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1 Introduction

Since early 2000s, the discontinuous Galerkin (DG) method has become one of the most popular
methods [1] in solving various differential equations due to its flexibility in mesh construction and
its convenience in parallel implementation. In the mean time, there have been considerable interests
in developing DG methods for Maxwell’s equations in free space [2, 5, 6, 7, 9, 15]. Very recently,
there are some DG work [14, 16, 19] carried out for Maxwell’s equations in dispersive media, whose
permittivity depends on the wave frequency. However, the study of DG method for Maxwell’s
equations in metamaterials is quite limited, except our early work [11].

The metamaterials are artificially structured electromagnetic composite materials with some
exotic properties such as negative refractive index and amplification of evanescent waves. Intensive
study of metamaterials started around 2000, immediately after the successful construction of such a
metamaterial by Smith et al [17]. Many potential revolutionary applications (such as construction
of a perfect lens, sub-wavelength imaging and cloaking devices) have attracted researchers from
many areas to work in metamaterials. Numerical simulation plays a very important role in the
study of metamaterials. However, such simulations are almost exclusively based on either the
classic finite-difference time-domain (FDTD) method or commercial packages such as COMSOL,
∗Email: jichun@unlv.nevada.edu, Phone: (702)895-0365. Supported by National Science Foundation grant DMS-

0810896.
†Email: Jan.Hesthaven@Brown.edu
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a multiphysics finite element package. Due to the constraint of FDTD method (e.g., difficult in
handling the complex geometries) and the black-box characteristics of commercial packages, there
is an urgent call for developing more efficient and reliable software for metamaterial simulations.
In recent years, we made some initial effort [11, 12, 13] in developing and analyzing some finite
element methods (FEM) for solving the time-domain Maxwell’s equations in metamaterials.

This paper continuous our initial effort [11] on developing time-domain DG methods for solving
the Maxwell’s equations in metamaterials. In [11], we extended the nodal DG method of Hesthaven
and Warburton [7, 8] to metamaterial Maxwell’s equations and performed some numerical tests. A
major contribution of this paper is that we carry out detailed theoretical analysis of the nodal DG
method applied to metamaterial Maxwell’s equations. Practical numerical simulation of backward
wave propagation phenomenon is also demonstrated using the newly developed nodal DG method.

The rest of the paper is organized as follows. In Sect. 2, we first present the governing equations
for metamaterials, and then develop both semi- and full-discrete nodal DG methods for the meta-
material Maxwell’s equations. Stability and error analysis are provided. In Sect. 3, we extend the
algorithm and analysis to a perfectly matched layer (PML) model, which is used for the simulation
of backward wave propagation in metamaterials. In Sect. 4, numerical results are presented to
support our theoretical analysis and demonstrate the efficiency and effectiveness of the nodal DG
method for modeling wave propagation in metamaterials. Sect. 5 concludes the paper..

2 The DG method for metamaterials

2.1 The governing equations

The governing equations for modeling wave propagation in metamaterials are [11]:

ε0
∂E

∂t
= ∇×H − J , in Ω× (0, T ), (1)

µ0
∂H

∂t
= −∇×E −K, in Ω× (0, T ), (2)

∂J

∂t
+ ΓeJ = ε0ω

2
peE, in Ω× (0, T ), (3)

∂K

∂t
+ ΓmK = µ0ω

2
pmH, in Ω× (0, T ), (4)

where ε0 denotes the permittivity of free space and µ0 denotes the permeability of free space,
ωpe and ωpm are the electric and magnetic plasma frequencies respectively, Γe and Γm are the
electric and magnetic damping frequencies respectively, E(x, t) and H(x, t) are the electric and
magnetic fields respectively, and J(x, t) and K(x, t) are the induced electric and magnetic currents
respectively. To make the problem well-posed, we simply assume that the boundary of Ω is perfect
conducting:

n̂×E = 0 on ∂Ω, (5)

where n̂ is the unit outward normal to ∂Ω. Furthermore, we assume that the initial conditions are

E(x, 0) = E0(x), H(x, 0) = H0(x), (6)
J(x, 0) = J0(x), K(x, 0) = K0(x), (7)

where E0,H0,J0 and K0 are some given functions.
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2.2 The semi-discrete DG method

To discretize the system (1)-(4), we consider a shape-regular mesh Th that partitions the domain Ω
into disjoint triangular elements {Ti}, such that Ω =

⋃NT
i=1 Ti. Furthermore, we denote aik = Ti∩Tk

for an interior face between two elements Ti and Tk, and nik for the unit normal vector pointed
from Ti to Tk. For any given element Ti, we denote νi for the set of all neighboring elements of Ti.

In DG methods, we consider the discretization space given by discontinuous piecewise polyno-
mials of degree k on each element, i.e.,

V h = {vh ∈ (L2(Ω))d : vh|Ti ∈ (Pk)d, ∀ Ti ∈ Th}, d = 2 or 3.

Multiplying equations (1)-(4) by test functions u,v,φ,ψ, respectively, and integrating by parts
over any element Ti ∈ Th, we have

ε0

∫
Ti

∂E

∂t
· u−

∫
Ti

H · ∇ × u−
∫
∂Ti

ni ×H · u+
∫
Ti

J · u = 0, (8)

µ0

∫
Ti

∂H

∂t
· v +

∫
Ti

E · ∇ × v +
∫
∂Ti

ni ×E · v +
∫
Ti

K · v = 0, (9)

1
ε0ω2

pe

∫
Ti

∂J

∂t
· φ+

Γe
ε0ω2

pe

∫
Ti

J · φ =
∫
Ti

E · φ, (10)

1
µ0ω2

pm

∫
Ti

∂K

∂t
·ψ +

Γm
µ0ω2

pm

∫
Ti

K ·ψ =
∫
Ti

H ·ψ. (11)

Let us look at the semi-discrete solution Eh,Hh,Jh,Kh ∈ C1(0, T ;V h) as a solution of the
following weak formulation: For any uh,vh,φh,ψh ∈ V h, and any element Ti ∈ Th,

ε0

∫
Ti

∂Eh

∂t
· uh −

∫
Ti

Hh · ∇ × uh −
∑
K∈νi

∫
aik

uh · nik × {{Hh}}ik +
∫
Ti

Jh · uh = 0, (12)

µ0

∫
Ti

∂Hh

∂t
· vh +

∫
Ti

Eh · ∇ × vh +
∑
K∈νi

∫
aik

vh · nik × {{Eh}}ik +
∫
Ti

Kh · vh = 0, (13)

1
ε0ω2

pe

∫
Ti

∂Jh
∂t
· φh +

Γe
ε0ω2

pe

∫
Ti

Jh · φh =
∫
Ti

Eh · φh, (14)

1
µ0ω2

pm

∫
Ti

∂Kh

∂t
·ψh +

Γm
µ0ω2

pm

∫
Ti

Kh ·ψh =
∫
Ti

Hh ·ψh, (15)

hold true and are subject to the initial conditions:

Eh(0) = Π2E0(x), Hh(0) = Π2H0(x), Jh(0) = Π2J0(x), Kh(0) = Π2K0(x), (16)

where Π2 denotes the standard L2-projection onto V h. Here and below for any function vh we
denote the average and jump through any internal face aik as

{{vh}}ik =
1
2

(vi + vk), [[vh]]ik = (vk − vi).

Note that the perfect conducting boundary condition (5) is treated as Ek|aik = −Ei|aik and
Hk|aik = H i|aik , which lead to

{{E}}ik = 0, and {{H}}ik = H i|aik for any aik ∈ ∂Ω.
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Here and below we denote Ei = Eh|Ti ,H i = Hh|Ti ,J i = Jh|Ti and Ki = Kh|Ti .
Denote the semi-discrete energy Eh:

Eh(t) =
1
2

(ε0||Eh(t)||20,Ω + µ0||Hh(t)||20,Ω +
1

ε0ω2
pe

||Jh(t)||20,Ω +
1

µ0ω2
pm

||Kh(t)||20,Ω), (17)

and a bilinear form Bi:

Bi(E,H) = −
∫
Ti

H i · ∇ ×Ei −
∑
K∈νi

∫
aik

Eh · nik × {{Hh}}ik

+
∫
Ti

Ei · ∇ ×H i +
∑
K∈νi

∫
aik

Hh · nik × {{Eh}}ik. (18)

Theorem 2.1 The energy Eh is decreasing in time, i.e., Eh(t) ≤ Eh(0).

Proof. Choosing uh = Eh,vh = Hh,φh = Jh,ψh = Kh in (12)-(15), respectively, and adding
the results over all element Ti ∈ Th, we obtain

d

dt
Eh(t) +

Γe
ε0ω2

pe

||Jh(t)||20,Ω +
Γm

µ0ω2
pm

||Kh(t)||20,Ω +
∑
i

Bi(E,H) = 0. (19)

By the definition of Bi and integration by parts, we have

Bi(E,H) =
∑
K∈νi

∫
aik

Ei · nik ×H i

+
∑
K∈νi

∫
aik

Ei · {{Hh}}ik × nik −
∑
K∈νi

∫
aik

H i · {{Eh}}ik × nik

=
∑
K∈νi

∫
aik

[−Ei ×H i +Ei ×
H i +Hk

2
−H i ×

Ei +Ek

2
] · nik

=
1
2

∑
K∈νi

∫
aik

(Ei ×Hk +Ek ×H i) · nik. (20)

From (20), we obtain
∑
i Bi(E,H) = 0, which, along with (19), concludes the proof.

For the semi-discrete scheme (12)-(15), we have the following convergence result.

Theorem 2.2 If E,H,J ,K ∈ C0([0, T ]; (Hs+1(Ω))d) for s ≥ 0, then there exists a constant
C > 0 independent of h such that

max
t∈[0,T ]

(||E −Eh||0,Ω + ||H −Hh||0,Ω + ||J − Jh||0,Ω + ||K −Kh||0,Ω)

≤ Chmin(s,k)||(E,H,J ,K)||C0([0,T ];(Hs+1(Ω))d). (21)

Proof. Let us introduce the notation W̃ h = Ph(W ) − W h and W h = Ph(W ) − W for
W = E,H,J ,K.
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Subtracting (12)-(15) from (8)-(11), we have the error equations:

(i) ε0

∫
Ti

∂Ẽh

∂t
· uh −

∫
Ti

H̃h · ∇ × uh −
∑
K∈νi

∫
aik

uh · nik × {{H̃h}}ik +
∫
Ti

J̃h · uh

= ε0

∫
Ti

∂Eh

∂t
· uh −

∫
Ti

Hh · ∇ × uh −
∑
K∈νi

∫
aik

uh · nik × {{Hh}}ik +
∫
Ti

Jh · uh, (22)

(ii) µ0

∫
Ti

∂H̃h

∂t
· vh +

∫
Ti

Ẽh · ∇ × vh +
∑
K∈νi

∫
aik

vh · nik × {{Ẽh}}ik +
∫
Ti

K̃h · vh

= µ0

∫
Ti

∂Hh

∂t
· vh +

∫
Ti

Eh · ∇ × vh +
∑
K∈νi

∫
aik

vh · nik × {{Eh}}ik +
∫
Ti

Kh · vh, (23)

(iii)
1

ε0ω2
pe

∫
Ti

∂J̃h
∂t
· φh +

Γe
ε0ω2

pe

∫
Ti

J̃h · φh −
∫
Ti

Ẽh · φh

=
1

ε0ω2
pe

∫
Ti

∂Jh
∂t
· φh +

Γe
ε0ω2

pe

∫
Ti

Jh · φh −
∫
Ti

Eh · φh, (24)

(iv)
1

µ0ω2
pm

∫
Ti

∂K̃h

∂t
·ψh +

Γm
µ0ω2

pm

∫
Ti

K̃h ·ψh −
∫
Ti

H̃h ·ψh

=
1

µ0ω2
pm

∫
Ti

∂Kh

∂t
·ψh +

Γm
µ0ω2

pm

∫
Ti

Kh ·ψh −
∫
Ti

Hh ·ψh. (25)

Choosing uh = Ẽh,vh = H̃h,φh = J̃h,ψh = K̃h in (22)-(25), respectively, summing up the
results for all elements Ti of Th, then using the projection property and the energy definition (17),
we have

d

dt
Ẽh +

Γe
ε0ω2

pe

||J̃h||20,Ω +
Γm

µ0ω2
pm

||K̃h||20,Ω +
∑
i

Bi(Ẽ, H̃)

=
∑
i

∑
K∈νi

[−
∫
aik

Ẽh · nik × {{Hh}}ik +
∫
aik

H̃h · nik × {{Eh}}ik]

≤
∑
i

[||Ẽh||0,∂Ti ||Hh||0,∂Ti + ||H̃h||0,∂Ti ||Eh||0,∂Ti ]

≤
∑
i

[Ch
− 1

2
Ti
||Ẽh||0,TiCh

min(s,k)+ 1
2

Ti
||H||s+1,Ti + Ch

− 1
2

Ti
||H̃h||0,TiCh

min(s,k)+ 1
2

Ti
||E||s+1,Ti ],

where in the last step we used the standard inverse inequality and interpolation error estimate.
The proof is completed by using the fact

∑
i Bi(Ẽ, H̃) = 0 and the Gronwall inequality.

2.3 The fully-discrete DG method

To define a fully discrete scheme, we divide the time interval (0, T ) into N uniform subintervals by
points 0 = t0 < t1 < · · · < tN = T, where tk = kτ, and τ = T/N.

Following the idea of our previous work on leap-frog scheme [12], we can construct a leap-

frog DG scheme as follows: Given initial approximations of E0
h,H

1
2
h ,J

1
2
h ,K

0
h, for any n ≥ 0, find
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En+1
h ,H

n+ 3
2

h ,J
n+ 3

2
h ,Kn+1

h ∈ V h such that

ε0

∫
Ti

En+1
h
−Enh
τ

· uh −
∫
Ti

H
n+ 1

2
h

· ∇ × uh −
∑
K∈νi

∫
aik

uh · nik × {{H
n+ 1

2
h
}}ik +

∫
Ti

J
n+ 1

2
h

· uh = 0, (26)

µ0

∫
Ti

H
n+ 3

2
h

−Hn+ 1
2

h

τ
· vh +

∫
Ti

En+1
h
· ∇ × vh +

∑
K∈νi

∫
aik

vh · nik × {{En+1
h
}}ik +

∫
Ti

Kn+1
h
· vh = 0, (27)

1

ε0ω2
pe

∫
Ti

J
n+ 3

2
h

− Jn+ 1
2

h

τ
· φh +

Γe

ε0ω2
pe

∫
Ti

J
n+ 3

2
h

+ J
n+ 1

2
h

2
· φh =

∫
Ti

En+1
h
· φh, (28)

1

µ0ω2
pm

∫
Ti

Kn+1
h
−Kn

h

τ
·ψh +

Γm

µ0ω2
pm

∫
Ti

Kn+1
h

+Kn
h

2
·ψh =

∫
Ti

H
n+ 1

2
h

·ψh, (29)

hold true for any uh,vh,φh,ψh ∈ V h, and any element Ti ∈ Th.
Denote cv = 1√

ε0µ0
for the wave propagation speed in vacuum, cinv > 0 for the constant in the

standard inverse estimate

||∇ × φh||0 ≤ cinvh−1||φh||0 ∀ φh ∈ V h, (30)

and ctr > 0 for the constant in the standard trace inequality

||φh||0,∂Ω ≤ ctrh−1/2||φh||0,Ω ∀ φh ∈ V h. (31)

Theorem 2.3 Under the CFL condition

τ ≤ min{ h

2cvcinv
,
h

c2
trcv

,
1√

2ωpe
,

1√
2ωpm

}. (32)

the solution (EN+1
h ,H

N+ 3
2

h ,J
N+ 3

2
h ,KN+1

h ) of (26)-(29) satisfies the following stability: For any
N ≥ 0,

ε0||EN+1
h ||20,Ω + µ0||H

N+ 3
2

h ||20,Ω +
1

ε0ω2
pe

||JN+ 3
2

h ||20,Ω +
1

µ0ω2
pm

||KN+1
h ||20,Ω

≤ C

[
ε0||E0

h||20,Ω + µ0||H
1
2
h ||

2
0,Ω +

1
ε0ω2

pe

||J
1
2
h ||

2
0,Ω +

1
µ0ω2

pm

||K0
h||20,Ω

]
, (33)

holds true, where the constant C > 0 is independent of h and τ.

Proof. Choosing uh = τ
2 (En+1

i +En
i ),vh = τ

2 (H
n+ 3

2
i +H

n+ 1
2

i ), φh = τ
2 (J

n+ 3
2

i + J
n+ 1

2
i ),ψh =

τ
2 (Kn+1

i +Kn
i ) in (26)-(29), respectively, we obtain

ε0
2

(||En+1
i ||20,Ti − ||E

n
i ||20,Ti) +

µ0

2
(||Hn+ 3

2
i ||20,Ti − ||H

n+ 1
2

i ||20,Ti) +
1

2ε0ω2
pe

(||Jn+ 3
2

i ||20,Ti − ||J
n+ 1

2
i ||20,Ti)

+
1

2µ0ω2
pm

(||Kn+1
i ||20,Ti − ||K

n
i ||20,Ti) +

τΓe
ε0ω2

pe

||J
n+ 3

2
i + J

n+ 1
2

i

2
||20,Ti +

τΓm
µ0ω2

pm

||K
n+1
i +Kn

i

2
||20,Ti

=
τ

2

[∫
Ti

H
n+ 1

2
i · ∇ × (En+1

i +En
i )−

∫
Ti

En+1
i · ∇ × (H

n+ 3
2

i +H
n+ 1

2
i )

]
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+
∑
K∈νi

∫
aik

τ

2
(En+1

i +En
i ) · nik × {{H

n+ 1
2

h }}ik

−
∑
K∈νi

∫
aik

τ

2
(H

n+ 3
2

i +H
n+ 1

2
i ) · nik × {{En+1

h }}ik

−
∫
Ti

J
n+ 1

2
i · τ

2
(En+1

i +En
i ) +

∫
Ti

En+1
i · τ

2
(J

n+ 3
2

i + J
n+ 1

2
i )

−
∫
Ti

Kn+1
i · τ

2
(H

n+ 3
2

i +H
n+ 1

2
i ) +

∫
Ti

H
n+ 1

2
i · τ

2
(Kn+1

i +Kn
i ). (34)

Using the Stokes’ formula, we have∫
Ti

H
n+ 1

2
i ·∇×(En+1

i +En
i ) =

∫
Ti

∇×Hn+ 1
2

i ·(En+1
i +En

i )−
∑
K∈νi

∫
aik

(En+1
i +En

i )×Hn+ 1
2

i ·nik. (35)

Adding all boundary integral terms in both (34) and (35), and using the average definition, we
have

sum1i ≡
∑
K∈νi

∫
aik

τ

2
(En+1

h +En
h) · nik × {{H

n+ 1
2

h }}ik

−
∑
K∈νi

∫
aik

τ

2
(H

n+ 3
2

h +H
n+ 1

2
h ) · nik × {{En+1

h }}ik

−τ
2

∑
K∈νi

∫
aik

(En+1
i +En

i )×Hn+ 1
2

i · nik

= −τ
4

∑
K∈νi

∫
aik

[(En+1
i +En

i )× (H
n+ 1

2
i +H

n+ 1
2

k )− (H
n+ 3

2
i +H

n+ 1
2

i )× (En+1
i +En+1

k )

−2(En+1
i +En

i )×Hn+ 1
2

i ] · nik

= −τ
4

∑
K∈νi

∫
aik

[En
i ×H

n+ 1
2

k −En
i ×H

n+ 1
2

i +En+1
i ×Hn+ 3

2
i

+En+1
k ×Hn+ 1

2
i +En+1

i ×Hn+ 1
2

k +En+1
k ×Hn+ 3

2
i ] · nik. (36)

Summing up (36) over all elements and using the jump definition, we have

NT∑
i=1

sum1i =
τ

4

NT∑
i=1

∑
K∈νi

∫
aik

(En+1
i × [[H

n+ 3
2

h ]]ik −En
i × [[H

n+ 1
2

h ]]ik) · nik. (37)

It is easy to see that we have the following identities:

τ

2

∫
Ti

[∇×Hn+ 1
2

i · (En+1
i +En

i )−En+1
i · ∇ × (H

n+ 3
2

i +H
n+ 1

2
i )]

=
τ

2

∫
Ti

[En
i · ∇ ×H

n+ 1
2

i −En+1
i · ∇ ×Hn+ 3

2
i ], (38)

∫
Ti

En+1
i · τ

2
(J

n+ 3
2

i + J
n+ 1

2
i )−

∫
Ti

J
n+ 1

2
i · τ

2
(En+1

i +En
i )

=
τ

2

∫
Ti

(En+1
i · Jn+ 3

2
i −En

i · J
n+ 1

2
i ), (39)
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and ∫
Ti

H
n+ 1

2
i · τ

2
(Kn+1

i +Kn
i )−

∫
Ti

Kn+1
i · τ

2
(H

n+ 3
2

i +H
n+ 1

2
i )

=
τ

2

∫
Ti

(H
n+ 1

2
i ·Kn

i −H
n+ 3

2
i ·Kn+1

i ). (40)

Summing up (34) first over all elements of Ω and then from n = 0 to n = N , and using the
identities (37)-(40), we have

ε0
2

(||EN+1
h ||20,Ω − ||E0

h||20,Ω) +
µ0

2
(||HN+ 3

2
h ||20,Ω − ||H

1
2
h ||

2
0,Ω)

+
1

2ε0ω2
pe

(||JN+ 3
2

h ||20,Ω − ||J
1
2
h ||

2
0,Ω) +

1
2µ0ω2

pm

(||KN+1
h ||20,Ω − ||K0

h||20,Ω)

≤ τ

4

NT∑
i=1

∑
K∈νi

∫
aik

(EN+1
i × [[H

N+ 3
2

h ]]ik −E0
i × [[H

1
2
h ]]ik) · nik

+
τ

2

∫
Ω

[E0
h · ∇ ×H

1
2
h −E

N+1
h · ∇ ×HN+ 3

2
h ]

+
τ

2

∫
Ω

(EN+1
h · JN+ 3

2
h −E0

h · J
1
2
h ) +

τ

2

∫
Ω

(H
1
2
h ·K

0
h −H

N+ 3
2

h ·KN+1
h ). (41)

Now we try to bound the right hand side terms of (41) by the corresponding terms on the left
hand side. Below we will constantly use the standard arithmetic-geometric mean (AGM) inequality:

(a, b) ≤ δ||a||20 +
1
4δ
||b||20. (42)

Using the definition cv, the inverse inequalty (30), and the AGM inequality (42), we have

τ

2

∫
Ω
EN+1
h · ∇ ×HN+ 3

2
h =

τcv
2

∫
Ω

√
ε0E

N+1
h · √µ0∇×H

N+ 3
2

h

≤ δ1ε0||EN+1
h ||20,Ω +

1
4δ1
· (τcvcinvh

−1

2
)2 · µ0||H

N+ 3
2

h ||20,Ω. (43)

Similarly, we can obtain

τ

2

∫
Ω
EN+1
h · JN+ 3

2
h =

τωpe
2

∫
Ω

√
ε0E

N+1
h · 1

√
ε0ωpe

J
N+ 3

2
h

≤ δ2ε0||EN+1
h ||20,Ω +

1
4δ2
· (τωpe

2
)2 · 1

ε0ω2
pe

||JN+ 3
2

h ||20,Ω, (44)

and

τ

2

∫
Ω
H

N+ 3
2

h ·KN+1
h =

τωpm
2

∫
Ω

√
µ0H

N+ 3
2

h · 1
√
µ0ωpm

KN+1
h

≤ δ3µ0||H
N+ 3

2
h ||20,Ω +

1
4δ3
· (τωpm

2
)2 · 1

µ0ω2
pm

||KN+1
h ||20,Ω. (45)
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Finally, using the trace inequality (31) and the AGM inequality (42), we have

τ

4

NT∑
i=1

∑
K∈νi

∫
aik

(EN+1
i × [[H

N+ 3
2

h ]]ik) · nik

≤ τ

4

NT∑
i=1

ctrh
−1/2||EN+1

i ||0,Ti · ctrh−1/2||HN+ 3
2

h ||0,Ti

=
τ

4
· c2
trh
−1cv

NT∑
i=1

√
ε0||EN+1

i ||0,Ti ·
√
µ0||H

N+ 3
2

h ||0,Ti

≤ δ4ε||EN+1
h ||20,Ω +

1
4δ4
· (τc

2
trcvh

−1

4
)2 · µ0||H

N+ 3
2

h ||20,Ω. (46)

First choosing δi (i = 1, 2, 3, 4) small enough, then choosing τ satisfying the CFL condition
τ ≤ Ch, we can obtain the following stability

ε0||EN+1
h ||20,Ω + µ0||H

N+ 3
2

h ||20,Ω +
1

ε0ω2
pe

||JN+ 3
2

h ||20,Ω +
1

µ0ω2
pm

||KN+1
h ||20,Ω

≤ C[ε0||E0
h||20,Ω + µ0||H

1
2
h ||

2
0,Ω +

1
ε0ω2

pe

||J
1
2
h ||

2
0,Ω +

1
µ0ω2

pm

||K0
h||20,Ω].

A simple choice is δ1 = δ2 = δ3 = δ4 = 1
8 , and

(τcvcinvh−1)2 ≤ 1
4
, (τc2

trcvh
−1)2 ≤ 1, (τωpe)2 ≤ 1

2
, (τωpm)2 ≤ 1

2
,

which leads to a choice of τ as (32). This completes our proof.
Note that the above stability result is obtained without using the discrete Gronwall inequality

often seen in analyzing time-dependent problems. Finally, we like to point out the following error
estimate for our scheme (26)-(29).

Theorem 2.4 Let (En+1,Hn+ 3
2 ,Jn+ 3

2 ,Kn+1) and (En+1
h ,H

n+ 3
2

h ,J
n+ 3

2
h ,Kn+1

h ) be the solutions
of (1)-(4) and (26)-(29) at time tn+1 or tn+ 3

2
. Then under the CFL condition (32), there exists a

constant C > 0, independent of τ and h, such that for any n ≥ 0 we have

max
n≥0

(||En+1
h −En+1||0,Ω + ||Hn+ 3

2
h −Hn+ 3

2 ||0,Ω + ||Jn+ 3
2

h − Jn+ 3
2 ||0,Ω + ||Kn+1

h −Kn+1||0,Ω)

≤ C(τ2 + hk) + C(||E0
h −E0||0,Ω + ||H

1
2
h −H

1
2 ||0,Ω + ||J

1
2
h − J

1
2 ||0,Ω + ||K0

h −K0||0,Ω), (47)

where k ≥ 1 is the order of basis function in the space V h.

Proof. Integrating (8) and (11) from tn to tn+1, and (9) and (10) from tn+ 1
2

to tn+ 3
2
, we have

ε0

∫
Ti

En+1 −En

τ
· u−

∫
Ti

(
1

τ

∫ tn+1

tn

H) · ∇ × u−
∫
∂Ti

ni × (
1

τ

∫ tn+1

tn

H) · u+

∫
Ti

(
1

τ

∫ tn+1

tn

J) · u = 0, (48)

µ0

∫
Ti

Hn+ 3
2 −Hn+ 1

2

τ
· v +

∫
Ti

(
1

τ

∫ t
n+ 3

2

t
n+ 1

2

E) · ∇ × v +

∫
∂Ti

ni × (
1

τ

∫ t
n+ 3

2

t
n+ 1

2

E) · v +

∫
Ti

(
1

τ

∫ t
n+ 3

2

t
n+ 1

2

K) · v = 0,

9



1

ε0ω2
pe

∫
Ti

Jn+ 3
2 − Jn+ 1

2

τ
· φ+

Γe

ε0ω2
pe

∫
Ti

(
1

τ

∫ t
n+ 3

2

t
n+ 1

2

J) · φ =

∫
Ti

(
1

τ

∫ t
n+ 3

2

t
n+ 1

2

E) · φ, (49)

1

µ0ω2
pm

∫
Ti

Kn+1 −Kn

τ
·ψ +

Γm

µ0ω2
pm

∫
Ti

(
1

τ

∫ tn+1

tn

K) ·ψ =

∫
Ti

(
1

τ

∫ tn+1

tn

H) ·ψ. (50)

Then we obtain error equations by subtracting (48)-(50) from (26)-(29). The rest of the proof
is similar to the stability proof carried out for Theorem 2.3, and is skipped due to the technicality.

3 Extension of the DG method to the PML model

To model wave propagation in practice, we need to truncate an infinite physical domain to a
bounded domain. To easily couple with our metamaterial Maxwell’s equations (1)-(4), we choose
a perfectly matched layer (PML) model developed by Ziolkowski [20] in 1997. Following [20], the
PML is assumed to be a cubical simulation domain, and the complete PML governing equations
for the corner region are [20, Eq. (B.4)]:

∂E

∂t
+D1E =

1
ε0
∇×H − 1

ε0
J , (51)

∂J

∂t
+D2J = ε0D3E, (52)

∂H

∂t
+D1H = − 1

µ0
∇×E − 1

µ0
K, (53)

∂K

∂t
+D2K = µ0D3H, (54)

where ε0 and µ0 are the vacuum permittivity and permeability, E(x, t) and H(x, t) are the electric
and magnetic fields, J(x, t) andK(x, t) are the induced electric and magnetic currents, respectively.
Furthermore, the 3 × 3 diagonal matrices D1 = diag(σy + σz − σx, σz + σx − σy, σx + σy − σz),
D2 = diag(σx, σy, σz), D3 = diag((σx − σy)(σx − σz), (σy − σx)(σy − σz), (σz − σx)(σz − σy)). Here
σx, σy and σz are nonnegative functions and represent the damping variations along the x, y and z
directions, respectively. Note that the PML equations (51)-(54) should be modified accordingly at
other regions. For example, in the face regions, only one normal direction has absorbing layers.

Note that the model (51)-(54) is the same as (5.12) of Turkel and Yefet [18] (with assumption
ε0 = µ0 = 1) and is well-posed mathematically because it is a symmetric hyperbolic system (i.e.,
the standard Maxwell equations) plus lower order terms [18, p.545].

We like to remark that all the results in previous section can be extended easily to this PML
model, but the proofs become more involved. For clarity, below we just briefly present the semi-
and fully-discrete schemes for solving (51)-(54).

The semi-discrete DG method for (51)-(54): For any uh,vh,φh,ψh ∈ V h, and any element
Ti ∈ Th, find Eh,Hh,Jh,Kh ∈ C1(0, T ;V h) such that

ε0

∫
Ti

∂Eh

∂t
· uh −

∫
Ti

Hh · ∇ × uh −
∑
K∈νi

∫
aik

uh · nik × {{Hh}}ik +

∫
Ti

(Jh + ε0D1Eh) · uh = 0, (55)

µ0

∫
Ti

∂Hh

∂t
· vh +

∫
Ti

Eh · ∇ × vh +
∑
K∈νi

∫
aik

vh · nik × {{Eh}}ik +

∫
Ti

(Kh + µ0D1Hh) · vh = 0, (56)
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1

ε0

∫
Ti

∂Jh

∂t
· φh +

1

ε0

∫
Ti

D2Jh · φh =

∫
Ti

D3Eh · φh, (57)

1

µ0

∫
Ti

∂Kh

∂t
·ψh +

1

µ0

∫
Ti

D2Kh ·ψh =

∫
Ti

D3Hh ·ψh, (58)

hold true and are subject to the initial conditions (16).
Denote the semi-discrete energy Epmlh :

Epmlh (t) =
1
2

(ε0||Eh(t)||20,Ω + µ0||Hh(t)||20,Ω +
1
ε0
||Jh(t)||20,Ω +

1
µ0
||Kh(t)||20,Ω). (59)

Theorem 3.1 The energy Epmlh is bounded, i.e., Epmlh (t) ≤ CEpmlh (0) holds true for any t ∈ [0, T ],
where the constant T > 0 depends on T .

Proof. Choosing uh = Eh,vh = Hh,φh = Jh,ψh = Kh in (55)-(58) and adding the results
together over all element Ti ∈ Th, we obtain

d

dt
Epmlh (t) + ||

√
D2

ε0
Jh(t)||20,Ω + ||

√
D2

µ0
Kh(t)||20,Ω +

∑
i

Bi(Eh,Hh)

= −
∫

Ω
Jh ·Eh −

∫
Ω
ε0D1Eh ·Eh −

∫
Ω
Kh ·Hh

−
∫

Ω
µ0D1Hh ·Hh +

∫
Ω
D3Eh · Jh +

∫
Ω
D3Hh ·Kh

=
∫

Ω
(D3 − I3)Hh ·Kh +

∫
Ω

(D3 − I3)Eh · Jh −
∫

Ω
ε0D1Eh ·Eh −

∫
Ω
µ0D1Hh ·Hh, (60)

where we denote I3 for the 3× 3 identity matrix.
Using the fact that

∑
i Bi(Eh,Hh) = 0, the Cauchy-Schwarz inequality to those right hand side

terms of (60) with the boundness of D1 and D3, and the Gronwall inequality, we complete the
proof.

Similar to the metamaterial model, we can construct the following leap-frog DG scheme: Given

initial approximations of E0
h,H

1
2
h ,J

1
2
h ,K

0
h, for any n ≥ 0, find En+1

h ,H
n+ 3

2
h ,J

n+ 3
2

h ,Kn+1
h ∈ V h

such that

ε0

∫
Ti

En+1
h −En

h

τ
· uh −

∫
Ti

H
n+ 1

2
h · ∇ × uh −

∑
K∈νi

∫
aik

uh · nik × {{H
n+ 1

2
h }}ik

+
∫
Ti

(J
n+ 1

2
h +

ε0D1

2
(En+1

h +En
h)) · uh = 0, (61)

µ0

∫
Ti

H
n+ 3

2
h −Hn+ 1

2
h

τ
· vh +

∫
Ti

En+1
h · ∇ × vh +

∑
K∈νi

∫
aik

vh · nik × {{En+1
h }}ik

+
∫
Ti

(Kn+1
h +

µ0D1

2
(H

n+ 3
2

h +H
n+ 1

2
h )) · vh = 0, (62)

1
ε0

∫
Ti

J
n+ 3

2
h − Jn+ 1

2
h

τ
· φh +

∫
Ti

D2

2ε0
(J

n+ 3
2

h + J
n+ 1

2
h ) · φh =

∫
Ti

D3E
n+1
h · φh, (63)

1
µ0

∫
Ti

Kn+1
h −Kn

h

τ
·ψh +

∫
Ti

D2

2µ0
(Kn+1

h +Kn
h) ·ψh =

∫
Ti

D3H
n+ 1

2
h ·ψh, (64)
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hold true for any uh,vh,φh,ψh ∈ V h, and any element Ti ∈ Th.
In implementation, at each time step, we first solve (61) and (64) in parallel; then we solve (62)

and (63) simultaneously.

4 Numerical results

Our implementation is based on the package nudg provided by [8]. The theoretical results hold true
for both 3-D and 2-D cases. Here we show some interesting 2-D numerical results. All our tests
are carried out using MATLAB R2011b running on Dell Precision WorkStation T7500 with 12GB
memory and 2.26GHz Intel Xeon CPU.

4.1 Convergence rate test for the metamaterial model

Here we consider the 2-D transverse magnetic metamaterial model:

∂Hx

∂t
= −∂Ez

∂y
−Kx + gx, (65)

∂Hy

∂t
=
∂Ez
∂x
−Ky + gy, (66)

∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
− Jz + f, (67)

∂Jz
∂t

= ω2
eEz − ΓeJz, (68)

∂Kx

∂t
= ω2

mHx − ΓmKx, (69)

∂Ky

∂t
= ω2

mHy − ΓmKy, (70)

which is the 2-D version of (1)-(4) with ε0 = µ0 = 1 and added source terms gx, gy and f . In
(65)-(70) the subscripts ’x, y’ and ’z’ denote the corresponding components.

Example 1. To check the convergence rate for our scheme, we use the same exact solutions
constructed in our previous work [11] (assuming that Γm = Γe = π, ωm = ωe = π) on domain
Ω = (0, 1)2:

H ≡
(
Hx

Hy

)
=

(
sin(πx) cos(πy) exp(−πt)
− cos(πx) sin(πy) exp(−πt)

)
,

Ez = sin(πx) sin(πy) exp(−πt).

The corresponding magnetic and electric currents are

K ≡
(
Kx

Ky

)
=

(
π2t sin(πx) cos(πy) exp(−πt)
−π2t cos(πx) sin(πy) exp(−πt)

)
,

and
Jz = π2t sin(πx) sin(πy) exp(−πt),

respectively. The corresponding source term

f = (−3π + π2t) sin(πx) sin(πy) exp(−πt),

12



Table 1: Example 1. L∞ and L2 errors for magnetic field Hx with linear basis function and τ = 10−5

at 1000 time steps
h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates

L∞ errors 0.0171 0.0095 0.8480 0.0048 0.9849 0.0024 1.0 0.0012 1.0
L2 errors 0.0046 0.0023 1.0 0.0011 1.0641 5.2752e-4 1.0602 2.1700e-4 1.2815
CPU(s) 17.19 17.65 29.61 33.72 44.05

Table 2: Example 1. L∞ and L2 errors for magnetic field Hx with quadratic basis function and
τ = 10−5 at 1000 time steps

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates
L∞ errors 0.0039 9.7298e-4 2.0030 2.1093e-4 2.2056 4.7594e-5 2.1479 2.2728e-5 1.0663
L2 errors 5.6795e-4 1.4231e-4 1.9967 3.3759e-5 2.0757 9.9027e-6 1.7694 7.6578e-6 0.3709
CPU(s) 18.76 19.60 30.38 33.48 58.35

while g = (gx, gy) is given by

gx = π2t sin(πx) cos(πy) exp(−πt),
gy = −π2t cos(πx) sin(πy) exp(−πt),

Notice that Ez satisfies the boundary condition Ez = 0 on ∂Ω.
We solved this problem with various time steps τ and uniformly refined triangular meshes. In

Table 1, we presented the numerical results obtained with linear basis function, τ = 10−5 running
for 1000 time steps. Since the convergence rates are very similar for all the variables, we just
presented Hx in Table 1, which shows clearly O(h) rates in both L∞ and L2 norms.

In Table 2, we presented the numerical results obtained with quadratic basis function, τ = 10−5

running for 1000 time steps. Results of Table 2 show O(h2) rates in both L∞ and L2 norms,
though the rates degenerate as the mesh becomes fine enough. The reason is that the solution error
is dominated by the time error when the mesh is fine enough.

Example 2. To further check the convergence rate and our algorithmic implementation, we con-
struct another exact solution for (65)-(70) on Ω = (0, 1)2 by assuming that Γm = Γe = 2ωπ, ωm =
ωe = ωπ:

H ≡
(
Hx

Hy

)
=

(
sin(ωπx) cos(ωπy) exp(−ωπt)
− cos(ωπx) sin(ωπy) exp(−ωπt)

)
,

Ez = sin(ωπx) sin(ωπy) exp(−ωπt),

K ≡
(
Kx

Ky

)
= ωπ

(
sin(ωπx) cos(ωπy) exp(−ωπt)
− cos(ωπx) sin(ωπy) exp(−ωπt)

)
,

Jz = ωπ sin(ωπx) sin(ωπy) exp(−ωπt),

which leads to source terms

f = −2ωπ sin(ωπx) sin(ωπy) exp(−ωπt),
gx = Kx, gy = Ky.
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Table 3: Example 2. L∞ and L2 errors for magnetic field Hx with linear basis function and τ = 10−8

at 1000 time steps

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates
L∞ errors 1.6979e-4 1.2971e-4 0.3885 7.3808e-5 0.8134 3.8803e-5 0.9276 1.9643e-5 0.9822
L2 errors 5.3631e-5 3.6010e-5 0.5747 1.9377e-5 0.8941 9.8288e-6 0.9793 4.9160e-6 0.9995

Table 4: Example 2. L∞ and L2 errors for magnetic field Hx with quadratic basis function and
τ = 10−8 at 1000 time steps.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates
L∞ errors 1.7836e-4 5.9329e-5 1.5880 1.5958e-5 1.8945 4.1534e-6 1.9419 1.0931e-6 1.9259
L2 errors 2.9229e-5 9.1135e-6 1.6813 2.3892e-6 1.9315 6.0817e-7 1.9740 1.5630e-7 1.9602

Many numerical tests have been carried out for various h, τ and ω. Selected results are presented
for ω = 4 in Tables 3-4, which again justify the theoretical convergence rate O(τ2 + hr) for a r-th
order basis function when r ≤ 2. When r ≥ 3, we need smaller time steps in order to see the spatial
convergence rate clearly, since the error will be saturated when the mesh is fine enough. In Tables
5-6, we presented the results obtained with ω = 4, r = 3, τ = 10−12 at 1 and 1000 time steps,
respectively. Tables 5-6 show the convergence rate O(h3) clearly.

Finally, we present a test for checking the time convergence rate O(τ2). Since the time step
depends on h, we can not check this using the traditional way by fixing a very small h with various
τ . Here we solve the problem with quadratic basis function and ω = 4. We fix τ = 0.01h, and the
final time T = 0.1 (i.e, the number of time step varies as nt = 10/h). A presentative result is listed
in Table 7, which clearly shows O(τ2) rate. This result is consistent with the theoretical analysis,
since in this case O(τ2 + h2) = O(τ2) when we fix τ = 0.01h.

4.2 Example 3: Wave propagation in a rectangular metamaterial slab

Here we consider a wave propagation model originally introduced and solved by FDTD method by
Ziolkowski [21]. In this example, a metamaterial slab is chosen to be [0.024, 0.054]m×[0.002, 0.062]m,
which is located inside a vacuum with dimension [0, 0.07]m×[0, 0.064]m. The vacuum is surrounded
by a PML with thickness dd = 12h, where h denotes the mesh size. The 2-D transverse magnetic

Table 5: Example 2. L∞ and L2 errors for magnetic field Hx with cubic basis function and
τ = 10−12 at one time step.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates
L∞ errors 9.5958e-12 1.4932e-12 2.6840 2.0184e-13 2.8871 2.5757e-14 2.9702 3.2474e-15 2.9876
L2 errors 1.2339e-12 1.8039e-13 2.7740 2.3722e-14 2.9268 2.9871e-15 2.9894 3.7331e-16 3.0003
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Table 6: Example 2. L∞ and L2 errors for magnetic field Hx with cubic basis function and
τ = 10−12 at 1000 time step.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates
L∞ errors 9.5958e-9 1.4933e-9 2.6839 2.0183e-10 2.8873 2.5762e-11 2.9698 3.2503e-12 2.9866
L2 errors 1.2339e-9 1.8039e-10 2.7740 2.3721e-11 2.9269 2.9867e-12 2.9895 3.7260e-13 3.0029

Table 7: Example 2. L∞ and L2 errors for magnetic field Hx with qudratic basis function, τ = 0.01h
and nt = 10/h time steps.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates
L∞ errors 0.6144 0.1807 1.7656 0.0394 2.1973 0.0112 1.8147 0.0028 2.0
L2 errors 0.0810 0.0216 1.9069 0.0042 2.3626 9.7398e-004 2.1084 2.4353e-004 1.9998

PML model can be obtained from (51)-(54):

µ0
∂Hx

∂t
= −∂Ez

∂y
−Kx + µ0(σx − σy)Hx,

µ0
∂Hy

∂t
=
∂Ez
∂x
−Ky − µ0(σx − σy)Hy,

ε0
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
− Jz − ε0(σx + σy)Ez,

∂Jz
∂t

= ε0σxσyEz,

∂Kx

∂t
= −σxKx + µ0(σx − σy)σxHx,

∂Ky

∂t
= −σyKy − µ0(σx − σy)σyHy,

where the subscripts ’x, y’ and ’z’ denote the corresponding components.
The incident source wave is imposed as Ez field and is excited at x = 0.004m and y ∈

[0.025, 0.035]m. The source wave varies in space as e−(x−0.03)2/(50h)2 and in time as [21]:

f(t) =



0, for t < 0,
g1(t) sin(ω0t), for 0 < t < mTp,
sin(ω0t), for mTp < t < (m+ k)Tp,
g2(t) sin(ω0t), for (m+ k)Tp < t < (2m+ k)Tp,
0, for t > (2m+ k)Tp,

where we denote Tp = 1/f0, and

g1(t) = 10x3
1 − 15x4

1 + 6x5
1, x1 = t/mTp,

g2(t) = 1− (10x3
2 − 15x4

2 + 6x5
2), x2 = (t− (m+ k)Tp) /mTp.
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In our simulation, we use m = 2, k = 100.
The damping function σx and σx are chosen as a fouth order polynomial function, more specif-

ically, we choose:

σx(x, y) =


σmax(x−0.07

dd )4 if x ≥ 0.07
σmax( |x|dd )4 if x ≤ 0.0

0 elsewhere,

where σmax = − log(err) ∗ 5 ∗ 0.07 ∗ cv/(2 ∗ dd) with err = 10−7. Function σy has the same form
but varies with respect to the y variable.

An unstructured triangular mesh with 14586 triangles and 7422 nodes is used for our simulation.
The mesh size h = 2 ∗ 10−4 and the time step size τ = 0.1ps are used. The mesh and the
absolute value of Ez field at various times are presented in Fig. 1, which clearly shows that the
wave propagates backwards in the metamaterial slab and demonstrates the re-focusing property of
metamaterials. The simulation is consistent with results obtained by the FDTD method [21] and
the finite element method with edge elements [10]. Moreover, the leap-frog DG method is quite
efficient as evidenced by our implementation that the CPU times are 172.71s, 342.80, 510.50s.
681.63s and 854.14s for 1000, 2000, 3000, 4000, and 5000 time step simulations, respectively.

4.3 Example 4: Wave propagation in a triangular metamaterial slab

The setup of this model is basically same as the last example, the only difference is that the rectan-
gular metamaterial slab is replaced by a triangular slab with vertices (0.024, 0.002), (0.054, 0.002),
and (0.024, 0.062). A similar example was developed [10] to demonstrate Snell’s Law and the neg-
ative refractive index of the metamaterial. An unstructured triangular mesh with 14600 triangles
and 7429 nodes is used for this model. The mesh size h = 2 ∗ 10−4 and the time step size τ = 0.1ps
are used. The mesh and Ez fields at various times are presented in Fig. 2, which clearly shows that
the wave bends toward the same side at the interface between the metamaterial and the vacuum
by obeying Snell’s Law. The simulation is consistent with results obtained by edge elements [10].
Furthermore, the leap-frog DG method seems more powerful and efficient compared to our edge el-
ement algorithm with hybrid grids. The CPU times of our DG method are 173.20s, 347.58, 519.39s.
691.69s and 864.14s for 1000, 2000, 3000, 4000, and 5000 time step simulations, respectively.

5 Conclusions

In this paper, we develop a nodal discontinuous Galerkin method for solving the time-dependent
Maxwells equations in metamaterials. We prove the numerical stability and error estimate for both
semi- and fully-discrete schemes. Numerical results with analytical solutions are first presented to
support the theoretical analysis and check the correctness of our algorithmic implementation. Then
two wave propagation problems are presented to illustrate the interesting backward propagation
phenomenon happened when wave propagates in metamaterials.
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