000196780 001__ 196780
000196780 005__ 20181203023429.0
000196780 0247_ $$2doi$$a10.1063/1.4846218
000196780 022__ $$a0021-8979
000196780 02470 $$2ISI$$a000329056800002
000196780 037__ $$aARTICLE
000196780 245__ $$aQ-factor of (In,Ga)N containing III-nitride microcavity grown by multiple deposition techniques
000196780 260__ $$bAmer Inst Physics$$c2013$$aMelville
000196780 269__ $$a2013
000196780 300__ $$a6
000196780 336__ $$aJournal Articles
000196780 520__ $$aA 3 lambda/2 (In,Ga)N/GaN resonant cavity, designed for similar to 415nm operation, is grown by molecular beam epitaxy and is sandwiched between a 39.5-period (In,Al)N/GaN distributed Bragg reflector (DBR), grown on c-plane GaN-on-sapphire pseudo-substrate by metal-organic vapor phase epitaxy and an 8-period SiO2/ZrO2 DBR, deposited by electron beam evaporation. Optical characterization reveals an improvement in the cavity emission spectral purity of approximately one order of magnitude due to resonance effects. The combination of spectrophotometric and micro-reflectivity measurements confirms the strong quality (Q)-factor dependence on the excitation spot size. We derive simple analytical formulas to estimate leak and residual absorption losses and propose a simple approach to model the Q-factor and to give a quantitative estimation of the weight of cavity disorder. The model is in good agreement with both transfer-matrix simulation and the experimental findings. We point out that the realization of high Q-factor (In,Ga)N containing microcavities on GaN pseudo-substrates is likely to be limited by the cavity disorder. (C) 2013 AIP Publishing LLC.
000196780 700__ $$uUniv Politecn Madrid, E-28040 Madrid, Spain$$aGacevic, Z.
000196780 700__ $$0244551$$g200770$$uEcole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland$$aRossbach, G.
000196780 700__ $$0240054$$g165328$$uEcole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland$$aButte, R.
000196780 700__ $$aReveret, F.
000196780 700__ $$0244553$$g166896$$uEcole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland$$aGlauser, M.
000196780 700__ $$0244546$$g160864$$uEcole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland$$aLevrat, J.
000196780 700__ $$0244545$$g160491$$uEcole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland$$aCosendey, G.
000196780 700__ $$g104706$$uEcole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland$$aCarlin, J. -F.$$0240056
000196780 700__ $$aGrandjean, N.$$uEcole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland$$g161577$$0244550
000196780 700__ $$aCalleja, E.$$uUniv Politecn Madrid, E-28040 Madrid, Spain
000196780 773__ $$j114$$tJournal Of Applied Physics$$k23
000196780 909C0 $$xU10946$$0252312$$pLASPE
000196780 909CO $$pSB$$particle$$ooai:infoscience.tind.io:196780
000196780 937__ $$aEPFL-ARTICLE-196780
000196780 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000196780 980__ $$aARTICLE