An Error Analysis Of Galerkin Projection Methods For Linear Systems With Tensor Product Structure

Recent results on the convergence of a Galerkin projection method for the Sylvester equation are extended to more general linear systems with tensor product structure. In the Hermitian positive definite case, explicit convergence bounds are derived for Galerkin projection based on tensor products of rational Krylov subspaces. The results can be used to optimize the choice of shifts for these methods. Numerical experiments demonstrate that the convergence rates predicted by our bounds appear to be sharp.


Publié dans:
SIAM Journal On Numerical Analysis, 51, 6, 3307-3326
Année
2013
Publisher:
Philadelphia, Society for Industrial and Applied Mathematics
ISSN:
0036-1429
Mots-clefs:
Laboratoires:




 Notice créée le 2014-02-17, modifiée le 2018-09-13

Preprint:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)