Abstract

In water treatment dissolved organic matter (DOM) is typically the major sink for chemical oxidants. The resulting changes in DOM, such as its optical properties have been measured to follow the oxidation processes. However, such measurements contain only limited information on the changes in the oxidation states of and the reactive moieties in the DOM. In this study, we used mediated electrochemical oxidation to quantify changes in the electron donating capacities (EDCs), and hence the redox states, of three different types of DOM during oxidation with chlorine dioxide (ClO2), chlorine (as HOCl/OCl-), and ozone (O-3). Treatment with ClO2 and HOCl resulted in comparable and prominent decreases in EDCs, while the UV light absorbances of the DOM decreased only slightly. Conversely, ozonation resulted in only small decreases of the EDCs but pronounced absorbance losses of the DOM. These results suggest that ClO2 and HOCl primarily reacted as oxidants by accepting electrons from electron-rich phenolic and hydroquinone moieties in the DOM, while O-3 reacted via electrophilic addition to aromatic moieties, followed by ring cleavage. This study highlights the potential of combined EDC-UV measurements to monitor chemical oxidation of DOM, to assess the nature of the reactive moieties and to study the underlying reaction pathways.

Details

Actions