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ABSTRACT 

We explore the influence of the metal microstructure on the compressive flow stress of  

replicated microcellular 400 µm pore size Al-4.5wt%Cu solidified at two different 

solidification cooling rates, in as-cast and T6 conditions. It is found that the yield strength 

roughly doubles with age-hardening but does not depend on the solidification cooling rate. 

Internal damage accumulation, measured by monitoring the rate of stiffness loss with strain, is 

similar across the four microstructures explored and equals that measured in similar 

microcellular pure aluminium. In-situ flow curves of the metal within the open-pore 

microcellular material are back-calculated using the Variational Estimate of Ponte Castañeda 

and Suquet. Consistent results are obtained with heat-treated microcellular Al-4.5wt%Cu, and 

are also obtained with separate data for pure Al; however, for as-cast microcellular Al-

4.5wt%Cu the back-calculated in-situ metal flow stress decreases, for both solidification rates, 

with decreasing relative density of the foam. We attribute this effect to an interplay between 

microstructural and mesostructural features of the microcellular material: variations in the 

latter with the former held constant can alter the scaling between flow stress and relative 

density within microcellular alloys.  

 

Keywords: cellular materials, deformation and fracture, porosity, replication processing 

 

1. INTRODUCTION 

 

Replicated microcellular aluminium is made by producing a porous preform of bonded 

NaCl powder for subsequent infiltration with aluminium or one of its alloys [1, 2]. After metal 

solidification, the NaCl preform is removed by dissolution in water to create a fine 

interconnected network of metal. The packed NaCl particle bed gives pores of the material 

their shape, or in other words defines the microcellular material’s mesostructure. Its 

microstructure is, on the other hand, defined by the alloy composition, and by internal 

features of its constituent metal or alloy.  

Both the mesostructure and the microstructure are known to influence the properties of 

microcellular metals or alloys; general reviews of structure/property relations in those 

materials can be found in Refs. [2-4]. At high porosity, the influence of the mesostructure is 

dominant: variations in the architecture of microcellular metal can change their general load-

bearing capacity in both elastic or plastic deformation by several orders of magnitude (for 
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illustration of this see Figs. 17 and 18 of Ref. [5] and Figs. 5 to 7 of Ref. [6]).  The 

microstructure, on the other hand, exerts its influence by changing intrinsic properties of the 

solid metal or alloy making the microcellular material at hand. Microstructure variations will 

thus generally not change dramatically the elastic modulus of microcellular metals (since the 

stiffness of most engineering alloys is relatively insensitive to microstructure or composition) 

but will influence the strength of microcellular metals significantly, a priori in equal 

proportion to what is observed in dense metals and alloys. This is for example visible in the 

fact that significant increases in flow stress can be produced in microcellular metals by heat-

treatment if their constituent metal alloy is an age-hardening alloy [7-18]. Harnessing the 

microstructure of microcellular metals is thus an interesting way of optimizing their strength. 

A question this raises is whether processing-microstructure-strength relations remain the 

same, in microcellular metals or alloys, as in the same metal or alloy when it is dense. Often, 

this is not so: Thornton and Magee showed in their pioneering study of aluminium foams 

[19], as did Yamada et al. for microcellular magnesium alloys [20, 21], that heat treatment can 

affect the foam very differently than it does the bulk alloy; 6xxx series aluminium alloys have 

been shown to display atypical intergranular failure when in microcellular form [22, 23] and 

local strut or cell wall properties have been found to differ from those of the same alloy in 

dense form [23, 24]; fine-scale replicated microcellular Al-4.5wt%Cu was shown to solidify 

and respond to ageing differently to the bulk alloy when the pore size falls below roughly 100 

µm [15, 25]; and since brittle second phases are frequently located near strut surfaces in 

microcellular alloys [17, 20, 26, 27], internal damage accumulates differently during 

deformation in a microcellular structure than it does in the same alloy in bulk form .  

Here, we examine whether the flow stress of replicated Al-4.5wt%Cu displays the same 

relation between microstructure and flow stress as it does in the dense alloy. Al-4.5wt%Cu is 

a classical model alloy in metallurgical studies: it falls within a simple eutectic phase diagram, 

has been extensively studied from the standpoints of solidification, age-hardening and 

mechanical behaviour, and counts among the stronger cast engineering aluminium alloys [28, 

29]. We vary its microstructure by producing the material at two different solidification rates 

and test the material in compression both before and after age-hardening, to explore how 

microstructural features affect the scaling relation between relative density (or porosity) and 

the flow stress of the material. 
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2. EXPERIMENTS 

Open-cell foams of aluminium alloyed with 4.5wt% copper (containing 0.041wt% Fe and 

0.022wt%Si, produced by Alusuisse in Neuhausen) were prepared by replication processing, 

as described in Refs. [1, 25, 30-32]. In brief, sieved monodisperse sodium chloride powder 

(99.5 % purity NaCl from Fluka Chemie GmbH, Buchs, Switzerland) with particles 400 µm 

in average diameter was packed and cold isostatically pressed under pressures in the range 30-

45 MPa. These preforms were then infiltrated with molten Al-4.5wt%Cu under argon gas at 

0.4 MPa, and then solidified under one of two conditions. The first, higher, cooling rate 

condition (hereafter designated as Condition A) corresponds to directional solidification of the 

NaCl/Al-4.5wt%Cu composite over a copper chill, resulting in a cooling rate ranging from -

30 to -22 °/min (depending on distance from the chill). The second, lower, cooling rate 

(Condition C), corresponds to a much slower, homogeneous, cooling of the NaCl/Al-

4.5wt%Cu composite within the furnace, at -0.5°C/min. The letters (A and C) correspond to 

those used in Ref. [25] to designate the same cooling conditions. 

The solid Al-4.5wt%Cu/NaCl composites were machined into cylinders 10 mm in diameter 

and 10 mm high for subsequent compression testing.  The salt was then leached in a chromate 

conversion solution made of 1.62 g/l Na2CrO4 and 0.84 g/l NaHCO3 in distilled water ; this is 

a well-known corrosion inhibitor of aluminium in brine, used here to prevent aluminium 

hydroxide formation [33]. The resulting open-pore microcellular alloy samples have a relative 

density, Vm, situated at a prechosen and constant value between 0.12 and 0.25. Some samples 

were tested in the as-cast condition, while other samples were brought to the T6 condition by 

solution heat treatment at 525°C for 4 hours under argon, followed by quenching in water and 

age-hardening for 168h at 130°C under air. This heat treatment corresponds to peak of 

hardening of the alloy for this ageing temperature [15]. The four different microstructures 

tested are summarized in Table 1.  

 

Compression testing was conducted using an MTS Alliance RT50 screw-driven testing 

machine, at a displacement rate of 5 µm/s (corresponding to a strain rate of 5 10-4 s-1). The 

load was measured with a 5kN load cell. The strain was measured using three LVDTs fixed 

120° apart around the bottom compression plate and recording the displacement of the upper 

plate. Young's Modulus Ef(e) was determined using the slope of load-unload cycles performed 

at different values of the engineering strain e. The initial Young's modulus Ef,0 was 

determined by extrapolating the Ef(e) curve to e = 0, as described in Ref. [6].  
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The mesostructure and the microstructure of the foam were examined by scanning electron 

microscopy (SEM) using a Philips XL 30 SEM operating at 15 kV and FEI Quanta Inspect 

200LV equipped with EDAX, UTV detector and Genesis software. The metal microstructure 

was revealed by conventional metallographic preparation of porous or epoxy-infiltrated 

sections through samples of the microcellular alloy.  

 

3. RESULTS 

 

Figure 1 shows SEM micrographs in electron backscattered mode of the four different 

microcellular Al-4.5wt%Cu microstructures. The white phase corresponds to the θ (Al2Cu) 

intermetallic and the light gray phase to primary α aluminium-copper solid solution. The as-

cast microstructures obtained directly after infiltration (Conditions A and C) are shown on the 

left-hand side of Fig.1. As documented for similar samples in Ref.[25], when solidified more 

rapidly (Condition A) the as-cast microstructure is dendritic in wider portions of metal. In 

narrower metal struts of the foam, the eutectic tends to be located either along the free surface 

(the former NaCl/alloy interface), or in narrow bands that cross the strut, Fig. 2. In samples 

solidified more slowly (Condition C), the dendritic character of the solidified metal 

microstructure is lost, the level of microsegregation is strongly reduced, and essentially all 

intermetallic is located along the surface of the struts, as was shown in Ref. [25].  

In both conditions one finds that the α + θ eutectic is visible along the pore surface, Fig. 1. 

A systematic examination of roughly twenty samples in the electron microscope revealed no 

noticeable difference between the microstructures across the range of values of relative 

density, Vm, explored here: the average copper concentration within the struts, the gradient in 

copper concentration along the struts, as well as the fraction of struts crossed by eutectic 

(roughly one-half), show no visible dependence on Vm. 

The microstructures of the heat-treated samples (A+T6 and C+T6) are seen on the right-

hand side of Fig.1: the amount of θ−phase is strongly reduced, while that portion which 

remains is coarser and primarily located along the pore surface. Thus, despite the 

solutionization treatment, intermetallics remain present. 

 

After compression the Al-4.5wt%Cu foam shows traces of internal damage accumulation. 

This takes the form of cracking of intermetallic phases located along the foam surface, and of 
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strut buckling. Examples are given in Fig. 3, which shows SEM micrographs of an as-cast 

sample after compression.  

The foam Young’s modulus Ef(e) decreases as a function of the foam engineering strain e 

[6, 26, 30]. Figure 4 plots the initial Young’s modulus, Ef,0, computed by extrapolation of 

Ef(e) curves to e = 0 for each sample tested, versus foam relative density Vm. There is, as 

expected, no dependence on microstructure of the scaling law linking the modulus of the 

microcellular alloy with its relative density.  

The rate of normalized stiffness decrease during compression, α, defined as: 

! =
1
Ef,0

dEf
de

 (1)  

averaged along each compression curve is an indicator of the rate at which internal damage 

accumulates within the foam as it deforms [26]. Figure 5 plots α for all four Al-4.5%Cu foam 

microstructures versus Vm. Similar data for 99.99% pure Al foams, from Ref. [34], are also 

plotted to show what obtains with a microstructure completely free of intermetallics. As seen, 

within the (significant) experimental scatter, no meaningful difference emerges between the 

four different alloyed foam structures, nor between these and microcellular pure aluminium.  

Stress-strain curves of the microcellular alloy have the shape typical of replicated metal [1, 

2] (see for example Fig. 4 of Ref. [6]). As is customary with microcellular materials [2, 3], the 

flow stress is a strong function of the relative density; this is seen in Fig. 6, which plots the 

flow stress of present samples at 3 or 5% compressive strain versus Vm. Also given in the 

figure are corresponding data for similarly processed and tested samples of 99.99% pure 

microcellular aluminium. The strong influence exerted by the relative density Vm on the flow 

stress is immediately apparent. Alloying and heat treatment also make a considerable 

difference, bringing the flow stress of the material in the same range as that of commercial 

aluminium-based foams, which have a better load-bearing (closed-cell) mesostructure than do 

replicated microcellular metals [2, 3]. Heat-treatment increases the flow stress by a factor near 

two, as was already reported in Ref. [15]; here again there is no visible systematic difference 

between the two solidification conditions.  
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4. DISCUSSION 

4.1. Microstructure 

As the alloy solidifies in the confined space between the NaCl particles, if cooling is slow 

the particles alter its microstructural development [25, 35]; this is observed here. Under 

Condition A the microstructure is dendritic, with coring and interdendritic eutectic: it 

resembles that which would be found, at similar cooling rates, in the bulk alloy. At the lower 

solidification speed, Condition C, the dendritic character is lost. This is due to accelerated 

dendrite arm coalescence caused by the (NaCl) reinforcement. Simultaneously, 

microsegregation is strongly reduced by diffusion in the constrained solid α-phase. Present 

observations are consistent with earlier results on this system; we refer to Refs. [25, 35] for a 

detailed discussion and explanation of this microstructure.  

When the Al-4.5%Cu foams are heat-treated to the T6 state, most of the θ phase is 

dissolved; however, a certain fraction of intermetallic remains along the foam pore surfaces. 

That some residual intermetallic phase remain in the T6 microstructures, despite the high-

temperature solutionisation heat treatment, is explained by the presence of iron impurities in 

the alloy. These form the essentially insoluble Al7Cu2Fe phase, which remains after 

solutionization in the microcellular alloy, as was documented in earlier work [15].  

4.2. Mechanical properties 

The evolution of Ef,0 (Fig. 4) as a function of Vm follows a power law scaling relation 

Ef,0 α Vm
N with N ≈ 2.6. This is consistent with earlier studies of replicated aluminium foam 

over this range of relative density values [6, 30, 36]. Such consistency is expected: the elastic 

stiffness of metals and alloys is a relatively microstructure-independent property. 

The flow stress of Al-4.5%Cu foams is essentially doubled after age-hardening, as was 

already reported in Ref. [15]. The solidification rate has on the other hand essentially no 

influence on the flow stress of these open-cell foams. For the age-hardened foams this is 

reasonable, as the heat-treatment homogenises the microstructure, erasing to a large extent 

the effect of solidification conditions. The result is on the other hand more surprising for the 

as-cast microstructures, given that the two solidification speeds produce markedly different 

microstructures (Fig. 1). Differences in coring level, different amounts of θ-phase, and a 

difference in their scale or distribution thus apparently exert, in this system at least, little 

influence on the flow stress of the microcellular alloy.  
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4.3. Damage 

All four Al-4.5wt%Cu foams present a rate of stiffness loss, α, that is similar, within 

experimental error, to that of pure Al replicated foams, Fig 5. This evolution of α is unlike 

that in replicated Al-12Si foam, which shows α ≈ 10 as a result of silicon particle cracking 

[26], or in Al-6.4wt%Ni foam, for which α is again measurably above data for pure Al [37].  

That α not exceed in Al-4.5wt%Cu foams the value measured with pure Al is a priori 

surprising, since this alloy too contains brittle intermetallics (θ−Al2Cu and Al7Cu2Fe), which 

fracture during foam deformation. The explanation is likely linked with the fact that θ−Al2Cu 

and Al7Cu2Fe are mostly present as discrete islands along the pore surface (Figs. 1 and 3). 

The fraction of applied load carried by the intermetallic is therefore far lower than in Al-

12%Si or Al-Ni alloy foams, where brittle second phases are more continuous and represent a 

higher volume fraction of the microstructure. Intermetallic fracture having apparently no 

noticeable influence on α, the rate of stiffness loss in Al-4.5wt%Cu foams is thus by the same 

mechanisms as in pure Al replicated foams, namely bending and buckling of struts, Fig. 3 [6, 

30].  

4.4. Scaling of the flow stress 

The variational estimate of Ponte-Castañeda and Suquet [38-43], adapted and simplified 

for the monotonic uniaxial deformation of (incompressible) non-linear microcellular 

materials [6, 44, 45], allows an estimation of the in-situ stress-strain curves of the metal 

within the foams, knowing the relative density Vm, the Young’s modulus scaling law, and the 

uniaxial flow curve of the microcellular metal. The calculation is detailed in Appendix A.  

Figure 7(a) shows tensile curves measured on five samples of pure aluminium foam, 

produced by the same replication process as alloyed samples of this work and tested 

similarly. Figure 7(b) shows the back-calculated in-situ stress-strain cuves of the (pure Al) 

metal within these samples: as seen, the variational estimate collapses stress-strain curves of 

the five variously dense microcellular metal samples (Fig. 7a) into a single curve (Fig. 7b). 

This collapsed curve is, according to the model, the effective (von Mises) back-calculated in-

situ stress-strain curve of the metal making the foam – with the caveat that it is likely scaled 

down by a fixed “knock-down” factor on the order of two to three, which has often been 

found in confronting data with theory but remains so far essentially unexplained [2, 6, 46, 

47].  
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Save for this factor, the variational estimate thus provides a credible predictor of the 

scaling between the flow stress and the relative density of a replicated microcellular metal 

having a simple, essentially featureless, microstructure. It also performs well when 

confronted with steady-state creep data of replicated microcellular metal, as shown elsewhere 

[37, 48, 49].  

Predictions of the model for the flow stress of the alloy are shown in Fig. 8. This plots the 

similarly back-calculated in-situ flow stress of replicated microcellular Al-4.5 wt%Cu at 3% 

(Fig. 8a) or 5% (Fig. 8b) strain, together with the corresponding values for the pure Al 

samples.  

The back-calculated flow stress for pure Al is single-valued across all values of Vm, 

consistent with Fig. 7 and the fact that the variational model accounts well for the observed 

scaling behaviour of the flow stress. It varies somewhat more but still remains relatively 

constant for heat-treated (T6) microcellular Al-4.5wt%Cu when Vm ≥ 20%: the back-

calculated in-situ flow stress is within the ranges 130-160 MPa at εeff = 3%, 140-170 MPa at 

εeff = 5%, Fig. 8. Note that these values are lower than the flow stress measured on dense 

castings of heat-treated Aluminium Alloy 201, of similar nominal composition 4.6wt%Cu-

0.7wt%Ag-0.35wt%Mn-0.35wt%Mg-0.25wt%Ti [29], which is in the range of 250 to 450 

MPa after peak hardening [50]. This difference in flow stress, by a factor near two, is likely 

another example of the frequently reported “knock-down” factor between theory and data for 

the plastic flow stress of microcellular materials [2, 6, 46, 47].  

In other samples the back-calculated flow stress decreases with decreasing relative 

density. It falls below 100 MPa for the two heat-treated samples when Vm ≈ 0.1, and it 

decreases steadily with decreasing Vm for as-cast samples in both A and C conditions. Thus, 

the scaling relation that is predicted by the variational estimate is not obeyed by the alloyed 

metal in microcellular samples produced and tested here. This implies that their 

microstructure causes an additional dependence of the flow stress on relative density. 

One potential cause for this was already mentioned in Ref. [6], namely internal damage. In 

applying the variational estimate, F (Eq. A5) was estimated on the basis of the initial Young’s 

modulus of the foam, Ef,0, for two reasons: (i) the variational estimate is restricted to small-

strain deformation and (ii) it is valid only for isotropic materials (the foam becomes 

anisotropic after significant deformation). In reality Ef decreases with e at a rate that is 

measured by the damage parameter α (Eq. 1, Fig. 5). Looking at Eqs. (A6) and (A8) one sees 

that an overestimation of Ef, and hence of F, by a factor X (X>1), will cause an 
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underestimation of the back-calculated in-situ metal flow stress σeff by a factor on the order of 

X-1/2 (while the corresponding in-situ strain εeff is overestimated by a factor on the order of 

X1/2, Appendix A). Since X ≈ (1-α e)-1, this causes the in-situ metal flow stress to be 

underestimated by a factor on the order of (1-α e)1/2. At small strain and with α values in Fig. 

5, the resulting error is on the order of a few percent; however, for, say, e = 10% and α = 5, 

then X = 2 and the flow stress is underestimated by a factor on the order of √2 (the theory 

being, besides, outside of its range of validity [2, 6, 45, 51]). At high α, therefore, internal 

damage offers one explanation for lower-than-expected back-calculated in-situ alloy flow 

curves. Since α increases as Vm falls near 0.1 (Fig. 5; see also Fig. 8 of Ref. [37]), accelerated 

damage might contribute an explanation to the lower in-situ flow stresses back-calculated for 

heat-treated microcellular Al-4.5wt%Cu when Vm ≈ 0.1.  

This however does not explain why the in-situ flow stress of the metal within the as-cast 

Al-4.5%Cu foams varies monotonically with Vm, Fig.7: α values are too low for this. Also, α 

is similar for pure Al or the alloy in all conditions; were it the cause for the observed decrease 

in apparent in-situ flow stress for decreasing Vm, then pure Al and T6 alloy data should be 

similarly affected. This is not observed (Fig. 8). So there must be another cause for the 

decreasing in-situ as-cast alloy flow stress with decreasing Vm. 

The key difference between the metal in as-cast microcellular Al-4.5wt%Cu on one hand, 

and Al-4.5wt%Cu in the T6 condition or pure Al on the other, is the heterogeneity of the as-

cast alloy microstructure, for both cooling conditions: coring and second phases are present in 

the as-solidified alloy microstructure and are removed after heat-treatment, or are absent in 

the pure metal. As mentioned above, no systematic variation with Vm could be found in the 

microstructure of the solidified metal within the foams: the nature, size, and distribution of 

phases are visibly the same, as are concentration gradients (these were estimated in several 

samples of different Vm using energy-dispersive X-ray analysis in the scanning electron 

microscope). In short, despite extensive investigation, no evolution of the microstructure 

could be found that would explain why the in-situ metal flow stress decreases as Vm 

decreases. 

We propose that the answer lies in the fact that, as Vm decreases with the alloy 

microstructure unchanged, the struts become thinner. This may cause the strut flow stress to 

evolve, since the nature and length-scale of the alloy microstructure remain constant and are 

commensurate in size with the strut width (a few µm). Indeed, if there are certain regions of 

the matrix microstructure that are weaker than the rest, then as Vm decreases, each weak 



  11	
  

region will locally represent a greater fraction of the strut cross section, and hence cause a 

greater local weakening of the material wherever it appears. 

Such weak regions are unlikely to be the brittle second phase θ, given that Young’s 

modulus of the foams would also be affected (Fig. 5). Rather, these must be regions with a 

lower flow stress but a modulus that remains near that of the metal. A likely culprit is the 

band of solute-poor metal that lines larger intermetallic phases; Fig. 9 shows such bands (a) 

within the microcellular alloy in a node, and (b) within a portion of the strut shown in Fig. 

2(b). These are well-known (colour metallography reveals them well in Fig. 3 of Ref. [52]) 

and appear because, while Al-4.5wt%Cu cools below the eutectic temperature, the solubility 

limit of copper within the primary α-phase decreases. Kinetics permitting, the amount of 

Al2Cu intermetallic therefore increases as the alloy cools. This occurs either by diffusion and 

deposition of copper atoms onto existing (eutectic) θ-phase, or alternatively by nucleation and 

growth of new Al2Cu, often visible as θ’ platelets within the primary α-phase of the cast 

alloy. In the proximity of eutectic Al2Cu, the former mechanism prevails, while further away 

from eutectic Al2Cu the latter mechanism dominates. The result is a band of softer precipitate-

free copper-poor alpha-phase lining the eutectic θ-phase, the remainder of the alpha-phase 

containing a distribution of θ’ platelets; such bands are shown in Fig. 9.  

What this implies is that much of the surface of metal struts is lined with a band of 

copper-deplected (and hence softer) α-phase. Now the thickness of this band, on the order of 

a few micrometres (Fig. 9), is governed by the alloy cooling rate; it is independent of the strut 

thickness. As Vm decreases, and with it the average thickness of struts within the microcellular 

material, such copper-depleted bands therefore represent an increasing proportion of the local 

struts cross-section, which can explain in turn why the apparent average in-situ flow stress 

decreases as Vm decreases. The bands exist after both A and C cooling conditions; it is hence 

reasonable that their effect be similar. After homogenization, alpha-phase concentration 

gradients are mostly erased, and these solute-poor bands are removed: this explains why there 

is much less of a spread with Vm in apparent metal in-situ flow curves after heat-treatment, 

Fig. 8.  

The more general implication is that the flow stress of microcellular metals (or materials 

more generally) can show unexpected scaling of their flow stress with relative density when 

the dimensional scale of pores (the mesostructure) and that of microstructural features within 

the base material (the microstructure) are commensurate. If the two do not scale similarly as 

the relative density changes, or if one is not much finer than the other, then the average in-situ 
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flow stress of the metal within the foam can vary with Vm, affecting in turn the scaling 

between relative density and strength for the microcellular metal.  

In closing, we note that the effect shown here (i) has a parallel in the interplay between 

microstructure, mesostructure and strength that emerges from simulations of fracture in 2D 

microcellular structures by Mangipudi and Onck [53] and (ii) that it can be viewed as a 

manifestation of percolation size effects in the mechanical flow of materials: this is illustrated 

in Appendix B with a simple two-dimensional model. 

 

5. CONCLUSIONS 

 

• Replicated 400µm pore size Al-4.5%Cu foam solidified at one of two cooling 

conditions is tested in compression in the as-cast and age hardened (T6) condition. At 

given relative density Vm the yield strength is unaffected (within uncertainty) by the 

solidification rate; it increases by a factor near two after age-hardening.  

• Brittle intermetallic phases (Al2Cu and Al7Cu2Fe) are present in the two as-cast 

microstructures but are mostly dissolved after heat-treatment. Intermetallic phases are 

predominantly located along the foam pore surface. These fracture during foam 

compression; however, this does not influence the rate of Young’s modulus decrease 

with foam strain. 

• The in-situ flow stress of the metal within the foams, back-calculated using the 

variational estimate knowing their modulus and the relative density Vm, is consistent 

for heat-treated Al-4.5%Cu when Vm ≥ 0.2, as is found also for pure Al. With as-cast 

Al-4.5%Cu in both conditions the apparent average in-situ metal flow stress increases 

with increasing Vm. We propose that this is caused by the presence of a band of 

copper-depleted α−phase along the interface with intermetallics in the as-cast foam 

alloy, the thickness of these bands remaining constant while the strut thickness 

decreases with decreasing Vm.  

• When microstructural features of microcellular materials are of a size scale 

commensurate with that of their mesostructure, the scaling between relative density 

and flow stress can be altered compared to what obtains for a uniform elastoplastic 

continuum. 
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APPENDIX A – Estimating the metal in-situ flow curve from that of the foam 
knowing its Young’s modulus, according to the simplified variational estimate 
 

Assume that dislocation motion in the metal is governed by the second order moment of 

the instantaneous stress field in the metal making the foam, σeff. The rationale behind this 

assumption is that (i) the Von Mises stress is the simplest scalar measure of stress driving 

dislocation motion in complex three-dimensional stress fields and (ii) σeff is used, in the 

variational estimate, to deduce the appropriate matrix secant modulus that serves to derive the 

instantaneous non-linear deformation state in the metal making the foam [42, 43].  

The variational estimate gives σeff from the volumetric average of the second order 

moment of the stress field in the linear comparison cellular material, which itself is related to 

the foam compliance Me by [42, 43]: 
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where s* is the instantaneous uniaxial stress applied monotonically to the porous foam 

material and Gm is the (dense) metal shear modulus. Volume changes of plastically deforming 

materials are very small and high average hydrostatic stresses are unlikely in the matrix of a 

porous material: as in Ref.[6], we therefore assume that the metal matrix behaves as if it were 

incompressible. For uniaxial tensile deformation, Eq. (A1) then simplifies to: 

 s* =
1!Vp
3a

"! eff =
Vm
3a

"! eff  (A2) 

with  

 a =
! 1/ Ef( )
! 1/Gm( )
!

"

#
#

$

%

&
&
Gm=Gms

 (A3) 

where Gms is the secant shear modulus of the material making the foam at the relevant point of 

deformation of the foam. This is related to the secant Young’s modulus Ems of the  

(incompressible, dense) material by: 

 Ems =
! eff

"eff
= 3Gms  (A4) 

where εeff is the average equivalent strain that corresponds, according to the monotonic 
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constitutive law of the material making the foam (in Von Mises terms its tensile uniaxial 

stress-strain curve), to the instantaneous value of σeff [54]. Now, the foam Young’s modulus 

Ef is, for the given (isotropic) porous material mesostructure, equal to a certain fraction, F, of 

the Young’s modulus Em of the solid material making the foam: 

 

 Ef = F Em (A5) 

where F is an increasing function of the relative density Vm of the foam. This being the case, 

Eq. (A2) implies 

 ! eff =
s*

F(Vm )Vm
. (A6) 

By definition of the secant modulus Efs of the deforming foam: 

 e* = s
*

Efs
=

s*

F(Vm )Ems
=
F(Vm )Vm
F(Vm )

! eff

Ems
=

Vm
F(Vm )

!eff  (A7) 

where εeff is the matrix equivalent strain corresponding to the current equivalent stress, σeff, in 

the matrix (Eq. A1).  

Therefore, if one plots, knowing the stress-strain curve (s*, e*) of the microcellular material, 

σeff as given in Eq. (A6) versus 

 !eff = e
*
F(Vm )
Vm

, (A8) 

then one recovers the monotonic stress-strain curve of the material making the foam, as 

estimated (under its assumptions) by the modified secant modulus method that corresponds to 

the variational estimate of Ponte-Castañeda and Suquet coupled with assumptions made 

above. For the present foams, from experimental data we have F =1.62 !Vm
2.61  (Fig. 4). Note 

that the above theory and hence the estimated stress-strain curves are strictly only valid for 

isotropic materials under small strain deformation. The back-calculated curves are therefore 

strictly only valid at low values of e or εeff.  
 

APPENDIX B – Illustrating how percolation size effects intervene when 
mesostructural and microstructural length scales are commensurate 
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Consider a strut in a foam made of a heterogeneous metal that is composed of softer zones 

and harder zones. At fixed pore size, when the relative density varies, the greatest change in 

mesostructure is that the struts making the foam become thinner. Assume a two-dimensional 

strut, separated into a checkerboard assembly of rectangular elements, N elements across the 

width and M elements along the length of the beam, as schematized in Fig. B-1. Each 

rectangular element is either soft or hard, with P the probability for an element to be soft. The 

shear flow stress τ as a function of shear strain γ in any given element is taken to be either: 

 

 τi = τy,1 + α1γ    with probability P (B-1) 

or: 

 τi = τy,2 + α2γ    with probability (1-P) (B-2) 
 

with τy,1 the yield shear stress and α1 the strain hardening coefficient of the soft elements, and 

τy,2 and α2 the yield shear stress and strain hardening coefficient of the hard elements. For 

argument’s sake, we give soft elements the values corresponding to binary Al-1%Cu, namely 

τy,1 = 35 MPa and α1 = 100 MPa, while for the hard elements we take values typical of binary 

Al-4%Cu, namely  τy,1 = 100 MPa and α1 = 750 MPa  [28].  

We simplify loading of the beam as simple shear with the volume elements arranged as equal 

rectangles on a regular grid. We make the (simplistic) assumption that deformation of the 

beam occurs by isostrain deformation across the beam and isostress deformation along the 

beam, as the assumed geometry suggests (Fig. B-1). The average shear stress τj in line j at 

shear strain γj is then given by:  

 ,

1

N
y i i

j j
i N N
! "

! #
=

= +$  (B-3) 

if there are N elements across. This gives for γj, after rearrangement: 

 
,

1

1

N

j y i
i

j N

i
i

N! !
"

#

=

=

$
=

%

%
. (B-4) 

The average shear strain γ of the whole strut is then: 
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if it is M elements long.  

Calculations were conducted using a simple spreadsheet; the evolution of γ with the width of 

this fictive 2D strut is given in Fig. B-2 for τ = 110 MPa. The results correspond to an average 

over 20 struts with randomly generated elements for the relevant value of P. The bold line 

corresponds to the mean value of γ, and the thin lines show the standard-deviation for the 

strain to which a single such 2D checkerboard beam will deform under τ = 110 MPa. As seen, 

at high values of N, i.e., for thicker struts (high Vm), the values converge to a constant value, 

corresponding to an averaging over a large number of “typical” random elements. For low 

values of N, i.e., for thinner struts (low Vm), γ tends to increase. This indicates a softening of 

the struts, or in other words a lowering of the average strut (and hence of the foam) flow 

stress. These trends are caused by the increased probability for soft zones to percolate across 

the width of thinner struts, which softens the entire beam at fixed phase proportions.  

Figure B-2 is drawn for two values of the probability P for the presence of a soft zone; one 

with a higher probability, P = 0.5 (to illustrate the as-cast structures, which contain a higher 

proportion of heterogeneity) and one with P = 0.1 to simulate the T6 microstructures (which 

have fewer sites of heterogeneity). As seen, for the same range of variation of the strut 

thickness (i.e., the same range of Vm values), one finds (i) a plateau, and then softening only at 

the lower end of the strut thickness range (and hence for the lowest Vm) in the material with 

fewer soft zones, and (ii) a regular decrease of the flow stress in the material with a greater 

proportion of softer regions. This simple model can thus reproduce quite faithfully all trends 

observed in the present experimental data (Fig. 8). 
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TABLES 
 
Table	
  1:	
  The	
  four	
  Al-­‐4.5wt%Cu	
  alloy	
  processing	
  conditions	
  explored	
  and	
  their	
  designation	
  
	
  

Cooling condition Condition A Condition C 
Cooling 
Rate[°C/s] -30 to-22 -0.5 

Solidification time  
tf [s] 200 to 270 12,000 

Age Hardening None 
168h at 130°C 
(peak 
hardening) 

None 168h at 130°C 
(peak hardening) 

Designation A A+T6 C C+T6 
 
 
FIGURES 

 
Figure 1: Microstructure of the four different Al-4.5%Cu foams. Top left (1): as-cast material 
solidified more rapidly (Condition A). Bottom left (2): as-cast material solidified slowly 
(Condition C). Top right (A+T6): heat-treated material solidified under Condition A. Bottom 
right (C+T6): heat-treated material solidified under Condition C.  
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Figure 2 – Scanning electron micrographic close-ups of polished sections through individual 
struts in a non-deformed as-cast material of relative density 11% solidified more rapidly 
(Condition A); micrographs  show the θ-phase located along the strut surface and, in one strut 
(left) crossing the strut. 
 

 
 
Figure 3: Secondary electron SEM micrograph of compressed as-cast Al-4.5wt%Cu (Vm = 
11% deformed to 4% strain) showing (a, left) deformed struts along the sample surface and 
the marked area at higher magnification (b, right) showing evidence of internal damage by 
microcracking of the intermetallic θ-phase (indicated with white arrows) as well as strut 
buckling. 
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Figure 4: Evolution of Young’s modulus Ef,0 as a function of the relative density Vm for Al-
4.5%Cu foams with with both as-ast and T6 microstructures, for both cooling rates 
(Conditions A and C, Table 1). The log-log plot suggests a power-law relation of exponent 
near 2.6. 
	
  
	
  
 

 
 
Figure 5: Evolution of the damage parameter a with the relative density Vm, for Al-4.5%Cu 
foams with as-cast and T6 microstructures; the evolution of a for pure Al foams (measured in 
earlier work) is also shown. The experimental error on a is approximately of 50%; for clarity, 
it is only shown on pure Al foams.  
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Figure 6: Flow stress of all tested microcellular samples at 3 % (a) or 5% (b) strain (in 
uniaxial compression) versus Vm. Also given in the figure are corresponding data for similarly 
processed and tested samples of 99.99% pure microcellular aluminium.  

 
 
 
Figure 7: (a) Measured flow curves of replicated 400 µm pore size microcellular 4N pure 
aluminium; (b) back-calculated in-situ strain-stress curves for pure Al in these replicated 
foams (using the variational estimate) 
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Figure 8: Back-calculated in-situ alloy flow stress in all tested microcellular samples at 3 % 
(a) or 5% (b) effective strain versus Vm. Also given in the figure are corresponding data for 
similarly processed, tested and analyzed samples of 99.99% pure microcellular aluminium 
(also given in Figs. 6 and 7). 
 
 

 
 
 
Figure 9: (a) back-scattered scanning electron microscopy image of as-cast Al-4.5wt%Cu 
within a node of foam having Vm = 0.17, cooled under Condition A revealing the eutectic θ-
phase and precipitated θ’ platelets (white) within the primary aluminium-rich α-phase (dark). 
(b) portion of the strut in Fig. 2b, showing θ’ platelets within the α-phase. In both θ’ platelets 
are essentially absent within a band roughly 3 µm wide lining the (white) eutectic θ-phase; the 
band is indicated with arrows in both micrographs. 
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Fig. B-1: Two dimensional beam made of random rectangular patches of soft and hard 
materials, the former being present with probability P, the latter with probability (1-P). 

 
 
Fig. B-2: Deformation of the rectangular beam in Fig. B-1 at fixed applied stress versus its 
width (measured by the number of patches N) for two values of the soft phase probability P. 
Curves indicate the mean and standard deviation of 20 simulations for each condition. 


