
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

SAFE: Structure-aware Facade Editing

Minh Dang Duygu Ceylan Boris Neubert Mark Pauly

École Polytechnique Fédérale de Lausanne

Figure 1: Structure-aware facade editing. Using the notion of generalized grids, our system encodes various symmetry, align-
ment, and hierarchy relations among the elements of a facade. During incremental editing, the user can specify different grids
(shown as box abstractions) for which our system proposes new configurations. Editing progresses by selecting such grids and
one of the proposed configurations (shown in red).

Abstract

Many man-made objects, in particular building facades, exhibit dominant structural relations such as symmetry
and regularity. When editing these shapes, a common objective is to preserve these relations. However, often
there are numerous plausible editing results that all preserve the desired structural relations of the input, creating
ambiguity. We propose an interactive facade editing framework that explores this structural ambiguity. We first
analyze the input in a semi-automatic manner to detect different groupings of the facade elements and the relations
among them. We then provide an incremental editing process where a set of variations that preserve the detected
relations in a particular grouping are generated at each step. Starting from one input example, our system can
quickly generate various facade configurations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computer Graphics—
Computational Geometry and Object Modeling

1. Introduction

One of the long-standing problems in computer graphics is
to provide artistic control for content creation. Modeling of
shapes is not trivial because it requires both artistic talent and
technical skill. The design process is time-consuming and
error-prone as extensive manual processing is often needed
to obtain high-quality models. To address these challenges,
recent research efforts focus on the modeling-by-example
paradigm, where the goal is to modify an existing model to
create new shapes while preserving certain features of the
original shape. Such a paradigm is particularly useful for

modeling urban spaces, since many applications (e.g. map-
ping and navigation, urban design, content creation for en-
tertainment) can benefit from a fast and easy design process.

Building facades often exhibit dominant structural rela-
tions such as symmetry and regularity. When producing new
shapes by editing a given example, these relations should
typically be preserved. However, this is a highly ambigu-
ous process as there are often multiple ways to maintain the
structural relations that all result in plausible output shapes.
Amongst these shapes, there is no definitely correct output
and the desired solution depends on the intent of the user.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



Dang et al. / SAFE: Structure-aware Facade Editing

Therefore, instead of committing to a particular output based
on certain heuristics, it is vital to be able to efficiently navi-
gate through alternative solutions.

In this paper, we present an interactive framework for
structure-preserving editing of 2D building facades that en-
ables exploration of the structural ambiguity during the edit-
ing process. We assume as input an ortho-rectified facade
image that has been hierarchically segmented with vertical
and horizontal splitting lines into rectangular sub-regions.
Certain sub-regions such as the windows and doors are se-
mantic facade elements and we preserve the arrangements of
these elements during editing.

It is often desirable to edit a group of related elements
together. For example, identical windows arranged in a reg-
ular grid are typically expected to behave similarly. A row of
windows and the door separating them might act as a grid of
nonidentical elements if grouped together, making the inser-
tion or deletion of either of the element types possible. Of-
ten, there are multiple ways to group a set of elements and
the particular grouping of interest depends on the user in-
tent. Thus, we provide a semi-automatic framework to group
the facade elements. Given a particular grouping, we support
editing operations such as insertion or resizing of elements,
while propagating the edits to hierarchical sub-elements.

Contributions. Our main contribution is a novel incre-
mental editing process that exposes shape ambiguities by
prompting the user with a set of alternative output shapes
at each editing step. A central feature of our approach is the
ability to encode the structure of a facade as a general group
of elements that can be nested in a hierarchy. This avoids
limitations of most existing systems that restrict editing op-
erations to regular grids only. We evaluate our framework
on building facades of varying complexity and demonstrate
that a large variety of plausible output shapes can easily be
created from a single input example.

Related Work. Recently, a considerable amount of shape
manipulation methods have been proposed that focus on
high level structural relations among the parts of a shape
such as symmetry and regularity. A common strategy is to
utilize a two-step analyze-and-edit approach [GSMCO09].
The analysis step focuses on discovering relevant structures
and the relations among them. Once detected, these relations
are preserved in the subsequent editing operations.

Symmetry driven analysis plays an important role in
structure aware shape processing as symmetry is ubiqui-
tous in most man-made objects. In the iWires system, sym-
metry properties of the salient feature lines of an object
are preserved during free-form deformation [GSMCO09].
Bokeloh et al. [BWKS11, BWSK12] explore discrete and
continuous regular patterns during shape deformation. Wu
et al. [WWF∗10] present an image resizing method where
detected regular grids are trimmed or expanded. All of these
methods focus on generating an optimal editing result with

respect to the specific energy formulation. Although this is
useful for quickly generating plausible editing results, the
user needs to manipulate the relevant parameters to obtain a
specific output. In case of symmetry and regularity, however,
often there are multiple plausible outputs that correspond to
a specific edit and we focus on exploring this variation.

Another approach to represent the structure of a shape
is to encode it as a procedural production. Grammar-based
modeling has demonstrated its ability to create a wide range
of 3D models [PM01, WWSR03, MWH∗06]. In traditional
procedural modeling, the user specifies new rules or mod-
ifies the parameters of the existing rules to create a desired
output. Inverse procedural modeling focuses on creating pro-
cedures from example shapes which are used to synthesize
similar shapes [BWS10,ŠBM∗10]. Despite the effectiveness
of inverse procedural modeling in generating model varia-
tions, it is notably difficult to control. Several approaches
have been proposed to guide procedural modeling towards a
desired output [TLL∗11,LWW08]. However, it is non-trivial
to determine the preference of the users or enable them to in-
teract with the grammar in an intuitive manner. In contrast,
we provide the user with a small set of plausible shapes for
each editing operation and do not require a consistent pref-
erence throughout the editing session.

In the context of urban data, semi-automatic facade pars-
ing methods provide an alternative approach to explore the
structure of facades [MWA∗12]. These methods focus on de-
composing a facade into a hierarchy of rectangular regions
with vertical and horizontal splitting lines [MWW12]. To
effectively handle irregular facade configurations, methods
that decompose the input into a set of 1D sequence of ele-
ments [LCOZ∗11] or facade layers [ZXJ∗13] have been pro-
posed. Lin et al. [LCOZ∗11] present a retargeting framework
that changes the model topology by duplicating or removing
the extracted 1D sequences. Recently, Zhang et al. [ZXJ∗13]
introduce a method to decompose a facade into different lay-
ers by maximizing the symmetry of the resulting substruc-
tures. This decomposition then can be used for editing op-
erations. We provide comparisons with both methods in the
evaluation section (Sec 6). Finally, Lefebvre et al. [LHL10]
present a fully automatic method for extracting horizontal
and vertical strips from architectural textures based on self-
similarities. A number of such strips are reassembled to syn-
thesize a new texture. However, this method does not explic-
itly explore any structural and hierarchical relations between
the facade elements that may be desired to preserve.

Several strategies have been proposed for exploration
of large collections of shapes [UIM12, OLGM11]. In our
framework, we limit the number of alternative outputs ex-
posed to the user at a time by adopting an incremental edit-
ing approach. In the context of exploring facade variations,
our work can be considered closest to the work of Bao et
al. [BSW13]. Given a hierarchical decomposition of the in-
put facade, this work creates variations by recursively re-

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

Original

Topological Jump Spatial Optimization

Figure 2: The proposed editing pipeline consist of two steps:
The topological jump step explores structural variations of
the input facade by changing the number of facade elements.
Then, in the second step spatial configurations of the facade
elements are optimized to generate a plausible facade.

arranging the substructures in a rectangular region. To en-
sure the validity of the generated facade layouts, the user
needs to specify valid arrangements for each rectangular re-
gion depending on the input decomposition along with addi-
tional size and alignment constraints. In contrast, we provide
an easy grouping of the facade elements independent of the
input decomposition to edit them simultaneously.

2. Overview

One of the core challenges in structure-aware editing is am-
biguity: there are often multiple consistent ways to maintain
a set of structural relations. Simple operations, such as resiz-
ing a facade, can quickly lead to a combinatorial explosion
of possible solutions. Many existing editing methods pro-
vide a single solution based on a set of heuristics that try to
anticipate the intent of the user. However, the user might ini-
tially only have a vague idea of the desired output. In such a
case, the final solution can be obtained in an exploratory pro-
cess by iterative refinement of intermediate results. There-
fore, our aim is to give access to a large space of possible
solutions, while avoiding exposure to an exponential set of
variations. We achieve this goal with an incremental editing
process that prompts the user with a small set of variations
at a time. The output is successively refined by selecting one
of these variations at each step.

We distinguish between two fundamental types of modi-
fications to a facade: discrete modifications that change the
number of facade elements, e.g. inserting new elements or
removing existing elements, and continuous modifications
that change the size of facade elements, e.g. resizing a win-
dow. We propose an editing framework that enables such
modifications in a two-step approach. Discrete modifications
of the input facade are performed in the topological jump
step, while continuous modifications are applied to the re-
sulting facade elements in the spatial optimization step to
compensate for the distortion introduced by the structural
changes. This separation allows a stepwise exploration of
structural variations while the potential variations due to
continuous changes in size are ignored and expressed as con-

straints in the optimization. Note that only the spatially op-
timized facade configurations are exposed to the user.

3. Representing Spatial and Structural Relations

In this section we present the data structures that capture spa-
tial and structural relations between facade elements. Such
relations are preserved in the editing operations we present.
Facade parsing algorithms provide a method to decompose
a facade into smaller shapes by recursive subdivision. In the
following we call this spatial subdivision structure decom-
position tree. By introducing parent-child relations between
facade elements, this data structure captures how changes in
the size of a facade element induce changes at its parent. Be-
sides the spatial relations, facade elements exhibit structural
relations, e.g. the number of windows in one floor matches
the number of windows in the second floor, which might or
might not be of the same kind. We introduce an additional
data structure (facade grids) to capture this information.

Spatial Decomposition: Decomposition Tree. Many fa-
cade parsing [MWW12, SHFH11] and element classifica-
tion [RKT∗12, TKS∗11] algorithms result in a spatial de-
composition of the input data. This decomposition is usually
represented as a tree with alternating splitting directions. A
node in the tree represents a facade shape associated with
a rectangular area. The root node (representing the whole
facade) is recursively subdivided into smaller rectangular
shapes by splitting along the x or y directions. We store the
direction of the subdivision and its relative position with re-
spect to the size of the node (split lines).

The resulting spatial decomposition exhibits properties
that we exploit during the optimization step to compute valid
spatial configurations of new facade variations (see Sec. 5).
The total decomposition property allows us to express the
size of a node in terms of the size of its children. Specifically,
if a node has x (y) splits, the width (height) of this node is
equal to the sum of the widths (heights) of its children, where
as the node and its children have identical heights (widths).

Several automatic or semi-automatic methods exist to de-
fine and detect splitting lines. We refer the reader to the sur-
vey on urban reconstruction for a thorough review of this
topic [MWA∗12]. Another source for such spatial decompo-
sitions are facade configurations resulting from shape gram-
mars that can be naturally transformed into decomposition
trees based on the grammar parsing tree of the grammar
(such as [MZWG07]). We provide examples using facade
decompositions resulting from both methods.

Structural Relations: General Grids. We present a data
structure to capture the structure of the input facade and
influence the resulting variations. Earlier attempts consider
structural information in terms of symmetries, repetitions,
or regularity of a model using one- or two-dimensional reg-
ular lattices (cf. [BWSK12, PMW∗08]). Although these ap-
proaches can be applied to a wide range of models, they fail

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

to encode potential links between non-symmetric elements
(e.g. non-regular element spacing) and cannot encode hier-
archical relations (e.g. a regular element itself consists of a
regular configuration of subelements).

Horizontal and vertical alignments are typically most im-
portant to define the structure of building facades. We en-
code these alignments by a grid-like data structure. Grids
provide an intuitive way to specify structures in facades as
well as the constraints between facade elements. Elements
that are part of the same grid are meant to behave similarly
under structural changes. Such relations are used in the fol-
lowing sections to constrain the spatial optimization.

We employ a generic definition for these grids where grid
elements are nodes of the facade decomposition tree. These
elements do not need to be similar, can be unevenly spaced
(Fig. 3), and be part of more than one grid. A facade grid
is defined as a group of non-overlapping facade elements,
which are arranged into columns and rows. The user either
manually selects elements that should be combined to a grid,
which allows arbitrary elements in a grid, or nodes similar to
a selected element are identified based on automatic symme-
try detection methods [CML∗12]. This generic definition of
facade grids enables the grouping of different types of ele-
ments, and hence makes it possible to handle facades without
dominant repetitions (see Fig. 13).

Given a group of facade elements, we assign each of them
a unique coordinate consisting of a row and a column in-
dex. For column assignment, starting with the left-most el-
ement, we consider the next element to belong to the same
column as long as we observe a vertical overlap between
the elements. These elements form the first column. We re-
peat this process for the remaining elements to obtain ad-
ditonal columns. The assignment of row indices is similar,
starting with the top element. Our scheme does not require
all rows or columns to have the same number of elements. In
the case of missing elements we add a phantom element as

(a) (b)

Figure 3: (a) A general grid with different types of elements
is shown. Dashed lines connect phantom elements (circles)
in the middle column. (b) The grid in red is a subgrid of the
blue grid, which in turn is a subgrid of the yellow grid.

a place holder without assigned geometry to obtain a rectan-
gular grid configuration (see Fig. 3-a).

Structures can be observed at different levels within a hi-
erarchy, i.e. one structure can be contained within another
structure (see Fig. 3-b). We translate this hierarchical rela-
tion into a hierarchy of facade grids. These hierarchical con-
figurations are automatically assigned if all elements of a
grid are included in the subtree (of the decomposition tree)
of an element of another grid. The former grid is then called
the subgrid of the latter one.

4. Discrete Modification – Topological Jump

The objective of our incremental editing framework is to
generate plausible facade variations that preserve desired
structural relations between facade elements. We enable the
user to select a set of facade grids at each editing step for
which the algorithm will suggest new configurations. Such
selected grids are called active grids. When a grid is se-
lected, our framework enables automatic selection of other
grids with identical element types and counts. By selecting
different active grids, the user specifies different structural
relations to be preserved at each editing step and explores
the resulting variations. After choosing one of the proposed
variations, the user proceeds by changing the active grids or
analysing further extensions of the current active grids. In
this section, we describe how new facade configurations are
generated by changing the number of elements in an active
grid by utilizing both structural and spatial information. Note
that the size of the elements in the new facade configuration
are determined in the spatial optimization step (see Sec. 5).

Once a grid is selected to be active, our method first ex-
amines the content of the grid to determine its possible vari-
ations. Specifically, if the editing operation increases the
width (height) of the facade, the unique columns (rows) as
potential insertion candidates are identified. We call such
unique columns (rows) the source columns (rows). Inser-
tion of any of the source columns (rows) in each possible
location of the active grid results in a potential variation pre-
sented to the user. In the following subsections, we describe
how discrete modifications to an active grid are performed.
For convenience, we only describe the case where an edit-
ing operation changes the width of a facade. Changes in the
height of the facade are handled in a similar fashion.

Structure-aware Insertion Operation. Insertion of a new
grid column is performed by insertion of each element in
the column in a row-wise manner. Therefore, we first de-
scribe how a grid element S which we call the source ele-
ment is inserted between two anchor elements Al and Ar.
Often, grid elements such as windows are most prominent
elements adjoining less important non-grid elements such as
walls. Thus, insertion of a new grid element requires the du-
plication of the surrounding content of the anchors to ensure

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

(a) Input (b) Initial subgraph (c) After inserting horizontal connections (d) Output

S Al

1 2

3

5

6 7

4

Ar 3

6’ 7

3’

2’ 4’

7’ 6

1 2 4 5

Al S Ar

Al1 2
3

4 5

6 7

Ar

S 2

S4

S 6

S 7 Al1 2

3

4 5Ar

6Al
7Ar

61

75

62

74

S 2
S4

S 6
S 7

6 3

3 7

S1 2

3

4 52’

3’

4’Al Ar

S 6
S 7

6Al
7Ar
61

75

62

74

62’

74’
S1 2

3

4 5

6’ 7

2’

3’

4’Al Ar

67’

G Ep G’ G’ G’Ep Ep

Figure 4: The source S is inserted between the anchors Al and Ar. The neighborhood graph G′ and the contents of the pending
edge queue Ep is shown at each step of the insertion process. Vertical and horizontal edges are in black and red respectively.

that the source is embedded in a region similar to the neigh-
borhood of the anchors before the insertion (see Fig. 4). Pre-
serving such neighborhood relations requires direct access to
the neighborhood information of each grid element. While
the facade decomposition tree provides hierarchical decom-
position links between the facade elements, it does not pro-
vide direct access to the neighborhood information as neigh-
boring elements may be part of different subtrees depending
on the order of the subdivision operations. Instead, we en-
code the neighboring relations between facade elements in a
graph structure called the neighborhood graph.

A neighborhood graph G = (N,V,H) is a directed graph
composed of a set of nodes N where each node corre-
sponds to a facade leaf shape in the facade decomposi-
tion tree. A vertical edge ev = (ni,n j) ∈ V (horizontal edge
eh = (ni,n j) ∈ H) directed from ni to n j connects these two
nodes if the corresponding facade shapes share a vertical
(horizontal) boundary and ni is below (to the left of) n j. The
neighborhood graph can be considered as a dual structure of
the facade decomposition tree which provides direct access
to relative positions of the graph nodes. It is straightforward
to build this graph given a decomposition tree. Conversion of
a neighborhood graph G to a facade decomposition tree, on
the other hand, is performed in a recursive manner. At each
step of the conversion, the longest sequence of vertically (or
horizontally) connected nodes C = {n0, ...,nk} is extracted
such that all nodes {n0, ...,nk−1} have only one outgoing
edge and all nodes {n1, ...,nk} have only one incoming edge
of the same type. Such a sequence of nodes, called chain, are
collapsed to a single node and a new parent shape is added
to the decomposition tree to represent the collapsed node.
A chain is equivalent to a set of sibling nodes in a facade
decomposition tree. Thus, if G represents a valid facade de-
composition tree, it is ensured that a chain can be detected
at each step. The conversion process terminates when the
whole graph is collapsed to a single node which represents
the root of the corresponding decomposition tree.

When inserting a source element S between the anchor el-
ements Al and Ar, we duplicate additional facade shapes and
determine their spatial arrangement in the new facade con-
figuration by utilizing the neighborhood graph. Specifically,
we build a neighborhood graph G corresponding to the sub-

tree of the facade decomposition tree rooted at the common
parent of Al and Ar, since this subtree contains all relevant
elements. Insertion of S is then carried out by constructing
a new neighborhood graph G′ from G which contains S. S
is embedded in G′ in such a way that its neighborhood is
similar to those of Al and Ar in G. One naive approach to
obtain G′ is to connect the source S to all neighbors of Al
and Ar. However, this often leads to an invalid graph, i.e.
a graph which does not represent a valid facade decomposi-
tion. For example, an element might end up as both right and
left neighbors of another element (see Fig. 5). This observa-
tion supports the intuition that S can be embedded in a neigh-
borhood similar to the neighborhood of both anchors only
by duplicating some nodes in G. Therefore, we propose an
incremental solution that takes a valid neighborhood graph
as input and adds new edges one at a time while ensuring
that the graph remains valid at each step. Necessary nodes
are automatically duplicated during this process. Once G′ is
constructed, we convert it back to a decomposition subtree
to replace the original subtree. Next, we describe the details
of the incremental edge insertion process.

S

2

1

3Al Ar

S

2

1

3
Al

Ar

Figure 5: Connecting the source S to all the neighbors of
the anchors Al and Ar results in a conflict: the loop (S,2,3)
suggests that S is both to the left and right of 3. (Vertical and
horizontal edges are shown in black and red respectively.)

Incremental Edge Insertion. Given an initial neighbor-
hood graph G including the anchors Al and Ar, our goal is to
insert the source S between the two anchors. To achieve this
goal, we incrementally construct a new neighborhood graph
G′ by utilizing a pending edge queue, Ep, consisting of the
edges that need to be added to G′.

First, the edges in G that involve either Al or Ar are added
to Ep while replacing the respective anchor node with S (see
Fig. 4 a). Insertion of these edges in the subsequent stages
influences the neighborhood of S to be similar to the neigh-
borhood of the anchors. We then initialize G′ as the subgraph

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

extracted from G consisting of the longest sequence of hori-
zontally connected nodes including Al and Ar. Any edge of
G that is not included in this subgraph is added to Ep (see
Fig. 4 b). Once Ep is initialized, edges in Ep are inserted to
G′ incrementally. Inserting an edge requires an update of the
neighborhood information to ensure a valid facade configu-
ration at any point during the process. Please note that a new
edge in Ep becomes available for insertion when at least one
of the nodes it connects is present in the current graph.

Edge insertion starts with the pending horizontal edges,
processing those involving S first. Next, the pending verti-
cal edges are processed. If a node is required to be verti-
cally connected to a sequence of horizontal nodes in G′, all
such vertical edges are inserted simultaneously (e.g. e(S,6)
and e(2′,6) in Fig. 4 c are inserted at once). The algorithm
continues by processing the remaining pending edges in a
similar manner until Ep is empty.

Once a pending edge is selected, its insertion is performed
based on whether it involves one or two nodes present in the
current graph G′. Assume a horizontal edge e(ni,n j) is se-
lected that connects a new node ni to an existing node n j.
Intuitively, insertion of such an edge is equivalent to intro-
ducing a vertical split in the facade shape of n j to create a
tiny sub-shape and replacing this sub-shape with the facade
shape of ni. In other words, our goal is to correctly embed
the new node ni between the nodes already present in G′ with
coherent horizontal and vertical relations. Thus, we first ex-
tract all incoming horizontal edges of n j and relink them to
ni (in Fig. 6, e(1,8) and e(2,8) are relinked to e(1,N) and
e(2,N)). If such a relinked edge was present in the original
graph G, we add it to Ep so that this neighborhood informa-
tion is not lost. We next establish the vertical neighborhood
relations of ni by connecting it to one of the above and one
of the below neighbors of n j . Specifically, we extract a set
of nodes Mbelow that are connected to n j with vertical in-
coming edges and a set of nodes Mabove that are connected
to n j with vertical outgoing edges. Since all nodes in Mbelow
(or Mabove) are connected to n j vertically, there is a horizon-
tal path connecting all of them. We connect ni vertically to
the leftmost node along such a path (in Fig. 6, vertical edges
e(N,4) and e(6,N) are established).

The described procedure so far allows to insert an edge
with a new node into G′ and update the present edges to
ensure a valid configuration. If at any point of this process,
an edge which has been previously added to G′ from Ep is
required to be pushed back to Ep, this insertion is discarded
and we undo any update in G′ triggered by this insertion.
This ensures that no edge is inserted to G′ and pushed back
to Ep continuously.

If the selected pending edge connects two existing nodes
ni and n j in the current graph G′, its insertion might result in
a conflict. In order to avoid such conflicts, we duplicate one
of the edge nodes ni and insert the pending edge between
the new duplicated node n′i and n j instead. This edge now

connects a new node n′i to the existing node n j and can be
added as described before. When a node is duplicated, all
the edges of the original node are copied and added to Ep.
Note that if both nodes of a pending edge have already been
duplicated, we discard it to ensure that a node is duplicated
at most once.

8N

1

2

3

4 5

6 7

3

54
1 8
2

6 7

3

54
1
2

6 7

8N8N

1

2

3

4 5

6 7

Figure 6: The edge e(N,8) is inserted to the current neigh-
borhood graph. Vertical and horizontal edges are shown in
black and red respectively.

Coupled Insertion in Multiple Rows. In cases where an-
chor elements in different rows of a facade grid have the
same common parent, performing the column insertion row-
by-row will result in multiple duplications of certain facade
shapes. To avoid such a scenario, we perform the element
insertion in these rows in a coupled fashion. We first find the
subtree rooted at the common parent of the identified rows
and construct the corresponding neighborhood graph G. In-
tuitively, we divide G into multiple subgraphs where each
subgraph consists of a single grid row. We insert source el-
ements into corresponding subgraphs and combine the up-
dated subgraphs. In more detail, we extract a set of sub-
graphs Gs = {G1, ...,Gm} where Gk represents the longest
sequence of horizontally connected nodes in G including the
anchor elements in the corresponding row rk. We then ini-
tialize a common pending edge queue Ep with any edge that
is not included in any subgraph in Gs. For each source el-
ement to be inserted, we also copy the edges from the cor-
responding anchors and add to Ep. We then label the edges
in Ep to denote an order of insertion to the extracted sub-
graphs. Specifically, starting from the top row G1, we define
a node set Nk as the set of nodes in Gk and the unlabeled
nodes that are above any node in Gk+1. Edges that connect
any two nodes in Nk are labeled as lk. At the end of this
grouping, a set of edges remain unlabeled which are the ver-
tical edges later used to connect the updated subgraphs in
Gs. Next, starting from the first row, the incremental edge
insertion process described before is performed by updating
the corresponding subgraph of the row. The only notable dif-
ference is that when updating the graph Gk, only the edges
labeled lk are processed.

Once all rows are processed, Ep contains only the unla-
beled edges. We use these edges to combine the subgraphs
in Gs into a common graph G′. A pair of vertical edges
are used to connect two subgraphs if they are not crossing.
Edges e(x1,y1) and e(x2,y2) are defined to be crossing if x1
is located to the left of x2 and y1 is to the right of y2. Once
all updated subgraphs are combined into G′, it is converted
to a decomposition tree to replace the original subtree.

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

5. Continuous Modification – Spatial Optimization

In the topological jump step of our framework, new facade
elements are added to the spatial decomposition tree and
the respective facade grids. This process violates the total
decomposition property (as described in Sec. 3) and thus
requires an update of the size of the resulting nodes (see
Fig. 2). The naive option to compute valid sizes for the nodes
is to propagate the change due to additional elements up to
the root node, effectively increasing the size to accommodate
space for the new elements. Further, changes in inner nodes
need to be propagated down to the children, e.g. by evenly
distributing the size increment. While this re-establishes the
total decomposition property of the spatial data structure, the
results often violate aesthetic properties such as alignment
and coherent size of similar elements (see Fig. 7). To address
this issue, we propose an optimization scheme that mini-
mizes the deviation from the original size of the elements
while respecting additional constraints relating the size and
the alignment of the elements in facade grids. We formulate
this optimization as a quadratic programming problem.

(a) (b)

Figure 7: Simple propagation of changes along the decom-
position tree (a) breaks alignments between facade elements,
which can be preserved by our spatial optimization (b).

Our optimization process shares some similarities with
the method of Bao et al. [BSW13] with one fundamental dif-
ference. We optimize for the size of all the facade shapes at
once while Bao et al. recursively solves for a sequence of 1D
layout problems. The size of the already processed facade
shapes impose certain layout constraints for the subsequent
stages of their algorithm. Thus, backtracking is necessary if
a solution cannot be found at a certain step.

At the end of each editing step, we compute the new width
and height of the facade shapes by setting up two indepen-
dent optimization problems respectively. In the following,
we describe how the new shape widths are computed. Com-
putation of the shape heights is performed similarly by inter-
changing width and height and x and y-splits.

Quadratic Programming. When computing new sizes of
facade shapes, our goal is to preserve the original sizes as
close as possible. Thus, we define the quadratic objective
E(x) = ‖W(x− x∗)‖2, where x and x∗ respectively denote
a vector of new and original widths of the facade leaf shapes
and W is a diagonal weight matrix. We weight the changes
in shape sizes by the inverse of their areas to allow larger

shapes to deviate more. We normalize the shape areas by
dividing by the total facade area and cap the weights at
10.0. We minimize E(x) for positive x subject to hierarchy
constraints Ch, alignment constraints Ca and symmetry con-
straints Cs as described next:

minimize
x

E(x)

subject to x > 0,Chx = 0,Cax = da,Csx = 0
(1)

Additional constraints specified by the user such as the
target size and location of a shape can be integrated into
Eqn. 1 to provide additional interaction possibilities.

Hierarchy Constraints. We specify a hierarchical link be-
tween the size of a facade shape and its children. For each
leaf shape, we define a binary vector α with one non-zero
entry corresponding to the width, w, of the leaf in x, such
that w = αT x. The width of an internal node is then obtained
from the binary vectors α of its children. Specifically, if S
has an x split, we obtain αs = ∑i αci and ws = αT

s x. In
case of a y split, however, any two children ci and c j have
the same width, αT

ci x = αT
c j x, equal to the width of S. Thus,

we set αs = αc0 , and for any pair of children (ci,ci+1), we
represent the constraint (αci −αci+1)

T x = 0 as a row of Ch.

Shape Alignment. Facade elements that belong to the same
grid need to preserve their relative positions during the edit-
ing process. Therefore, we define constraints relating the
pairwise distances between neighboring grid elements. To
quantify these alignment constraints, we first associate each
grid element S with an anchor point As. In horizontal edits,
for each column, we define three sets of points consisting
of (i) the centers, (ii) midpoints of the left edge, and (iii)
midpoints of the right edge of the grid elements in the col-
umn. We use the point set with minimal variance in terms of
x-coordinates as the anchor point set. The shape alignment
constraints preserve the distance between the x-coordinates
of these anchor points.

The x-coordinate, as, of the anchor point As of a shape S
can be expressed in terms of the x-coordinate, ls, of the left
edge of S:

as = ls + εws, (2)

where ε = 0 if As is the midpoint of the left edge, ε = 0.5 if
it is the shape center, and ε = 1 if it is the midpoint of the
right edge. Further, ls can be computed as:

ls = lp + ∑
si∈S−S

wsi , (3)

where lp is the x-coordinate of the left edge of the parent
of S, S−S is the set of siblings in the facade decomposi-
tion tree located to the left of S. wsi denotes the width of
such sibling nodes. Setting lroot = 0, ls is computed as a lin-
ear combination of the widths of the leaf nodes x: ls = βT

s x.
By plugging this expression and wsi = αT

si x into Eqn. 3 we

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

(a) Input (b) Selected variation in step 1 (c) Selected variation in step 2 (d) Selected variation in step 3

Figure 8: By activating different grids (colored) at each editing step, interesting facade variations can be generated.

obtain βs = βp +∑si∈S−S
αsi . Finally, from Eqn. 2, we have

as = βT
s x+ εαT

s x.

We then express the alignment constraints between any
two consecutive grid element Si and Si+1 in a column in
terms of the x coordinates of the corresponding anchor
points: asi − asi+1 = di,i+1, where di,i+1 is the original hor-
izontal distance between Asi and Asi+1 . This translates into
(βsi + εαsi −βsi+1 − εαsi+1)

T x = di,i+1 and is represented as
a row in the system Cax = da.

Shape Symmetry. Certain facade elements, either manu-
ally indicated by the user or detected by automatic symmetry
detection methods, are desired to have the same size. We for-
mulate this symmetry constraint between two such shapes Si
and S j using their α vectors: (αsi −αs j )

T x = 0.

Variable Reduction. The widths of all the facade leaf
shapes are considered as variables in our optimization. How-
ever, we can reduce the number of variables by analyzing the

Y-Split

Y-Split

Figure 9: Variable reduction process: Yellow subtrees are
collapsed as they do not contain any node involved in a con-
straint (shown in red). Green subtrees are collapsed as the
parent node is subdivided into a set of leaf nodes with y
splits. The leaf nodes in the final tree are shown as dotted
and are used as variables in the optimization process.

constrained nodes of the facade decomposition tree. Specif-
ically, we collapse the subtree rooted at a node ni if none of
the remaining nodes in the subtree is involved in a constraint
(see Fig. 9, yellow subtrees). In this case, we optimize only
for the width of ni and distribute the change in this width
evenly to its descendants in a recursive manner. Further re-
duction of the variables is possible considering the split di-
rection of the nodes. If a node ni is subdivided into a set of
leaf nodes by a y split, all of its children have a width equal to
the width of ni. In this case, we collapse the subtree rooted at
ni and express any constraint involving its children in terms
of the width of ni (see Fig. 9, green subtrees). We perform
such node collapses iteratively until no further collapse is
possible reducing the number of variables significantly.

6. Evaluation

In this section we discuss the main features of our framework
for several example editing scenarios. For a larger collection
of editing results, please refer to the video and the supple-
mentary material. Note that manually specifying a general
grid used in these examples takes around 20 seconds (see
the accompanying video). In the following results we show
the final state of the active grids selected at each editing step
to highlight the changes to a facade (Fig. 8, 10-13).

Data sets. The input to our framework is a hierarchically
decomposed ortho-rectified facade image. Such a decom-
position can be obtained manually or in a semi-automatic
manner. We evaluate our method on facade images de-
composed by the semi-automatic approach of Musialski et
al. [MWW12]. We also create a shape grammar for rec-
tified facade images taken from online repositories using
CityEngine [Esr13] and convert this grammar into a decom-
position tree. We next describe the capabilities of our frame-
work on these input facades of varying structural complexity.

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

(a) Input (b) Variation 1

(c) Variation 2 (d) Variation 3

Figure 10: Given the hierarchical grid structure, one can
modify the main grid (yellow), the sub-grids (green and
cyan), or both.

Results. The input to our system is a hierarchical decompo-
sition of a facade. However, the editing operations are not re-
stricted by the splitting levels of this decomposition. Specif-
ically, we allow facade elements that do not belong to the
same parent element to be grouped into a grid (see Fig. 8,
row 2). This enables to jointly edit elements across different
levels of the hierarchy and eliminates the dependency on the
input decomposition.

Our editing framework is incremental where at each edit-
ing step, the elements of active grids are removed or du-
plicated. The elements of the remaining grids, on the other
hand, are only scaled to respect the new size of the facade.
By activating different grids at each step of this process, in-
teresting variations of a facade can be generated, which is
difficult otherwise (see Fig. 8).

An important feature of our framework is the support for
hierarchical grids. The facade shown in Fig. 10 consists of
a grid of windows each of which is composed of a sub-grid.
When this facade is resized horizontally, one can change the
inner sub-grids of the window frames, add a new column of
windows or perform both actions simultaneously. The user
can explore these options by activating or deactivating the
sub-grids at each editing step.

In some facades, certain elements such as a door can span
multiple rows (or columns) as shown in Fig. 11. When the
elements in the rows spanned by the door are grouped into
a grid, we assign the door to one of these rows resulting in
fewer grid elements in the remaining row(s). In order to ob-
tain a complete grid in such a case, we add a phantom ele-
ment to the rows with fewer elements. The phantom element

(a) Input (b) Editing output

Figure 11: The door of the facade, that spans the bottom two
rows, is assigned to the lower row, a phantom element (cyan)
is added to the upper row.

(a) Input (b) Editing output

Figure 12: Different element types are grouped in a common
active grid (in green) and edited together.

acts as a placeholder in the grid and can be duplicated or re-
moved based on the editing operation. On the other hand, if
an element is required to be inserted between two grid ele-
ments of which at least one is phantom, we simply discard
this insertion (see Fig. 8, last row).

A unique feature of our approach is the notion of gen-
eral grids that enable the grouping of different element types
with varying spacings. For example, in Fig. 12 one large grid
consisting of different window types has been built. When
the facade is resized in the vertical direction to trigger the
addition of a row, any row of the grid can be duplicated.
Moreover, when a new column is inserted, the correspond-
ing window types are duplicated in each row.

Even though the concept of general grids is capable of
handling irregularity, some facades as shown in Fig. 13 ex-
hibit no dominant grid structure. Grouping all the elements
in these facades results in a grid with many phantom ele-
ments making it difficult to edit. However, editing can be
performed by activating multiple small grids and preserving
these local structures simultaneously.

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

Lin et al. [2011] Target Conf. Our replication

G
rid

 s
et

 1

G
rid

 s
et

 2

Input Our var. 2

O
ur

 v
ar

. 2

G
rid

 s
et

 1

G
rid

 
se

t 2
In

pu
t

Ta
rg

et
 

Co
nf

.Zh
an

g 
et

. a
l [

20
13

]
O

ur
 re

pl
ic

at
io

n

Figure 14: Editing results in comparison to [LCOZ∗11] (left) and [ZXJ∗13] (right). Our replications of the target configurations
shown in box abstraction, are generated by activating grid set 1. Additional outputs are produced by activating grid set 2.

(a) Input (b) Editing output

Figure 13: Multiple small grids (colored) are activated to edit
the facades that lack a dominant grid structure.

Comparison. In this section, we provide comparisons with
the methods of Lin et al. [LCOZ∗11] and Zhang et
al. [ZXJ∗13]. We evaluate our method on two examples
taken from these works and generate a replica of the same
target facade configuration. We also generate additional
variations to emphasize the differences between the meth-
ods (see Fig. 14). In the retargeting framework of Lin et
al. [LCOZ∗11], reshuffling of elements in an extracted se-
quence is not supported. In contrast, we allow rows and
columns to be inserted at each possible position in an ac-
tive grid (see how small and large balconies in the red se-
quence are arranged in variation 2 in Fig. 14). A major ad-
vantage of the layered decomposition proposed by Zhang
et al. [ZXJ∗13] is the ability to move a layered element to
an arbitrary new position. We achieve similar editing results
by duplicating such an element at the target position and
deleting the original. However, directly moving around of
elements might be more intuitive for the users. Interleav-
ing grids of different element types can be edited with the
method of Zhang et al. [ZXJ∗13] only if they have been
decomposed as different layers. In that case, the user also

needs to specify additional constraints to position such grids
during editing. In our method, however, such elements can
be grouped into a general grid and edited easily. We also
support editing of hierarchical sub-structures (see how small
and big window types are grouped together in variation 2 in
Fig. 14 and edited together with their substructures).

Limitations. Even though our system is able to generate
many variations of an input facade, there are several lim-
itations we would like to address in future work. The in-
put to our system is a decomposition of a facade with ver-
tical and horizontal splitting lines. Such a decomposition
fails to provide a tight partitioning for other polygonal and
arched shapes. We represent these shapes with their axis-
aligned bounding boxes. Integrating non-axis aligned splits
and curved shapes will provide more plausible results for
certain architecture styles with dominant curved structures.

In this work, we do not focus on smart texture synthesis,
the texture of an edited facade is synthesized by duplicating,
cropping, and scaling the original texture. In presence of oc-
clusions and strong lighting variations, this results in visual
artifacts. In the future, we would like to incorporate more
advanced texture synthesis methods to reduce such artifacts.

7. Conclusion and Future Work

We have presented a novel structure-preserving facade edit-
ing framework. Our approach gives direct access to shape
ambiguities during editing, while avoiding the combinatorial
explosion of potential editing results through an incremen-
tal process. The concept of generalized grids allows captur-
ing both regular and irregular structures, including hierarchi-
cal configurations, which greatly expands the set of possible
shape manipulations. We believe that this approach provides
a novel perspective on structure-aware editing that has po-
tential for many other geometric design tasks.

There are several interesting avenues for future work. The
input to our system is a hierarchical decomposition of a

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Dang et al. / SAFE: Structure-aware Facade Editing

facade. Conceptually it is possible to extend our method
to handle layered decompositions as proposed by Zhang et
al. [ZXJ∗13] by enabling the grouping of elements at differ-
ent layers into a common grid.

Although we only focus on 2D facade editing, our system
can be extended to 3D by recursively decomposing 3D build-
ings using axis-aligned cutting planes similar to [LCOZ∗11].
Our current framework explores structural ambiguity by sup-
porting incremental edits and providing alternatives at each
step in a sequential manner. However, defining a structural
similarity measure between variations of an input facade and
recursively clustering these variations based on this measure
is an interesting research direction. Such a clustering ap-
proach, especially if built upon some properties of human
perception system such as Gestalt rules [NSX∗11], will en-
able to explore the design space more effectively. Finally,
we believe extending the principles of combining continu-
ous and discrete changes as well as neighborhood synthesis
to 3D models with dominant axis-aligned structures, such as
furniture, is possible and interesting.

Acknowledgement: We thank the anonymous reviewers
for their valuable comments. We thank Przemyslaw Mu-
sialski, Fan Bao and Kathleen Tuite for providing some of
the input examples. The research leading to these results
has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement n. 257453:
COSYM.

References

[BSW13] BAO F., SCHWARZ M., WONKA P.: Procedural facade
variations from a single layout. ACM TOG 32, 1 (Feb. 2013),
8:1–8:13. 2, 7

[BWKS11] BOKELOH M., WAND M., KOLTUN V., SEIDEL H.-
P.: Pattern-aware shape deformation using sliding dockers. ACM
TOG (SIGGRAPH) 30, 6 (2011), 123:1–123:10. 2

[BWS10] BOKELOH M., WAND M., SEIDEL H.-P.: A connec-
tion between partial symmetry and inverse procedural modeling.
ACM TOG (SIGGRAPH) 29, 4 (2010), 104:1–104:10. 2

[BWSK12] BOKELOH M., WAND M., SEIDEL H.-P., KOLTUN
V.: An algebraic model for parameterized shape editing. ACM
TOG (SIGGRAPH) (2012), 78:1–78:10. 2, 3

[CML∗12] CEYLAN D., MITRA N. J., LI H., WEISE T., PAULY
M.: Factored facade acquisition using symmetric line arrange-
ments. CGF 31 (May 2012), 671–680. 4

[Esr13] ESRI: Cityengine, 3D modeling software for ur-
ban environments, 2013. URL: http://www.esri.com/
software/cityengine. 8

[GSMCO09] GAL R., SORKINE O., MITRA N. J., COHEN-OR
D.: iWIRES: An analyze-and-edit approach to shape manipula-
tion. ACM TOG (SIGGRAPH) 28, 3 (2009), 33:1–33:10. 2

[LCOZ∗11] LIN J., COHEN-OR D., ZHANG H. R., LIANG C.,
SHARF A., DEUSSEN O., CHEN B.: Structure-preserving re-
targeting of irregular 3D architecture. ACM TOG (SIGGRAPH
Asia) 30, 6 (2011), 183:1–183:10. 2, 10, 11

[LHL10] LEFEBVRE S., HORNUS S., LASRAM A.: By-example
synthesis of architectural textures. ACM TOG (SIGGRAPH) 29,
4 (July 2010), 84:1–84:8. 2

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive vi-
sual editing of grammars for procedural architecture. ACM TOG
(SIGGRAPH) 27, 3 (2008), 102:1–102:10. 2

[MWA∗12] MUSIALSKI P., WONKA P., ALIAGA D. G., WIM-
MER M., VAN GOOL L., PURGATHOFER W.: A Survey of Urban
Reconstruction. In EUROGRAPHICS STAR (2012), pp. 1–28. 2,
3

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural modeling of buildings. ACM TOG (SIG-
GRAPH) 25, 3 (2006), 614–623. 2

[MWW12] MUSIALSKI P., WIMMER M., WONKA P.: Interac-
tive coherence-based façade modeling. CGF 31, 2 (May 2012),
661–670. 2, 3, 8

[MZWG07] MÜLLER P., ZENG G., WONKA P., GOOL L. V.:
Image-based procedural modeling of facades. ACM TOG (SIG-
GRAPH) 26, 3 (2007). 3

[NSX∗11] NAN L., SHARF A., XIE K., WONG T.-T., DEUSSEN
O., COHEN-OR D., CHEN B.: Conjoining gestalt rules for
abstraction of architectural drawings. ACM TOG (SIGGRAPH
Asia) 30, 6 (2011), 185:1–185:10. 11

[OLGM11] OVSJANIKOV M., LI W., GUIBAS L., MITRA N. J.:
Exploration of continuous variability in collections of 3d shapes.
ACM TOG (SIGGRAPH) 30, 4 (July 2011), 33:1–33:10. 2

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. ACM TOG (SIGGRAPH) (2001), 301–308. 2

[PMW∗08] PAULY M., MITRA N. J., WALLNER J., POTTMANN
H., GUIBAS L.: Discovering structural regularity in 3D geome-
try. ACM TOG (SIGGRAPH) 27, 3 (2008), 43:1–43:11. 3

[RKT∗12] RIEMENSCHNEIDER H., KRISPEL U., THALLER W.,
DONOSER M., HAVEMANN S., FELLNER D., BISCHOF H.: Ir-
regular lattices for complex shape grammar facade parsing. In
CVPR (2012), pp. 1640–1647. 3

[ŠBM∗10] ŠT’AVA O., BENEŠ B., MĚCH R., ALIAGA D. G.,
KRIŠTOF P.: Inverse procedural modeling by automatic genera-
tion of l-systems. CGF 29, 2 (2010), 665–674. 2

[SHFH11] SHEN C.-H., HUANG S.-S., FU H., HU S.-M.:
Adaptive partitioning of urban facades. ACM TOG (SIGGRAPH
Asia 30, 6 (2011), 184:1–184:9. 3

[TKS∗11] TEBOUL O., KOKKINOS I., SIMON L., KOUT-
SOURAKIS P., PARAGIOS N.: Shape grammar parsing via re-
inforcement learning. In CVPR (2011), pp. 2273–2280. 3

[TLL∗11] TALTON J. O., LOU Y., LESSER S., DUKE J., MĚCH
R., KOLTUN V.: Metropolis procedural modeling. ACM TOG
30, 2 (Apr. 2011), 11:1–11:14. 2

[UIM12] UMETANI N., IGARASHI T., MITRA N. J.: Guided ex-
ploration of physically valid shapes for furniture design. ACM
TOG (SIGGRAPH) 31, 4 (July 2012), 86:1–86:11. 2

[WWF∗10] WU H., WANG Y.-S., FENG K.-C., WONG T.-T.,
LEE T.-Y., HENG P.-A.: Resizing by symmetry-summarization.
ACM TOG (SIGGRAPH Asia) 29, 6 (2010), 159:1–159:10. 2

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY
W.: Instant architecture. ACM TOG (SIGGRAPH) 22, 3 (2003),
669–677. 2

[ZXJ∗13] ZHANG H., XU K., JIANG W., LIN J., COHEN-OR
D., CHEN B.: Layered analysis of irregular facades via symme-
try maximization. ACM TOG (SIGGRAPH) 32, 4 (2013), 121:1–
121:13. 2, 10, 11

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

http://www.esri.com/software/cityengine
http://www.esri.com/software/cityengine



