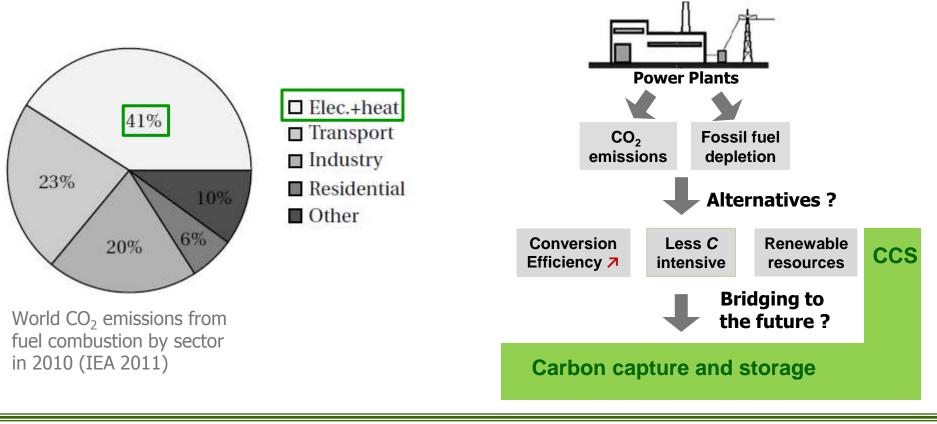
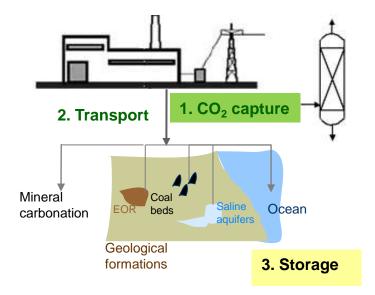
Process engineering method for systematically comparing CO₂ capture options

Presented at ESCAPE 23

Lappeenranta, Finland 9-12 June 2013

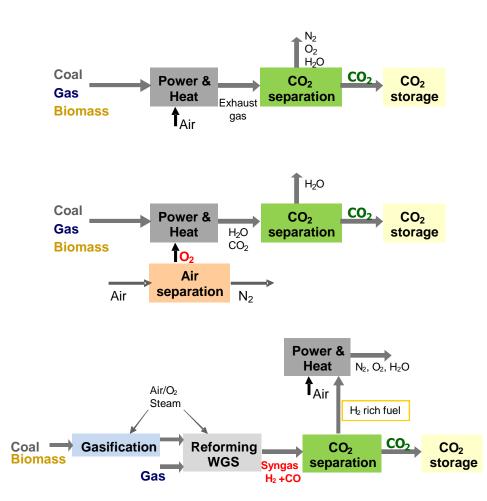
Dr. Laurence TOCK^a,


Prof. François Maréchala

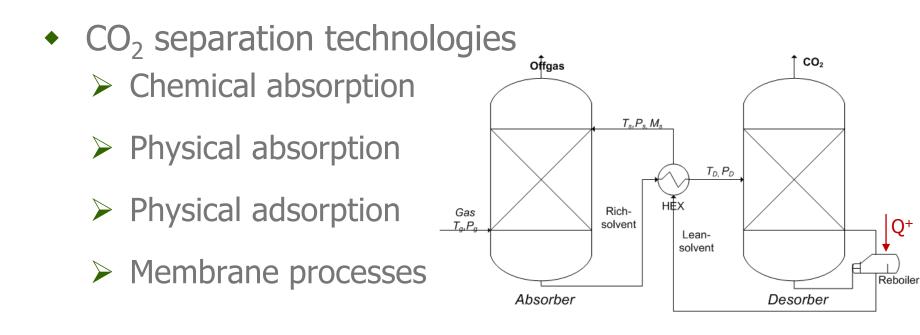

^aIndustrial Process and Energy Systems Engineering Ecole Polytechnique Fédérale de Lausanne

- Dual global challenge
 - ➢ Greenhouse gas emissions ↘
 - Sustainable energy supply

- CO₂ emissions ↘ & energy supply
 Carbon capture and storage (CCS)¹
 - 1. Capture
 - CO₂ removal from flue gas by gas separation technologies
 - 2. Transport
 - CO₂ compression to 110bar
 - Transport by ship or pipeline
 - 3. Storage
 - Geological formations
 - Ocean
 - Mineral carbonation

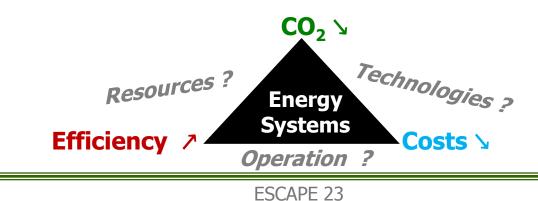

¹ IPCC Report 2005, ZEP Report 2011, IEA 2011

June 10, 2013

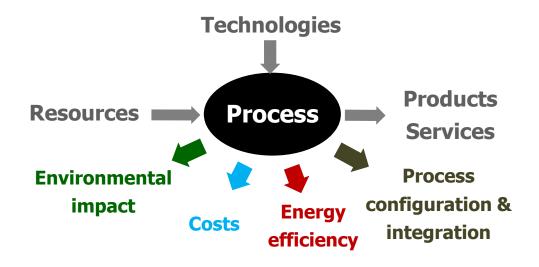

L. TOCK 3

- CO₂ capture concepts
 - **Post-combustion** End of pipe CO₂ removal

• **Oxy-fuel combustion** Pure O₂ combustion

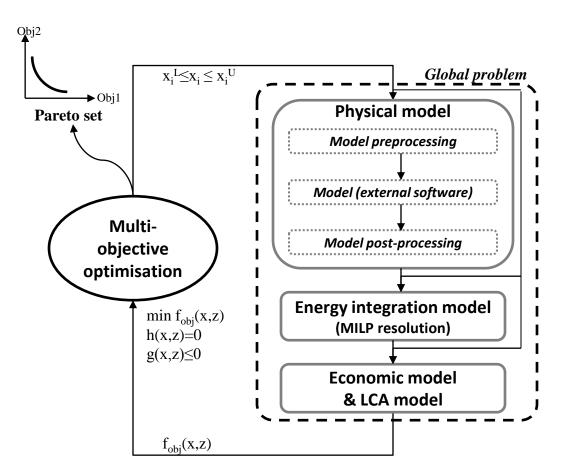


• **Pre-combustion** Syngas intermediate, H₂ route



- Drawbacks of CO₂ capture & compression
 - > Large energy requirement:
 - Up to 10%-pts efficiency penalty (~2%-pts from CO₂ compression)
 - > Additional investment:
 - 20-30% production cost increase
- Challenge:
 - Competitive power plants with CCS

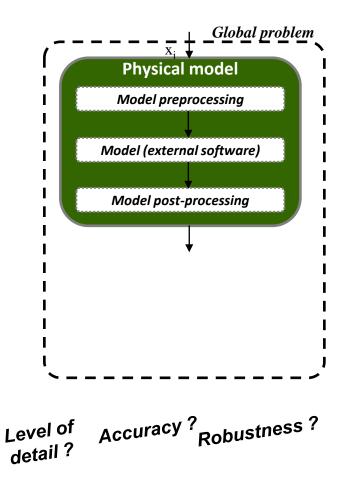
Systematic optimisation of CO₂ capture processes
 Thermo-environomic optimisation methodology²


> Thermodynamic, economic & environmental aspects

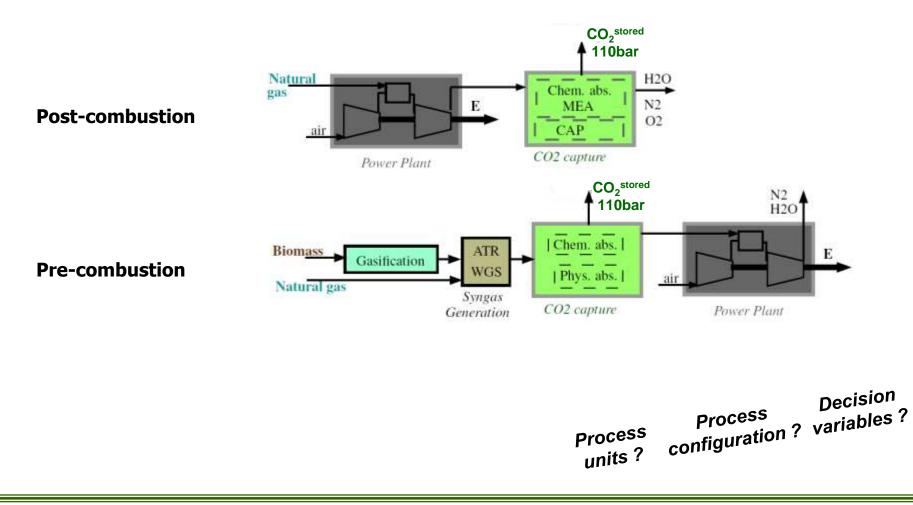
- Trade-off between efficiency, costs and CO₂ capture rate!
- Assessment of fuel decarbonisation competitiveness

² Gassner et al. 2009, Tock et al. PSE 2012

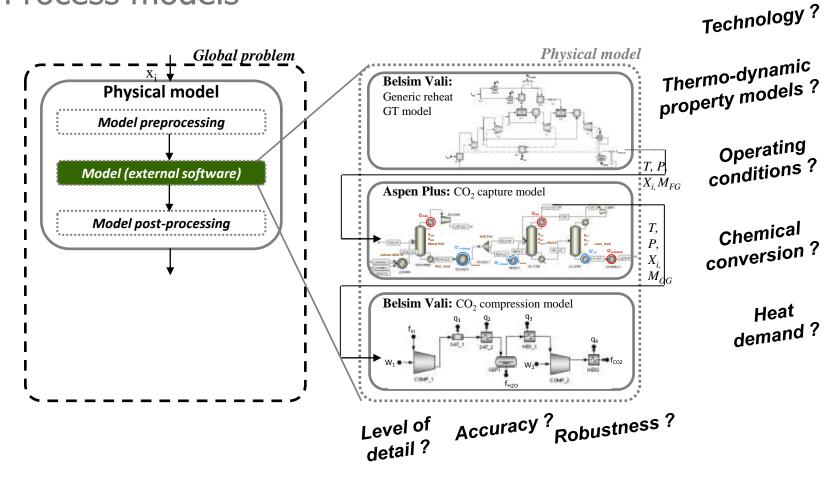
Thermo-environomic optimisation methodology


Uniform and systematic platform³

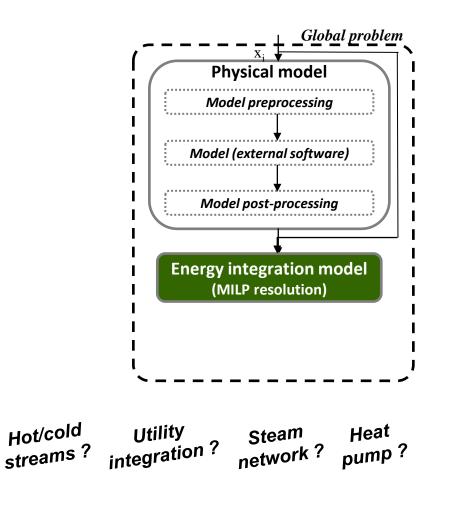
³Tock et al. PSE 2012, Bolliger et al. 2009/2010, Gassner et al. 2009, Gerber et al. 2011



Process models


- Process units operation
 - Physical & chemical transformations
 - Heat transfer requirement
 - Coherent representation of existing technology
 - Accurate and flexible
 - Avoid needless complexity

- Superstructure of candidate technologies
 - Conceptual process design of fuel decarbonisation

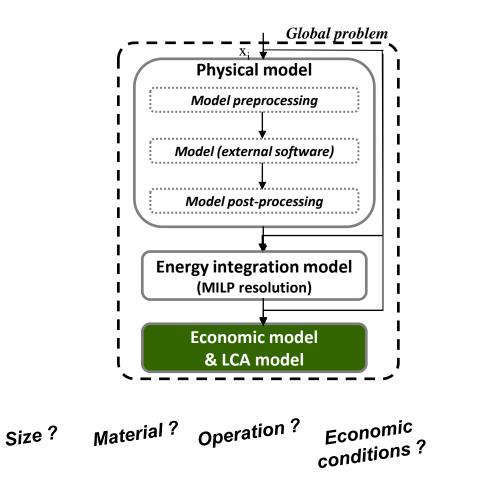

Process models

• Process simulation:

Connection between **different** flowsheeting **software** !

Energy integration: Pinch analysis

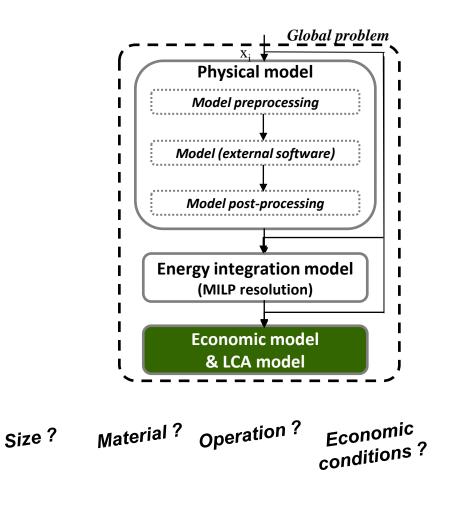
- Optimal integration of process units
 - Maximal heat recovery⁴
 - Optimal combined heat & power production


Waste heat valorisation

Potential improvements of process technology ?

- Resolution
 - Linear programming minimising operating cost

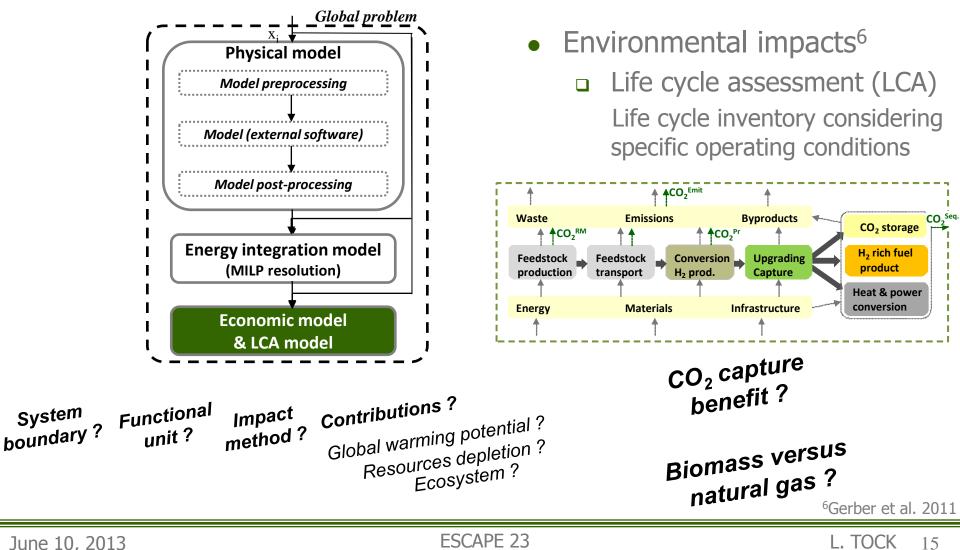
⁴Maréchal and Kalitventzeff 1998


Performance evaluation

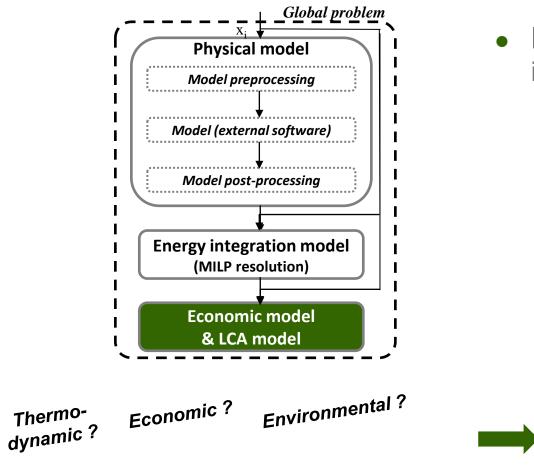
Economic performance⁵ Equipment sizing $size = f(T, P, \dot{m}, \dot{V}, ...)$ Capital investment estimation $C_{GR} = f(T, P, material, size, ...)$ Production costs $C_P = C_{I,d} + C_M + C_{OL} + C_{UT} + C_{RM}$

⁵Turton 2009, Ulrich 2003

Performance evaluation



Economic performance⁵
 Uniform approach
 Uniform assumptions

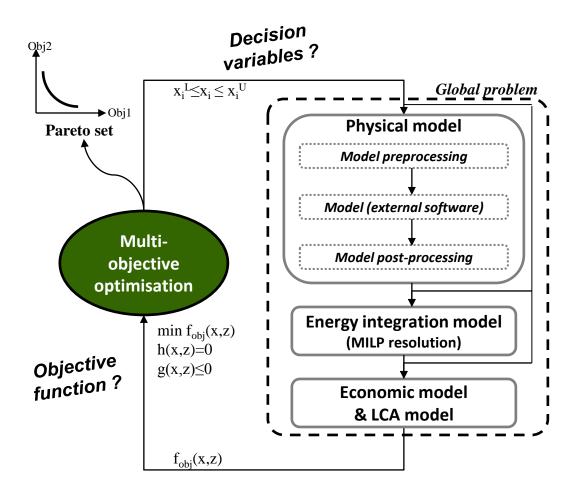

Parameter	Value
Marshall and Swift index	1473.3
Dollar exchange rate	1.2 \$/€
Expected lifetime	25 years
Interest rate	6%
Yearly operation	7500h/y
Operators ^a	4 ^b p./shift
Operator's salary	91'070 \$ /y
Wood price (θ_{wood} =50%wt)	13.9 \$ /GJ _{BM}
Electricity price (green)	75 \$ /GJe
MEA price	0.970 \$/kg _{MEA}
Natural gas price	9.7 \$/GJ _{NG}

⁵Turton 2009, Ulrich 2003

Performance evaluation

Performance evaluation

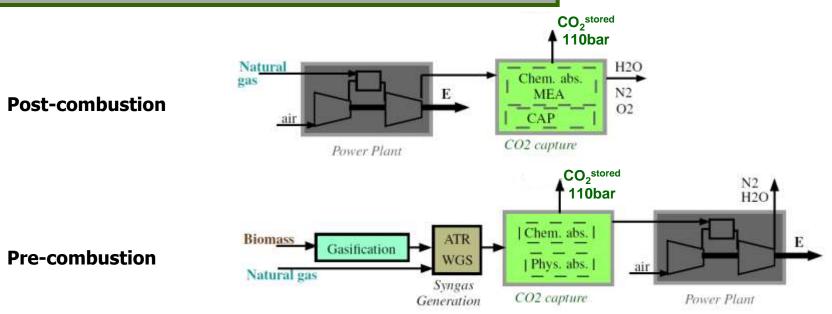
• Performance indicators identify optimal process design


$$\varepsilon_{\text{tot}} = \frac{\Delta h_{\text{fuel,out}}^{\circ} \cdot \mathbf{m}_{\text{fuel}}^{-} + \mathbf{E}^{-}}{\Delta h_{\text{feed}}^{\circ} \cdot \dot{\mathbf{m}}_{\text{feed}}^{+} + \dot{\mathbf{E}}^{+}}$$

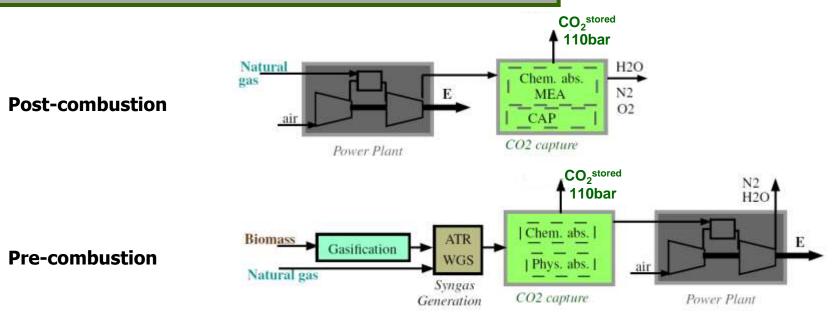
- CO₂ capture rate CO₂ capture [%] = $\frac{\dot{n}_{C_{captured}}}{\dot{n}_{C_{in}}} \cdot 100$
- \Box CO₂ avoidance costs

 $/t_{\rm CO2,avoided} = \frac{C_{\rm Pcc} - C_{\rm Pref}}{\dot{m}_{\rm CO_{2\,emit,ref}} - \dot{m}_{\rm CO_{2\,emit,CC}}}$

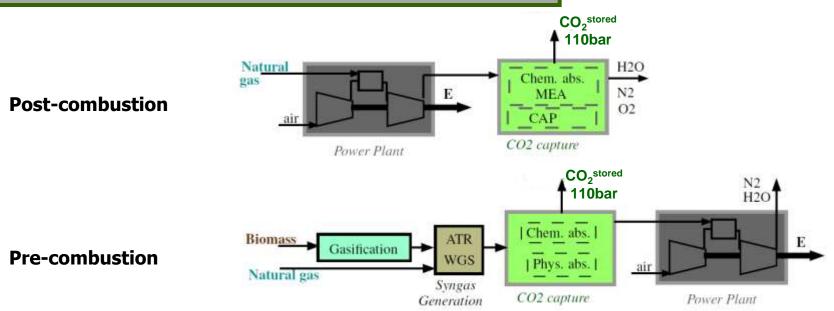
Competing indicators Trade-offs assessment !

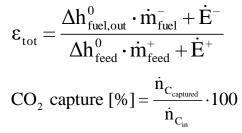


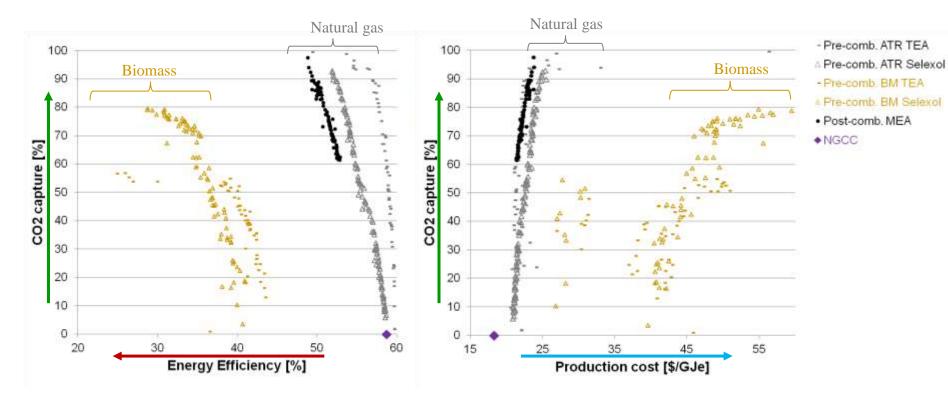
- MINL problem⁷
 - Evolutionary algorithm
 - Optimal values of decision variables
 - Pareto optimal frontier


Trade-offs ?

Decision-making?


⁷Molyneaux et al. 2010


- Detailed modelling
 - Chemical absorption
 - Physical absorption
- Decision variables
 - Operating conditions (T, P, S/C,...), cogeneration system


- Multi-criteria comparison
 - Thermo-dynamic
 - Environmental
 - Economic
 - Sensitivity to resource price, carbon tax, etc.

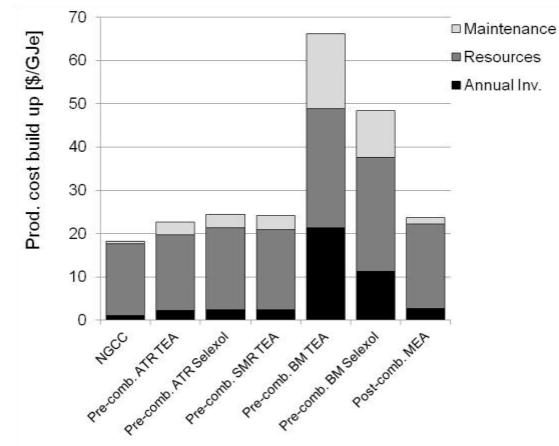
- Multi-objective optimisation
 - Maximisation of energy efficiency
 - > Maximisation of CO_2 capture rate

Pareto-optimal frontiers

$\succ \text{ CO}_2 \text{ capture } \nearrow \rightarrow \epsilon_{\text{tot}} \searrow \& \text{ COE } 7$

Energy & cost penalty of CO₂ capture and compression

Economic scenario base: 9.7\$/GJ_{res}, 7500h/y, 25y, 6%ir


- CO₂ capture energy and cost penalty
 - Different process configurations
 - Natural gas fed processes 90% CO₂ capture, biomass 60% capture

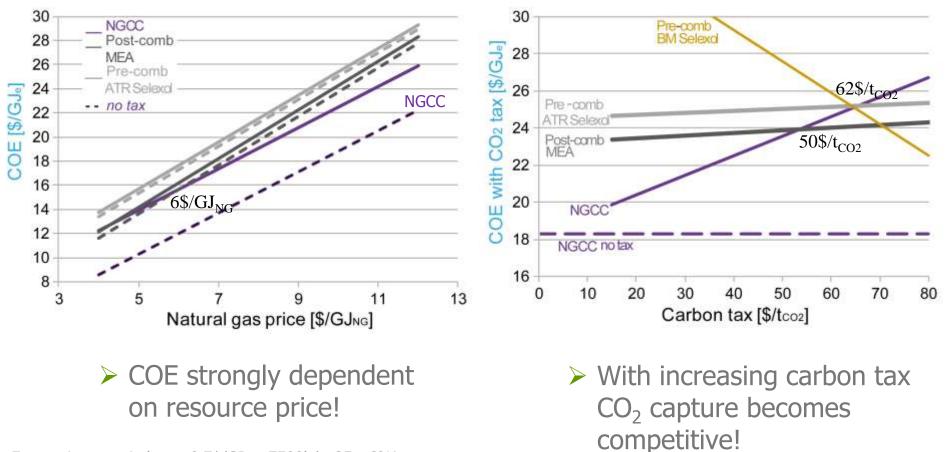
System	NGCC no CC	Post-comb MEA	ATR TEA	ATR Selexol	SMR TEA	BM TEA	BM Selexol
Feed [MW _{th}]	559	587	725	725	725	380	380
CO ₂ capture [%]	0	89.5	89.7	89.1	89.3	59	59
ε _{tot} [%]	58.75	49.6	56.8	52.6	53.3	34.8	34.8
Net electricity [MWe]	333	296	412	381	386	132	132
Power steam network [MWe]	113.4	101	82.5	67.7	55.6	45.7	45.7
Power GT [MWe]	219.5	227	368	369	350	132	132
COE [\$/GJe]	18.31	23.17	22.67	24.5	24.1	66.1	49.5
Annual Invest. [\$/GJe]	1.1	2.1	2.2	2.4	2.3	21.4	11.2
Avoidance cost [\$/t _{CO2,avoid}] CO ₂ emissions [kg _{CO2} /GJ _e]	105	53.8 14.9	45.8 10.1	66 11.5	61.9 11.2	173.6	113.3 -170.4
IPCC GWP [kg _{CO2,eq} /GJ _e]	120	34	30	31.9	36.1	-139.6	-134.2
EI99 [pts/GJe]	7.48	7.7	7.7	8.1	9.0	6.2	6.1
EI99 Resources Contr.[%]	78.41	89.22	82.35	83.36	79.49	17.44	17.23
EI99 Health Contr.[%]	19.30	9.25	13.67	13.36	14.95	6.65	6.95
EI99 Ecosystem Contr.[%]	2.29	1.53	3.99	3.28	5.56	75.92	75.82

Competition between post- and pre-combustion

Economic scenario base: 9.7\$/GJ_{res}, 7500h/y, 25y, 6%ir

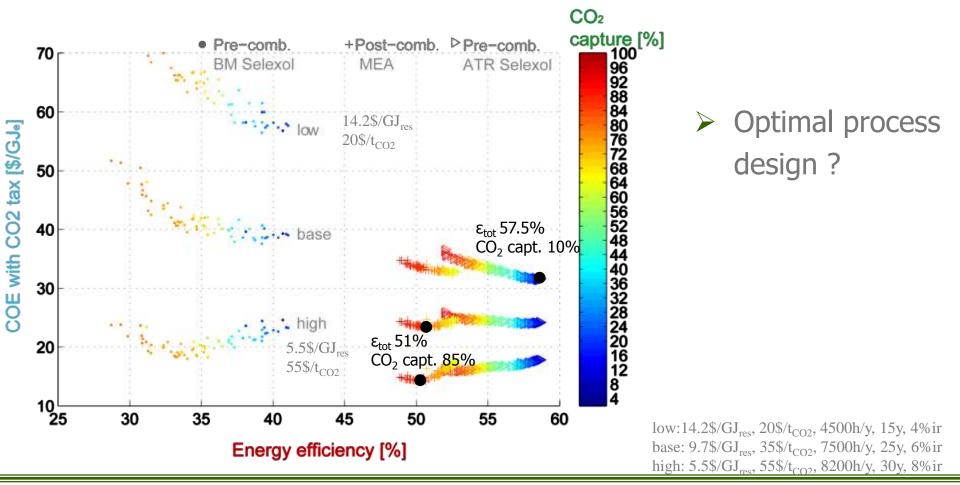
• CO₂ capture energy and cost penalty

Economic competitiveness highly influenced by


• Resource price & carbon tax

Economic scenario base: 9.7\$/GJ_{res}, 7500h/y, 25y, 6%ir

L. TOCK 23


- Economic conditions sensitivity analyses
 - Natural gas price influence Carbon tax 35\$/t_{co2}

Carbon tax influence Resource price 9.7\$/GJ_{NG}, 5\$/GJ_{BM}

Economic scenario base: 9.7\$/GJ_{res}, 7500h/y, 25y, 6%ir

Economic competitiveness of process configurations
 Influenced by economic conditions

June 10, 2013

ESCAPE 23

L. TOCK 25

Most economically competitive process configurations

System	NGCC	Post-comb	ATR	BM
Performance	no CC	MEA	Selexol	Selexol
Feed [MW _{th}]	559	582	725	380
CO ₂ capture [%]	0	82.9	78.6	69.9
ε _{tot} [%]	58.75	50.6	53.5	35.4
Net electricity [MW _e]	328	295	383	135
[kg _{CO2, local} /GJ _e]	105	13.9	22.2	-198.1
COE incl. tax[\$/GJ _e]	18.2-28.8	9-40	12.8-42	15-69
Avoid. Costs incl. tax				
[\$/t _{CO2.avoided}]	-	-63-121	-49-127	0-253

- \succ CO₂ capture penalty
 - *Efficiency* ≥: 6-10%-pts (CO₂ compression ~2%-pts)
 - COE **↗**: 20-25%
- Best performing process
 - *Efficiency:* Nat gas. pre-comb.
 - *Economic:* Nat gas. post-comb.
 - *Environmental:* Biomass pre-comb.
- Competition between processes and objectives!

Decision-making

Most economically competitive process configurations

System	NGCC	Post-comb	ATR	BM
Performance	no CC	MEA	Selexol	Selexol
Feed [MW _{th}]	559	582	725	380
CO ₂ capture [%]	0	82.9	78.6	69.9
ε _{tot} [%]	58.75	50.6	53.5	35.4
Net electricity [MW _e]	328	295	383	135
[kg _{CO2, local} /GJ _e]	105	13.9	22.2	-198.1
COE incl. tax[\$/GJ _e]	18.2-28.8	9-40	12.8-42	15-69
Avoid. Costs incl. tax				
[\$/t _{CO2.avoided}]	-	-63-121	-49-127	0-253

- \succ CO₂ capture penalty
 - *Efficiency* ↘: 6-10%-pts (CO₂ compression ~2%-pts)
 - COE **7**: 20-25%
- Best performing process
 - *Efficiency:* Nat gas. pre-comb.
 - *Economic:* Nat gas. post-comb.
 - *Environmental:* Biomass pre-comb.
- Choice of optimal process configuration is defined by production scope and priorities given to the different thermo-environomic criteria!

Conclusions

- Quantitative & consistent evaluation of CO₂ capture
 - Systematic methodology for the thermo-environomic comparison and optimisation
 - Flowsheeting
 - Energy integration
 - Performance evaluation (efficiency, cost, LCIA)
 - Multi-objective optimisation

Powerful tool to assess process competitiveness

Conclusions

- Energy & cost penalty of CO₂ capture
 - Efficiency \scilon: 6-10%-pts
 - ➤ COE ↗: 20-25%
 - \succ COE with carbon tax \rightarrow competitive
 - Competition between the different processes!
 - Post-combustion CO₂ capture in NGCC plants yields best *economic performance* for 70-85% capture
 - Pre-combustion CO₂ capture in natural gas fired power plants highest *energy efficiency*
 - CO₂ capture in **biomass based power plants** lowest environmental impacts

*Competitiveness on energy market depends strongly on resource price, imposed CO*₂ *taxes and technologies!*

Thank you for your attention!

Publications

- Tock L., Thermo-environomic optimisation of fuel decarbonisation alternative processes for hydrogen and power production, PhD Thesis N°5655, EPFL, Lausanne, 2013
- Tock L., Maréchal F., Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization. Energy 45 (1), 339 – 349, 2012.
- Tock L., Maréchal F., H₂ processes with CO₂ mitigation: *Thermo-economic modeling and process integration*. International Journal of Hydrogen Energy 37 (16), 11785 11795, 2012.
- Tock L., Maréchal F., CO₂ mitigation in thermo-chemical hydrogen processes: Thermo-environomic comparison and optimization. Energy Procedia 29 (0), 624 632, 2012.
- Tock L., Maréchal F., Process design optimization strategy to develop energy and cost correlations of CO₂ capture processes. In: Bogle, I. D. L., Fairweather, M. (Eds.), 22nd European Symposium on Computer Aided Process Engineering. Computer Aided Chemical Engineering (30) 562 – 566, 2012.
- Tock L., Maréchal F., Platform development for studying integrated energy conversion processes: Application to a power plant process with CO₂ capture. Proceedings of the 11th International Symposium on Process Systems Engineering, Singapore, 2012.
- Tock L., Maréchal F., *Process engineering method for systematically comparing CO₂ capture options*.
 23rd European Symposium on Computer Aided Process Engineering (ESCAPE), Lappeenranta, 2013.
- Tock L., Gassner M., Maréchal F. 2010. Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis. Biomass and Bioenergy 34 (12), 1838 – 1854, 2010.
- Urech J., Tock L., Harkin T., Hoadley A., Maréchal F., An assessment of different solvent-based capture technologies within an IGCC-CCS power plant, in preparation for submission to Energy, 2013.
- > Perrenoud M., *Thermo-environomic evaluation of ammonia production*, EPFL Master Project 2012.