000196742 001__ 196742
000196742 005__ 20181203023427.0
000196742 0247_ $$2doi$$a10.1021/nl404085a
000196742 022__ $$a1530-6984
000196742 02470 $$2ISI$$a000329586700052
000196742 037__ $$aARTICLE
000196742 245__ $$aGold-Free Ternary III-V Antimonide Nanowire Arrays on Silicon: Twin-Free down to the First Bilayer
000196742 260__ $$bAmerican Chemical Society$$c2014$$aWashington
000196742 269__ $$a2014
000196742 300__ $$a7
000196742 336__ $$aJournal Articles
000196742 520__ $$aWith the continued maturation of III-V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III-V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal-oxide-semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1-x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires' complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform.
000196742 6531_ $$aNanowire
000196742 6531_ $$aIII-V
000196742 6531_ $$aantimonide
000196742 6531_ $$aGaAsSb
000196742 6531_ $$acrystal structure
000196742 6531_ $$asilicon
000196742 6531_ $$azinc blende
000196742 6531_ $$atwin-free
000196742 6531_ $$atransmission electron microscopy
000196742 6531_ $$aenergy dispersive X-ray spectroscopy
000196742 6531_ $$amolecular beam epitaxy
000196742 6531_ $$aX-ray diffraction
000196742 6531_ $$asynchrotron radiation
000196742 700__ $$0245712$$g206327$$uEcole Polytech Fed Lausanne, Lab Mat Semicond, CH-1015 Lausanne, Switzerland$$aConesa-Boj, Sonia
000196742 700__ $$uJohannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria$$aKriegner, Dominik
000196742 700__ $$uCNRS, UMR 8520, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France$$aHan, Xiang-Lei
000196742 700__ $$uDelft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands$$aPlissard, Sebastien
000196742 700__ $$uCNRS, UMR 8520, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France$$aWallart, Xavier
000196742 700__ $$uJohannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria$$aStangl, Julian
000196742 700__ $$0243742$$g182447$$aFontcuberta I. Morral, Anna
000196742 700__ $$aCaroff, Philippe$$uCNRS, UMR 8520, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
000196742 773__ $$j14$$tNano Letters$$k1$$q326-332
000196742 909C0 $$xU11832$$0252277$$pLMSC
000196742 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:196742
000196742 917Z8 $$x182447
000196742 937__ $$aEPFL-ARTICLE-196742
000196742 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000196742 980__ $$aARTICLE