The creation of phonons due to both TPA and FCA eventually leads to thermal

expansion and a thermal refractive index change. These counter occurring phenomena also

lead to several interesting features at high powers including pulsating behaviors [97]. Some of

these effects can be utilized to achieve novel and compact nonlinear optical systems while

some of the effects detrimental to the smooth operation of the device.
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1.5.3 Quantum electrodynamics

The field of cavity quantum electro dynamics (cQED) broadly deals with the various possible

mechanisms to tailor the emission of a single atom or a quantum dot ever since the days of

Purcell, who proposed that the environment of an emitter can change the emission rate [98]. It

deals with the interaction of quantized matter with a quantized electromagnetic field (photon)

in a cavity. As has been explained before, photonic crystal devices can offer such a precise

environment with strong confinement of light(Q) over small modal volumes(V) both in cavities

and waveguides. Many such devices have been proposed and demonstrated as promising test

beds for performing cQED experiments since the year 2001 [27, 99–101]. Two main aspects

before proceeding towards the experiments are to make sure that quality factor is very high

and also that the quantum dot is placed in a region where there is a maximum field overlap.

Apart from using cavities, in a recent work by Lund and co-workers [102], quantum dots have

been coupled in a broadband of frequencies by utilizing the modes in the slow light window of

a photonic crystal waveguide near the band edge where they observed enhancement. The

basic idea of cQED is to be able to couple an atom to a confined optical field as shown in the

schematic in figure 1.11. The strength of this coupling can be quantified by a parameter g(r)

Figure 1.11: A basic schematic describing cavity quantum electrodynamics showing the atom decay
rate (γ), cavity loss rate (κ) and coupling parameter g.

which is given by [27] as

g (r ) = g0
ε(r )|E |

max(ε(r )|E |′) (1.16)

g0 = γ

√
V0

Vmode
(1.17)

where g0 is the vacuum Rabi frequency, Vmode is the modal volume and γ is the decay rate

for the excited state of the atoms. The basic ingredients required for an efficient quantum

electrodynamics experiment is the maximization of the coupling parameter g(r). In an ideal

case, this is possible by designing a cavity with a very high Q factor and a very small modal

volume as will be demonstrated in this thesis in chapter 4. When such a cavity is coupled with

a quantum dot system, the photon from the cavity mode will form a quasiparticle known as a

polariton when it is bound by the electron-hole pair in the quantum dot system. The strength

of the coupling determines two possible regimes:
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• Weak coupling: This is the case when the interaction of the emitter is incoherent and is

dominated by the damping states of the system. Spontaneous emission rates of single

quantum dots embedded in a photonic crystal cavity can be modified significantly

depending on if they are near cavity resonance or not [103]. Single-photon sources are

be envisaged in this regime.

• Strong coupling: This is a coherent interaction of the emitter with the cavity field

where the cavity and the quantum dot system cannot be treated separately as it is a

superposition state where the energy is being exchanged between the two at the rate of

the coupling parameter. The stronger the coupling, the higher the rate of this energy

exchange. Single photon nonlinearities and quantum information processing can be

envisaged in this regime [104].

In addition to the coupling strength, accurate lithographic alignment steps are necessary in

order to align the quantum dot with the microcavity field maximum which could drastically

alter this coupling strength. Moreover, the tuning of the nanocavity resonance with respect to

the quantum dot can also maximize the coupling acquired. For example, in this work [101],

a precise technique was implemented that could position a quantum dot accurately on the

field maximum and spectral tuning of the cavity mode with the emission line was reported

successfully. The controlled tuning was performed by enlarging the holes and by thinning

the PhC membrane. While the advantages of quantum dot-cavity coupling in the weakly

Figure 1.12: Photonic crystals and quantum dot coupling. a) Scanning electron micrograph image
of the S1 defect cavity with a small dot indicating the top quantum dot of the stack. Electric
field distribution is shown next to the image showing the maximum overlap with the QD. Shift of
resonance wavelength of the mode with the number of etch cycles. Reprinted from [101].

coupled regime brings in the possibility of single photon sources [103], the advantages of

strongly coupled systems would allow the placement of a large number of such systems in a

mm2 area opening the door towards quantum information networks. In the same system, the

interconnections between these individual elements can also be facilitated by appropriately

designed photonic crystal waveguides [99].
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1.5.4 Photonic integrated circuits

Electronic integrated circuits pervade many aspects of human life today from communications

to computation and the fundamental reason for this success lies in the ability to package

millions of smaller building blocks (transistors) inside a single IC (Integrated Circuit). For

example, the Xeon microprocessor from Intel released in 2012 has approximately 5 billion

transistors within a single IC package. The surge in microprocessor speeds combined with the

internet and mobile phone network usage has pushed the classical electronic communication

links to their limits. In order to cope with this “bandwidth crunch”, photonic-electronic

integration is seen as a best possible solution for the near future. Following the footsteps

of the microelectronics predecessor, microphotonic chips intend to pack multiple photonic

components within a single “Photonic Integrated Circuit (PIC)” [105] especially for their

use in WDM (Wavelength Division Multiplexing) systems as shown in figure 1.13a. These

photonic components include a number of functionalities such as lasers, waveguides, couplers,

cavities, photodetectors and modulators and are expected to serve Tb/s communication

links in the near future [106]. Amongst the different material technologies, InP has been

Figure 1.13: Photonic integrated circuits. a) Schematic showing various components of a silicon
PIC including a demultiplexer, high speed silicon Mach Zehnder modulators and a multiplexer.
Reprinted from [107]. b) 100 Gbps transmitter receiver chips forming a DWDM system commercial-
ized by Infinera corporation. Reprinted from [108].

widely used to make these devices while recently silicon is being considered a preferred

material given the higher refractive index contrast and superior processing technologies that

are adopted from the CMOS industry [105, 109, 110]. As a highlight in the development of PICs

for communication, Infinera corporation had introduced the first “DWDM system on chip”

with a capacity of 100 Gb/s with InP technology in 2004 [108] as shown in figure 1.13b. In

the development of PICs for communication systems, photonic crystals have been explored

extensively for new designs of lasers [111, 112] and high speed modulators [113–115]. Apart

from this, there has also been considerable interest in pursuing miniaturization of components

required for processors such as on-chip optical memories and chip-chip optical switches

[116,117]. The energy cost for a single bit data transport is expected to be around fJ/bit in order

to achieve low power transport channels. In a recent work by Nozaki and coworkers [118], an

ultralow power all optical RAM was realized based on high-Q nanocavities in silicon with 2.5

fJ/bit in a very small area. A low switching energy, small device footprint and a fast switching
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time would be the preferred characteristics of such a system.

Figure 1.14: All optical random access memory with photonic crystal cavities. a) Comparison
of various optical switches including the photonic crystal result from Nozaki and coworkers. b)
Comparison of device footprint and switching energy showing the ultra low power switching energy
of a photonic crystal based switching device. c) The switching principle based on nonlinear shift in
the cavity system. d) Illustration of the H0 nanocavity and the electric field distribution. Reprinted
from [119].

A recent comparison of various integrated optical switching devices by Notomi and coworkers

[119] indicates that the large Q/V enhancement plays a crucial role in reducing the switching

energy to the femtojoule level as seen in figure 1.14. An H0 nanocavity as implemented in

this work [118] brings down the footprint by a large amount when compared to other ring

resonator based devices facilitating the addition of several devices in the same waveguide

chain. However, the problems in wafer-scale fabrication of these devices with a high yield

ratio is one of the major concerns limiting widespread implementations. It is expected that

in the light of novel standardized fabrication procedures for photonic crystals, a photonic

network-on-chip architecture can be envisaged that can be used to implement an all-optical

transport layer between microelectronic components.

In summary, it has clearly emerged from the sections outlined in this chapter that a simple

two-dimensional slab photonic crystal device can be put to a variety of experimental scenarios

for furthering the understanding of nanoscale phenomena. In most of the above-mentioned

cases, either the cavity parameters or the quality factor or the modal volume are primarily the

key factors for being able to conduct these experiments successfully. The rest of this thesis

will focus on optimizing these parameters for various cavities, exploring their fundamental

limitations and demonstrating novel light-matter interaction experiments.
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2 Numerical investigations of PhC cavi-
ties

This chapter details the various numerical methods used and explains the calculations per-

formed during the course of this thesis. Section 1 gives a historical overview of numerical

methods. Section 2 introduces the numerical methods used for investigating photonic crystals.

Section 3 details the mode expansion methods and finite element methods in length. Section

4 surveys the numerical results obtained during the course of thesis including dispersion

properties, cavity mode analysis and effects of structural disorder. Section 5 provides a brief

summary and outlook.

Contributions:

All the calculations shown in this chapter were performed using in-house developed mode

expansion tools [120, 121] and a commercially available finite element solver [122]. This

chapter also includes a work on disorder in photonic crystal cavities, which is a collaborative

effort with the group of Prof. Vincenzo Savona (LTPN). In this work, the results using the finite

elements were computed by myself while the results from the mode expansion tools were

computed by Momchil Minkov (LTPN).

Publication of results:

The calculations shown in this chapter are complementary to the experiments that are reported

in chapters 3, 4 and 5 of this thesis. These results are published alongside their respective

experimental results in [123–129]
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2.1 A historical walk

Any technique in mathematical physics obtains a prefix “numerical”, if it uses an approximate

solution to solve any given problem. The usage of such numerical estimations goes back to

the times of ancient civilizations when approximations were used to calculate the square roots

of numbers that were required for construction and carpentry. One such example was found

in an ancient Babylonian clay tablet as shown in figure 2.1. This tablet dates back to 1700 BC

and shows the impressive evaluation of the square root of 2 over a diagonal of a square on a

hexagesimal base and is interpreted as 1+ 24
60 + 51

602 + 10
603 ≈ 1.414.

Figure 2.1: An ancient numerical method from Babylon. The expansion of the diagonal is described
on the tablet with a sexagesimal basis using the inscriptions that has been decoded. Reprinted
from [130].

This approach was developed for solving numerous day-to-day problems over the following

centuries in both physics and astronomy. Newton introduced his famous “polynomial” fitting

in the 17th century followed by noteworthy contributions on iterative techniques by Gauss,

Legendre, Jacobi, Euler and others. In the beginning of the 20th century, two seminal papers

were published by Richardson [131] and Courant [132] explaining the usage of finite differences

for obtaining numerical solutions to partial differential equations. Courant also published

his work on variational techniques in 1943 [133] that set the basis for the field of the modern

version of finite element methods. In this work, he introduced the idea of minimizing a

functional using linear elements in the calculation domain leading to the notion of mesh

elements.

At this juncture, Von Neumann ushered a new wave of modern linear algebra with his influ-

ential paper on inverting matrices numerically in 1947 [134]. Since then, this field of applied

mathematics has benefitted largely from the development of powerful computing machines

starting from the 1940s followed by the invention of distributed computing algorithms over

the end of the last century. These are presently employed to solve several large-scale physical

problems involving massive systems of linear equations, optimization of functions with several

variables and for solving complex systems of partial differential equations.
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2.2 Numerical methods for photonic crystals

In most problems involving electromagnetism, the accurate solution to the problem lies in

rigorously solving the Maxwell’s equations, which are a pair of coupled differential equations

as introduced in chapter 1. Solving these equations with the appropriate boundary conditions

pertaining to a specific problem leads to a physical solution. Analytical formulation to this set

of equations can be only performed on very simple systems such as a simple planar interface.

For complex structures, such as a photonic crystal, it is highly cumbersome to obtain such

formulations and hence numerical techniques have to be relied upon. The calculation of

electromagnetic modes within a photonic crystal has always been a time demanding and a

computationally intensive task. In this regard, it is important to understand the structures

that we want to study in our experiments before fabricating them. This enables the tailoring

of the structure accordingly in order to maximize the favourable characteristics pertaining

to the experiment. Ideally, it would be beneficial to know the dispersion properties, spatial

distributions of field profiles, cavity mode overlap ratios, losses and Q-factor estimates of

cavity modes, nature of optical forces and absorption effects. As different numerical methods

have their own advantages and disadvantages, a suitable choice must be made so as to use

the appropriate method for specific properties. The variety of methods used to understand

photonic crystals have broadly fallen into the following categories even though several lesser

known methods can also be found in the literature [135–138] and in this review [139].

1. Expansion methods: The modes corresponding to the photonic crystal are decomposed

into a set of known basis functions. These basis functions can be based on either a set

of plane waves or guided waves of the slab or the Bloch modes of the periodic lattice.

These methods will be explained in detail in the later sections of this chapter.

2. Scattering matrix methods: A set of scattering elements are placed periodically inside

a layer that represents the modulation of dielectric permittivity. The propagation of light

through these layers can be then described by using the well-known scattering matrix

formalism [140].

3. Finite difference time domain: This is a time domain computation of the Maxwell’s

equations where the computational domain is first split into a number of smaller cells

[132, 141]. The derivates are represented by discrete difference formalisms and the

electric and magnetic field components are determined inside these cells by an updating

mechanism that uses the knowledge of the past fields in time. The computation then

evolves the fields over time leading to a solution until a convergence obtained.

4. Finite element methods: Any complex structure or problem is subdivided into smaller

and simpler elements called mesh elements. The method is based on the fact that an

approximate solution is assumed for the function to be solved. The parameters of this

approximate solution are then iteratively updated based on reducing the error in the

solution. This method is also detailed in the next section of this chapter.
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2.3 Numerical methods used in this thesis

The expansion methods (PWE, GME and BME) are used in this thesis primarily to understand

bulk dispersion diagrams and to locate defect mode profiles inside the bandgap. Three

dimensional finite element methods were used to understand the Q-factors of the cavities,

refractive index sensitivities and the behaviour of optical forces. The formulations of these

techniques are elaborated in detail below.

2.3.1 Mode expansion methods

Plane Wave Expansion (PWE)

The PWE method was proposed in the early 1990s [7, 8, 26] as a standard tool to study the

physics of photonic crystals. In the case of a monochromatic field with angular frequency ω,

the Maxwell’s equations can be decoupled and are written as:

1

ε(r)
∇× 1

µ(r)
∇×E(r) = ω2

c2
E(r) (2.1)

1

µ(r)
∇× 1

ε(r)
∇×H(r) = ω2

c2
H(r) (2.2)

In the case of a photonic crystal with a periodic lattice, the eigenstate (ψ) inside the structure

can be written using Bloch’s theorem as

ψ(k,r) = eikruk(r) (2.3)

where the uk(r) denotes a periodic function with similar periodicity as the lattice and k denotes

the Bloch vector. This periodic function can then be represented as a summation of plane

waves in the reciprocal lattice as

uk(r) =∑
m

um(k)eiGmr (2.4)

It is important to note that in the case of a completely 2D photonic crystal light propagation,

TE polarized light has only the in-plane electric field components and vice versa for the

TM polarized light. Nevertheless, this is not true for slab 2D photonic crystals as there is a

truncation in the vertical direction and refractive index based confinement is required. The

presence of translational and vertical symmetry leads to the presence of even or odd modes

that can be regarded as TE like and TM like modes [38]. These modes can be expanded as [120]:

Ez(r) =∑
m

Amei(k+Gm)r (2.5)

Hz(r) =∑
m

Bmei(k+Gm)r (2.6)
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Moreover, from the same argument of periodicity and symmetry, the permittivity and perme-

ability distributions can also be approximated by the following expansions [120]:

1

ε(r)
=∑

m
θmeiGmr (2.7)

1

µ(r)
=∑

m
ηmeiGmr (2.8)

All the above expansions in equations 2.3 to 2.8 can be used to expand the operator 1
ε(r)∇×

1
µ(r)∇× and the electric field distributions appearing in equations 2.1 and 2.2. This leads to the

final formulation of the expansions based on plane waves for both TM and TE polarizations

as [120]:

∑
n

An · [(k+Gm) · (k+Gn)] ·θm−n = ω2

c2
Am (2.9)

∑
n

Bn · [(k+Gm) · (k+Gn)] ·θm−n = ω2

c2
Bm (2.10)

The above expressions constitute the form of a Hermitian eigenvalue problem. An operator

θ acting on two vector functions H1,H2 is termed as Hermitian if it satisfies the condition

〈H1,θH2〉 = 〈θH1,H2〉 where 〈,〉 denotes the inner product between the two functions. This

condition means it is independent of which function is operated upon before taking the

inner product. The general properties of such a Hermitian operator gives real and positive

eigenvalues and ensures orthogonality between modes that do not have the same frequency.

The number of plane waves used for computation determines the accuracy of the method

as the computational complexity increases. The maximum magnitude of the set of wave

vectors is referred to as Gmax and it can be gradually increased during the computation until

convergence is obtained. The number of plane waves used is generally proportional to G2
max .

It can be seen that the above-mentioned expansions take the form of a Fourier expansion

inevitably bringing up the issue of Gibbs phenomenon for discontinuous functions.

In the case of 2D photonic crystals, the dielectric permittivity distribution shows abrupt

transitions at the edge of the holes leading to a discontinuous function. These discontinuities

lead to the presence of the Gibbs phenomenon in the approximations that eventually degrades

the accuracy of the PWE based solutions. This problem has been resolved in this method by

using the technique of using an inversion rule method involving the Toeplitz matrix.

A second method to reduce this phenomenon is the use of a finite filter that can smoothen

out this phenomenon. The permittivity and permeability distributions have to be accurate

because they are also used to compute the displacement field (D) and magnetic induction

field (B) based on the constitutive relations.
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Guided Mode Expansion (GME)

As explained in the previous section, an ideal 2D PhC structure with holes embedded in a

dielectric medium would support the existence of either TE or TM polarizations. However,

the devices that have been studied in the course of this thesis are fabricated over a thin slab,

resulting in a truncation of symmetry in the vertical direction. This can be compounded with

the fact that there can be different materials above and beneath the dielectric layer, for example

a system with silica, silicon and air. In this sense, the light confinement is achieved in the

vertical direction with an index contrast based total internal reflection. The field distribution

of such guided modes inside a membrane of dielectric media is not similar to that of the plane

wave used in the previous expansion technique. In order to get a closer approximation to a

real structure, the guided modes of such a dielectric waveguide structure must be used in

the basis expansion instead of a set of plane waves. This was first explored and reported by

Andreani and Gerace in 2006 [142] where the Bloch modes of the PhC structure are expanded

over guided modes of the slab. The method in a nutshell is explained below.

In the case of a simple planar dielectric slab surrounded by a lower index medium, the one

dimensional Helmholtz equation can be represented as

∂2φ(z)

∂z2 + (ε(z)
ω2

c2
−k2

x )φ(z) = 0 (2.11)

where the allowed modes can be computed through implicit trigonometric equations showing

the dispersion relation between wave vector and frequency as explained in chapter 1 in

figure 1.2 where the light line, the guided modes and the radiative modes were indicated.

These are as a result of total internal reflection at the slab interface. The addition of photonic

crystal structure to such a slab brings in additional complexity of periodicity. This modifies the

dispersion diagram shown in figure 1.2. In a sense, every guided mode allowed in the slab gets

altered due to the periodic nature of this crystal resulting in an extremely complex landscape.

The guided mode expansion is a fast algorithm that can be used to calculate this complex

landscape. The solution to the Maxwell’s equations from 2.2 concerning the magnetic field

can be expanded using the orthonormal set of basis vectors as [142]:

H(r) =∑
v

cvHv(r) (2.12)

and the Helmholtz equation can be written as:

∑
v

cvH∗
u∇× 1

ε
∇×Hv = ω2

c2

∑
v

cvH∗
uHv (2.13)

The above expression when integrated over the system volume leads to a linear eigenvalue

problem of the form:

∑
uv

Huv cv =
ω2

c2
cu (2.14)
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The basis states Hu(r) are basically the guided modes of a slab with the permittivity taken on

average depending on the filling factor. The above matrix is also Hermitian and that ensures

that the eigenvalues are positive and hence are the real Bloch modes of the photonic crystal.

When the photonic crystal periodicity is taken into account, only guided modes with wave

vector g = k+G are allowed where G is the vector of reciprocal lattice. This leads to the

expansion of the magnetic field inside the photonic crystal as:

Hk =∑
G

∑
l

c(k+G, l,s)Hguided
k+G,l,s (2.15)

where l corresponds to the index of the mode for a wave vector k+G and s denotes the

polarization. The spatial distribution of modes can be further understood from the symmetry

planes present in the structure. A breaking of symmetry in the plane of the photonic crystal

structure can lead to the mixing of TE and TM polarized modes and this is important with

respect to the presence of disorder, which will be touched upon in a later section of this

chapter. This expression in equation 2.15 does not include the lossy radiative modes in the

basis set. The radiation losses of the Bloch modes can also be treated with the GME approach

but by following the Fermi golden rule from quantum mechanics [143]. These losses can then

be represented as the imaginary part of their frequency as

−Im
(ω2

k

c2

)
=π|Hleaky,guided|2ρ

(
k;
ω2

k

c2

)
; (2.16)

where ρ
(
k;

ω2
k

c2

)
represents the one dimensional photonic density of radiating states at a fixed

in-plane wave vector. This imaginary part is then used to calculate the Q-factor of cavities that

will be explained later in this chapter. In both the PWE and GME methods, the calculation of a

bulk PhC structure is achieved by computing a primitive cell along with periodic conditions.

In the case of waveguides and cavities, a “supercell” approach is required where a larger area is

used as a primitive cell that encloses the defect. The size of the supercell is chosen in a manner

so as to fully capture the physical properties of the defect structure. The supercell size can

be increased until convergence is obtained for specific cavity properties such as resonance

wavelength or Q-factor. However, a larger supercell with a very high Gmax increases the

computational cost considerably (from a few minutes to a few hours in a personal computer).

The PWE method is a simple technique and works well for regular crystals with infinite thick-

ness whereas the GME method is naturally suited for the case of slab photonic crystal devices.

The additional mathematical complexities in GME render it computationally more demand-

ing than the PWE method, nevertheless it allows for an accurate and reliable computation

of dispersion diagrams of waveguides. This is possible because of the difference in the ver-

tical profile of the mode of a guided mode and a plane wave. In addition to this, the GME

is advantageous as it allows for the calculation of radiative losses and hence quality factors

accurately without having the need for the usage of full field calculations. This advantage will

be highlighted in the section on computing quality factors for huge sets of disorder realizations

in the later part of this chapter.
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Bloch Mode Expansion (BME)

The before-mentioned methods derive the final dispersion map of a photonic crystal structure

on the basis of a perfectly linear dielectric medium. However, it is important to note that

disorder plays a huge role due to the inconsistencies arising from the fabrication process. This

disorder appears as a slight perturbation on top of the regular periodic modulation of the

dielectric medium and can lead to interesting properties such as Anderson localization of

mode profiles and light losses as will be explained in detail in the later section of this chapter.

In order to take this into account, Savona proposed a technique based on Bloch modes that

represent the PhC lattice [121] that was also inspired by the earlier work of John [1]. The

basic idea is to compute the Bloch modes of a PhC by using other methods such as GME and

then expand the “disorderd PhC” on the basis of these modes. In this context, only the Bloch

modes close to the frequency of interest need to be considered that reduces the complexity

and computation time significantly. In the limit of considering all the Bloch modes in the

crystal, this technique becomes formally equivalent to a GME computation. The formalism is

as follows [121]. The disorder in the system can be written as

ε′(r) = ε(r)+δε(r) (2.17)

The eigenmodes of the disordered lattice are calculated by expanding on the basis of the Bloch

modes of the regular PhC. The actual eigen mode including disorder can be represented as Eβ,

where β is the index of the actual mode. This expansion is then written as [121]

Hβ(r) =∑
kn

Uβ(k,n)Hkn(r) (2.18)

Using equation 2.1 and the above expressions, it is possible to write

∑
kn

Uβ(k,n)

[
∇× 1

ε(r)
∇×Hkn(r)−

ω2
β

c2
Hkn(r)

]
= 0 (2.19)

By taking a scalar product of equation 2.19 with E∗
k′n′(r) and integrating on r in order to

normalize the modes over the total volume just like in the case of the GME, we can finally

obtain the generalized eigenvalue problem using BME as:

∑
k′n′

[ω2
kn −ω2

β

c2
δkk′δnn′ +Vkn,k′n′

]
Uβ(k′,n′) = 0 (2.20)

The above expression also contains the information of the disorder present in the system in the

matrix Vkn,k′n′ . In order to check the convergence of the method, the number of bands can be

increased and eigenvalues can be checked. If the perturbation is relatively small, only a small

subset of Bloch bands is required to find the solution.This advantage can also be exploited in

computations involving photonic crystal cavities based on a waveguide structure, such as the

width-modulated cavities from Kuramochi and coworkers [144].
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2.3.2 Finite Element Methods (FEM)

Physical phenomena are generally represented by mathematical formalisms that further help

to understand the underlying mechanisms involved. Phenomena such as motion of water

waves, propagation of electromagnetic radiation or transfer of heat in a medium, all of these

phenomena can eventually be described via partial differential equations involving variables

to be solved for. These variables can also be coupled from one physical equation to the other

using coupling coefficients. Finite element methods allows for the accurate calculation of

the physical variables involved in such systems by solving the partial differential equations

inside a discretized grid, often referred to as a mesh. The system of differential equations is

then reduced to a system of algebraic equations that can be solved in a numerical machine

such as a powerful computer in order to obtain the final results. In this thesis, such a finite

element solver [122] was used to obtain the solution of the modes in photonic crystals. This

solver is based on a variational formulation that is defined as a minimization of a functional.

The method is as follows

1. Define the function with a set of basis functions φ(x, y) =∑M
i=1 ui bi (x, y).

2. Write an expression J in terms of the above basis functions, for example in the case of

the wave equation as J = ∫ ((∂φ
∂x

)2 −k2φ2
)
dx.

3. Find the coefficients of ui such that J is minimized, for example using the condition
∂J
∂x = 0.

A second method is also possible from the various implementations of the Galerkin method.

This is a method based on weighted residuals where an approximate solution is assumed

for the given problem under study. The error resulting from this approximate solution is the

residual error and is minimized with iteratively optimizing the weighting functions. There are

various parameters in the finite element method that can affect the accuracy of the solution.

This can be:

• Choice of type of elements used in the mesh that can alter the degrees of freedom

significantly.

• Choice of basis functions: Linear, quadratic or cubic.

• Choice of solver used: Direct or iterative solvers.

In most cases, it is important to optimize the parameters mentioned before depending on

the particular physics involved. In order to illustrate the applicability of FEM to electromag-

netic problems, a simple case involving the calculation of the far-field distribution from a

rectangular slit is described below.
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The analytical form of Fraunhofer diffraction integral for the far field calculation of a field on

an aperture is given as:

U (x0, y0) =−e− j kz

jλz
e

− j k
2z (x2

0+y2
0 )F.T

(
U (x1, y1)

)
(2.21)

Here, the field intensity U is calculated at a point (x0, y0) far from the aperture at a distance z.

This expression suggests that the far field intensity observed at the far field plane is directly

the Fourier transform of the aperture function itself. In the case of a rectangular slit, this will

translate to the sinc function and in the case of a circular aperture, it is an Airy disc. The first

zeros of the sinc function can be analytically written as λz
D where D is given by the slit size.

This particular simple case was modelled using the FEM solver and the results are shown in

figure 2.2. A plane wave is impinged on a slit and a far-field calculation is made on a surface

far away from the aperture. The figure also shows the extremely dense discretization of the

computation volume through triangular mesh elements.

Figure 2.2: Finite element model for the farfield profile of a slit cross section. a)The geometry
under consideration showing the slit of 6 µm impinged by a plane wave. b) The discretization of
computational space by triangular mesh elements. c) The far field profile obtained for different
input frequencies.

This computation uses triangular mesh elements and edge mesh elements. The total number

of mesh elements is close to 7000 and the solution takes only a few seconds for solving the

wave equation in this domain on a personal computer. The refractive index is set to 1 and the

boundary conditions are shown in the figure. Two different boundary conditions are used,

the perfect electric conductor, for the case of the slit wall, while the surrounding boundaries

are absorbing boundaries. A plane wave is launched onto the slit from the boundary and

frequency domain analysis is performed.

The far field is then computed by using the near-far field transformation method. The intensity

of the field distribution and also the intensity of the field components are also shown in the

figure. The far field profile is the expected pattern of a sinc profile and the zeros of this function

are compared with that of the analytical formulation and is displayed in table 2.1 that clearly

shows the agreement with the two methods.
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Frequency Position of zero (Analytical) Position of zero (FEM)

100 THz 3.5 µm 3.6 µm
225 THz 1.55 µm 1.6 µm
350 THz 1 µm 1.03 µm
475 THz 0.74 µm 0.78 µm
600 THz 0.58 µm 0.6 µm

Table 2.1: Comparison of analytical and FEM solutions for farfield.

In the three-dimensional modelling of most of the photonic crystal devices presented in this

thesis, tetrahedron mesh elements were employed. In order to have an estimate of mesh

quality in such tetrahedral meshes, a parameter referred to as q is defined as

q = 72
p

3V

((h1)2 + (h2)2 + (h3)2 + (h4)2 + (h5)2 + (h6)2)
3
2

(2.22)

where V is the volume of the tetrahedron element and h1...h6 are the respective lengths

of each sides. It is preferred to have this parameter to be greater than 0.1 for a better mesh

convergence while solving electromagnetic problems. It is also imperative to keep the elements

in other regions such as the volume of air lesser in q so that the computation time does not

explode. Nevertheless, it is also not practical to mesh all the domains in the same fashion. The

convergence of the solution depends heavily on the individual mesh elements. In the case of

the photonic crystal slab, the meshing of the holes is of a high importance given the fact that it

is responsible for the perturbation of the slab. To show this, four different cases of hole-mesh

are considered on a single hole in a PhC as shown in figure 2.3.

Figure 2.3: Mesh evolution of a single hole in a slab showing the increase in number of elements that
invariably changes the shape of the hole perceived by the solver and hence the solution accuracy.

In a crude first order, these mesh elements can also alter the lattice shape and symmetry. For

example, case1 shown in figure 2.3 starts to resemble a square hole rather than the intended

circular hole. The difference in the shape of the hole might also result in the breaking of
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symmetry as will be explained in the last section of the chapter. All these four cases are then

used to compute the Q-factor of a photonic crystal cavity that is based on the A3 design

reported here [144]. In the original paper, this cavity design is reported to have a FDTD

numerical quality factor of 1 million. It can be seen from table 2.2 and figure 2.3 as the mesh is

progressively made denser, the Q-factor starts to converge to its expected value. Such a stark

increase in the convergence of solution is not seen for the case of the increase in elements for

the “less important” domains like the volume of air above and below the membrane.

Case Number of 2D elements Number of 3D elements Q-factor

1 2 18 4700
2 4 42 36000
3 8 69 750000
4 22 90 1150000

Table 2.2: Mesh cases comparison for a single hole in a photonic crystal.

Figure 2.4: Meshing cross-sections of a photonic crystal slab showing the density of mesh elements
in the vertical (a) and horizontal (b) cross sections.

The PhC model includes three main subdomains. The first is the volume of air above and

below the slab structure as shown in figure 2.4a. This thickness of this domain is generally of

the order of the wavelength of operation, for the case of silicon and near-IR wavelenghts, 2 µm

is found to be sufficient. The ratio of the size of the smallest structure to the size of the largest

structure determines the complexity of the meshing. In this example, a hole of radius 250 nm

and the air volume of 2 µm makes it impossible to create a uniform mesh as the number of

elements tend to become unmanageable. Hence, adaptive meshes as shown in figure 2.4 are

implemented. It can be clearly seen in figure 2.4 that the air volume is sparsely meshed and

the density grows as it reaches the surface of the slab. The slab boundaries and the surface are

meshed densely and the holes are meshed with the highest density of mesh elements.

The optimum adaptive meshing sizes have been repeatedly refined depending on various

mesh refinement computations. In the presence of a small nanoparticle in the computation

domain, such as in the case of a single dielectric particle in the cavity, as shown in figure 2.5,
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a second problem arises as the particle is free to be placed in the air domain close to the

cavity. In order to smoothen this abrupt transition of mesh densities, a constant mesh density

cylinder was placed around the particle as can be seen in figure 2.5 that encloses the motion

volume. In this manner, the effect of the motion of the particle can be truly captured and the

inaccuracies due to mesh inconsistencies can be safely discarded.

Figure 2.5: Meshing of single particle motion inside hollow cavities by creating constant mesh
density cylinders in order to discard mesh inaccuracies.

All the computations performed in this thesis used three-dimensional modelling of complex

photonic crystal geometries. These geometries resulted in mesh structures comprising of

close to a million mesh elements, which are impractical to solve in any personal computer

due to memory constraints and hence a cluster computing platform was used. A computing

cluster is a group of linked computers, networked together in order to form a single “super”

computer. It is generally referred to as a poor man’s super computer and is vastly employed

in many heavy computing environments. The simple tasks involved in handling a cluster

computing platform is enumerated as follows:

1. Prepare the jobfile that includes the commands to execute the computation sequence

in a local machine.

2. Submit the jobfile to the cluster batching system that queues the job, allocates resources

and completes computation.

3. Retrieve solutions and log files back to local machine for post processing the results.

The advantages of parallel computing come in two flavours. It can be used by operating on

multiple cores of a single machine, generally termed as the number of processors or it can

be used by using multiple machines, generally termed as number of nodes. However, in this

thesis, the single machine, multiple processor parallelism was more extensively used. This

was also due to the fact the PARDISO (PARallel sparse Drect and multi-recursive Iterative linear

SOlver)type solver was used which is a fast, robust solver that can work on multiple cores

inside a single machine. Further information on this solver can be found here [145].
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2.4 Some numerical results obtained during this thesis

In the course of this thesis, several investigations were conducted to probe possible enhance-

ment effects predicted due to the slow light property of photonic crystal waveguides [146].

In order to exploit this enhancement offered by an increased group index of the propagating

mode, highly bandwidth specific slow-light structures were designed, fabricated and optically

characterized. The mode expansion methods outlined in this chapter (PWE and GME) were

crucial to these experiments and some of the results obtained are additionally highlighted

in this section. Apart from this, other numerical results regarding cavity designs, Q-factor

calculations and the influence of disorder are also presented in this section.

2.4.1 Dispersion and slow light

As introduced in chapter 1, photonic crystal waveguides are extremely important for vari-

ous applications involving slow light enhancement and on-chip light coupling to cavities

[77, 85, 146, 147]. In this context, the modelling of their propagation properties was important

to most of the experiments performed in this thesis. In the case of applications requiring slow

light, the bandwidth over which the light is slowed down also becomes extremely important.

For example, to measure the enhancement of the absorption lines of acetylene, it is important

to have the slow light group index to be linear over a range of 1500 nm to 1540 nm. In order to

achieve this, the position of the first rows on either side of the standard W1 waveguide can

be tuned as previously reported here [148]. Taking this as a starting point, by shifting the first

row of holes by 013a, a slow light waveguide with group index in the expected bandwidth was

designed and is shown in figure 2.6. The supercell based GME is used to perform this compu-

tation. The left side of the figure shows the supercell that is highlighted in green involving 5

Figure 2.6: Group index engineered slow light W1 waveguide: Numerical simulation with 2D GME,
a) Supercell for the simulation b) Dispersion of the even mode of the W1 guided mode (shown in red)
and the band gap shown in dotted red line. The horizontal axis is plotted by taking into account
band folding due to the applied grating.
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rows on both sides of the defect waveguide and a single repeatable column in the propagation

direction. This supercell is repeated in the simulation with periodic boundary conditions. The

maximum length of the reciprocal lattice vector used in this case was Gmax = 4 2p
3

2π
a . The

right side of figure 2.6 shows the calculated dispersion diagram of such a shifted waveguide.

The group index is indeed modified as predicted here [148] and flat regions of group index

with slow light propagation characteristics are found. The falling of the W1 even mode from

the air band also shortens the bandgap width, nevertheless, a small bandgap still persists

in the structure. The usable region of the slow light bandwidth is debatable as it is strongly

influenced by disorder and by the presence of Anderson localization that has been exten-

sively studied [149–153]. The above-discussed design was fabricated and the SEM image of

Figure 2.7: Experimental demonstration of a slow light W1 waveguide. a) The schematic of the
modification of the position of holes for achieving this effect [148]. b) Scanning electron micrograph
ot the fabricated structure. c) Dispersion and transmission measurement indicating the group index
and flat band region close to the band edge along with a very improved slow light transmission
signal.

the sample fabricated is shown figure 2.7b. The dispersion measurements using the grating

scattering approach [154] were performed and presented in figure 2.7c. It can be seen that the

transmission characteristics of the slow light region are also significantly improved due to the

implementation of slow-light tapering in the photonic crystal structure and by the design of

an in-line grating for non-invasively measuring dispersion. This new design helps to achieve

a "linear slow light" regime with a good transmission spectrum. It can also be seen that the

measured data is in close agreement with the predicted dispersion profile provided by the

calculations. This method takes less than a few minutes to design and parametrically tune the

properties of the waveguide using a personal computer. The PWE method can also be used

to compute the same curves but there are subtle differences between the two methods. The

guided mode cross section profile in the slab along the vertical direction shows an exponential

decay into the top layer and this modifies the effective interaction of the light and perturbation

in the case of the GME. The interaction of higher order modes also plays a significant role in the
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case of the guided mode that results in a slight compression of the bandgap when compared

to the PWE method. It is in general more accurate to use the GME method as it is closer to de-

picting the experimental situation and this has also been verified with measurements as in this

case of the slow waveguide. This device is a perfect illustration of a ready-to-use, bandwidth

specific, slow-light waveguide that can be used for a number of applications. There are also

Figure 2.8: Group index engineered slot coupled cavity waveguide. The inset shows the schematic of
the structure measured. The dispersion of the coupled cavity waveguide is clearly shown exhibiting
the sinusoidal pattern with a slow light bandwidth. The transmission measurement on the right
confirming the same.

applications in which the light in the waveguide is preferred to be propagating in the low-index

medium. Slotted photonic crystal waveguides and slotted coupled-cavity waveguides (CCW)

have been investigated for achieving this purpose [114, 154, 155]. A case of slotted coupled

cavity waveguides was designed and fabricated during this thesis to create a slow light window

for these devices to use in light-matter interaction experiments and is shown in figure 2.8. This

device is a concatenation of a number of individual slot photonic crystal cavities placed in an

in-line arrangement. The distance between the cavities and the coupling strength together

determines the dispersion curve for these devices. It was also shown previously that a chain of

eight cavities can support a slow-light bandwidth of 0.33 THz (2.6 nm) with a group index of

approximately 100 [154]. It can be shown with the so-called "tight binding approximation" that

for a chain of finite length of N cavities, the dispersion curve sampled with a constant spacing

k is given by ωi ≈ω0 +κcos(kiΛ) where ω is the frequency, ω0 is the resonance frequency of

each cavity,Λ is the CCW periodicity, and κ is the coupling strength between the cavities. This

equation shows the dispersion curve will have a sinusoidal shape as can be also clearly seen in

the experimental measurement of figure 2.8. The increase in coupling will lead to a increase in

bandwidth and also a decrease in group velocity of guided light.
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2.4.2 Cavity mode evolution in PhC lattice

The formation of cavity modes has been briefly discussed in chapter 1. In order to visualize it

more clearly, the PWE method was used to understand how the field localization in cavities

evolve with respect to the air band and dielectric bands.

To perform this analysis, a triangular lattice with filling factor of 40 percent in a slab with holes

configuration is chosen. The dispersion diagram along the Γ, M and K points is shown in

figure 2.9a. The electric field localization is shown at the M and K points in figure 2.9b and c

respectively. It can be seen that the mode in the air band (top band) has a field fully localized

in air and the vice-versa at the bottom band chosen at K-point. In the case of making cavities

that localize light in air, it will be beneficial to work with the modes falling from the top band.

This is in context of the hollow-cavities that will be seen in chapter 3 for optical trapping

experiments. For example, as it was explained in chapter 1 regarding the creation of cavity

Figure 2.9: a) PWE based calculation of bandgap and the electric fields showing the two states from
the bottom and top bands at K and M points respectively. b) and c) The localization of electric fields
as seen in the unit cell. The field is localized in air for the top band and in dielectric for the bottom
band.

modes, a slight perturbation results in the breaking of symmetry and allows for localization

of light. A state in the otherwise photonic crystal bulk is delocalized all over the crystal area.

In figure 2.10, the evolution of the cavity modes with respect to this perturbation is visually

explored with the aid of the PWE method. In figure 2.10, the central three holes are changed

to a different filling factor (30%). In figure 2.10b, the filling factor of five central holes are

changed (35%, 24%, 20%, 25% and 35%). In figure 2.10c, an elliptical hole is created in the

centre and the surrounding holes are decreased in their filling factor (indicated in green and

pink). The fourth figure shows the circular cavity that is used in chapter 3, where the central

hole is enlarged and six other holes are removed from the lattice.

In all the cases, the position of the cavity frequency with respect to the bulk bandgap is
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Figure 2.10: Evolution of cavity mode profile and position for different defects showing the position
of the cavity mode in the bandgap relative to the air and dielectric bands. It is seen that for increased
localization in silicon, the mode is much closer to the dielectric band and vice versa.

indicated with a red line next to the figures. It is intuitively easy to understand that with the

removal of further and further dielectric material; the cavity mode starts moving closer and

closer to the lower band. The localization in silicon also generally favours higher Q-factors

and this is one of the reasons that most high-Q cavities have their field localized in silicon

as total internal reflection allows a better confinement in this case. The accurate estimation

of Q-factors of these modes must be however, be calculated with a 3D method in order to

understand the radiation losses.

2.4.3 Quality factors and modal volumes

The computation of quality factors has remained a challenge for a number of reasons mostly

owing to the differences in the experimental samples and ideal theoretical structures. However,

in most cases, the calculation of the intrinsic Q is required which comes from the radiation

loss mechanism due to the slab nature of the photonic crystal. In the guided mode expansion

method formulation, an approximation was used by not taking into account the radiative

modes outside the light cone. It is exactly this coupling that leads to the radiation losses in the

cavity. This radiative decay leads to an imaginary part in the eigenvalue solutions which can be

calculated via the Fermi golden rule [143] as as shown in the previous section of GME [142,156].

By calculating the imaginary part of the frequency of the defect mode with perturbation theory,

the Q-factor can then be quantified as

Q f actor =
ω

2Im(ω)
(2.23)

In order to show the various methods used to compute the Q-factors, a comparison with

respect to four well-known 2D PhC cavity designs is presented in figure 2.11. Mode expansion
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methods can also be used to derive the Q-factor of the cavities in a faster way compared to

the full simulation methods. Cavities that have a distribution similar to a PhC waveguide

can be considered as a perturbation on the waveguide mode and the previously explained

BME method can be used to expand the cavity modes. The BME method relies on the fact

that the Bloch modes of a disorder-less waveguide can be used to expand cavity modes with

and without disorder. In the limit of the inclusion of all the Bloch bands, it is equivalent to a

GME simulation. The advantage of BME is that only modes that are closer to the frequency of

interest need to be included and this computation can be only a few minutes on a personal

computer. The BME computations have been verified for high Q cavities with increasing

Figure 2.11: Calculation of cavity Q-factors with different numerical tools for four different cavity
designs. a) L3 b) A3 c) A1 d) Heterostructure. Reprinted from a publication from this thesis [129].

number of Bloch bands as can be seen in figure 2.11. In the case of high Q-cavities, the BME

method has to be used with caution, as there is an extremely delicate situation due to various

interferences of the radiating modes. The figure shows GME and FDTD values taken from the

corresponding publications of the cavities. FEM and BME values are compared against them.

The BME and GME results were obtained for a supercell of length 32a (24a for L3 cavity) in the

x-direction and length 16
p

3/2a in the y-direction (10
p

3/2a for the L3 cavity). As expected,

when all bands are included, it can be seen that the BME and GME yield almost the same Q

value, which is also in good agreement with the FEM and FDTD full simulation methods.
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It is to be noted that only radiation loss based calculations are performed here and this has

to be taken as the “ideal” Q-factor of the cavity. There is however, a similar trend in all the

computations shown in this figure. The values of FEM are always more conservative than

the FDTD and GME/BME. This effect is attributed primarily to the difference in calculation

methodology and the application of boundary conditions. The FEM uses a first order scattering

boundary condition, while the FDTD uses a perfectly matched layer condition that absorbs all

incident radiation. The GME and BME methods use a periodic boundary condition as they

are mode expansion methods.

In terms of computational cost, in order to obtain a converged Q-value using 3D FEM, when

running on a single-core of a multiprocessor CPU, takes of the order of tens of hours and

more than 100 GB or memory. The same computation with a 3D FDTD technique and GME

is expected to take around 5 to 15 hours and several tens of GB of memory. On the contrary,

a BME computation with only a few bands takes of the order of only several minutes with a

memory of 1GB (on a personal computer), illustrating the potential of this method for large

variety of problems. This is extremely useful especially in the case of disorder realizations that

will be explained in a later section and in the case of cavity optimization to which, chapter 4 is

dedicated to.

The knowledge of modal volumes is quite important to calculate various physical parameters.

The definition of effective modal volume of a cavity is generally given as [157]

Ve f f =
∫
ε(r )|E(r )|2d 3r

max[ε(r )|E(r )|2]
(2.24)

A second definition inspired from the inverse participation ratio that is more appropriate

in some cases where the definition of mode volume is less sensitive to field distribution

discontinuities but results in a larger value than the previous definition is given as:

Ve f f new = (
∫

f (r )d 3r )2∫
f 2(r )d 3r

(2.25)

where f(r) denotes a positive valued function such as ε(r )|E(r )|2.The two definitions are

compared for three cavity designs in table 2.3 where the difference is highest for the case of

the slot cavity as it has the discontinuous field distribution at the slot boundaries.

Cavity Ve f f in µm3 Ve f f new in µm3

Circular cavity [158] 0.21 0.36
Slot cavity [159] 0.053 0.51

Modified L3 cavity [160] 0.11 0.50

Table 2.3: Mode volume definition comparisons for a few PhC cavities.
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2.4.4 Disorder in PhC cavities and the influence on Q-factor

The results presented in this section are originally published in “Statistics of the disorder-induced

losses of high-Q photonic crystal cavities”, Optics Express, 21, 28233 (2013) [129]

In many applications using photonic crystal cavities as explained in chapter 1, high quality

factors are desired. Several ultra-high Q designs have been proposed in this context [144,

161–164] with numerical quality factors ranging from 105 to 109. In all these works, the

experimentally measured Q-factors have considerably fallen below the numerically computed

value and this is attributed to the “disorder” present in the PhC lattice that arises due to

fabrication imperfections. This disorder can manifest itself in the size of the air holes, shape of

the holes, surface texturing of the slab and the position of the holes with respect to the cavity

and this has been extensively studied previously [165–169]. It has been shown that the disorder

induced cavity losses scale as σ2, where σ is the magnitude of the random fluctuations and is

dependent on fabrication methods. It is also being agreed that this average value depends

marginally on specific cavity designs. In the case of difference between shape disorder and

area disorder, previous studies indicate that the shape dependence is much lesser than the

size or position of holes [170, 171].

Figure 2.12: Guided mode expansion computation of field profiles of high-Q cavities. a) L3 design
with the adjacent holes modified. b) A3 where the red coloured holes are shifted outward. c) A1
with the red, black and grey holes shifted outwards. d) Heterostructure where the dashed region
corresponds to a squeezed lattice constant compared to the exterior part. e) Optimized H1: the holes
marked in red are shifted outward. f) Optimized H0 where the eight holes marked in red are shifted
symmetrically. Reprinted from a publication from this thesis [129].

In this context, the influence of disorder on six well-known cavity designs was investigated:

L3 [161], A3 and A1 [144], Heterostructure (HS) [162], H1 and H0 [172, 173]. All the devices

are based on the triangular lattice with holes etched in a silicon slab. GME computed field

profiles are shown in figure 2.12 for all the parameters taken from their respective sources. For

understanding disorder, random fluctuations were artificially introduced into the models on
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the positions and radii of holes with an underlying Gaussian distribution with zero mean and

standard deviation σ. There were no correlations between the disorder magnitudes of each

hole in this model. The measured Q can be written as:

1

Q
= 1

Qi
+ 1

Qd
+ 1

Qa
(2.26)

where Qi is the ideal Q-factor of the cavity, Qd is associated to disorder and Qa accounts for

absorption dependent losses. In the presence of disorder, there is additional light scattering

into the light cone although there is also a possibility for the destructive interference of two

disorder channels scattering light resulting in a negative value of Qd . This leads us to believe

that controlled and deterministic structural modifications can also dramatically increase the

Q-factor post fabrication of the sample. The GME based Q calculation method allows to

Figure 2.13: a) Dependence of standard deviation in ω on the magnitude of disorder σ. b) Depen-
dence of the expectation value of 1/Qd onσ2. Reprinted from a publication from this thesis [129].

drastically increase the amount of combinations of disorder that could be implemented in

the calculation. This capacity is way beyond the reach of 3D finite difference or finite element

solvers. For instance, in this case, 400 disorder realizations for each cavity were computed

for each σ value of 0.001a, 0.0014a, 0.002a, 0.003a, 0.004a, and 0.005a. It was found that the

frequency distribution was deviating slightly but centred around the ideal cavity frequency.

The mean < 1/Qd > and standard deviation δ(1/Qd ) are related as

δ

(
1

Qd

)
=

(〈(
1

Qd

)2〉
−

〈
1

Qd

〉2) 1
2

(2.27)

This standard deviation is plotted against σ2 for different cavities and is shown in figure 2.13.

The results confirm the scaling < 1/Qd >∝ σ2 that has been established before and this

is confirmed for all the six cavities in study. The slope of the lines in figure 2.13 can be

interpreted as the measure of the robustness of the cavity to disorder effects. It can be seen
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Figure 2.14: Histograms of quality factors with disorder for six different cavities computed with
GME for 1000 disorder realizations with different values for σ. Reprinted from a publication from
this thesis [129].

that this measure is inverse proportional to cavity mode volume. This leads us to affirm that if

disorder induced losses are dominating, the full statistical distribution of those losses starts

being design independent as can be seen in figure 2.14. The higher the disorder, the more

similar all these cavities start behaving in terms of Q-factors. These results are quite important

for the optimization of PhC cavity designs. The findings can be summarized as follows.

1. In the regime where the disorder induced losses are dominating (Qd <Qi ), the statistics

of 1/Qd are approximately design-independent.

2. Theoretically optimizing Qi is relevant only if the measured Q is not much smaller than

Qi .

3. The way to improve Q-factors in the above case is to rely on decreasing disorder or by

exploring the high-Q tail of the probability distribution.

4. It must also be kept in mind that for extremely high nominal Q values, the measured

value is limited by nonlinear effects and absorption.

In terms of purely optimizing the cavity for a better Q, it is imperative to consider all the

positions of the holes and their respective radii, as they are inseparable. An ideal tool for

optimizing cavities would be a global optimization tool that can evaluate all the weighting

parameters. This will be explored in further detail in chapter 4.
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2.5 Summary and outlook

The mode expansion methods were useful in the accurate prediction of band gaps, waveguide

cut-offs, filling factor variations and slab thickness variations. These results allowed for

accurate mask designs for the fabrication process resulting in measured wavelength variations

less than 10 nm from the designed value in a large set of samples throughout this thesis. Such

predictable accuracies allowed for the fabrication of only a minimum number of samples

required for experimentation saving a great deal of time, cost and stress. A feedback loop from

the fabricated structures also helped in predicting the etch-induced filling factor variations

and diameter variations of the air holes.

The finite element methods on the other hand was very useful for computing cavity Q-factors,

modal volumes and resonance wavelengths to a high degree of accuracy that matched exper-

imental measurements. It allowed for realistic simulations of systems such as a motion of

a single dielectric particle within a PhC cavity structure that assisted the understanding of

perturbative effects and optical forces. The FEM was used in tandem with the mode expansion

methods as a cross checking mechanism for the Q-factors obtained with the GME method

in cases where ulrahigh Q-factor cavities (greater than a million) were computed. The usage

of symmetry planes reduced the computational cost significantly and in combination with a

cluster computing platform, a large number of parametric studies were also made possible.

In summary, this chapter has detailed the use of various algorithms and has showcased some

of the results computed during this thesis. There is a strong criticism in the scientific com-

munity regarding the usage of numerical tools for the understanding of physical phenomena.

As most of these methods have a “black-box” approach, the user has to take the additional

responsibilities of cross-validating the results using first order analytical methods or phe-

nomenological calculations. In the case of a possibility of experimental validation, this is the

best preferred situation. A strong balance between numerical prediction and experimental val-

idation is required for performing purposeful research especially in complex physical systems

(like photonic crystals) where analytical formulations are simply not feasible.
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3 Resonant optical trapping in hollow
PhC cavities

This chapter describes the resonant optical trapping phenomena in 2D photonic crystal

cavities. Section 1 outlines the physical basics and the historical development of optical

trapping. Section 2 gives a concise description of the calculation of mechanical forces exerted

on a particle placed in an electromagnetic field and introduces some concepts defining the

optical trapping dynamics. Section 3 introduces the hollow cavities within the photonic crystal

domain that could potentially be used for optical trapping. Section 4 shows all the numerical

and experimental results obtained during this work including resonant trapping, particle-

cavity perturbation and particle-cavity back-action in a hollow circular photonic crystal cavity.

Section 5 offers additional insights into the contributions from this chapter and compares the

results with other trapping platforms.

Contributions:

This work was performed as an in-house collaborative effort between the students of my

research group. I contributed to the finite element modelling of the cavity Q-factors, device

layout design for the sample and the optical trapping force computations. The experimental

apparatus along with the microfluidic circuit was conceived and constructed by Dr. Nicolas

Descharmes assisted by Mario Tonin. Dr. Zhaolu Diao fabricated the silicon photonic crystal

devices.

Publication of results:

The results obtained during the course of this research work are published in [123–125].
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3.1 Optical trapping: The physics and the history

Light, in all forms, including the form that we receive from the sun carries both energy and

momentum. This energy can be felt through the warmth that we feel in our body or in the

case of plants, this energy is used to initiate the process of photosynthesis. It was not very

well understood until recently that light also carried momentum. The initial observation

and postulation of this effect is generally credited to Johannes Kepler, who in 1619 offered an

explanation to the presence of comet tails that were pointed away from the sun as can be seen

in a recent photograph of the ISON comet tail acquired by NASA (figure 3.1). In this picture,

a combination of solar radiation and solar wind pushes the smaller disintegrated particles

from the comet’s surface forming this tail. However, this explanation was incomplete until

1873, when Maxwell predicted the existence of the so-called “radiation pressure” from his

electromagnetic field equations. Radiation pressure is the pressure exerted upon any surface

upon which there is an electromagnetic radiation. It can be visualized as the change in mo-

mentum when a photon strikes a surface on its path. Lebedev achieved the first experimental

validation of this concept in 1901 by using light from a focused arc lamp. The quantity of

radiation pressure possible at this time was quite limited due to the absence of intense light

sources for experimentation. For example in a simple case of a reflecting mirror, for 1 Watt of

light, the force experienced by the mirror are of the order of a few nanonewtons that makes it

extremely small to measure.

Figure 3.1: Radiation pressure witnessed in a comet tail. The tail of the comet ISON is seen pointed
away from the sun in clearly captured file photograph from NASA [174] indicating the radiation
pressure induced by the optical energy of the sun. The image on the right is an enhanced version of
the left side image.

The goal of extending this phenomena to microscopic dimensions required the use of a highly

focussed beam of light and this was only possible after the achievement of the laser in the

1960s [61]. Following this development, Ashkin showed in his first seminal work in 1971 [175]

that radiation pressure from a laser could be used to accelerate micrometer sized dielectric

particles. In his initial experiments, the particles were guided by the effect of radiation pressure.

The particles were suspended in water to avoid heating issues. Along with this effect, it was
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also seen that the particles near the exterior of the laser beam were pulled towards the center.

It was understood that there were two force components under play in this phenomenon, a

scattering force (Fscat ) along the direction of the incident beam and a gradient force (Fg r ad )

along the intensity gradient of the laser beam. The vector sum of these forces allowed for either

acceleration or deceleration of these microscopic particles. This was the case for particles

whose refractive index was larger than the surrounding environment and also whose size was

larger than few times the wavelength of light. In the case of particles whose index was smaller

than that of the surrounding medium, the gradient force direction was inverted and pushed

the particles towards the periphery of the beam. To demonstrate this effect, µm sized air

bubbles in a solution of glycerine were used [176]. They also later showed that these particles

can also be confined in three dimensions using two opposing laser beams. The opposing signs

of the scattering force components was used to hold the particle axially while the gradient

forces of the beams that were also symmetric helped restoring the particle in the transverse

direction.

A second breakthrough work [177] was reported by Ashkin and co-workers where a particle

was stably held with the aid of a single focussed laser beam as shown in figure 3.2a. This was

the first time when a single particle was stably held in free space in a stable position through

optical means. This phenomena was termed as "Optical Tweezing" or "Optical Trapping" and

has revolutionized the field of micro-manipulation ever since, particularly for the handling of

biological specimen such as viruses, bacteria and cell-organelles [178, 179].

Figure 3.2: Evolution of the single beam gradient trap. a) The illustration of the first gradient trap by
Ashkin along with the experimental photograph of a 10 µm sphere trapped in water from 1986 [177].
b) The illustration of a tractor beam trap showing the polarization dependent forces and the sorting
of dielectric particles from 2013 [180].
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This formed the basis of a large spectrum of trapping studies that lead to the development

of laser cooling of atoms by Steven Chu [181] and the subsequent creation of Bose Einstein

condensates by Wolfgang Ketterle [182]. Both these achievements lead to the winning of the

Nobel prize in physics for 1997 and 2001 respectively. Since then, the single beam gradient

trap has been investigated and developed extensively. The evolution of this exciting field of

study starting from the first work in 1986 to a recent development in 2013 where novel tractor

beam traps have been used for polarization dependent sorting and separation of dielectric

particles can be seen in figure 3.2. A detailed review of various possible tweezers techniques

and their applications can be found here [183].

In order to obtain a stable three-dimensional trap, the axial gradient force must exceed the

scattering force component. In standard optical tweezers, this is achieved by increasing the

focusing of the trapping laser as much as possible through the incorporation of high numerical

aperture objectives. It was observed that the trapping of small particles became cumbersome,

as prohibitive input powers were required as the diffraction limit was reached. This was also

the juncture during which the technologies for fabricating well defined micro and nano-optical

structures emerged. This opened the possibility to engineer highly intense fields in these

structures with very low optical powers. The sub-wavelength spatial dimensions allowed for

increasing the gradient force while not augmenting the scattering components in comparison

with a standard optical tweezer. It also opened up the path for making highly integrated optical

trapping platforms leading to lab-on-chip type systems primarily involving either plasmonic

devices, integrated waveguides or optical microcavities as shown in figure 3.3.

Figure 3.3: Overview of integrated trapping platforms from the literature. a) Plasmonics based trap
where gold nanoantennas are periodically arranged. Light is coupled through a hemispherical glass
lens. Bottom image shows the trapping of E-coli bacteria. [184]. b) Slot waveguide illustrating the
transport of particles using the radiation pressure force. Bottom image shows the trapping of 75 nm
sized polystyrene particles over 100 nm slot waveguides. Reprinted from [185]. Optical microcavity
trap based on a 1D photonic crystal nanobeam cavity along with a coupling waveguide for the
transport of particles is illustrated. Bottom image shows the trapping of a 500 nm-sized particle on
the cavity (red circle) after it was transported by the bus waveguide. Reprinted from [186].
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Plasmonics based traps

In earlier works regarding plasmonic traps [187–189], it was predicted that trapping of dielec-

tric objects sized less than 100 nm was possible near sharp metallic tips or nano-apertures

using the evanescent waves from the near-field landscape. The first experimental studies

were based on gold based surface plasmon polariton modes that were used to trap micron

size dielectric particles [190, 191]. The integration of microfluidic circuit to the plasmonic

structures [192] was followed by experiments involving biological particles such as bacteria as

shown in figure 3.3a [184] and proteins [193].

Waveguide based traps

Nanophotonic waveguides have the capacity to confine light in the higher index dielectric

while the evanescent radiation is still present in the low index cladding medium. This was

first investigated in a report by Kawata and co-workers [194] where they showed trapping of

both metallic particles (0.5 to 1 µm in size) and dielectric particles (1 to 5 µm). The light in the

waveguide was also used for the propulsion of the particles and transporting them within the

structures as shown in subsequent works [195–197]. The limited overlap of the evanescent

mode with the surrounding medium prompted the use of slotted nanostructures as introduced

by Almeida and co-workers [198]. The slotted waveguide was implemented and used for

trapping 75 nm-sized particles by Yang and co-workers [185] as shown in figure 3.3b. They also

showed the trapping of DNA strands using the same device. This was a first demonstration

where a hollow structure in the integrated form was used to achieve optical trapping.

Optical microcavity based traps

Optical cavities made from micro and nanostructured materials have the ability to confine

electromagnetic radiation in sub wavelength dimensions resonantly. In the case of standard

optical tweezers, the particles do not influence the tweezers beam frequency, which is not

the case when a resonant trap is involved. This property is expected to give rise to interesting

physical mechanisms and trapping behaviours, which is the subject of the investigation of

this thesis as will be reported in the next few sections. The initial demonstration of such a

microcavity based trapping came from Lin and co-workers [199] where a silicon microring

resonator and the corresponding whispering gallery mode was used to trap 500 nm sized

particles with input powers as low as 5 mW. Similar ring resonator cavities integrated with

microfluidic channels transporting and trapping micro particles were also reported [200, 201].

The first report of using a 1D PhC cavity in the form of a nanobeam was published by Mandal

and co-workers [186] where they could trap particles of 48 and 62 nm in diameter. This device

is also illustrated in figure 3.3c. A similar nanobeam cavity trap was reported by Renaut and

co-workers [202] to study a cluster of microspheres.
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3.2 Calculation of optical forces in an optical trap

The various ways to determine the optical forces acting on a particle in an optical field depend

primarily on the diameter of the particle and the wavelength of electromagnetic radiation. In

all cases, the understanding of the scattering and gradient components of the forces is crucial.

3.2.1 Optical forces: Ray optics approximation

In the case of particles whose diameter is much larger than the wavelength of light (D > 10λ,

the ray optics approximation is sufficient to describe the forces. This was also the detailed

explanation offered by Ashkin in the case of the first trapping experiment [203]. The input

laser beam can be broken down into several individual rays with their own intensity and

momentum. Each of these rays can then be treated in a separate manner. In a linear and

non-dispersive medium, the rays can propagate as a straight line and their behaviour can be

well described by the rules of geometric optics and the particle can be considered as a weak

lens. If a light beam carries a linear momentum h/λ, the refraction of light by the weak lens

will cause a change in momentum and hence a corresponding reaction force described by the

Newton’s third law acts on the object as illustrated in figure 3.4.

Figure 3.4: Ray optics description of trapping forces. a) The direction of the force on the particle
when there is a gradient in the input beam intensity and the lateral trapping force is shown acting
in opposite direction of the momentum imparted to light b) The direction of the force on the particle
when a particle beyond the focus of a beam finds an axial momentum imparted to light that causes
a reaction force, which in turn pushes the particle towards the focal point.
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The light reflected from the particle, on the other hand will push the particle forward. The

reflection depends on the relative refractive index between the particle and the surrounding

medium. In the case of a dielectric particle, it is sometimes easier to trap in water than in

the air because of the fact the stronger reflections between the particle and air can cause a

stronger scattering component. The effect of the multiple rays can then be summed vectorially

in order to obtain the total force. It has to be noted that the scattering force acts in the beam

direction while the gradient force acts towards the beam focus and so in the case of a beam

directed downwards, the stable optical trapping lies just below the focus of the beam. By taking

into account all the angles of reflection and refraction of the incident beam, a trigonometric

evaluation of the scattering (Fscat ) and gradient force (Fg r ad ) components for each individual

ray can be performed [203].

Fscat = nP

c

(
1+RF cos(2θR )− T 2

F (cos(2θR −2θT )+RF cos(2θR ))

1+R2
F +2RF cos(2θT )

)
(3.1)

Fg r ad = nP

c

(
1+RF si n(2θR )− T 2

F (si n(2θR −2θT )+RF cos(2θR ))

1+R2
F +2RF cos(2θT )

)
(3.2)

where θR is the angle of reflection, θT is the angle of transmission, n is the refractive index

of the medium, P is the optical power of the beam, c is the velocity of light and RF and TF

are Fresnel coefficients. As mentioned before, the ray optics approach works very well for a

spherical particle in a non-dispersive medium whose size is much larger than the wavelength

of light used. For non-spherical shapes of particles, several additional approximations are

required to take these additional scatterings into account.

3.2.2 Optical forces: The dipole force approximation

If the particle diameter is much smaller than the wavelength of light, the dipole approximation

is used to describe the forces. In this case, the beam is uniform all over the particle and it

can be considered as a collection of dipoles. When a single dipole is placed in a uniform

electromagnetic field ~E , it creates a response due to the polarizability of the material (α). This

response is an induced dipole moment ~p and is given as

~p =α~E (3.3)

Taking the polarizability from the Clausius-Mossotti relations, this dipole moment can then

be written as

~p = 4πn2
medi umε0r 3

(
N 2 −1

N 2 +2

)
~E (3.4)

where N is the refractive index ratio given by npar ti cle /nmedi um and ε0 is the free space

permittivity. This dipole will experience a Lorentz force that eventually gives rise to the
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gradient force component, which is written as [204]

~Fg r ad = (~p.∇)~E (3.5)

~Fg r ad = πn2
medi umε0r 3

(
N 2 −1

N 2 +2

)
∇|~E |2 (3.6)

In the case of the scattering force component, the induced dipole moment oscillates with the

field and the particle acts like an antenna radiating waves in all directions. These scattering

events can influence the magnitude and direction of the total field. The corresponding changes

in momentum are then exerted as a scattering force on the particle. This can be found by

taking the scattering cross section of the dipole and the intensity of the incident field whose

wavenumber k = 2π/λ and can be written as [204]

~Fscat = 8πnmedi umk4r 6

3c

( N 2 −1

N 2 +2

)
I (3.7)

It can be seen from the above expressions for the gradient and scattering forces that they scale

very differently with the radius of the particles. In addition, in a standard Gaussian beam trap,

the scattering component is a non-conservative force while the gradient component arises

from a conservative potential. This has significant implications on the physics of the system

in this thesis that will be touched upon in the discussion section.

3.2.3 Optical forces: The Maxwell Stress Tensor Formalism

The ray optics formalism works well for particles whose size is » λ and the dipole force

approximation works well for particles whose size is « λ. However, in practical experiments, it

is rather hard to fall in either of these two regimes and hence a full field analysis is the only

solution to obtain an accurate description of the optical forces. This is indeed the case of our

experimental study where 500 nm-sized polystyrene particles are used at a wavelength of 1.55

µm and hence the maxwell stress tensor formalism needs to be used.

The formalism can be derived as follows. Starting from the Maxwell’s equations in a linear

isotropic material system as shown in chapter 1, we can write the Lorentz force acting on a

distribution of charges with density ρ in a volume V as

~F =
∫

V
[ρ~E +~j ×~B ]dV (3.8)

This force law connects the electromagnetic field to the mechanical properties, most im-

portantly the momentum. After performing standard vector calculus substitutions on the

Maxwell’s equations, we can write the expression [205]

∇.[ε0~E~E −µ0~H ~H − 1

2
(ε0E 2 +µ0H 2)Î ] = d

d t

1

c2 [~E × ~H ]+ρ~E +~j ×~B (3.9)
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3.2. Calculation of optical forces in an optical trap

The expression on the left hand side of the above equation is termed as the Maxwell’s Stress

Tensor (MST) and is given by T. Integrating this tensor over a volume V surrounding the

particle and after applying the Gauss’s law of integration, we can obtain∫
V
∇.T dV =

∫
∂V

T.n̂d s (3.10)

From here, we can define the mechanical and electromagnetic field momenta as

~F = d~Pmech

d t
(3.11)

~P f i eld = 1

c2

∫
V

[~E × ~H ]dV (3.12)

This allows us to write the conservation law for linear momentum as∫
∂V

T.n̂d s = d

d t
[~P f i eld +~Pmech] (3.13)

The electromagnetic field momentum vanishes when averaged over time. The average force

can then be written from equations 3.11 and 3.13 as

< F >=
∫
∂V

< T > .n̂d s (3.14)

The above equation is very powerful as it can allows the calculation of mechanical forces

acting on any arbitrary body within this closed volume. The time averaged force is entirely the

result of the electric and magnetic fields on the surface enclosing this volume. The material

properties of the particle surprisingly do not appear in this formulation. However, it is does

indirectly appear while taking the full field that includes the incident and scattering fields. This

fact is important in order for this calculation to work properly. Several numerical methods have

been developed for this purpose including the FDTD and FEM. In the case of our experiment,

the fields of the photonic crystal cavity along with a particle are calculated in detail with a

finite element solver. The MST is then evaluated on the surface of the sphere that is present

within the cavity volume in order to obtain the optical forces present in the system.

3.2.4 Optical trapping dynamics

When the focus of the laser input beam is increased, the intensity gradient increases and the

axial gradient force becomes stronger than the scattering force component, resulting in a

stable optical trap. It is not the case always as there is an additional force due to the Brownian

motion of the particle. The thermal kinetic energy associated with Brownian motion is given

by kBT , where kB is the Boltzmann’s constant and T the temperature.

This energy has to be overcome by the depth of the optical trapping potential well as illustrated
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Figure 3.5: Illustration of the trapping potential and forces. a) In typical circumstances, the potential
can be approximated by a harmonic potential well as illustrated. b) The harmonic potential gives
a linear relationship between the trapping forces and the particle displacement as indicated. A
steeper potential well results in a an increase in the slope of the linear force-distance curve and
hence stiffness.

in figure 3.5, which is generated by a conservative gradient force. This potential energy of

the trap can be derived by integrating equation 3.5. The trapping potential(U) is then given

by [204]

U = −2πnmedi umr 3

c

( N 2 −1

N 2 +2

)
I +C (3.15)

where C is an arbitrary integration constant. In the context of the Brownian motion of the

particle, the effect of the drag force is also to be overcome by the trapping potential well. This

viscous drag force due to the dynamic viscosity η and particle velocity v is given as

Fdr ag =−6πηr v (3.16)

The physical influence of the trapping potential resulting in the constraining of the Brownian

motion of the particle. The equation of motion describing the particle in a trap is given as

m
d x2

d t 2 +γd x

d t
+κx = ζ (3.17)

where m is the particle mass, γ is the friction coefficient coming from the drag force (6πηr )

and ζ representing the forces due to Brownian motion due to the thermal collisions. The

third term on the left hand side represents the influence of the optical trap. By neglecting the

contribution of inertial effects in these spatial scales, an expression for power spectral density

(PSD) of the particle’s motion is given by [206]

PSD(ω) = 2kB T /πγ

ω2
c +ω2

(3.18)
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3.2. Calculation of optical forces in an optical trap

The PSD is shown as a function of frequency for the case of an optically trapped bead in

figure 3.6. The two different regimes (trapping and diffusive) are clearly seen. The low frequen-

cies are flat due to the stiffness of the trap and the transition point is determined by the cut-off

frequency(ωc ) which comes from the stiffness of the trap that is derived from the potential well.

The higher frequencies are dominated by diffusion of the particle and later by high frequency

noise. This plot is often used as a primary means of calibration and characterization of an

Figure 3.6: Power spectral density of a trapped particle’s motion indicating the different regimes
and the cut-off frequency that is set by the stiffness of the trap (κ). Reprinted from [206].

optical trap. This method allows for the estimation of trapping stiffness by using the relation:

κ=ωcγ (3.19)

The stiffness information can be gathered only knowing the viscosity and particle size in this

case and not the actual displacements involved, which can be challenging to measure in the

case of smaller particles. In cases where the absolute position of the particle is tracked (for

example, centroid method), the equipartition theorem can be used to estimate the stiffness as:

κ= kB T

〈x2〉 (3.20)

Both the above methods can be applied for the same system for validating the stiffness

obtained or it can also be used to estimate the viscosity of an unknown environment. The

stiffness depends also on the shape and size of the particle, laser power used, refractive index

contrast between the particle and the fluid and temperature. To have a figure of merit, in the

case of a spherical particle of diameter 500 nm and refractive index 1.57, the in-plane trap

stiffness was experimentally determined as 14.6 pN/µm and 21.1 pN/µm for the x and y axis

respectively. In both these cases, the input laser power was set at 10 mW [207].
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3.3 Hollow photonic crystal cavities for integrated optical trapping

Photonic crystals are periodic nanostructures well known for their confinement properties of

light as explained in the first two chapters of this thesis. Light confined in smaller dimensions

can be very useful for applications that require large gradients of electromagnetic fields in

sub-wavelength spatial dimensions. The previous section has clearly illustrated the need

for increasing gradients with very low optical powers as much as possible to be able to trap

smaller particles efficiently and non-invasively. PhC cavities, with their field confinement and

the resulting gradients are promising candidates for such on-chip optical trapping studies

amongst the various possible integrated schemes. In general, cavities in photonic crystals

confine light in the medium with higher refractive index region, for example, in silicon. In the

case of particle trapping, it would be beneficial to tailor the cavity modes such that the light is

more confined in the lower index dielectric. Such cavities are hereby referred to as “Hollow

photonic crystal cavities” (HPhC) synonymous to the hollow-core fiber terminology. These

cavities are more suitable for trapping as they have a maximum field overlap with the lower

dielectric medium where the particles are expected to be present and moreover they provide

an in-plane geometric confinement along with a possibility of a symmetric gradient in the

vertical direction. Two cavities that belong to this HPhC family are studied in detail during the

course of this thesis.

3.3.1 Circular cavity

Mode profile of the cavity

The circular cavity is illustrated and shown in figure 3.7a and is one of the primary candidates

amongst hollow cavities for optical trapping. This interesting cavity has also been explored

by various other research groups [158, 208, 209] in previous studies. The FEM computed

electric field distribution along with the SEM image of the structure is shown in figure 3.7b

and c respectively. The defect diameter is approximately 700 nm while the other holes have

a diameter of 250 nm. The slab thickness is set to 220 nm and the lattice constant is chosen

to be 420 nm in order to obtain the resonance wavelength in the required range of operation

(1.47 to 1.66 µm) that is imposed by the measurement apparatus.

Figure 3.7: The circular cavity for resonant trapping. a) A graphic illustration of the device b)
Scanning electron micrograph image of the fabricated cavity c) Finite element methods computed
electric field distribution inside the cavity. Reprinted from a publication from this thesis [125].
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3.3. Hollow photonic crystal cavities for integrated optical trapping

The formation of confined modes inside a photonic crystal cavity defect was detailed in

chapter 1. In the case of a circular cavity as shown in figure 3.7, multiple modes are obtained

as a result of the geometry and symmetry of the structure. In order to visualize these modes, a

PWE method was employed to calculate the mode profiles lying within the bandgap of such a

triangular lattice with all the before-mentioned parameters.

Figure 3.8: In-plane electric field distributions of the multiple modes of a circular cavity computed
with a plane wave expansion method. The modes are numbered in an increasing order of resonance
wavelength. The mode that is of interest to our experiment is pointed out and is termed as M8.

These modes are numbered (M1, M2, ..M14) in the ascending order of their resonance wave-

length and are displayed in figure with their corresponding mode distributions. The mode of

interest (M8) is chosen because of the combination of its high Q-factor and overlap with lower

index medium as will become evident later in this chapter. Meanwhile, it is also necessary to

understand the nature of all these modes in detail.

As explained in chapter 1, the symmetry of the system determines the nature of these modes.

The circular defect in the lattice together with the bulk possesses a hexagonal symmetry and

this is expected to be reflected in all the defect mode profiles in figure 3.8. This is visually

evident only in the case of modes M7, M8, M9 and M14. In the case of all the remaining

modes, the subset of degenerate modes also preserve symmetry. These degenerate pairs

can be for example, M1 and M2 or M5 and M6. The orientations of these mode profiles can

hence be not fixed, as they are degenerate. The mode spacings of these multiple modes were

also computed with FEM and it was found that the non-degenerate modes had very distinct

resonance wavelengths and were well-separated from each other while the degenerate pairs

had the same frequency.
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Effect of infiltration of water

In the context of investigating the circular cavity for optical trapping in an aqueous medium, it

is important to check the optical properties of these devices after infiltration. The eigenmodes

of the photonic crystal are perturbed when there is an addition of high refractive index content

over the photonic crystal lattice. In the case of water, the global index increase causes a

decrease in the refractive index contrast. This results in a corresponding decrease in the

confinement of light and hence the quality factor. In the case of such a slight perturbation of

the index, the eigenfrequencies displace towards the dielectric band edge resulting in a red

shift of the resonance wavelength. This red shift of the wavelength is also related to the fact

that there was partial or complete infiltration of the membrane and the holes. The changes

in quality factors and resonance wavelengths due to infiltration (refractive index of water =

1.33) were computed with FEM and are shown in table 3.1. It can be seen that the farthest

shift of 48 nm in wavelength occurs only for the case of complete infiltration. The table also

shows an unusual increase in Q-factor in the case of water only inside the circular defect. This

observation is attributed to two possible explanations.

1. The presence of water only in the defect results in a slight increase in the local refractive

index that creates a gentler perturbation resulting in a increased confinement of light.

2. The loss components lying outside the air light line are altered in the presence of water

in the defect leading to reduction in these components outside the water light line.

These observations were also reported and experimentally verified with a specialized appara-

tus to inject water into individual holes of the photonic crystal in a previously reported work

by Intonti and co-workers [209] where this property was also used to selectively tune the cavity

resonance wavelength.

Infiltration condition Q-factor Resonance wavelength (nm)

Air everywhere 7600 1545
Water everywhere 3300 1593

Water only in circular defect 8700 1553
Water in all holes 8800 1567

Table 3.1: Infiltration of water in the circular cavity. The effects of full and partial infiltration of
water were numerically computed with finite element methods.

In order to experimentally verify the predictions of water infiltration on the cavity, the samples

were infiltrated with a syringe based “local infiltration method” as shown in figure 3.9 during

the initial days of the experiment. A hand-operated syringe was used to create a hanging

droplet that was slowly deposited on the sample surface. There was a delay of a few seconds

before each hole in the sample was infiltrated completely. The meniscus of the water droplet

can also be seen in the photograph image shown in figure 3.9. The syringe infiltration method
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was used as a characterization tool but could not be further used for particle injection because

of a number of compelling drawbacks.

• The droplet had an evaporation time of about 25 minutes that significantly reduced the

possibility to conduct controlled and repeatable optical experiments.

• In some of the devices, the receding of the droplet during evaporation destroyed the

waveguides and membranes either partially or completely along with the deposition of

particulate content on the coupling fibers.

• The total lifetime of the sample deteriorated due to this method resulting in not more

than 20 to 30 successful infiltration attempts.

Figure 3.9: Water infiltration over the circular cavity. a) Photograph showing the basic droplet
inflitration scheme implemented with a syringe. b) and c) Sample with the circular cavity devices
being infiltrated before and after. The meniscus of the droplet can be seen indicating complete
infiltration.

These problems were solved by the introduction of a custom-designed microfluidic membrane

with pressure controls designed and built by Dr. Descharmes during his thesis work [124].

These membranes were employed for later experimental studies with the trapping of particles.

The local infiltration of the droplet was simultaneously tracked with the help of the measure-

ment of the optical transmission as shown in figure 3.10. The transmission of the cavity in

atmospheric environment (is shown in red) shows a Q-factor of about 3500 around 1564 nm
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in wavelength. After infiltration with the droplet, with sufficient time given to infiltrate, the

broadening of the cavity resonance with a drop in Q-factor of about 800 is observed. The

resonance shift in this case is around 39 nm and is seen at 1603 nm. The onset of evaporation

instantaneously starts to blueshift the mode and it settles down at 4 nm redshifted than the

previous value. A slight increase in Q-factor is also seen in this case and is attributed to the

fact that there is a slight presence of water molecules in the holes or the circular defect. These

measurements are in good agreement with the predictions of the FEM calculations of table 3.1.

Figure 3.10: Initial experiments of water infiltration in the circular cavity using the local infiltration
method. A shift of approximately 39 nm is recorded in this case with a decrease in Q-factor from
3500 to 800. A slight red shift after evaporation can also be observed indicating possible presence of
water only in the holes.

The shift measurements in water are very specific to the cavity design parameters and it has

been observed over numerous measurements that this number varies from 35 nm to 47 nm

between different devices for the shift of resonance wavelength. This is attributed to the fact

that a change in the diameter of the circular defect induces small variations in the field overlap

ratio that results in a different shift value every time.

Behaviour of neighboring modes

As the circular cavity is a multiple mode system, it is important to ascertain the presence of

the other modes in the system and understand their behaviour due to the presence of an

external medium such as water. As a confirmation to the PWE calculations, the neighboring

mode profiles were first computed with the FEM and are shown in figure 3.11. The modes are

numbered similar to figure 3.8 and are in good agreement with one another in terms of spatial

distributions.

The effect of infiltration of water can be different for these modes as it depends on the local

field distribution of these modes. In the absence of a near-field measurement apparatus, it
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Figure 3.11: Finite element analysis of the neighboring modes. The electric field distribution of the
modes M7, M8 and M9 are shown that confirm with the previously shown plane wave expansion
calculations.

is not possible to ascertain these modes from their scattered field profiles. The information

that is accessible during experimentation is the resonance wavelength, the quality factors

and the mode spacings. In light of this problem, the above-shown modes were numerically

investigated for the presence of water as can be seen in the summarized results in table 3.2.

Mode number Wavelength Q in water

7 1500 nm 300
8 (Mode of interest) 1593 nm 3300
9 1653 nm 800

Table 3.2: Quality factors of modes in the proximity calculated with 3D FEM.

The results clearly show that the mode of interest has the highest Q-factor in water compared

to the neighboring modes. The previous mode M7 has a very low Q-factor and was not clearly

visible during our measurements in the experiment. The latter mode M9 cannot be coupled

with our configuration as it falls beyond the cut-off of the coupling W1 waveguide as will be

explained in the next section.

Property FEM computation

Q-factor in air 7600
Q-factor in water 3300

Spatial overlap with low index medium 0.30
Mode volume 0.21 µm3

Sensitivity 150 nm/RIU

Table 3.3: Finite element analysis summary of circular cavity properties.

In the presence of all these numerous modes, the mode M8 is the most suited one for the

trapping experiment as it has the right combination of a high Q-factor in the presence of

water, a small mode volume and a larger overlap ratio with the lower index medium. These

computed properties are listed in table 3.3.
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3.3.2 The slot cavity

It was known from the work of Almeida and co-workers [198] that a slot structure inside a

waveguide could confine light within the narrow slot in the low refractive index region. In

subsequent works [155, 210], this concept was taken and implemented within a standard W1

photonic crystal waveguide and the dispersion and transmission properties of this slot PhC

waveguide mode were demonstrated. The confinement properties of this slot mode had the

Figure 3.12: The physics behind the slot photonic crystal cavity mode. a) The two different slot
widths creating the barriers shown in the dispersion of the structure. b) Resonance shift of the cavity
on exposure to different gases. c) Wavelength shift as a function of refractive index change to derive
sensitivity. Reprinted from [159].

compelling advantage of a maximized overlap with the low refractive index medium that was

advantageous to light-matter interaction experiments. In order to achieve optical cavities with

this mode, the slot propagating mode structure had to be gently perturbed like in the case

of waveguide-based cavity designs where the perturbation to a W1 waveguide mode created

high Q-factor cavities, for example, A1 and A3 cavities by Kuramochi and co-workers [144].

This concept was implemented in a number of successful experimental demonstrations of

slotted photonic crystal cavity designs [53, 159, 211] where different approaches were used

to create the “reflecting perturbation”. One approach that was implemented in our research

group modified the size of the slot without changing the holes or the lattice spacing of the bulk

photonic crystal as shown in figure 3.12a. This structure was then exposed to different gaseous

media as shown in the emission spectra for three different gases in figure 3.12b. The large

interaction overlap with the lower index medium in a volume as small as 40 attoliters results

in an impressive refractive index sensitivity of 510 nm/RIU as shown in figure 3.12c [159]. The

spatial dimensions of this cavity makes it a viable candidate for trapping very small particles

of sizes less than 100 nm, which would lie in the range of the size of a single virus or proteins.

The cavity design was formed with a slot cavity width of 120 nm and a barrier slot width of 100

nm as shown in figure 3.13 along with its finite element calculated mode distribution. Further

computations were performed to study the various parameters defining the slot cavity. This

included the slot dimensions, cavity width, barrier width and the filling factor of the holes.

After parametric studies with PWE, the following design parameters were used to perform
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Figure 3.13: The slot cavity for resonant trapping. a) A graphic illustration of the device b) Scan-
ning electron micrograph image of the fabricated cavity also indicating the cavity region in a red
dotted line. The barrier region is shaded in blue. c) Finite element method computed electric field
distribution inside the cavity. Reprinted from a publication from this thesis [125].

the FEM computations: filling factor of 40%, lattice constant of 510 nm and a cavity length

of 3a. The barrier width was taken to be about 10 lattice constants. A larger barrier results

in increased confinement but also reduced coupling to the cavity mode in experimental

conditions.

Property FEM computation

Q-factor in air 51000
Q-factor in water 5500

Spatial overlap with low index medium 0.83
Mode volume 0.05 µm3

Sensitivity 480 nm/RIU

Table 3.4: Finite element analysis summary of slot cavity properties.

These structures were fabricated and experimentally measured. The cavities were very much

functional in air and displayed the predicted behaviour. Nevertheless, numerous difficulties

were experienced in characterizing these devices for water infilitration. The refractive index

sensitivity results in a shift of 160 nm for the case of water (in agreement with the FEM

calculations), which is almost the entire range of measurement window possible with the

tuneable laser. Lithographic tuning was employed to take this into account that depended on

“blind” measurement of the cavity mode that was expected to appear after the infiltration was

performed. Cavity modes that were expected to appear in the measurement window appeared

to have extremely low quality factors and were inadequate to measure.

The reasons leading to the problems in observing the mode are yet to be fully investigated.

However, as mentioned before, there are other slot cavity designs using a different mechanism

to create the reflecting perturbation such as tuning the lattice holes to create a heterostructure

or modulating the hole radius near the slot. It is important to note that these research groups

have reported slot cavities in infiltrated environments involving liquids other than water such

as sugar solution [53] and Hexane [212], albeit with a huge decrease in their Q-factors.
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3.4 Resonant optical trapping in a circular cavity

3.4.1 The optofluidic sample and light coupling

The optofluidic sample was fabricated and assembled by my collaborators Dr. Descharmes

and Dr. Diao and the extensive description of the process can be referred to from their

respective theses [213, 214]. A brief description of the processes are as follows. For the silicon

chip, the dimensions of the chip were 30x12 mm as can be seen in figure 3.14. It has the

devices fabricated on a SOI wafer with a 220 nm silicon layer and a 2 µm sacrificial silica

layer. The PhC pattern was defined with a photoresist (ZEP520) with e-beam lithography and

after development, dry etching was performed with a gas mixture of SF6 and C4F8. This was

followed by the final step of HF acid wet etching that resulted in a free standing membrane.

Figure 3.14: Left: Photograph of the ultrathin PDMS membrane before positioning on the silicon
surface. Right: The optofluidic trapping chip after final assembly showing the input block, PDMS
membrane with valves and the cavities beneath the membrane. Reprinted from a publication
from this thesis [124].

The PDMS membrane was fabricated by a standard soft lithography process [215]. A first PDMS

layer, 30 µm thick, was spin coated onto a silicon wafer comprising a positive photoresist

(AZ9260) mould. Meanwhile, a second PDMS membrane, 140 µm thick, was spin coated onto

a negative photoresist (SU8) mould on a silicon wafer. The thicker layer, including the control

channels, was then deposited on the thinner layer, which carried the infiltration channel

(120 nL). The design of the microfluidic layers along with the sample position is shown in

figure 3.15. The assembled microfluidics layer was finally aligned and placed on the photonic

crystal chip and a 4 mm thick PDMS interconnect was added to ensure stable injection and

pressure control.

The cavities are coupled from the exterior environment with the help of a tuneable laser source.

A pair of lensed fibers are used to couple the light in and out of the system in a standard end-

fire configuration. Standard ridge waveguides are engineered that slowly taper down to the

photonic crystal sample to match the modes of the structures. This is then coupled to a
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Figure 3.15: The two layers microfluidic membrane and photonic crystal sample. The full PDMS
membrane has two membranes on top of each other. A thin membrane (TNM) of 30 µm with
the transport channel and a thicker membrane of 130 µm with the control channels. Reprinted
from [213].

propagating mode inside a photonic crystal waveguide, which in turn, couples light into the

circular cavity. This arrangement is illustrated and also shown in the SEM image of figure 3.16a

and b. The footprint of the device is approximately 60 µm x 10 µm. The tuneable laser diode

has an operating range of 1470 nm to 1660 nm and this limits the wavelengths range allowed

for the cavity design. The following conditions have to be met before the experiment can be

performed on the device.

1. The even mode of the W1 waveguide falls in this measurable range of the input laser

window along with its observable cut-off.

2. The cavity mode is placed in wavelength spectrum such that it is possible to observe it

before and after the infiltration of water.

3. The cavity mode is placed sufficiently far from the slow light localization modes of the

W1 even mode.

4. The cavity mode is coupled in the linear fast light region below the light cone to ensure

maximum light coupling.

To fulfill the above-said conditions, the diameter of the circular defect, the width of the PhC

waveguide, the lattice constant and the filling factor of the bulk lattice are the free parameters

that are to be calculated precisely. In the case of a triangular lattice, it is found that the “useable”

bandwidth in the W1 waveguide is only about 30 to 40 nm. The cavity is coupled using a

side-coupling configuration where the evanescent tail of the propagating mode tunnels into

the cavity mode. The strength of the coupling is determined by the spacing and three different

distances were experimentally tested involving 3, 4 or 5 lattice rows between the cavity and

the waveguide. The increase in distance corresponds also to an increase in the Q-factor of

the cavity. On a careful consideration of all these parameters, a fully functioning device was

designed and fabricated.
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Figure 3.16: Coupling configuration of the circular cavity. a) Illustration of the side-coupling scheme
for the optical trapping experiment. b) Scanning electron micrograph image showing the device
footprint and the access waveguide. c) Fourier imaging of the modes from the top scattered light
from the sample showing the cavity mode and the localized slow light modes. d) The simultaneous
transmission spectra showing a clear dip at the cavity wavelength followed by the sharp cut-off of
the W1 even mode.

In order to characterize the device, a typical end-fire transmission setup was used along with

simultaneous measurement of surface light scattering from the cavity. The dispersion and

transmission characteristics are shown in figure 3.16c and d respectively. The sharp line seen

around 1560 nm corresponds to the cavity mode under study. This is also evident in the

transmission plot where there is a slight dip observed. As the W1 mode approaches its band

edge, the onset of slow light regime begins and localization effects can be seen.

The Q-factor of the cavities range from about 3000 to 7000 depending on the number of rows

of coupling. The farther the cavity is, the larger the intrinsic Q and lesser the coupling Q. The

dispersion of the W1-mode and the cut-off have been numerically confirmed with GME while

the Q-factors were computed with FEM. The mode volume of this circular cavity as reported

in chapter 2 is 0.21 µm3. This value could not be verified experimentally as it would require

other methods such as a near-field characterization technique [216, 217].

However to confirm the mode symmetry, far field measurements were performed and a pattern

with three planes of symmetry was obtained confirming an underlying hexapolar mode. It

can be clearly seen in figure 3.16 that the device fully exhibits all the expected properties.

The transmission of the device has also been further improved by the application of a T iO2

antireflection coating on the surface of the facets to increase the light coupling and minimize

the Fabry Perot reflections. The qualitative and quantitative agreements with the theoretical

and experimental results has been a key enabler in advancing this experiment rapidly as it

was quite useful for troubleshooting and for obtaining critical feedback.
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3.4.2 Ultra low power resonant optical trapping

The resonant optical trapping experiment is performed in the following manner. A diluted

solution of polystyrene particles (refractive index 1.59, diameter 500 nm) is injected inside

the microfluidic channel. The velocity of the particles at this stage, without extra flow control

can reach several millimeters per second. It is therefore crucial to be able to slow down and

eventually arrest the flow of particles in the vicinity of the HPhC devices. A set of pneumatically

controlled valves positioned above the entrance and exit of the channel has been integrated

for this purpose. Typical working pressures of 7 PSI in the valves are usually more than enough

to arrest the particles, leaving them in their natural Brownian motion. In the meantime, the

HPhC cavities are resonantly excited through the side coupled optical fibers.

At this juncture, the particles are either free to be trapped by the confined optical field in

the cavity volume or can be directed towards the HPhC cavity by auxiliary optical tweezers

operating from the top. It can be seen from the calculated mode profile that the cavity field

extends over a few hundred nanometers above and below the surface of the slab. This allows

for the capturing of a particle in the vicinity of the circular defect. The field gradient along the

vertical direction gives rise to a restoring force pulling the particle towards the central plane.

For appropriate excitation powers, it can then remain stably trapped for very long times in the

order of tens of minutes without any sign of apparent structural damage or photobleaching.

This can be observed in figure 3.17 for the case of a 500 nm sized particle.

Figure 3.17: Snapshots of resonant optical trapping in a hollow cavity. A particle is guided into
the trap using the auxillary tweezers and they are switched off at t=0. The particle remains stably
trapped for about ten minutes. The particle escapes when the tuneable laser source is turned
off after ten minutes and it recovers brownian motion. Reprinted from a publication from this
thesis [123].

The video files associated with the trapping of 500 nm sized and 250 nm sized particles can

also be found in the supplementary material of these publications from this thesis [123, 124].

In the above experiments, the trapping wavelength is an important characteristic and detailed

analysis shall be presented in the later section on back-action. Here, the experiment was

performed on a slightly red shifted value from the unloaded wavelength. Regarding the

trapping of the particle, it is to be noted that the particle remained steady in spite of a constant

flow in the PDMS channel that showed the robustness of the trap. The precise measurement

of the stiffness of the trap is yet to be performed and is part of ongoing experimentation. The

hollow nature of the cavity permits the particle to access the inner field of the cavity where
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it is suspended away from any planar surface. The particle can also be seen in constrained

brownian motion during the acquisition of the video that shows that it is not attached to the

inner side walls of the cavity. The transmission measurements reported in the next section

throw more light on this matter.

As it can be seen in the supplementary video of [123], the circular cavity allows for the trapping

of only one particle at a given time. This exclusivity arises due to three factors. Firstly, the

geometric limitation imposed by the circular cavity permits only a single particle in the stable

region. Secondly, the trapping volume comprises of a cylinder of radius: 350 nm, height: 600

nm, and volume: 0.2 µm3, corresponding to the volume where the particle experiences strong

optical forces. Thirdly, in the presence of two or more particles, the perturbation caused by

the addition of dielectric material in the cavity would cause a large shift in the resonance

rendering the decoupling of optical energy that would scale down the optical forces rapidly.

Figure 3.18: Illustration of the optical interfaces with the cavity to estimate the guided power.
Reprinted from a publication from this thesis [123].

In terms of power required for trapping, stable trapping was achieved for about 2 mW of

input power from the tuneable laser diode. There was no use of any optical amplifiers (like

EDFAs) in the path of light coupling. It is possible to accurately evaluate the amount of

guided power in the W1 waveguide next to the cavity using experimental values for waveguide

propagation losses and reflection coefficients at the interfaces. The various interfaces are

shown in figure 3.18. The hollow cavities are coupled via a PhC W1 waveguide, which in turn,

is coupled with standard ridge waveguides through an endfire setup. In order to estimate

the guided power in the middle of the W1 waveguide, the coupling fractions at the ridge-air

interface (Γr i d g e ) and at the ridge-W1 interface (ΓW 1) need to be ascertained. With the use

of the parameters listed in table 3.5, the guided power is then calculated by using the simple

algebraic expressions shown below.

PW 1 g ui ded =
√

(αW 1LW 1)ΓW 1

√
(αr i d g e Lr i d g e )Γr i d g e Pi nput (3.21)

For 1 mW input power, a guided power in the middle of the waveguide is estimated to be

62 µW. However in a symmetric system, the power in the middle of the system would simply
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Parameter Value

Length of ridge waveguide on either side 6 mm
Length of PhC W1 waveguide 60 µm
Loss in ridge waveguide: αr i d g e (best case measured) 3 dB/cm
Loss in PhC W1waveguide: αW 1 (best case measured) 24 dB/cm
Coupling fraction at the ridge: Γr i d g e (measured) 0.13
Coupling fraction at the W1: ΓW 1 (measured) 0.65
Output laser power: Pi nput (measured) 1 mW
Power at the output fibre: Pout put (best case measured) 4 µW

Table 3.5: Parameters used for the estimation of guided power.

be the square root of the product of the input and output powers.

PW 1 g ui ded =
p

T Pi nput =
√

Pout put

Pi nput
Pi nput =

√
Pi nput Pout put (3.22)

In the experimental setup, for an output power of 4 µW and input power of 1 mW, the power in

the middle is 63 µW, which is in close agreement with the estimation of the previous method.

Note that the previous equation can be extended to the case of an asymmetric coupling

constant, if the experiment can be repeated swapping the input and output ports assuming

the fact that the cavity power remains constant.

PW 1 g ui ded =
√

P→
i nput .P←

out put =
√

P←
i nput .P→

out put (3.23)

This procedure allows for the estimation of the trapping guided powers which is as low as

120 µW for a 500 nm particle in order to maintain stable trapping for tens of minutes. In

comparison with standard optical tweezers, this corresponds to a decrease in trapping power

of approximately three orders in magnitude. In some cases, it was possible to observe trapping

for a few seconds for guided powers as low as 37 µW.

3.4.3 Particle-cavity perturbation

The previous subsection clearly shows the influence of the cavity field over the motion of the

dielectric particle. The converse effect is the modification of the field due to the presence

of the particle in the vicinity. As explained in the case of water infiltration, the addition of

dielectric content to the system alters the eigenfrequencies. As the perturbation is quite small

for dielectric particles or media, it does not strictly alter the field distribution. However, this

will not be the case for the presence of metallic particles, which is beyond the scope of this

thesis.

The addition of a single particle to a standard PhC cavity like an L3 cavity has a negligible

influence on its eigenmode because of the much reduced overlap ratio between the particle
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and the field. This is no longer the case for the circular cavity as can be seen in figure 3.19a.

In figure 3.19b, the FEM calculated resonance wavelength shift for a single 500 nm sized

Figure 3.19: Finite element calculation of the resonance shift due to vertical displacement of particle.
a) Shows the vertical extent of the field distribution in a cross section plot b) The variation in
resonance wavelength is shown as a function of displacement from the center along the vertical
direction from the central plane of the slab.

polystyrene particle entering the cavity is shown. The origin corresponds to the center of the

slab in the vertical direction and the half silicon slab thickness of 110 nm is highlighted in

shaded grey. The particle shifts the resonance wavelength to about 2.6 nm when it is placed at

the center of the slab. It has to be noted that the linewidth of the cavity mode in computation

is 0.4 nm. This suggests a shift of the order of 6 times the linewidth of the cavity mode. This

unprecedented value for a single dielectric particle is achieved due to the specific field of this

circular cavity combined with the hollow nature. The cavity mode regains its original value as

the particle is displaced more than 500 nm away from the center of the slab. The tail of this

shift plot also shows the extent of the influence of the cavity field over the particle. This could

turn out to be a crucial parameter when back-action effects come into play as will be discussed

in the next subsection. The particle is free to move in three dimensions within the cavity. The

diameter of the particle is 500 nm and the diameter of the circular defect in this computed

model is 640 nm. This allows for a displacement radius of 70 nm within the plane of the slab

center for the particle. As the field distribution is much more stronger near the edges of the

cavity walls, a larger shift on top of the before-mentioned 2.6 nm is expected for this case. A

set of symmetric points were chosen in order to cover all the possible displacements within

this displacement zone and the shift calculations were performed as shown in figure 3.20.

The map of the shifts indicate a 0.3 nm additional shift along the edges of the cavity walls

and a fluctuating shift near the center corresponding to fine changes in the overlap of the

particle and the field. It can also be seen from the mode distribution of the circular cavity

in figure 3.7 that exactly at the center of the cavity, there is no field present. In the case of a

simple particle presence in a cavity volume, a static displacement in resonance wavelength
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Figure 3.20: In-plane displacement and resonance shifts in circular cavity. a) Illustration of a 500
nm particle in the cavity allowed to move freely. b) The allowed displacement radius for the cavity
diameter of 640 nm in the numerical model. c) The map of the in-plane resonance shifts for the
corresponding displacements inside the hollow cavity exactly at the center of the slab.

Figure 3.21: Experimental setup to probe particle cavity perturbation. Two tuneable lasers are used
with a 90/10 coupler. The stronger (trap) laser is used to hold a particle while the sweep laser is used
to probe the spectrum of the cavity mode with a lock-in detection scheme.

is expected. However, a particle in Brownian motion in water is expected to have Brownian

motion with characteristic times of typically a millisecond. In comparison to this the cavity

mode transition is instantaneous owing to the picosecond scales required to build up the

photons. In order to verify these predictions experimentally, a second experiment involving

two tuneable lasers was set up as shown in figure 3.21. The two lasers are coupled to the

structure using a 90/10 coupler. The stronger laser is used to trap a particle and hold it in the

cavity while the weaker laser is used in the scan mode with very low powers as a“non-invasive”

probe to track the spectrum of the cavity mode. The spectral range was 10 nm surrounding

the unloaded wavelength of the cavity. The weak signal of the sweep laser cannot be recovered

from the output of the transmitted light as it is lost in the stronger trap laser signal which is

also simultaneously guided out. In order to overcome this problem, a simple lock-in technique

was implemented.

The scanning frequency of the sweep laser was 1 Hz and the output signal was monitored

using a lock-in detection scheme. An external modulator was used to modulate the sweep
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laser at 1 KHz and a one millisecond integration time was used to measure the signal. The

Figure 3.22: Measured resonance shift due to particle cavity perturbation. a) The dynamic pertur-
bation as a function of time. A snapshot is taken every one second for 30 seconds while the particle
is trapped by the trap laser. The redshifted behaviour of the resonance can be seen. The oscillation of
this resonance is a result of the brownian motion of the particle b) Two snapshots from a) are seen
showing a shift of 1.5 and 1.8 nm respectively. Reprinted from a publication from this thesis [123].

experimental measurement of this dynamic resonance shift is shown in figure 3.22a. The

plot shows the transmission dips of the cavity mode in dark blue. The snapshots in time

correspond to the scanning rate of the sweep laser. The particle is held within the trap for 30

seconds and a clear fluctuation can be seen in the transmission dips. After the trap laser is

turned off, the particle leaves the cavity volume and the steady state initial position of the

resonance wavelength is restored. These oscillations of the transmission dip clearly indicate

the suspended nature of the trap and that the particle is not stuck to the inner walls of the

cavity. A single snapshots in this trapping time window is shown in figure 3.22b where a shift

of 1.8 nm is shown corresponding to a position of the particle within the cavity volume. The

linewidth of the cavity mode in the experiment is about 0.7 nm in water. There is a visible

effect of increased broadening in the snapshot and this is attributed to the slow acquisition

time of the measurement setup compared to the motion of the particle. The slight discrepancy

observed between the numerical shift value of 2.9 nm and experimentally measured value of

1.8 nm can be attributed to the following factors.

• It can be seen that the linewidth of the experimental and numerical modes are not

similar and the overlaps are also dependent on the exact size of the circular holes that

deviate during the fabrication procedure. Also the effect of the coupling waveguide has

not been taken into account in the calculations.

• The particle sizes have a co-efficient of variation of about 5% corresponding to 25 nm

uncertainty for a 500 nm sized particle.

• The refractive index value used for the particle during computation was 1.59. This value

was characterized at 588 nm wavelength and the exact value of index at 1.55 µm is not

known from the manufacturer.
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3.4.4 Particle-cavity back-action

In the previous two subsections, the consequences of the effect of the field on the particle

and the converse effect were studied. This leads to the expectation of the existence of a

mutual coupling mechanism between these two interactions leading to “back-action” effects

between the mechanics of the particle and the trapping optical field. The original term

“back-action” was coined for describing the quantum mechanical problem of measurement

that stated the act of measurement disturbs the system under study. A second term called

“Dynamical back-action” has been used in the context of coupling between a mechanical

oscillator and an optical field. This has lead to interesting demonstrations of optical cooling

of the mechanical oscillator [218]. In an other experiment involving 2D photonic crystals,

the interaction between the mechanical vibration modes of the membrane and the cavity

optical field was investigated [49]. However the interaction of a single suspended nano particle

within an interacting field has never been reported even though it has been theoretically

investigated [219, 220]. In our resonant optical trapping experiment, the increased interaction

Figure 3.23: Numerical emission spectra corresponding to particle position. A snapshot of all field
intensity profiles for the corresponding displacements in the vertical direction.

density between the particle and the field allows for observable back-action effects. This

also leads to a situation where the particle can assist itself in the trapping process, in the so

called “self induced trapping” introduced by the work of Barth and Benson [221]. The key to

observing this effect is the renormalization in the field intensity due to the movement of the

particle. In the simplified case of vertical displacement, this can be seen as a dynamic field

build-up. A snapshot of all field intensity profiles for the corresponding displacements in the

vertical direction can be seen in figure 3.23. The eigenfrequency analysis was performed for

the different positions to obtain these distributions. In the next step, a constant input power
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was sourced into the cavity with the help of a plane wave. A stationary analysis was performed

to understand the behaviour of the forces experienced by the particle further. As explained in

the section on optical forces, it is important to take into account all the fields involved in the

entire system to have an accurate description of these forces using the Maxwell’s stress tensor.

The Maxwell’s stress tensor was evaluated over the surface surrounding the particle to obtain

the forces. The value of the force was then normalized to one Watt power dissipated from the

cavity, which can be obtained through the following method.

Q = 2π f0.EStor ed

Pdi ssi pati on
(3.24)

EStor ed =
Ñ

V

Edensi t y (3.25)

By using the values of the numerically computed Q-factor and the energy stored in the cavity

by integrating the cavity volume, we can obtain the power dissipation in the cavity, which

was used as a normalizing factor. The computed behaviour of these forces can be seen in

figure 3.24. It shows both the in-plane and out-of-plane force components in the same scale.

The forces were obtained as the input wavelength was slowly tuned from the empty wavelength

to the loaded wavelength in discrete steps. Each time the source wavelength was changed,

Figure 3.24: Finite elements computation of trapping forces within the hollow circular cavity. The
in-plane and out-of-plane force distributions in the left and right panels respectively for various
values of detuning are presented. Reprinted from a publication from this thesis [123].

the particle was moved from the center of the slab towards the exterior and the forces were

evaluated for all these points in order to make this plot. This is also illustrated in a small

graphic in the inset of figure 3.24. The detuning of 0 nm corresponds to the empty resonance

wavelength in the presence of water and detuning of 2.6 nm corresponds to the case when

the particle is exactly in the center of the PhC slab in reference to the z-axis. The striking

feature of this plot is the anharmonic nature of the force plots (along the z-axis) that is purely

a result of the renormalization of energy in the cavity. Each detuning results in a different
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Figure 3.25: Escape energy calculation for the particle resonant trap. Contribution from a) out-of-
plane force components and b) in-plane components of the respective force fields with respect to
distance, calculated for a range of detuning values.

spatial position for which the force reaches a maximum value indicating the dynamic nature

of the forces involved. The case of 1.5 nm detuning corresponds to the maximum restoring

force obtained that is 600 pN/mW for a distance of 200 nm from the center of the slab. The

detuning of 2.6 nm has a force profile along the vertical direction that looks qualitatively

similar to the one that is generally obtained for a conventional tweezer. It can also be seen

that for initial detuning values, only minimum forces are experienced by the particle. The

Figure 3.26: Two different trapping regimes and total escape energy. a) Illustration of the first
regime of "optical cage" where the particle enters the trap and encounters no field but is pushed
back to the center if it displaces outside the central volume due to field build up. b) The sum of the
horizontal and vertical escape energy profiles giving a unique particle-cavity trapping signature. c)
Illustration of the second regime of farther detuning values where the particle is pushed towards the
field maxima near the inner walls of the cavity.

scenario with the in-plane forces is much more subtle. One can see that the absolute value

of the forces themselves reach very high values, due to the fact that the gradients are much

stronger for the field distribution in the plane. Nevertheless, these values are reached in
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very short distances and act in such a way that the particle is pulled towards the maximum

field density region, i.e., towards the inner sidewalls of the cavity. In order to delve further

into the mechanism of the forces, the calculation of the escape energy was performed by

integrating the forces for the displacements in the vertical and horizontal directions. This is

shown in figure 3.25. The sum of both the contributions is shown in figure 3.26. The plot shows

Figure 3.27: Behaviour of trapping forces with respect to position of particle. Two arbitrary positions
were chosen and the horizontal and vertical force components are plotted for various detuning
values. The operation in different regimes can be clearly seen.

some interesting properties of this trap. Firstly, the trap is active only for a selected range of

wavelengths as is expected from a resonant nature. The width of this possible wavelengths are

wider than the linewidth of the trapping cavity field. Also, the out-of-plane force component

shows an inverted bell like shape centered around 1.5 nm where the particle was found to

have experienced maximum force in the vertical direction. On the contrary, the in-plane

escape energy has no contribution in the initial detuning values but only starts to have an

effect at farther detuning values. This indicates the presence of two possible regimes as

indicated in figure 3.26. In the first regime, corresponding to detuning values until 2 nm, the

out-of-plane contribution is more predominant. Here, the particle also experiences forces

only when it is outside the trapping cavity volume. If it is displaced into the zone, there is no

field present anymore due to the renormalization resulting in free brownian motion. This

behaviour is an exciting and novel property of the hollow circular cavity resulting in a so-called

“one-dimensional optical cage” wherein the particle is trapped with very little optical energy.

In the second regime, corresponding to detuning values of above 2 nm, the out-of-plane

contribution decreases while the in-plane effect becomes more predominant and it starts

pushing the particle towards the inner sidewalls of the cavity resulting in a situation that is

equivalent to conventional optical tweezers. However, both these regimes qualify to be termed

as “self-induced trapping” scenarios as they influence their own trapping mechanisms. The
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Figure 3.28: Experimental measurement of the wavelength dependent escape power. The minimum
power required to maintain the trap is measured for various detuning values. Two trapping regimes
are seen with very low trapping powers in their minima. Reprinted from a publication from this
thesis [123].

behaviour of the regimes is further elucidated in the specific case of two arbitrarily chosen

positions as shown in figure 3.27. In the case of position 1, the out-of-plane component

attains its maximum value for farther detunings, while this is reversed for the case of position

2. Similar behaviour can be seen for the in-plane components confirming the optical-cage

behaviour explained before. The complex shape of this escape energy profile is extremely

specific to the combination of the cavity field and particle size and refractive index. This

unique signature needs to be further explored for the understanding of the trapping stiffness

and possible presence of non-conservativity in the system [222].

The realization of an experiment to demonstrate the back-action phenomena is non-trivial

and requires careful thought on the measurement parameters involved. It is also true that

several other experiments could in principle be performed to explore this mutual coupling

between the particle and the cavity. In our version, the power required to keep the particle

until escape was chosen as the quantity to measure in the lab. This measurement is done

as follows. A 500 nm particle is captured and held with the trapping laser at a chosen input

wavelength corresponding to a detuning value. The input power is slowly decreased until

the trap breaks down and the particle leaves in free brownian motion. This power value is

termed as "Escape threshold power" and is plotted as a function of detuning in figure 3.28.

The detuning values were chosen from -1 nm to 3 nm. The graph shows that a minimum of

37µW is sufficient to trap a particle for a detuning value of 0.8 nm. It also shows remarkable

similarities to the observations predicted in the numerical model regarding its shape and

the existence of regimes even though a direct correlation of the numerical and experimental

graphs cannot be rigorously made. The experimental graph also clearly shows three features.

Firstly, only a restricted range of wavelengths that allows for trapping that springs from the

resonant nature of the field. Secondly, the trapping range is red shifted from the empty cavity

wavelength indicating the presence of additional dielectric media. Thirdy, the two distinct

minima and an indication of the presence of two separate trapping regimes.
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3.4.5 Single particle analysis and manipulation

The particle induced perturbation can be used to design a simple and efficient single particle

detector. The prior knowledge of this interaction allows us to excite the device at a slightly

redshifted value. In the presence of a single particle, the perturbation is instantaneously

detected and the original wavelength is restored after the event. This leads to a large and clear

spike in the transmission measurement of the cavity as shown in figure 3.29. This output can

be fed to a simple Schmitt trigger counter leading to a very efficient on-chip particle counter.

Figure 3.29: An all-optical single particle detector. A large spike is observed at the passage of a
particle when the input wavelength is detuned from the cavity resonance.

This transmission signal can also be used to track the position of the particle within the cavity

volume and can later enable a particle-position tracked feedback trapping scheme. This will

be undertaken in the future experimental developments in our research group. In order to

extend the capabilities of the resonant optical trap in an integrated environment, arrays of

hundreds of these devices are envisaged.

Figure 3.30: Calculation of array of optical traps with circular cavity. a) to c) showing the cavity
field profile remaining fairly unchanged but a different resonance wavelength (1597 nm, 1572 nm
and 1545 nm respectively) as the defect radius is increased.

To design this array, the minimum separation of hole distance without affecting the mode

profile and quality factor had to be assessed. A parametric numerical study was performed

with finite elements that allowed us to determine that six columns of holes were sufficient
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to have functional cavities. The wavelength of operation was tuned by slightly varying the

diameter of the large circular defect. In figure 3.30 the diameter was progressively increased

by 40 nm for the three cavities. The diameters of the defect hole are 685 nm, 725 nm and

765 nm respectively. This resulted in the wavelength of operation as 1597 nm, 1572 nm and

1547 nm respectively for the three cavities. It can be seen that the larger diameter defect blue

shifts the cavity resonance wavelength as the mode slowly moves towards the air band in

the bulk dispersion of the photonic crystal. This can also translate to the fact that there is a

compromise between the Q-factor achievable and the increase of the diameter of the hole as

it leads to more losses and hence a lower Q-factor.

Figure 3.31: Wavelength selective resonant trapping scheme. a) SEM micrograph of a PhC structure
comprising of two independent cavities, 720 nm and 700 nm in the diameter for cavity 1and 2
respectively. b) Schematic illustration of the spectral separation of the two resonant wavelengths
1568 nm and 1578 nm. c) Snapshots demonstrating a particle being trapped in cavity 1 until the
excitation wavelength is switched to second wavelength, leading to the release of the particle. d)
Similar demonstration as in c) with cavity 2. Reprinted from a publication from this thesis [124].

The amount of perturbation caused by the particle to the cavity is central to the above-

demonstrated features. The differentiation of this perturbation gives access to detecting and

trapping particles by merely adjusting the excitation wavelength. In figure 3.32 the variation

of the cavity resonance to particle size, refractive index and shape has been numerically com-

puted and clearly illustrates this trend. The FEM solver solves for the global eigenfrequency of

the cavity-particle system by solving the Maxwell’s equations in the computational volume. It

is possible to obtain the resonance shifts by tracking this global eigenfrequency for different

values of refractive index of the particle. It is important to note that in the case of a single 500

nm particle, the resonance shift lies in the order of the experimental cavity linewidth of 0.8

nm. This is well within the reach of the achievable resolution limit for state-of-the-art on-chip
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spectrometers [223, 224].

Figure 3.32: Effect of refractive index and size variation of particles. The particle-induced perturba-
tion resulting in a resonance shift is computed for a). Particles of a similar refractive index (1.59)
but varying diameters b). A 500 nm particle with varying refractive index and c) resonance shift
associated with ellipsoidal particles with different aspect ratios but with a constant refractive index
(1.59) and volume. The first point on the left corresponds to a 400 nm sphere. Reprinted from a
publication from this thesis [124].

This property can be used to separate particles of different sizes or to separate particles of

identical sizes but different refractive indices. In the case of the range of values shown in

figure 3.32, the induced perturbation remains quite small and the shift response is a linear

function. From this figure, the single particle sensitivity for the detection of a 500 nm particle

shows a value of 11 nm/RIU. From this number, the minimum refractive index change that

could be measured with the cavity lies in the order of 0.02 RIU assuming a half-linewidth

resolution (numerical Q= 3300). This also shows that such a system might also be capable

of separating particles that are identical in volume and refractive index but with different

form factors. By performing refractive index measurements, we demonstrate a completely

label-free single particle detector platform.
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3.5 Discussions and outlook

3.5.1 Summary of developments from this work

The contributions of this work to the optical trapping domain are summarized below.

• Resonant optical trapping of a single dielectric nanoparticle (sized from 250 nm to

500 nm in diameter) has been demonstrated in a hollow circular (diameter:700 nm) 2D

photonic crystal cavity. The properties of this cavity allows for the input powers to be as

low as 120 µW for the permanent trapping of 500 nm sized particles.

• The perturbation of a single 500 nm particle on the cavity eigenmode gives an unprece-

dented experimental shift in the resonance wavelength of 1.8 nm, which is more than

twice the linewidth of the cavity mode itself.

• The existence of mutual coupling between the trapped particle and the cavity mode

leads to interesting back-action assisted trapping effects. This coupling has been probed

via the wavelength dependency of trapping powers around the cavity resonance wave-

length.

• The existence of two distinct trapping regimes depending on the detuning from the

native resonance has been revealed. One of these regimes behaves like the conventional

optical tweezer while the other exhibits a new behaviour (1D optical cage), wherein

there is no optical power in the cavity when the particle is trapped in the cavity volume.

• A simple scheme involving the transmission signal of the device has been used to detect

single particle presence and count the particles based on the input detuning. In addition,

appropriately tuned cavities were placed in the same device to demonstrate wavelength

selective cavity trap arrays (separated by 10 nm in wavelength spectrum).

3.5.2 A comparison with other integrated platforms

Optical trapping and manipulation has been implemented in other integrated chip-scale

platforms such as nanobeam cavities, ring resonators and microrings. The salient features of a

selection of these systems are mentioned in table 3.6 for a quick comparison. The case of a

conventional tweezer for a 500 nm sized particle is also mentioned for comparison purposes.

The reported power values are taken from the respective references. A substantial drop in the

trapping powers from the mW regime (conventional tweezers) to the µW regime (integrated

traps) in all the cases underlines the importance of integrated trapping platforms in general. It

can also be seen that the hollow cavity based trap from this thesis performs extremely well in

terms of both extended trapping time and lower input trapping power as this stems from the

advantage offered by the inner field of the hollow cavity volume. The hollow cavity also offers
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exclusive trapping as there can be only one particle present inside the cavity volume at any

given time, which is not the case with other systems.

Type of device Power Trapping
time

Particle size Measured prop-
erties

Conventional
tweezer [225]

10 mW to 100 mW - 500 nm Trapping

Silicon mi-
croring res-
onator [199]

3 mW guided
power

several min-
utes

1.1 µm Resonance
shift, trapping

Nanobeam cav-
ity [202]

300 µW input
power

1 minute 1 µm Trapping

Hollow circular
cavity [This the-
sis]

120 µW guided
power

> 20 minutes 500 nm Resonance
shift, trapping,
back-action,
array trap

Table 3.6: A comparison of various integrated single-particle trapping platforms.

3.5.3 Future directions

This resonant optical trapping platform has opened up a lot of exciting paths in terms of both

theoretical and experimental work.

Theoretical aspects of back-action trapping

In order to understand the resonant trapping mechanism during this thesis, optical forces

computed via the Maxwell’s stress tensor using FEM was used. It is important to investigate

whether the back-action effects seen in the system leads to a complete theoretical model

that incorporates all the effects, such as the models used in atom traps or optomechanical

systems with back-action. It has been shown in this thesis that the trapping field intensity is

changed by the particle position resulting in a process of irreversible exchange of momentum

and energy between the particle and the optical field. In a second point of view, it can be also

viewed analogously to a parametric oscillator, in which energy can be transferred between

the pump and the signal. The physics behind these non-conservative trapping forces [222]

remains to be explored. This will eventually lead to the understanding of the particle lifetime

in the trap and if it fits the Kramer’s escape rate or if alternate descriptions will be required.

A more detailed calculation is to be performed to understand the dynamic response of the

system along with hydrodynamic effects as was attempted in the case of a trapped particle in

Brownian motion [226].

Optical cooling schemes

There are two possible mechanisms to cool down a particle: active and passive cooling. The
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basic approach involves locking of the trapping laser frequency with the shift of the particle

in the trap. This will result result in a stiffening of the trap and with additional dephasing, an

effective viscous force can be generated that can increase the trap stiffness if the particle goes

away and decreases when the particle moves inside the trap. It is to be investigated whether

the current system where the particle in a fluid environment can allow this possibility. On

the other hand, cooling of a particle in vacuum with the feedback method [227] can also be

investigated if the setup can be extended to spray single dielectric particles into the cavity

region in a controlled manner.

Cavity design

The circular cavity was the only case implemented thoroughly during this thesis. However,

more specifically suited designs need to be explored that can maximize overlap or have other

special properties such as concentration of field in the center of the cavity. As it is important

to preserve the overlap ratio, high quality factor in water and also the mode volume, the

parametric optimization space was quite limited. For example, in the case of figure 3.33a, a

single hole was moved towards the circular defect by 100 nm and it resulted in the shown field

distribution with a computed Q in water of 1200. In the case of figure 3.33b, three holes in

Figure 3.33: Variation of the hollow circular cavity design by modification of surrounding holes
resulting in a modified field profile and slightly increasing the field overlap ratio with the circular
defect.

the vicinity (six together including symmetric holes) as shown with arrows were displaced by

50 nm towards the circular defect. This resulted in the field distribution shown there with a

Q-factor in water of about 1400. Both these modes are of interest because their overlap ratio

over the low-refractive index part inside the circular defect is increased and can be explored

for further perturbation experiments. A novel method to obtain these designs in an extremely

fast manner is discussed in chapter 4 using evolutionary optimization. This method will also

allow for checking the effect of disorder on the cavity before fabrication is performed.

Resonant trap characterization

The properties of the trapping forces are yet to be determined in the trap and this could be

achieved either by observing the transmission signature out of the device or by performing a

finer centroid analysis of the positions of the particle. This could also confirm the nature of
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Chapter 3. Resonant optical trapping in hollow PhC cavities

the two trapping regimes and throw more light into how the transition happens and in the

quantitative understanding of trap stiffness and stability. The power spectrum measurement

[228] of the optical transmission and optical scattering from the surface is being investigated

in this regard. This spectral analysis along with the resonance-shift measurement can be

performed on different types of particles (varying sized and indices) and can be used as a

unique “particle-cavity” trap characteristic for differentiation. In addition to that, the near

field imaging of the mode profile with and without the presence of the particle could yield

new insights into the perturbation physics as the index and shape of the particle is gradually

changed.

Feedback-assisted trapping

The particle-position induced resonance shift can be independently accessed through the

transmission of the access waveguide and a lock-in system can be implemented to tune the

input laser frequency accordingly. This is crucial for the case of high-Q cavities because the

expected back-action effects will shift the cavity mode very far from the native cavity position

resulting in a difficulty to use these cavities. With this feedback-assisted trapping technique,

high-Q-factor hollow cavities (such as the slot cavity) can be used to trap smaller particles

with further decrease in the trapping power.

Applications in Biology

Given the nature of the suspended trap and the low powers required, it is possible to trap

biological particles such as cell organelles, DNA strands, small bacteria and large viruses.

A recent report has shown trapping of E-coli bacteria on top of photonic crystal cavities at

1.5µm [229]. The rod-like tobacco mosaic virus (30x300nm in dimensions) for example, is a

good candidate in this regard. In order to extend the usage of the resonant trap to biology,

wide bandgap material systems are essential as most of the fluorescent markers function in the

visible wavelengths. In this context, photonic crystals in Gallium Nitride are being considered

strongly as will be shown in chapter 5 of this thesis. The scalability of Maxwell’s equations will

also allow us to extend the cavities to be adapted for visible wavelengths and hence smaller

particles.

Integrated Lab-on-a-chip systems

The basic functionalities such as single particle detection and wavelength selective trapping

has been shown in the thesis. However, there is work to be done to reach a completely func-

tional diagnostic optical lab-on-a-chip. This can include optical waveguides for transporting

the particles [201] to the cavities and specialized microfluidic chambers for collecting sorted

particles etc. The current device also requires the usage of an auxiliary tweezers from the top

to assist the particles to the vicinity of the cavity region. This can be changed by the use of

new designs of a micro/nano fluidic transport system.
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4 Ultrahigh Q-factor H0 nano cavity
and nonlinear effects

This chapter shows the design and characterization of a novel ultrahigh Q-factor H0 type

photonic crystal nanocavity. Section 1 gives an overview of the different optimization methods

used for designing high-Q cavities. Section 2 introduces the novel H0 cavity design along

with the coupling schemes and the fabrication procedures for the device. The experimental

measurement of the Q-factors and nonlinear effects are reported in section 3. Section 4

presents a brief summary and outlook.

Contributions:

This work was performed as a collaborative effort with the group of Prof. Vincenzo Savona

(LTPN). The 3D finite element modelling, device layout design and the experimental charac-

terization were performed by myself. The genetic algorithm based optimization of the design

was performed by Momchil Minkov (LTPN). The photonic crystal samples were fabricated in

SOI by Mario Tonin (LOEQ).

Publication of results:

The results obtained during the course of this research are currently under review in Nature

Photonics and a version is submitted at the arXiv [230].
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4.1 Optimization of photonic crystal cavities for high Q-factors

The merit of a photonic crystal cavity, as has been emphasized repeatedly in this thesis, is

highly dependent on the specific experiment it is designed for. However, in many cases,

the two quantities: Quality factor (Q) and the modal volume (V) play a significant role in

differentiating the performance of these cavities. A higher Q-factor translates to a high degree

of light confinement paving the way for enhancement of any interactions with matter. It has

been proposed that [231]

• A maximum Q/V is desired for experiments requiring spontaneous emission rate en-

hancement through the Purcell effect.

• A maximum Q2/V is desired for the enhancement of some nonlinear optical effects

(depending on the nonlinearity) in the photonic crystal cavity.

• A maximum
√

Q/V is desired for achieving the strong coupling regime in cavity quantum

electrodynamics.

As it can be seen, the two quantities that are mentioned above are also mutually coupled

in an inverse manner. A smaller cavity also results in an increased radiation loss and hence

lowers the Q-factor. In this essence, the design of such high-Q cavities can be very tricky. The

different methodologies that have been frequently used for achieving significantly high quality

factor cavities are summarized below.

4.1.1 Optimizing leaky light cone components

In an interesting work reported in 2005, Akahane and coworkers [160] published a method that

is based on the optimization of the light cone components arising from the emission pattern

of the cavity mode. An L3 cavity (3 missing holes) was chosen and the position of three holes

on either side of this defect were tuned appropriately. As can be seen in figure 4.1b and c, the

Figure 4.1: Fourier transform optimization of Q-factors in L3 cavity. a) Schematic of L3 cavity
and holes to be moved b) The Fourier transform of electric field component before optimization
showing leaky components in the light cone. c) The Fourier transform of electric field component
after optimization showing the suppression of the leaky components in the light cone. Reprinted
from [160].
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electric field components have two peaks outside the leaky light cone region. It is understood

that the abrupt change in the cavity region due to the removal of the three air holes causes

the leaky light cone components. In the case of the parametric tuning of hole positions, this

abrupt transition was transformed to a smooth Gaussian like transition that decreases the

components falling inside the light cone and hence increasing the Q-factor. The outcome

of this interesting method is the idea of “gently modulating” the cavity geometry in order to

create higher Q-factors which has also been utilized by several other groups afterwards. It has

to be noted that the parametric optimization of the hole positions was still a crude subset and

highly limited by the computational complexities of the 3D methods used. In this work, by

using this method, the maximum Q-factor achieved was of the order of 100,000 with a modal

volume of 0.7 (λn )3.

4.1.2 Tuning the mode-gap of PhC waveguides

In recent studies, a method based on local modulation of the waveguide mode has been

pursued as shown in [144, 162, 232] by Notomi and coworkers. The basic method works on

the basis of creating a cavity region surrounded by barrier region that does not support the

propagating mode. Since it was explained in chapter 1 regarding the formation of waveguide

defects, it is easily understood that decreasing or increasing the waveguide width can push

or pull the mode away from the dielectric band. If a normal W1 waveguide is sandwiched

between a narrowed waveguide on either side for a finite direction, this barrier acts as a cavity

boundary and allows the light to be coupled through evanescent modes. This mode-gap can be

Figure 4.2: Schematic of mode-gap cavity confinement based cavities. a) Waveguide mode and the
bandgap in a tirangular lattice photonic crystal. b) The mode-gap based confinement by creating
a barrier with the tuning the waveguide mode positions [162]. Similar design shown with a W1
waveguide along with a barrier and cavity region indicated [232].

implemented in two ways, by changing the lattice constant and creating a heterostructure [162]

or by modulating the local position of the holes adjacent to a W1 waveguide [232]. The electric

field distribution of these cavities resemble an ideal Gaussian envelope that also explains the

higher Q-factors obtained and the gradation of the heterostructure can be tuned in order

to maximize this value. In this heterostructure based work [162], a measured Q-factor of
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600,000 is found and theoretical Q-factors upto 24 million were predicted. Similarly, in a

waveguide width modulation cavity reported here [144], measured Q-factors of up to 800,000

and theoretical Q-factors up to 70 million were predicted. The drawback in these types of

cavities is the increased mode volume due to the nature of the waveguide-based mode.

4.1.3 Analytic or semi-analytic designs of cavity mode

In contrast to the previous methods where the cavity parameters were obtained through

heuristic optimization of individual hole positions, a few methods have reported analytical

designs of cavities [163, 233, 234]. A detailed analysis based on the symmetry of the photonic

crystal lattice, the point groups and the leaky light cone components was performed to

optimize for the vertical losses for both the square lattice and triangular lattice photonic

crystals that resulted in theoretical Q-factors of up to 0.5 million [233]. In the work by Englund

and coworkers, a general expression for cavity radiation loss was derived and it was found that

the cavity mode with a sinc like field envelope should completely eliminate the components

from the light cone [163].

In an other work by Felici [234], a semi-analytical relationship was accomplished between

the desired field distribution and the dielectric constant of the cavity system. By assuming a

Gaussian envelope function, a Q-factor of 17.5 million was estimated for this design with the

aid of a 3D FDTD method. It has to be also noted that there are a number of other designs

that have been theoretically proposed by parametrically tuning the PhC parameters but are

yet to be experimentally measured and confirmed such as this work that proposed a Q-factor

of 1 billion [235]. In the past two decades, there have been numerous experimental reports

showing the confinement of light inside the structures using the above-mentioned methods

for reducing losses from the cavity mode resulting in the term “ultrahigh-Q” PhC cavities that

have measured Q-factors of the order of a few hundred thousand.

The above-mentioned arguments reaffirm the fact that the achievement of ultrahigh-Q-factors

depends on:

• The design of the cavity defect leading to a very high confinement of optical energy and

hence a high intrinsic Q-factor.

• Robustness of the Q-factor of the cavity in the presence of structural disorder induced

by fabrication.

• The ease of fabrication of the design and the necessary fabrication processes for achiev-

ing the proposed design parameters

The following sections in this thesis will elaborate on how this thesis has shown a novel

ultrahigh-Q cavity design experimentally that addresses all these issues.
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4.2 Evolutionarily optimized ultrahigh-Q H0 cavity

4.2.1 Design optimization

The primary objective of this work is to maximize the Q/V ratio of a PhC nanocavity keeping

the cavity design compact while retaining the robustness to disorder and the ease of repro-

ducibility. To fulfill this purpose, the H0 design was chosen, which has the smallest known

modal volume among the various 2D PhC structures. The thickness of our PhC slab is set to

0.5a while the radius of each hole is 0.25a (a is the lattice constant) and the refractive index

of the slab is set to 3.46. The basic H0 design consists of two holes shifted away from their

original positions by an amount S1x as shown in figure 4.3. The optimization is carried out

by allowing for four more shifts of neighboring holes along the x-axis and two shifts along

the y-axis. The objective function of the evolutionary optimization was the cavity Q-factor,

while reasonable restrictions were imposed on the magnitudes of the shifts in order to limit

the variations in modal volume.

Figure 4.3: Schematic and electric field distribution of optimized H0 cavity. a) The holes whose
positions are displaced are highlighted in red. b) and c) FEM computed electric field distributions,
Ex and Ey respectively.

The Q-factor was first computed with the guided-mode expansion method [142] for a single

realization of hole positions. It should be noted that this choice is not unique but rather highly

customizable. Since a single computation yields both the Q-factor and the electromagnetic

mode profile, it would be equally straightforward to optimize Q/V for example, or even more

specific quantities like the amount of electric field penetrating into air. The stochastic evolu-

tionary algorithm used here is the one that is included in the MATLAB Global Optimization

Toolbox, which starts from a random initial population and goes on to create a sequence

of generations where the fittest (highest-Q) individuals are kept. Reasonable constraints on

the shifts can be imposed. In the case of the initial H0 optimization, the absolute value of

the shift was set to be smaller than 0.3a. For the design with a smaller mode volume, this

boundary was decreased to 0.25a. For both designs, a rough optimization was first performed

with large allowed fluctuations of all parameters, which was then followed by a fine-tuning

optimization in which small variations around the rough optimal values were allowed. This
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ensured convergence within approximately 200 generations in total, with 120 individuals in

each generation.

Parameter Value

S1x 0.280a
S2x 0.193a
S3x 0.194a
S4x 0.162a
S5x 0.113a
S1y -0.016a
S2y 0.134a

Table 4.1: Optimized parameters for the proposed H0 cavity. The negative sign means an inward
shift towards the centre.

The final optimized device parameters are presented in table 4.1, bringing a GME-computed

Q-factor of 1.95 million. Optimization attempts allowing for additional shifts of the off-axis

holes and/or variation of the hole-radii did not bring significant improvement. The optimal

design is thus mostly determined by variations of positions of the holes only, which are also

the structural features over which the fabrication process ensures the highest precision. The

computed mode profile as shown in figure 4.3 resembles that of the basic H0 design, and most

importantly the modal volume remains extremely small at 0.34(λn )3. The optimal structure was

Figure 4.4: Influence of disorder on the Q-factors. Two different values of disorder corresponding to
0.0015a(left) and 0.003a(right) were used to obtain the histograms. Reprinted from a publication
from this thesis [230].

additionally modeled using a 3D finite element method solver (COMSOL), which essentially

confirmed the GME-computed values of Q and V. The theoretical Q-factor of the presented

design is nearly one order of magnitude larger than the previously highest reported value [236],

which was obtained through sequential optimization of individual hole-positions. This fact

highlights the importance of the global optimization algorithm that helps us to attain the

maximum possible Q for a particular type of configuration within the set predetermined

boundary conditions. In order to assess the robustness of this design, random disorder is

introduced in the form of fluctuations in the hole positions and radii, drawn from a Gaussian

random distribution with zero mean and a standard deviation σ. The histograms shown in
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figure 4.4 are each obtained from the simulation of 1000 disorder realizations. Figure 4.4 shows

the probability distribution of Q-values for two different values of σ (0.0015a and 0.003a). The

assumption of this value is based on the realistic assumption of disorder in our structures

which was investigated in an earlier work by a previous co-worker of our group [170]. Disorder

reduces the Q-factor on average, as intuitively expected. However, very high quality factors for

a reasonable fabrication disorder are predicted by these histograms, proving the robustness of

this design in terms of practical applications. It is important to note that this optimized design

is made possible owing to the fast computations performed by the GME that evaluates the

24000 evaluations required for all the disorder computations within a week on a computer with

12 CPUs and 32 GB of memory. In an estimation using a 3D FEM solver, these optimization

computations will require approximately 10 years to complete.

4.2.2 Coupling to the cavity

The efficient coupling of light into photonic crystal cavities is very important in integrated

optics applications and in this context, it is important to optimize the coupling suitable for

each type of cavity design. The relevant parameters are the spatial overlap ratio between the

cavity mode and the coupling waveguide mode as well as the symmetry matching between

the two modes. An ideal coupling scheme should allow for the measurement of the intrinsic

Q-factor of the cavity while also allowing for sufficient light coupling into the cavity depending

on the experimental requirements. In the work of Kim and coworkers [237], the coupling

Figure 4.5: Coupling schemes to a H1 type cavity. a) shoulder-coupling b) butt-coupling and c)
side-coupling configurations. Reprinted from [237].

to a H1-type photonic crystal defect was numerically studied and reported in figure 4.5. In

this work, the overlap of the cavity mode with the W1 type waveguide was studied and the

shoulder-coupling was reported to be the most efficient in terms of coupling light into the

cavity. The problem pertaining to efficient light coupling is the increase in coupling Q-factor

which brings down the measured Q-factor of the cavity mode. In the case of a more popular L3

cavity system, Faraon and coworkers showed in 2007 [238] that the best coupling is achieved

by a 60 degrees tilt of the cavity with respect to the waveguide mode as shown in figure 4.6. As

it can be seen in figure 4.6e, the explanation to the abnormal increase in waveguide quality

factor for specific separation distance is attributed to the change in overlap integral depending

on if it is a node or an antinode in space. To resolve these differences, extremely fine numerical

simulations are to be constructed, which are generally cumbersome and memory consuming.
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Analytical models using coupled mode theory has also been used to explain the effects of the

waveguide mode on the cavity mode [239], [160]. In the case of the H0 design presented in

this thesis, the coupling was studied through the implementation of three different schemes:

side coupling, cross coupling and bent coupling. Each of these schemes were experimentally

characterized with respect to the spatial separation between the cavity and the waveguide.

Figure 4.6: Coupling optimization for the L3 cavity a) and b) Computed mode profile of the L3
cavity and W1 waveguide even mode respectively. c) SEM image of the device with "tilted" coupling
by tilting the cavity with respect to the waveguide. d) SEM image of the device with "straight"
coupling of the cavity. e) Variation of Q-factor with the increase in the waveguide cavity separation
Reprinted from [238].

4.2.3 Fabrication of the cavities

Figure 4.7: Scanning electron micrograph of H0 cavity with different coupling schemes. a) Side
coupling b) Cross coupling c) Bent coupling.

The cavities were fabricated on a SOITEC Silicon-On-Insulator wafer, which consisted of a

220 nm thick silicon layer and a 2 µm thick silica (SiO2) layer on a Silicon substrate. The PhC

pattern was defined with e-beam lithography (VISTEC EBPG5000) on an electro-sensitive

resist (ZEP520) and the developed pattern was further transferred into the Si layer with an

inductively coupled plasma (ICP) AMS200 dry etcher with a SF6 and C4F8 gas mixture. The

last step is the removal of the sacrificial SiO2 layer with buffered HF (BHF) wet etching. The

SEM images of the cavities with different coupling configurations can be seen in figure 4.7.
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4.3 Experimental characterization results

4.3.1 Q-factor measurement

The cavities were measured using a standard end-fire coupled setup as shown in figure 4.8.

The diameter of the focal spot at the facet of the device is about 3 µm and has to be mode

matched with that of the mode of the PhC W1 waveguide. The ridge waveguides were gradually

tapered down to the photonic crystal that acted as a mode convertor. A tuneable input laser

(Yenista Optics - TUNICS T100S) was used to couple the light into the waveguides. This laser

has a wavelength range from 1480 nm to 1570 nm with a minimum tunable wavelength step

of 1 pm. The fine scanning mode (FSC) available in the tuneable laser allows for accurately

scanning the wavelength over a 40 pm range with a resolution of 0.1 pm. A set of neutral

density filters were also employed to control and characterize the exact amount of power input

into the device. The emission of the cavity was captured with the aid of an infrared camera

(by XenICs), which is sensitive between 900 nm and 1700 nm. The 320x256 pixel array of the

camera comes with a pixel pitch of 30 µm and is thermo-electrically cooled to 263K, offering a

12-bit dynamic range. The emission was also detected with an InGaAs type FPM-8200 power

meter which has a wavelength range from 800 nm to 1600 nm and a power range from -75 to

1.5 dBm.

Figure 4.8: Schematic of the end-fire measurement set-up showing the input and output facets and
tapered fibres

The Q-factors were measured for the cavities coupled via the three schemes explained in the

previous section. A converged Q-value was reached after the measurement of the emission

spectra for increasing values of input power at very low power values (around a few µW). This

was necessary to eliminate additional losses due to nonlinearity in the device. The initial

measurement to study the effect of coupling can be seen in figure 4.9. As expected, the bent

coupling scheme which had a very large mode matching with the waveguide mode achieves

much lower measured Q-values compared to the other schemes. The side coupling and the

cross coupling schemes start to show significantly lower coupling losses when the distance to

the cavity is increased and hence increase in measured-Q. In addition to this, the scattering

losses at the cross coupling facets were much larger that lead to a significant drop in coupling
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for larger distances from the cavity. In this context, the side coupling scheme was found to be

the most efficient scheme for the measurement of the intrinsic Q-factor.

Figure 4.9: Initial measurement of Q-factors for various coupling schemes. Left: Bent coupling
Centre: Side coupling and Right: Cross coupling configurations.

Figure 4.10 shows the change in measured Q-factor, for the side-coupled cavities, as the

distance to the waveguide is increased. The initial points clearly show that the Q-factor of the

cavity is greatly affected by the proximity of the coupling waveguide.

Figure 4.10: Q-factor measured in emission vs. waveguide separation showing the gradual increase
in quality factors as the coupling strength decreases. The continuous line is a theoretical fit taking
into account an exponential decay of the W1 mode. Reprinted from a publication from this
thesis [230].

A maximum value of 418000 for the distance corresponding to 13a was measured. The data in

figure 4.10 suggests clearly that even at large distances from the cavity, the coupling waveguide

still affects the measured Q-factor. A conservative way of extrapolating the unloaded Q-factor

consists in assuming an exponential decay with distance for the cavity-waveguide coupling.

More precisely, we assume that

Q−1 =Q−1
U L +Ce−αD (4.1)

where QU L is the unloaded Q-factor along with constants C and α. A fit of the measured Q-
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values (with QU L , C andα as free parameters), as plotted in figure 4.10, yields a value of 485000,

which should be taken as a lower bound to the actual unloaded Q-factor. This value is in very

good agreement with the maximum value found in the histogram of figure 4.4, computed

for a disorder amplitude of σ = 0.003a, which is a very reasonable estimate for the largest

fluctuations introduced in the fabrication process. It can also be seen that at short distances,

where the Q-factor is still very high (100000), losses are largely dominated by coupling into the

waveguide channel, thus highlighting the potential for photonic circuit applications.

Figure 4.11: Measured Q-factors of optimized H0 cavity through side coupling. a) to f) show the
emission measurements performed on the cavities with their corresponding Lorentzian fits and
Q-factors as the distance to the coupling waveguide is increased.

The individual emission spectra corresponding to the six points shown in figure 4.10 are later

shown in figure 4.11. The linewidth narrowing is clear and quite visually evident between the

measured spectra. The resolution of the last two spectrums are different due to the fact that

they were measured using the fine scanning mode of the tuneable laser, resulting in highly

resolvable spectral measurements. The Q-factors shown in the figure are computed from the

lorenzian fits of the corresponding measurements.

In order to further understand the effect of the coupling waveguide, the transmission plots

corresponding to the emission spectra are shown in figure 4.12. In the case of shorter cavity-

waveguide spacings, the transmission plots correspond to the emission spectra in dropped

energy and can be understood as the manifestation of coupling loss. In the case of farther

distances, the transmission spectra show no observable difference despite the fact that there

is an emission spectra recorded from the cavity. If there is no influence of the waveguide

on the cavity, one can expect the convergence of the observed Q-factor saturating towards
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Figure 4.12: Transmission measurements of H0 cavity through side coupling. a) to f) show the
transmission measurements corresponding the 6 cavities shown in the emission measurements. The
cavity dropped transmission is highlighted in circles for the measurements in a) to c).

the intrinsic value. Nevertheless, this is not observed in this experiment for the two farthest

distances measured.

The extremely weak coupling has also additional influences from the coupling due to scattering

and disorder in the lattice which can tunnel the energy from the waveguide mode. It is to

be also noted that the PhC device is also truncated in both lateral dimensions, which could

possibly influence this coupling strength. As it was already explained before, for farther cavity-

waveguide spacings, the position of the node and antinode of the waveguide mode becomes

quite significant as the cavity mode linewidth is much smaller than the waveguide resonance

width. Though the finesse of such a Fabry Perot resonator in the waveguide is quite low, this

could still be an issue for coupling of ultrahigh-Q cavities.

In order to qualitatively explain the observed emission and transmission spectra, a 2D finite

element study was performed for different waveguide-cavity distances and the transmission

spectra were computed. A plane wave is sourced on the left side of the model and is used to

couple to the cavity mode. Figure 4.13 shows the effect clearly. The images show the norm of

the electric field distribution computed at the resonance wavelength of the cavity mode. As

one can easily observe, the strength of the cavity mode at resonance drastically drops as the

waveguide distance is increased. This also reflects in the transmission spectra that are plotted

beneath the respective electric field distribution plots. This behaviour is in close agreement

with the experimental graphs shown previously. With a measured quality factor of 418000 and

a modal volume of 0.34(λn )3, this H0 nanocavity has the highest Q/V ratio ever reported for 2D

PhC cavities with modal volumes that are smaller than 1 in units of (λn )3 as shown in table 4.2.

The measured Q-value exceeds all others by at least one order of magnitude. Amongst cavities

with a larger modal volume, only the heterostructure cavity has shown a larger Q
V ratio (Q=3.9

million and V=1.3(λn )3). Nanobeam cavities [241] have displayed a comparable value, but at

the expense of a structure that can less easily be integrated in a two-dimensional photonic
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Figure 4.13: Numerical study of transmission in H0 cavity through side coupling. a) to d) show the
cavity field profile and waveguide mode intensity along with the corresponding transmission plots
for increasing waveguide-cavity distances.

Cavity type Measured Q Modal volume in (λn )3 Q
V Reference

H0 (InGaAsP) 6500 0.26 24000 [87]
H1 (GaAs) 17000 0.39 44000 [240]

r-modulation (Si) 47000 0.9 52000 [84]
L3 (Si) 88000 0.71 120000 [160]

Optimized H0 420000 0.35 1200000 This thesis

Table 4.2: Comparison of Q-factors and mode volumes recently demonstrated in ultra-small pho-
tonic crystal cavities with modal volumes that are smaller than 1 in units of (λn )3.

circuit. The presented design has the advantage of being spatially compact, reproducible and

is extremely robust to fabrication imperfections. As a further illustration of the effectiveness of

the evolutionary optimization method, an alternate optimal H0 cavity has been designed with

the requirement of a smaller modal volume, imposed by introducing a stricter upper bound in

the shift S1x. This resulted in a design with the design parameters:S1x=0.216a, S2x=0.103a,

S3x=0.123a, S4x=-0.017a , S5x=0.067a, S1y=0.004a and S2y=0.194a. This design yielded an

ideal Q-factor 1.05 million and a smaller modal volume of 0.26(λn )3. This design was also

fabricated and experimentally characterized. A maximum Q-factor of 260000 was measured. It

was observed that this cavity mode was not found for waveguide-cavity distances of more than

10a. This can be attributed to the fact that this cavity has a smaller modal volume compared

to our previous design. This also clearly shows the dependence of the waveguide coupling

strength to the modal volume of the cavity designs. These two demonstrations clearly show

the full power of the present optimization technique that could extend to a variety of cavity

designs tailored for different experimental requirements.
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Chapter 4. Ultrahigh Q-factor H0 nano cavity and nonlinear effects

4.3.2 Nonlinear behaviour in the H0 cavity

An high Q/V ratio is expected to enhance the light matter interactions in the cavity volume

leading to nonlinear effects at very low input powers. This is also one of the possible methods

to validate the large Q/V measure of the proposed H0 cavity design. The response to an

incident electric field (E(t)) on a material is determined by the polarization field (P(t)) that is

set up due to the dielectric susceptibility (χ) of the material. This is related through a power

series expansion [242] given by:

P (t ) = ε0(χ(1)E(t )+χ(2)E 2(t )+χ(3)E 3(t )+ ...) (4.2)

where ε0 denotes the free space permitivity and χ(i ) denotes the ith order susceptibility of the

material. This order determines the type of nonlinear effect that takes place in the medium as

summarized in table 4.3 for the case of silicon. It can be seen that the third order processes

are important for silicon as they are responsible for a variety of effects. Self-phase modulation

Order of susceptibility Nonlinear process type

1 Change in refractive index, FCA
2 Not present in silicon (lack of centrosymmetry)
3 SPM, XPM, FWM, THG, TPA, FCA, FCD

Table 4.3: Nonlinear processes in silicon and order of susceptibility

(SPM) is created by three photons and leads to an index dependent refractive change that can

consequently modify the spectrum of the pulse that caused it resulting in a broadening of

the spectrum. SPM can also create two-photon absorption (TPA) that generates free carriers,

which eventually results in free carrier absorption (FCA) and free carrier induced dispersion

(FCD). All these effects reflect on the refractive index through the relation [243]:

n = n0 +n2I − i
λ

4π
(α+αT PA I ) (4.3)

where n0 is the linear refractive index, n2 is the optical Kerr coefficient, α is the linear absorp-

tion coefficient and αT PA is the TPA coefficient. In addition to all these effects, the absorption

of photons also causes an increase temperature that results in thermally induced refractive

index variation. The thermo-optic coefficient of silicon in room temperature gives a change of

refractive index of∆n = 1.8×10−4K −1 [244]. The combination of all these effects results in a net

refractive index change that changes dynamically. These non-linear effects are of interest to

the optical switching community that has been looking at both electro-optic and thermo-optic

effects. A nice demonstration of low voltage modulation of up to 1 GHz using free carrier

effects on a photonic crystal waveguide device was shown by Gu and coworkers [113]. The

thermo optic effect has been also used to show optical switching, but is limited by the slow

switching speeds.

In the case of photonic crystal cavities, the change in the refractive index results in the shifting
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4.3. Experimental characterization results

Figure 4.14: Variation of resonance wavelength in a PhC cavity due to nonlinear effects. The
contributions of thermal, free carrier and Kerr effects are shown and the total resonance wavelength
change is also shown. Reprinted from [84].

of the eigenmode and the shift in resonance wavelength can be calculated as [84, 88]

∆λtot al =
λ0

n0
(∆nT her mal +∆nFC D +∆nK er r ) (4.4)

whereλ0 is the cavity resonance wavelength and n0 is the refractive index of silicon. ∆nT her mal ,

∆nFC D , ∆nK er r denote the change in refractive index of all the three contributions. The

computation of these effects are complicated as it involves a variety of parameters to compute

including the decay rates of the carriers and the effective area for each of the non-linearities

involved. A complete computation has been presented for a photonic crystal cavity previously

by Barclay and coworkers [84]. The computation from this work involves a high-Q-factor cavity

in a square photonic crystal lattice and the numerical result is shown in figure 4.14. It can be

seen that all the effects except the free carrier dispersion cause a red-shift in the resonance

wavelength. The FCD effect causes a blue shift in resonance wavelength but is later dominated

by the stronger effects for higher powers primarily due to the influence of thermal dispersion.

In the case of the optimized H0 cavity, this experiment is performed in a cross-coupled device

as shown in figure 4.15. The H0 devices are coupled to an input laser and a detector on the

output side in a typical end-fire configuration.

Figure 4.15: The cross-coupled device used for measuring nonlinearity
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Chapter 4. Ultrahigh Q-factor H0 nano cavity and nonlinear effects

The cavities are coupled with a cross-coupling configuration as shown in figure 4.15, which

creates a symmetric system with the cavity in the centre. This facilitates the use of the following

method to estimate the power input to the cavity. For a known value of input power, the power

in the centre of such a system is given by the following equation.

Pcavi t y =
p

T Pi nput =
√

Pout put

Pi nput
Pi nput =

√
Pi nput Pout put (4.5)

Figure 4.16: Nonlinear absorption and dispersion in the H0 nanocavity showing free carrier dis-
persion and thermal dispersion. The grey line is a guide to the eye. Reprinted from a publication
from this thesis [230].

In the case of the cavity used for the characterization of nonlinear effects, we measure a

transmission power Pout put =2 nW in the detector, at the resonance wavelength, for an input

power Pi nput =4 µW , corresponding to the power coupled to the cavity Pcavi t y =0.09 µW , for

which the system response is still in the linear regime. The values of Pcavi t y for increasing

input powers were linearly extrapolated from this value. It is to be noted that this is not

an estimation of the intracavity power but only the power input to the cavity at the centre

of the device. The emission Q-factor of this cavity was measured at low input powers and
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4.3. Experimental characterization results

was found to be 150,000. Figure 4.16 shows the nonlinear behaviour, as a function of input

power. At low input powers, a slight blue shift of the cavity mode is observed and this is

attributed to the presence of free carriers leading to free carrier dispersion. After a while,

heating due to nonlinear absorption, and optical-Kerr nonlinearity result in a increasing

redshift. At higher input powers, a clear drop in the spectral response on the red side of the

resonance can be seen that indicates the onset of optical bistability. At this point, the cavity

line shape does not resemble the usual Lorentzian profile but an asymmetric response due

to the nonlinearities. The experimental results are in good agreement with the qualitative

theoretical curves shown before. The notable fact is that these effects are achievable at very

low optical powers confirming the enhanced Q/V of this newly proposed H0 nanocavity.

4.3.3 Optical bistability

As introduced in chapter 1, optical bistability is an interesting phenomena that results in a fact

that the physical system has two distinct transmission states for a single input power value. To

understand the bistability phenomena inside a 2D PhC cavity, the transmission through the

system can be written as follows, for a symmetrically coupled simple two-port system [83].

Pout

Pi n
= 1

1+ [(ω−ωc )/Γ]2 (4.6)

where Γ is the resonance linewidth and ωc is the resonance frequency of the cavity for input

and output powers Pi n and Pout respectively. if a nonlinear material is introduced into the

Figure 4.17: Optical bistability based on a two-port transmission model. Reprinted from [83]

resonator that modifies the refractive index such as δn is proportional to n2|E |2, where n2 is

the Kerr coefficient of the material. If there is an increase in input intensity, the resonance

wavelength is shifted towards the red side of the spectrum due to the nonlinear index change.

Taking this into account, the nonlinear transmission through the system is expressed as the

following Lorentzian [83].

Pout

Pi n
= 1

1+ [(Pout /P0)−∆]2 (4.7)
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Chapter 4. Ultrahigh Q-factor H0 nano cavity and nonlinear effects

where P0 is the characteristic power of the cavity and ∆ is the frequency detuning normalized

to the width of the resonance peak. From this expression, the behaviour of the transmission of

the system for various values of ∆ is plotted in figure 4.17. It is observed that for values of ∆

greater than
p

3, bistable loops are formed. It can also be seen that the width of the hysterisis

loop also increases with the increase of ∆. This enables the device to retain the past state of

the system in steady state even-though the response of the material is instantaneous. This

characteristic power for nonlinearity is expected to be drastically decreased for PhC based

cavities due to the ultra small modal volumes and high Q-factors.

Figure 4.18: Optical bistability in the H0 nanocavity showing the hysteresis loops for detuning
values a) 20 pm and b) 40 pm. Reprinted from a publication from this thesis [230].

Cavity type Bistability threshold power Year Reference

Double heterostructure 28 µW 2005 [88]
Modified L4 26 µW 2005 [91]
Modified H1 420 µW 2007 [245]
Modified L3 26 µW 2013 [94]
Genetic H0 10 µW 2013 Our work

Table 4.4: Comparison of optical bistability threshold in 2D Si PhC cavities.

In order to characterize this bistable behaviour, the input power was gradually increased and

the steady state emission intensity was recorded. Figure 4.18 shows the measured hysteresis

plot for an excitation wavelength that was red-shifted by 20 pm and 40 pm from the cavity

resonance. As the linewidth of this mode is close to 10 pm, the bistable behaviour occurs as

expectedly for wavelengths with detuning greater than
p

3
2 as predicted by the previously said

arguments. Switching power ratios of 2.0 and 4.5 along with a contrast above 70 percent are

obtained for the two detuning values respectively, demonstrating the robust and controllable

bistable behaviour. The present cavity also displays the lowest power threshold for optical

bistability hysteresis ever measured in a 2D PhC silicon cavity as can be inferred from the

comparison table 4.4.
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4.4 Discussion and summary

At the time of this thesis, the highest reported Q-factor measured from a 2D PhC membrane

stands at 3.9 million as reported by Taguchi and coworkers [168]. The interesting note about

this particular heterostructure design is the numerical Q-factor which was reported to be

at around 20 million [162]. In spite of such a high theoretical prediction, the reported mea-

surements are far from this value, primarily due to the limitations set by fabrication induced

disorder.

The discussion on the influence of disorder on cavity Q-factors was already discussed in

chapter 2 of this thesis in this particular context. It can also be inferred from table 4.5 that the

Q-factor of the heterostructure cavity has been improved from 0.6 million to around 4 million

in a span of 6 years, primarily due to the improvements in fabrication technology.

Material Cavity type Measured Q-factor Year Reference

Silicon Heterostructure 0.6 million 2005 [162]
Silicon Modified W1 0.8 million 2006 [144]
Silicon Heterostructure 2.5 million 2007 [246]
Silicon Modified H1 0.3 million 2007 [245]
GaAs Modified W1 0.7 million 2008 [247]

Silicon Modified W1 0.2 million 2011 [248]
Silicon Modified W1 1.3 million 2011 [249]
Silicon Heterostructure 3.9 million 2011 [168]
Silicon Modified H0 0.5 million 2013 This thesis

Table 4.5: Ultrahigh-Q 2D PhC nanocavities: A chronological compilation.

The proposed optimized H0 designs are one of the most compact and versatile designs ever

shown with 2-D photonic crystals. A high Q-factor and a small modal volume are not the only

important requirements in view of applications. Many current photonic structures rely on

spatial proximity between two cavities or one cavity and one waveguide, while in a longer-term

perspective the density of optical elements will represent a key figure of merit of photonic

circuits. The ability to produce small compact cavities with record-high Q-factors as made

possible by our optimization procedure and demonstration constitutes a major advance in

view of an integrated photonic technology. The design allows for the fact that two such cavities

can be fabricated at approximately 5 µm distance from each other along the x-direction and

much less along the y-direction without significantly affecting each other. If this is compared

to the popular heterostructure design [168] for example, the minimal x-distance is 20 µm. In

view of the fabrication of photonic integrated circuits, the proposed H0 cavity would thus

nominally allow for a 16x higher density of optical elements on the circuit. Also, the form factor

of this H0 cavity is much less elongated than other well-known designs of high-Q cavities,

which increases the possibilities of spatial arrangement of several cavities.

In order to show the versatility of the evolutionary design methodology, three H0 designs are
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Cavity QGME QF E M VGME in (λn )3 VF E M in (λn )3

H0 design 1 1.95 million 1.6 million 0.34 0.38
H0 design 2 1.05 million 1.0 million 0.25 0.26
H0 design 3 8.89 million 8.2 million 0.64 0.71

Table 4.6: Summary of evolutionarily optimized H0 cavity designs.

proposed and their computed Q-factors and modal volumes are shown in table 4.6. It can

be seen that this method can be used to set very specific boundaries such as controlling the

modal volume or the Q-factor and the required ratio can be deterministically designed. The

first two designs are shown experimentally in this thesis while the third design is not attempted

due to the fact that it will be dominated by disorder. This table is an important illustration of

what can be achieved by optimization of a simple and compact H0 PhC nanocavity. These

results are expected to set a new standard that might determine the direction along which

photonic circuits could be developed in the near future.
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5 Integrated photonic devices in GaN
for light-matter interactions

This chapter details the study of integrated photonic devices with GaN grown on Si. Section 1

gives a brief overview of the history of GaN semiconductor technology followed by a review of

the recent developments in integrated photonics based on GaN in section 2. The experimental

results obtained during this thesis along with the fabrication technology that was developed

are reported in section 3 and section 4, which cover the near-IR and visible wavelengths

respectively. Section 5 concludes the chapter with a summary and perspectives for the future.

Contributions:

This work was performed as a collaborative effort with the group of Prof. Nicolas Grandjean

(LASPE). In the case of experiments in the near-IR wavelengths, the modelling, design and

optical characterization was performed by myself, the layer growth was performed by J. -F.

Carlin and the sample fabrication by N. Vico Triviño (LASPE). In the case of experiments in

the visible wavelengths, the layer growth was performed by J.-F. Carlin, the sample fabrication

and optical characterization were completed by N. Vico Triviño and her colleagues and the

modelling and post-experimental analysis of the results was performed by myself.

Publication of results:

The results obtained for the near-IR wavelength are published in Optics Letters [127] and in

Applied Physics Letters [126]. The results for the visible wavelength are published in Applied

Physics Letters [128].
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5.1 Gallium nitride semiconductor technology

5.1.1 GaN for high power electronics

The rise and growth of semiconductor fabrication technology has strongly influenced present

day life with far reaching implications in communication, computation, entertainment, se-

curity and health care. One of the fundamental building blocks of this transformation is the

Integrated Circuit (IC) technology that also earned its inventor, Jack Kilby, the Nobel Prize

in physics in the year 2000. Since the 1970s, there has been an increased use of Si power

MOSFETs (Metal Oxide Silicon Field Effect Transistor) for high power electronics applications.

The wide usage of Si has been attributed to its low fabrication costs, ease of use and reliable

performance. As applications involving high temperature and high frequency began to rise,

the use of wide bandgap materials was preferred over time as they could supersede the perfor-

mance offered by Si owing to their superior thermal and electrical properties. The following

table 5.1 from a review by Pearton [250] lists the important electrical and thermal properties

of the most widely used semiconductor materials including GaN.

Property Si GaAS 4H-SIC GaN

Bandgap Eg (eV) 1.12 1.42 3.25 3.44
Breakdown field Eb (MV/cm) 0.25 0.4 3.0 4.0
Electron mobility µ (cm2/V s) 1350 6000 800 1300

Thermal conductivity κ (W/cm K) 1.5 0.5 4.9 1.3
Dielectric constant ε 11.8 12.8 9.7 9

Table 5.1: Comparison of electrical properties of semiconductors [250].

As can be easily inferred from the table, the wide bandgap materials offer a significant im-

provement in bandgap energies and breakdown fields compared to silicon. This would enable

the achievement of simpler and more efficient high temperature circuits. This would also

lower the high cost of temperature sensitive packaging that is required for Si based power

electronics devices. Apart from this, GaN also has a higher mechanical and thermal stability

making it robust for operation in harsh environments.

The growth of the semiconductor industry started with Si and followed with GaAs due to the

ease of their fabrication technologies [250]. GaN in spite of its inherent advantages proved

challenging to grow until the 1990s. Commercial applications in the power electronics industry

have already seen a recent surge in the use of GaN technology. It can be seen that SiC has

very similar advantages, but it is believed that the improvements in fabrication would give an

edge to the GaN based power electronics devices in the near future. A detailed and extensive

review on the various electronic properties of the III nitride family can also be found here [251].

Moreover it has also been recently found that GaN is compatible with biological and neural

substances that would enable it for in-vivo or implant applications [252].
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5.1.2 GaN for light emission and optoelectronics

Light generation for various purposes has always been of a significant importance in the lives

of humans. A brief journey through modern lighting technology starts with the incandescent

lamps of Edison in 1879 that were based on tungsten filaments followed by neon lamps and flu-

orescent tubes in the 1930s. The beginning of lighting with semiconductors goes back to 1962

with the publishing of seminal papers about Light Emitting Diodes (LED) and semiconductor

lasers [253], [254]. Starting from emission of red light, LEDs were later developed for yellow

portion of the spectrum with light efficiencies superior to those of incandescent lamps [255].

The evolution of the LED lighting development can also be seen visually in figure 5.1

Figure 5.1: Evolution of the LED technology development until the year 2000. Reprinted from [256].

Light emission in the green to blue spectrum has so far been harder due to the lack of appro-

priate materials and processing techniques. SiC has been used for this purpose but has not

been able to perform with satisfactory levels of efficiency compared to the red and yellow

LED counterparts. A highly efficient source in the blue is required to be able to achieve a full

color display or a white light LED. Due to the value of the bandgap energy, GaN is much more

efficient for light emission in the UV and blue wavelengths. This is far more efficient than the

previously used frequency conversion techniques for generation of blue light. The bandgap

energy can be also tuned by varying the level of doping with various alloys of GaN such as Al

and In. The bandgap energies for various materials used in the lighting devices are shown in

figure 5.2. All these alloys also possess a direct bandgap leading to a high quantum efficiency

in emission.
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Figure 5.2: Bandgap energies for various LED materials. Reprinted from [256].

The initial demonstration of lasers came at 3.45 eV at 2K from GaN needles in 1971 from Dingle

and coworkers [257]. After a number of years of progress in p-type doping and technological

development by Amano and others [258, 259], the first high quality p-n junction with GaN

was reported in 1991 by Nakamura and coworkers [260]. Nakamura also reported the first

bright blue light LED in 1994 [261]. This was also followed up with their first demonstration of

blue diode lasers in continuos wave operation in room temperatures in 1996 [262]. In 2006,

these scientific breakthroughs finally lead to the first commercialization of the Blu-ray disc

by Sony Corporation. There has also been a reported demonstration of a UV LED using III

nitrides from Khan and coworkers in 2008 [263]. Presently, blue light LEDs display a wall plug

efficiency of approximately 60% which is about 10 times that of an incandescent bulb [264].

In order to display the magnitude of difference created by the technology of the GaN blue

laser diodes, table 5.1 compares the various storage technologies and their memory capacities

available in the commercial market during the time of this thesis in 2013.

Type Year Laser wavelength (nm) Typical storage capacity

Compact Disc (CD) 1982 780 700 MB
Digital Video Disc (DVD) 1995 650 4.7 GB (single layer)

High Density DVD (HD DVD) 2006 405 15 GB (single layer)
Blu-ray 2006 405 25 GB (single layer)

Table 5.2: Comparison of optical storage media.

It can be understood that GaN lighting devices can drastically change the paradigm of lighting

and display technologies with their high power output visible wavelength performance. This

is also being exploited by high density optical memory, lithography and printing technologies.
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5.2 Integrated photonics with GaN: A brief overview

The development of GaN-based integrated optical devices only started a few years ago mainly

due to technological challenges. The advantage of GaN to fabricate visible wavelength pho-

tonic crystals being quite obvious, owing to its near-UV bandgap and the fact that GaN is

transparent in both infrared and the visible wavelength range. Furthermore, Two Photon

Absorption (TPA) is non-existent at near IR wavelengths, which makes it an ideal candidate

for high power operating systems. The major interest has also been in using the GaN based

micro cavities towards cavity quantum electrodynamics experiments that include room tem-

perature lasing in polaritons [265], study of strong coupling in GaN based microcavity based

systems [266] amongst others. There has been only a few notable demonstrations of photonic

crystals in GaN and there is a growing interest to study them. The first demonstration of PhC

structures was reported in 2003 by Oder and coworkers [267] where they show enhancement of

emission at 475 nm using near field optical measurements. Choi and coworkers also reported

GaN PhC membranes with L7 nanocavities operating at 480 nm with experimental Q-factors

of around 800 [268]. There was an experimental observation of guided resonances in GaN on

Sapphire based PhC structures in 2005 [269]. A Q-factor of 2400 was reported by Arakawa’s

group [270] and the group of Boucaud [271] using AlN. The extraction efficiency of LEDs was

also improved by the usage of III-nitride photonic crystal structures. This effect has been

studied and reported by a number of research groups [272–277]. GaN based photonic crystal

laser devices were also reported in the following years owing to the highly growing interest to

exploit the use of the PhC properties [278], [279]. There has also been an interesting report on

using GaN for making a three dimensional photonic crystal logpile structure [280]. In 2011,

Xiong and coworkers also demonstrated second harmonic generation with microring devices

using GaN on Si [281]. In this context, the demonstration of GaN photonic crystals cavity

slabs with high quality factors and small mode volumes across the entire near-IR and visible

wavelength spectrum is highly desirable, which is one of the main objectives of this thesis.

GaN growth challenges

As can be seen from the above sections, GaN is a very promising semiconductor technology

for future photonics and electronics applications. The major challenges impeding the growth

and development of this field are attributed to the difficulty in growing high quality GaN layers.

The most widely used substrates are Sapphire, Silicon Carbide (SiC) and Silicon (Si). The

growth of GaN on these alien substrates brings in a lot of disadvantages due to the processing

steps that are involved. The problems mainly arise due to the mismatch in lattice, mismatch

in thermal expansion coefficient etc, which finally leads to a large dislocation density in the

finished layer. These defects deteriorate the optical and electronic properties of the final layer.

One of the biggest breakthroughs in reducing the dislocation density problem is the use of

buffer layers below the GaN layer. A summary of these growth techniques and the associated

issues regarding the above-mentioned substrates can be found here [282]. In this thesis, all

the devices are fabricated using GaN grown on Si substrate.
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5.3 GaN photonic devices in the near-IR: Experimental results

5.3.1 Single mode operation

While working with integrated optical devices, It is important to note that single optical mode

operation is often and is highly desirable. In the case of photonic crystal slabs, each mode will

have its own bandgap and hence the final bandgap will be a superposition of all individual

bandgaps. This has to be kept in mind before the growth process is started. In this case, it was

priorly known that there would be a thin buffer layer of AlN on one side of the slab during the

fabrication process. With these parameters taken into account, the study of the thickness of

the membrane for various wavelengths was performed with the aid of CAMFR, an eigenmode

expansion tool [283]. It can be seen from figure 5.3 that a purely single mode operation is

Figure 5.3: Study of thickness for single mode operation for near-IR wavelength (1.55 µm).

possible for a 330 nm thick GaN slab along with a 60 nm AlN layer on one side for the case of

near-IR wavelengths. This information was taken into account for the next step, which was to

grow the GaN layer.

5.3.2 Growth and fabrication of samples

In spite of the advances in GaN fabrication technology, the achievement of free standing

membranes with sufficient air gaps has always remained a considerable challenge. In order

to overcome the issues surrounding this problem, in this work, GaN photonic structures

were fabricated by under-etching the Si substrate. The steps are listed as follows and are

also summarized in figure 5.4. It can be seen that the entire structure, including the wire

waveguides and the PhC lattice, is fabricated in a single lithographic step, as well as in single

subsequent etching steps, which considerably reduces the time needed for the total processing.

110



5.3. GaN photonic devices in the near-IR: Experimental results

Figure 5.4: Schematic of the fabrication process in near-IR: a) Illustration of the final structure of
an end-fire coupled PhC W1 waveguide. b) The sequential flow of the fabrication process steps.
Reprinted from a publication from this thesis [126].

(A) The process starts with the growth of a thin (60 nm) AlN buffer layer on Si (111) followed

by 330 nm of GaN along the c-axis (0001) through Metal Organic Vapour Phase Epitaxy

(MOVPE) process.

(B) It is important to note that that such thin AlN/GaN layers grown on Si are usually affected

by tensile strain mainly induced by the difference in their thermal expansion coefficients.

After the growth, a 100 nm thick SiO2 layer was deposited on top of the epitaxial structure

through Plasma-Enhanced Chemical Vapour Deposition (PECVD)

(C) This layer acts as a hard-mask during the entire fabrication process protecting the GaN

surface and hence avoids the degradation of the pattern. E-beam lithography was then

carried out to pattern the previously spun positive photoresist ZEP-520.

(D) Once the resist is developed, the pattern is transferred first to SiO2 by fluorine-based

Reactive Ion Etching (RIE).

(E) The pattern is then transferred to the AlN/GaN stacked-layers using chlorine-based

Inductively Coupled Plasma etching (ICP).

(F) Finally, the membrane is released through fluorine-based RIE of the Si (111) substrate,

which is a dry process. An air-gap of the order of 3µm was achieved, which is large enough

to avoid light losses through the substrate at 1.5µm.

(G) Finally, the SiO2 layer was removed using a hydrofluoric acid solution. This is the most

critical step due to the fragility of the self-supported structure, especially at the facets,

and a very careful manipulation is required in order to prevent collapsing and peeling off

of the wire waveguides.
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5.3.3 Examination of structures with SEM and AFM

The various components of a single integrated PhC W1 device are shown in the collection

of SEM images in figure 5.5. The images show the GaN wire waveguide that is mechanically

held stable with the aid of tethers. These tethers are spaced equally with intervals of 20 µm

and in some cases also 10 µm. The tether designs are also previously implemented for an InP

based wire waveguide by Talneau and coworkers [284] . This interval is chosen for the reasons

concerning mechanical stability. Shorter tether spacings results in increased tether scattering

losses and a larger spacing results in the peeling off of the wire waveguide. The tethers are

200 nm in width and the width of the wire waveguide is 3 µm and is slowly tapered down to

1 µm at the beginning of the W1 waveguide as can be seen in figure 5.5c . The image also

shows the smooth surface and vertical sidewalls of the wire waveguide.

Figure 5.5: Scanning Electron Micrograph images of the GaN device. a) Image showing the freely
suspended wire waveguide supported by tethers along with the suspended PhC membrane. b) The
end facet of the integrated PhC device showing the smooth and well suspended wire facet with an
isotropically etched air-gap. c) The entrance to the W1 waveguide and the wire termination also
showing the smooth and vertical sidewalls. d) The close up view of the wire waveguide with equally
spaced tethers of 20 µm.

The technology allows for the achievement of high verticality of the side walls (<5◦). A closer

view at the input of the photonic crystal is shown in figure 5.5c. The PhC slab is composed of a
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GaN layer with a thickness of 330 nm and an AlN layer with a thickness of 60 nm. These two

layers can be distinguished with the naked eye from the optical contrast in the cross-section

of the slab owing to the difference in their refractive indices. The diameter of the air hole

is 234 nm with a lattice constant of 600 nm and they form a hexagonal lattice. At the input

side, the crystal is cut exactly on the edge of the hole in order to achieve a maximal coupling

efficiency from the nanowire waveguide to the PhC W1 waveguide. Figure 5.5b also shows an

arc like air-gap below the suspended wire that is due to the isotropic etching process involved.

It is to be noted that this is the first reported demonstration of a completely free standing GaN

PhC device operational with a standard end-fire setup.

Figure 5.6: Atomic force microscope measurement of the PhC slab a) W1 waveguide b) hexagonal
lattice of the PhC c) and d) AFM images of b) and a) respectively. e) Surface roughness profile of the
W1 PhC waveguide. Reprinted from a publication from this thesis [126].

Atomic Force Microscope (AFM) measurements were also performed after the sample was

fully fabricated and can be seen in figure 5.6. A slight trend for the holes resembling a hexag-

onal shape can be seen. The measurements show bumps on the backside of the sample

that is attributed towards the adhesive tape used for sticking the membrane to the sample

holder, which flows through the holes of the membrane. Nevertheless, it can be seen that

the RMS roughness of the W1 was found to be lower than just 1.5 nm over a 500x500 nm2

area. Figure 5.6e displays the surface roughness profile over a 2 µm distance on top of the W1

waveguide and the peak-valley height is lower than 2.5 nm.
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5.3.4 Comparison of process flows: SOI vs GaN on Si in the near-IR

The results in this thesis cover photonic crystals that have been fabricated with both SOI and

GaN. It is interesting to note the differences and similarities between the process flows of the

two technological platforms. The schematic version of the comparison is shown in figure 5.7.

A number of state-of-the-art fabrication methods are employed in both the cases that were

developed in-house within the respective research groups (LOEQ and LASPE). In the case of

SOI flow, 220 nm thick core Si layer and a 2µm thick buried oxide buffer layer are supported by

the base substrate. In the case of GaN, a 330 nm thick GaN core layer and a 60 nm of AlN buffer

Figure 5.7: Comparison of SOI and GaN process flows (left and right). The single lithographic step
advantage is clearly visible for the GaN process flow.

layer are grown on top of an Si substrate. This step is followed by the e-beam lithography

that is used to achieve structures with a very high resolution of the order of 1 nm. From this

point, there are differences in the fabrication flow as indicated in the schematic. The primary

difference to note is that the GaN process flow results in much lesser enlargement effects on

the holes compared to the SOI process flow due to the type of dry etching method used.
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5.3.5 Optical characterization of the devices

Wire waveguides

The preliminary step before guiding light into a PhC device is to demonstrate guiding in

a simple wire waveguide. This allows for injecting light into the photonic crystal and for

collecting the transmission in a typical end-fire configuration. In the case of SOI platform,

the ridge waveguide is typically created with a stripe of Si that is generally supported on

top of an oxide layer. However, in the case of GaN on Si technology, the refractive index

of the underlying layer has a higher value ( nGaN =2.31 and nSi =3.47 respectively at near-IR

wavelengths). This will prohibit the guiding of light through the wire waveguide leading to the

use of a fully suspended wire waveguide such that the silicon layer underneath the GaN wire

is completely removed through dry etching. These wire waveguides are then mechanically

supported through the use of appropriately designed tethers as shown already in the previous

section.
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Figure 5.8: Light scattering observed from the equally spaced tethers holding the wire waveguide.
Measurement was made using a microscope objective with an N.A of 0.9.

In this particular design, the nanowire width at the facet of the sample is set to 3 µm to

maximize the coupling to the focussed beam from the lensed fiber tip. The width is then

gradually tapered down to 1 µm next to the photonic crystal waveguide in order to couple

efficiently into the W1 PhC even mode. The tethers that hold the wire waveguide are randomly

or periodically distributed in different devices. The implication of this periodicity can be seen

in the formation of Bragg type resonance peaks in the transmission spectrum of the device

that could impede the coupling to the PhC devices. The random distribution prevents and

minimizes this effect. Nevertheless, these tethers prove to be quite useful also in the optical

characterization of the sample. In the first order, the tethers that are used to suspend the

wire in this case can be assumed as uniform periodic scatterers that scatter the light in all

directions and this scattered light can be imaged using an infrared camera from the top of
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the sample as seen in figure 5.8. Three pairs of bright spots can be observed that corresponds

to the scattering of guided light in the wire by the tethers. The decay of this scattered light

obtained by combining frames along the nanowire propagation direction upto 2 mm was

used to estimate the losses in the nanowires as shown in figure 5.9. The propagation losses

are estimated to vary from 10 to 12 dB/mm, which is a first reported loss number for GaN

based free standing wire waveguides of this thickness. A similar measurement was performed

with a tether spacing of 10 µm spacing, and the loss was found to be around 10 dB/mm. This

indicates that the tether dimensions have rather a small influence over the propagation loss in

the nanowire waveguide, and it could also still serve as a useful scattering probe tool.

Figure 5.9: Propagation loss of a tethered nanowire (a) Integrated intensity profile of the scattered
light from the tethers along the propagation direction.(b) Real space image of scattered light on top
of the wire waveguide imaged with an infrared camera. Reprinted from a publication from this
thesis [127].

The additional losses observed for the GaN wire can be due to a number of reasons such as

fabrication imperfections and the presence of the AlN layer. As a consequence of these loss

values, the maximal transmission power measured from the end-fire setup was about 20 nW

for a 1 mW injection power from the tunable laser . Considering the fiber to fiber transmission

power which is 85 µW, the total decay in a 3 mm nanowire is 36 dB. This value is in accordance

with the scattered light measurement (30 dB in 3 mm) and the additional 6 dB loss is attributed

to the coupling losses between the lensed fiber and the device facets. It is hard to compare the

loss figures across different platforms as there are several parameters such as thickness, height

etc. involved. This loss value can be compared to the reported InP nanowire [285] with a very

similar tethering scheme whose propagation loss is 1.6 dB/mm. In the case of Si waveguide

technology, the initial reported loss figures are around 8 dB/cm in 1991 [286].The progress

in technology over the years by improving side wall roughness and surface smoothness has
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resulted in remarkable loss figures down to 0.026 dB/cm in this example [287]. This amounts

almost three orders of magnitude reduction in the loss figures over two decades of technology

optimization.

Figure 5.10: Experimental and numerical dispersion (dotted lines) of wire waveguides is shown.
The folding period (G) corresponds to 0.619 µm−1 for all the modes. As each dispersion line is
folded multiple times due to the tethers (grating), the folding order for each mode is indicated in
the subscript of the mode labels (TEnm denotes the nth mode folded m times). Reprinted from a
publication from this thesis [127].

The theoretical study of the GaN suspended waveguide dispersion was performed with the

FEM not taking into the account the presence of tethers. The computations show the presence

of 2 TM modes and 4 TE modes. The light emitted from the top of the sample is collected by

an objective with a NA of 0.45 to perform Fourier imaging. This field of view allows for viewing

several scatterers in real space and hence measuring the dispersion of the propagating modes

in the reciprocal space. The spacing of the tethers in the measured device is 10 µm which

gives rise to a folding period of 0.619 µm−1 in reciprocal space. The experimental and the

superimposed theoretical results are shown in figure 5.10, and it can be clearly seen that the

two strong lines representing the two TE modes are the even modes TE0 and TE2 and the

weak line representing the TM mode is TM0. The mode numbering refers to lateral mode

numbers, as the membrane is single mode along the vertical direction. Given the symmetric

nature of the waveguide, one would expect the TM mode to be not coupled in, but the faint

coupling observed in figure 5.10 is attributed to the asymmetry created in our structure due to

the thin layer of AlN under the GaN layer. All the modes appearing in the dispersion are the

in-plane modes that are matched strongly with the mode profile coupled from the tapered

fiber. The proximity of the TE dispersion lines, for instance between TE012 and TE211 observed

in figure 5.10 where TEnm denotes the nth mode folded m times, is due to the fact that the

folding orders are coincidentally close to one another when they are folded into the light cone

due to the chosen grating spacing, which has also been confirmed with calculations.
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Device characterization: Photonic crystal waveguides

The PhC W1 waveguide is an important element in the family of devices based on photonic

crystals. Apart from its properties near the band edge such as slow light, it is also used to

effectively couple light to the cavities that are embedded in the PhC lattice. A simple W1

waveguide was designed and fabricated in GaN. It was optically characterized to understand

its dispersion and propagation properties. A microscope objective with a high numerical

aperture of 0.9 is used in order to collect light from the top of the device. The top right

figure 5.11 shows the visible image of the photonic crystal W1 connected to an injection wire

waveguide. The dark color is due to the membrane and indicates a freestanding structure.

Figure 5.11: Light propagation through a GaN PhC waveguide seen with an infrared camera. The
inset shows the corresponding SEM image. Reprinted from a publication from this thesis [126].

The interface between the wire and the PhC W1 results in a scattering loss as can be seen in

the infrared image. The mode of the W1 can be also seen as it radiates outside the light line

of the device. The decay of this radiated light can be used to perform a loss measurement

and the propagation loss is around 82 dB/mm. These measured loss values vary from 80

to 100 dB/mm for different wavelengths in the 1.5 µm band. This is a typical propagation

loss of W1 waveguide working above the light line. However, the propagation loss of a truly

guided mode below the light line cannot be measured with this method because of the lack of

scattered light in these wavelengths. A standard way to measure the loss below light cone is to

analyze the transmitted power of devices with different lengths, but the transmission through

a 3 mm device with a PhC W1 is not possible at the moment because of the heavy losses

involved in the devices. Dispersion measurements were performed on the device using the

Fourier imaging technique [288] and is displayed in figure 5.12. The W1 mode can be clearly

observed until the cut-off of the objective light line below which the mode is truly guided and

cannot be observed. The emission of the output of the W1 waveguide allows us to ascertain the

cut-off of the propagating mode and the onset of the photonic bandgap, which confirms with

the measured dispersion curve very well. Two dimensional Guided Mode Expansion (GME)
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Figure 5.12: Dispersion of W1 even-mode propagation in the GaN PhC W1 waveguide with a
grating. The dotted black line is the numerical computation performed with GME. Reprinted from
a publication from this thesis [127].

based calculations are performed to compute the numerical dispersion curve using refractive

indices of 2.3 and 2.1 for GaN and AlN, respectively. The lack of scattered light below light cone

will also limit the measurement of dispersion. To be able to probe the dispersion of the guided

modes with the Fourier imaging technique [288], we have to artificially introduce a periodic

one-dimensional probe grating that enables coupling of a small portion of guided light into

the radiative modes. In the case of a grating designed along the propagation direction, the

dependence of the wave vector of the diffracted light kdi f f on the propagation constant of the

guided mode kpr op is given by the well known grating equation:

kdi f f = kpr op +m
2π

Λ
(5.1)

where Λ is the grating period and m is an integral number giving the order of diffraction. A

linear grating in the evanescent tail of the guided field has been implemented . The dispersion

and emission of light at the end of PhC is shown in figure 5.12. In principle, the linear probe

grating makes it possible to reconstruct the dispersion of the entire W1 dispersion. But it can

be seen that the 1st order dispersion line is neatly captured only in the fast light regime. In

the slow light regime, the amount of scattered signal increases as the group index increases.

This constitutes the reason why the lower parts of the W1 dispersion curve become weak and

discontinuous. A further decrease in the frequency and after traversing through the photonic

band gap, the dielectric band of the PhC is reached as shown in figure 5.12. In a similar manner,

W0.94 and W1.02 PhC W1s are also characterized and the measurements indicated that the

W1 band edge follows the fact that the mode is pushed towards the dielectric band when the

width is increased.
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Device characterization: Photonic crystal cavities

The interest to work with photonic crystal cavities arises from the inviting possibility of

achieving cavities with a large quality factor and a small mode volume as was explained in

chapter 1 in the context of various light-matter interaction experiments. In order to fabricate

photonic crystal cavities with GaN for the near-infrared spectrum, three popularly used cavity

designs are chosen and are optimized parametrically for the index of GaN so as to achieve a

maximum theoretical Q-factor. It is to be noted that these designs have been widely studied

on a free standing Si membrane that has a larger light confinement due to the higher refractive

index of Si. It is advantageous if the form of the electric field distribution in the cavity is slowly

varying, ideally described by a Gaussian function. This type of designing cavities is also often

referred to as “gentle confinement”.

The first type is a modified L3 cavity [161] that is optimized by tuning the position of first

few air holes on the left and right side of the cavity region. The second type is a width

modulation of W1 type cavity [144] where the position of four holes close to the center of the

waveguide are stretched perpendicular to the light propagation direction. The third type is a

heterostructure type cavity [162] with a small expansion of two lattice constant widths along

the light propagation direction. All these designs obey the role of gentle confinement while

still keeping the small cavity size approximately. In the case of GaN, due to the differences

in dielectric constant of the material, the lattice constant and the large membrane thickness

compared to silicon, the optimum parameters of the cavity designs have to be recalculated

and re-optimized.

Type of cavity Optimized Q-factor

Modified L3 2900
Modified W1 - A3 66000
Heterostructure 102000

Table 5.3: Cavity designs for GaN PhC. Three designs are optimized for the refractive index of GaN
and by parametrically tuning the parameters in FEM.

Two dimensional finite element methods are used to construct the cavity designs and the far

fields of the planar electric field components are observed in the light cone. The components

falling inside the light cone are radiated out and are lost leading to a decrease in the quality

factor of the cavity. This method was the basis of the optimization as described in the initial

work of Akahane and coworkers [161]. In the case of an L3 cavity without tuning of the

holes, a quality factor of 2000 is numerically calculated. The Fourier spectrum contains

large components inside the leaky region. This is due to the abrupt change at the cavity

edges.The confinement is made gentler by slowing varying the position of the holes away

from the cavity and consequently the cavity profile is considered to be close to the ideal

confinement expression given by the Gaussian function. This results in a quality factor of 2900

for a displacement of 0.2a, where a is the lattice constant of the PhC. A similar optimization

is performed for both the modified W1 type and the heterostructure type cavities. The final
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optimized Q-factors are reported in table 5.3. The corresponding cross sections of the far field

and the in-plane far field images of the above mentioned cavities are also shown in figure 5.13.

It can be clearly seen that the A3 and heterostructure cavities exhibit very few components

inside the dotted white circle, which is the leaky region out of the slab. This explains the

difference in the quality factors seen between the L3 and the rest.

Figure 5.13: Fourier transform spectra of cavity modes of a) Modified L3 b) Modified W1 c) Het-
erostructure.

In the actual design of the sample, the modified L3 cavity is coupled to the W1.02 waveguide

in order to avoid the coupling from the slow light regime. A varying coupling distance from the

feeding waveguide is also used. In the case of the A3 and heterostructure, though the 10 nm

shift is the most optimized case, a 20 nm shift was also implemented. It is also believed that

the high-Q cavities are more prone to disorder in the PhC membrane than the L3 cavity. In the

optical characterization of the cavities, the fundamental mode of the L3 cavity is coupled with

a W1.02 waveguide to enable efficient coupling in the fast light regime under the light line.

Figure 5.14: L3 cavity: Coupling and Q-factor measurement. Dispersion and transmission mea-
surement showing the even mode of a W1.02 waveguide and the resonant dip of the L3 mode. The
side inset shows the emission and transmission measurements of the cavity mode and the measured
Q-factor.
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This can be evidenced in the experimental measurement of the dispersion along with the

cavity mode emission and transmission as shown in figure 5.14. The measured Q-factor in

emission in this case is approximately close to 1000. The higher order L3 mode with a lower

quality factor is also measured. As the cavity is moved far from the waveguide, the external

influence on the cavity fields become smaller. The quality factor increases while the coupling

strength decreases. The maximum quality factor measured in a modified L3 cavity device is

2000 where the numerical Q-factor is close to 3000.

Figure 5.15: Experimental measurement of a heterostructure PhC cavity. a) The transmission
through the structure showing a very negligible peak after the cut-off of the propagating mode. b)
The emission measurement performed shows the presence of the cavity mode and the Q-factor is
shown in the inset of the image.

The heterostructure cavity is formed by expanding two lattice constants along the propagation

direction. Here, it is coupled using an in-line configuration with a W1 waveguide. The barrier

is 10 lattice constants or 20 lattice constants long in different devices in the sample. The

transmission properties of such a configuration is noticeably different as can be seen in

figure 5.15a. The cavity mode, which is indicated by the black arrow, appears as a small peak

after the cut-off frequency of the barrier. The emission spectrum of a 20 nm shifted cavity with

a barrier of 20 lattice constants wide shows a quality factor as high as 5400 with a numerical

Q-factor of 50000 and is shown in figure 5.15b. Other heterostructure cavities with barriers of

10 lattice constants have also been measured and their maximum quality factor is around 2000,

which is consistent with the reasoning discussed with the L3 cavity regarding the proximity of

the coupling waveguide.
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5.4 GaN photonic crystal cavities in the visible: Experimental re-

sults

5.4.1 Growth and fabrication

The demonstration of PhC structures in the visible wavelength with a single mode optical

operation demands the thickness of the slab to be around 40 nm which is currently not within

the reach of growth techniques at LASPE. The growth and fabrication process used here

achieves a structure shown in the schematic of figure 5.16. The fabrication steps are largely

similar to the ones that are explained for the near-IR except for the presence of the additional

quantum well layers, which are required for the optical characterization.

Figure 5.16: Schematic cross section of the 2D GaN PhC L7 cavity with two embedded InGaN/GaN
quantum wells. Reprinted from a publication from this thesis [128].

1. A 60 nm thick AlN buffer layer is grown at low temperatures to reduce the dislocation

density.

2. This step is followed by a growth of a 167 nm thick GaN layer and a double InGaN/GaN

quantum well layer consisting of In0.2Ga0.8N (3.5 nm)/GaN(7 nm)/ In0.2Ga0.8N (3 nm)

and finally a GaN layer of 21 nm is grown.

3. A 100 nm thick SiO2 layer is then deposited on top of the structure.

4. The PhC bulk lattice with a lattice constant of 155 nm and a filling factor r=0.35a is

written with e-beam lithography after the spinning of photoresist. The orientation of

the cavity is along [1010].

5. The pattern is transferred via RIE and the resist is removed.

6. GaN etching is performed with a chlorine-based ICP and the membrane release is

achieved through the dry under-etching of the Si substrate.
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7. The SiO2 mask is finally removed with the use of hydrofluorhydric acid solution.

The structures were later analyzed under an SEM and the images can be seen in figure 5.17.

The top and side views can be seen in the left and right of figure respectively. The close-up

view of one of the holes reveals the tendency towards the formation of a hexagonal shape due

to the inherent crystal structure. An airgap of 1 µm can be clearly seen below the membrane

in the right image and the smooth and vertical side wall of a single hole is shown in the inset

of figure 5.17b.

Figure 5.17: SEM images of PhC L7 cavity for visible wavelengths. a) The L7 nanocavity with
an inset of a single hole on the top right corner b) Side view with a tilt angle of 15◦ showing the
airgap below the membrane. The left inset shows the single hole cross-section and its vertical profile.
Reprinted from a publication from this thesis [128].

It is to be noted that this is a simple case of an L7 cavity and none of the surrounding hole

positions nor radii were modified for increasing the quality factor of the cavity.

5.4.2 Optical characterization and analysis

The devices are characterized at low temperature by microphotoluminescence (µPL) spec-

troscopy using a continuous wave Argon laser, which is focussed down to a 2 µm diameter

spot at an excitation power density of 2 KW/cm2. The output signal is recorded by a liquid

nitrogen cooled UV enhanced CCD device. The spectrum recorded is shown in figure 5.18a.

There are several peaks corresponding to different modes of the cavity with one of the peaks

clearly showing a high quality factor of about 5200.

To validate our analysis of the experimental spectra, the effective indices and allowed mode

cut offs are first calculated for the GaN and AlN layer thicknesses used in the experiment. It is

found that the system allows for the first three orders of TE and TM modes at the wavelength

of interest and then, with the use of a 2D plane wave expansion method, the corresponding

band gaps are calculated due to each of these mode indices. There are band gaps only for the

TE1 and TE2 effective mode indices and then by creating the L7 cavity defect in the model,

cavity states arising in the bandgap are computed for both these modes. A total of 13 modes

for the TE1 case and 12 modes for the TE2 configuration are found. The superposition of

all these states gives the final set of cavity state energies in the spectra of the sample. This
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Figure 5.18: Optical characterization and numerical modeling: a) µPL spectra showing the cavity
peaks taken out from the PhC area. b) Cavity mode positions calculated for a given ne f f are
represented in squares. Each blue dash-dotted line represents the spectral dispersion of the cavity
modes from the TE1 guided mode taking into account the dispersion of the effective refractive index
(red dashed line). Reprinted from a publication from this thesis [128].

calculation already explains the multiple peaks seen in the experimental spectra and they

correspond to the modes arising due to the TE1 mode effective index. It is important to note

that the mode spacing in energy is not constant when the dispersion of the GaN index is taken

into account. The frequency dependence of the refractive index of GaN based devices can

be found here [289] and for the frequencies of interest, it can be approximated to a linear

dependence. For this linear dependence, it is possible to map the positions of the cavity

modes as a function of the effective refractive index. The intersection of the GaN index spectra

and that of the effective index variations of the mode positions gives the final value of the

mode positions when dispersion is taken into account. This is shown in figure 5.18b where

the mode positions at the intersections are superimposed on the experimental spectra and a

consistent correlation can be seen between theory and experiment. 3D FEM simulations of

the eigenfrequencies in the system are also performed to verify the cavity modes and several

of these modes do exhibit sufficiently high Q-factors.
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5.5 Summary and perspectives

Summary

In this chapter, wide bandgap photonic crystals based on Gallium Nitride technology have

been explored and experimentally studied. The important results are:

• In the visible wavelength range, L7 photonic crystal cavities have been experimentally

measured on a free standing GaN membrane of thickness 190 nm resulting in a Q-factor

of 5150 at a wavelength of 422 nm.

• In the near-infrared wavelength range, L3 and heterostructure based photonic crys-

tal cavities have been demonstrated showing Q-factors of up to 5400 at 1550 nm. In

addition, suspended ridge waveguides and photonic crystal waveguides were also char-

acterized for dispersion and loss propagation. The ridge waveguide propagation losses

has been measured to be 10 dB/mm.

Perspectives

In the case of visible wavelengths, along with the possibility to bury quantum dots inside the

device, it can be very interesting for experiments in quantum optics, quantum information

and single photon emitters. The visible wavelength operation also benefits the applications

involving biology due to the fluorescent markers used in this wavelength range. In terms of

theory and modeling, new cavity designs have to be optimized based on the refractive index

variation of GaN at different wavelengths. The effects of the underlying layer of AlN has to

be also be taken into account for all calculations. Also, the optical trapping devices shown in

chapter 3 of this thesis can be extended to visible wavelengths and biological species could be

trapped on which spectroscopic measurements could be performed.

In the case of near-infrared wavelengths, which is widely used for telecommunications, two-

photon absorption has been a major concern for high quality factor devices as has also been

experimentally shown in this thesis in chapter 4. Applications involving second harmonic

generation, four wave mixing or Raman amplification would be the non-linear optical effects

without two-photon absorption and free-carrier absorption. GaN with its wide bandgap will

have not this problem and high Q-factor cavities could be investigated in this technology. New

designs of optimized cavities following the evolutionary method shown in chapter 4 could

be implemented. The propagation losses and Q-factors that have been shown in this chapter

could be improved by tuning the fabrication processes iteratively.
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Conclusions

The contribution of this thesis revolves around the physics and characterization of slab pho-

tonic crystal cavities and their subsequent study for specific light-matter interaction experi-

ments.

In the context of numerical analysis, three dimensional finite element methods were exten-

sively used for exploring the cavity field configurations and for optimizing the quality factors

through parametric optimization. Plane wave expansion and the guided mode expansion were

instrumental in computing waveguide parameters and dispersion characteristics accurately.

In the case of high Q-factors in photonic crystal cavities, it has been found that disorder plays

a significant role in limiting the quality factor of ultra-high Q cavity designs and beyond a

certain limit when the disorder-induced losses are far greater than the intrinsic losses, it is no

longer beneficial to explore or optimize higher Q-factor designs. It is rather beneficial to work

on reducing the disorder induced losses for existing cavities.

In the first light-matter interaction experiment, a resonant optical trapping scheme in a pho-

tonic crystal cavity has been demonstrated where a new design space using hollow cavities

has been explored. The electric field maximization within the lower index dielectric has been

analyzed numerically and a circular cavity with a reasonable overlap in water along with a high

Q-factor was finally chosen to perform the experiment. Contrary to the evanescent trapping

methods, this method experimentally confirmed the trapping of 500 nm sized dielectric parti-

cles with astonishingly low input powers in the µW range and for trapping times of about tens

of minutes. 250 nm sized dielectric particles were also trapped with the cavity. Furthermore

the perturbation induced by a single particle in the hollow cavity was calculated to be about

2.8 nm and an experimental value of 1.8 nm was measured. The strong perturbation induced

back-action effect was numerically calculated with the maxwell stress tensor method through

the forces acting on the particle predicting the existence of two separate trapping regimes and

anharmonic force profiles for different detuning values. This feature was also qualitatively val-

idated in the experiment through the evaluation of the detuning dependent escape threshold

power. Furthermore, arrays of circular cavities were demonstrated for wavelength selective

integrated trapping.
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In the second light-matter interaction experiment, a fast and novel evolutionary optimization

method using mode expansions tools has been explored and is used to demonstrate that

“simple” designs can also be optimized to produce ultrahigh Q-factors. The H0 cavity was

heuristically optimized to a theoretical Q=280,000 only three years ago. Here we demonstrate

a theoretical Q=1.95 million and a measured Q of up to 418,000, namely twice the previous

theoretical value along with modal volumes as small as 0.34 (λn )3. The Q/V ratio is the most

important figure of merit for photonics applications, as it determines the enhancement of

optical nonlinearities and the strength of radiation-matter interaction. The crucial advantage

of this design however resides in its simplicity, spatial compactness, and robustness to fabrica-

tion imperfections. In order to show the power of the optimization method, three unique H0

cavity designs with theoretical Q-factors 1.05 million, 1.95 million and 8.9 million have been

proposed. The measured cavity also displayed nonlinear optical effects and bistable states

due to the interaction between free carrier absorption and thermal effects at very low input

powers.

In both the above experiments, Silicon was used, being the most used semiconductor optics

substrate for the ease of adherence to CMOS fabrication but it suffers from two main issues.

First is the spectral absorption present in the visible wavelength range that renders cavities in

this wavelength highly lossy. Second is the two-photon absorption present at the near-infrared

wavelength range that can be detrimental to the operation of ultra high-Q nanocavities that

was also demonstrated in this thesis. To alleviate both these issues, photonic crystal devices

were designed and characterized for Gallium Nitride substrates and in spite of a low refractive

index contrast, reasonable quality factors of more than 5000 were witnessed in both visible

and near-IR wavelengths. In the case of the infrared devices, a complete dispersion and

transmission characterization was performed on fully suspended ridge waveguides, photonic

crystal waveguides and high-Q cavities. A modest transmission loss of 10 dB/mm is reported

for the ridges, which is mainly limited due to fabrication disorder.
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Outlook

This thesis brings some exciting new results and ideas to the expanding domain of photonic

crystal cavities. It opens up new experimental avenues and boundaries that have remained

previously unexplored. It has to be re-iterated that photonic crystals offer a powerful platform

to perform some invigorating investigations in condensed matter physics as reviewed in

chapter 1 and the rest of this thesis. Apart from the novelties in physics, this thesis also

showcases applications that promise commercial value in the near future for photonic crystals

that have prevailed for more than two decades but are yet to find a convincing stamp in large

scale industrial applications.

In terms of physics, the resonant optical trapping scheme is a completely new mechanism in

integrated trapping with the perturbation specific back-action effects and trapping regimes.

The experiment can be further continued in order to quantitatively measure the dynamics

of the trapping behaviour for different types of particles and to evaluate the strength of the

trapping forces. This can be measured through various methods, for example, by observing

the power spectrum signature of the trapped particle. In an other aspect, the reported H0

nanocavity was obtained by means of a novel procedure, based on an evolutionary optimiza-

tion algorithm combined with a fast simulation tool which disproves the common belief within

the community, that photonic crystal cavities with Q-factors of above one million could only

be realized with few specific designs, while all “simple” designs such as the L3 or H0 could

never get significantly above 100,000. Global optimization revolutionizes the understanding

of photonic crystal cavities, by showing that high-Q can be obtained with most cavity designs,

and thus increasing the relevance of the 2-D photonic crystal paradigm within the broadest

photonics community. It also holds great promise as a platform for solid-state cavity quantum

electrodynamics, where a high Q/V ratio is the main requirement to achieve single-photon

nonlinearities for quantum information applications.

In terms of technology and applications, the resonant trap can be extended to biological

entities and size/wavelength selective integrated trap arrays can be envisaged. The GaN

platform offers a number of possibilities to transfer the functionalities that were performed on

Silicon. In the first step, the two experiments that have been shown in this thesis can be scaled

for Gallium Nitride. The trapping circular cavity will have to be scaled to about three times

smaller in diameter in order to work for visible wavelengths that could potentially trap much

smaller particles of the order of 100 nm. The visible wavelength cavities could be interesting

for exploring fluorescence-based devices and for nanobiosensing experiments. In the second

step, the high-Q cavities that were demonstrated in this thesis can also be ported to GaN to be

able to achieve very high quality factors without the influence of two photon absorption to

be able to be used for high power optical applications. Finally, the evolutionary optimization

method that brought this H0 design promises to play a major role in the future development

of customizable PhC cavity devices for specific application requirements, thereby, opening

the door to the possibilities of creating a generic library of photonic crystal cavity functions.
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“Deterministic coupling of single quantum dots to single nanocavity modes,” Science,

vol. 308, no. 5725, pp. 1158–1161, 2005.

[102] T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel,

and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single

quantum dots to a photonic crystal waveguide,” Physical review letters, vol. 101, no. 11,

p. 113903, 2008.

140



Bibliography

[103] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Ya-
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