000196866 001__ 196866
000196866 005__ 20181114202451.0
000196866 0247_ $$2doi$$a10.1137/120900204
000196866 022__ $$a0036-1429
000196866 02470 $$2ISI$$a000328903500015
000196866 037__ $$aARTICLE
000196866 245__ $$aAn Error Analysis Of Galerkin Projection Methods For Linear Systems With Tensor Product Structure
000196866 269__ $$a2013
000196866 260__ $$aPhiladelphia$$bSociety for Industrial and Applied Mathematics$$c2013
000196866 300__ $$a20
000196866 336__ $$aJournal Articles
000196866 520__ $$aRecent results on the convergence of a Galerkin projection method for the Sylvester equation are extended to more general linear systems with tensor product structure. In the Hermitian positive definite case, explicit convergence bounds are derived for Galerkin projection based on tensor products of rational Krylov subspaces. The results can be used to optimize the choice of shifts for these methods. Numerical experiments demonstrate that the convergence rates predicted by our bounds appear to be sharp.
000196866 6531_ $$alinear system
000196866 6531_ $$aKronecker product structure
000196866 6531_ $$aSylvester equation
000196866 6531_ $$atensor projection
000196866 6531_ $$aGalerkin projection
000196866 6531_ $$arational Krylov subspaces
000196866 700__ $$aBeckermann, Bernhard$$uUST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France
000196866 700__ $$0246441$$aKressner, Daniel$$g213191
000196866 700__ $$aTobler, Christine
000196866 773__ $$j51$$k6$$q3307-3326$$tSIAM Journal On Numerical Analysis
000196866 8564_ $$s454679$$uhttps://infoscience.epfl.ch/record/196866/files/tensor_projection_revised.pdf$$yPreprint$$zPreprint
000196866 909C0 $$0252494$$pANCHP$$xU12478
000196866 909CO $$ooai:infoscience.tind.io:196866$$pSB$$particle$$qGLOBAL_SET
000196866 917Z8 $$x213191
000196866 937__ $$aEPFL-ARTICLE-196866
000196866 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000196866 980__ $$aARTICLE