
Bimanual Compliant Tactile Exploration for Grasping Unknown
Objects

Nicolas Sommer, Miao Li and Aude Billard
Ecole Polytechnique Federale de Lausanne (EPFL)
{n.sommer, miao.li, aude.billard}@epfl.ch

Abstract— Humans have an incredible capacity to learn
properties of objects by pure tactile exploration with their two
hands. With robots moving into human-centred environment,
tactile exploration becomes more and more important as vision
may be occluded easily by obstacles or fail because of different
illumination conditions. In this paper, we present our first
results on bimanual compliant tactile exploration, with the goal
to identify objects and grasp them. An exploration strategy is
proposed to guide the motion of the two arms and fingers
along the object. From this tactile exploration, a point cloud
is obtained for each object. As the point cloud is intrinsically
noisy and un-uniformly distributed, a filter based on Gaussian
Processes is proposed to smooth the data. This data is used
at runtime for object identification. Experiments on an iCub
humanoid robot have been conducted to validate our approach.

I. INTRODUCTION

Tactile exploration is of primary importance for visually
impaired people. It is also crucial in non-visually impaired
people, in particular when manipulating objects with two
hands. In this case, the objects are often obstructed from
view by either or both arms and fingers and one can rely
only on tactile information to direct the manipulation. We
explore the use of tactile information to reconstruct object’s
shape. We develop a method whereby the two arms move
in coordination so as to maximize the surface on the object
that can be explored. This is used in conjunction with an
algorithm for object recognition.

Bimanual coordination and tactile exploration in robotics
have been studied so-far separately. One of the first early
attempts to exploit active tactile exploration with passive
stereo vision for object recognition was proposed in [1].
There, a rigid finger-like tactile sensor is used to trace along
the surface with predefined movement cycles and to provide a
limited amount of object surface information. This work was
later extended to develop different exploratory procedures
(EP) to acquire and interpret 3-D touch information [2].
These EPs were, however, not linked to a fully autonomous
system and a human experimenter has to specify the EPs
for each exploration. Different strategies were proposed to
explore the objects automatically by considering different
objective functions for the choice of EP, such as reducing the
maximal number of interpretations for the exploration data
acquired so far [3] or reducing the uncertainty [4]. However,
all of these exploration strategies only work for single-finger
touch sensors and polyhedral objects.

More recently, some studies have been done in the research
area of dexterous tactile exploration. In [5], a dynamic
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Fig. 1: Left: The iCub humanoid robot is exploring an object with its
two hands. Right: The robot is taught the shape of the object by a human
teacher passively guiding the robot’s hand along the object, emphasizing
the object’s part that can be grasped, e.g. the handle on the jar. The object
model is stored as a point cloud and the graspable part is modeled using
GMM (Gaussian Mixture Model).

potential field approach is used as an exploration strategy to
guide an anthropomorphic five-finger hand along the surface
of previously unknown objects in simulation. In [6], two
motion primitives, i.e., explorative and exploitative grasps,
are introduced to make a trade-off between grasping known
regions and exploring unseen regions. However, the robust-
ness and applicability of these strategies have only been
evaluated on simple shaped objects (a cylinder and a sphere)
in simulation. Other related works, such as our previous work
[7], show that tactile exploration using an anthropomorphic
robot hand can successfully recognize several human-like
faces. In [8], a probabilistic approach is proposed to represent
datapoints, which are collected from predefined grasps using
a Schunk hand with tactile sensors at high frame rates.

All the previous works are limited to the scope of static
scenes, which means that the object to explore is fixed during
the whole exploration. This assumption is quite restrictive as
the robot may be not able to explore some of the unknown
but interesting areas due to the limited workspace explorable
by the robot’s hands.

More complex tactile exploration has been studied in
humans: to study dynamic exploration of objects, either using
in-hand exploration [9] or dual-hand exploration [10]. None
of these works has been used to drive the control of a robotic
system. In this paper, we develop a strategy for bimanual
compliant tactile exploration of unknown objects. The object
is held by one hand while the other hand is exploring it,
see Figure 1. The bimanual coordination strategy consists



in moving the hand holding the object so as to bring the
interesting region on the object into the reachable space of
the other hand so as to make it easier for the other hand to
either explore or grab the object.

Furthermore, because the data obtained from tactile sens-
ing is intrinsically noisy and un-uniformly distributed (com-
pared with point clouds obtained from vision), it is difficult
to find the correct corresponding points in two point clouds,
which greatly influences the object identification’s accuracy.
To deal with this, a filter based on Gaussian Processes
(GP) is proposed to process the data. GP has been used
before in tactile exploration to define the uncertainty [6].
In [8], the authors utilize a modified Kalman filter to build
a probabilistic model of objects, which can greatly reduce
the number of points that need to be stored. Their modified
Kalman filter is very similar to the proposed GP-based filter
but for different purposes. In this work, we aim at uniformly
sampling from the object’s surface. To this end, we assume
that all the collected data can be generated from an implicit
surface that can be approximated by GP [11], [12], from
which a GP-based filter is designed to smooth the data.

In this work, the objective of tactile exploration is to
identify the object and thus to find a suitable hand position
and orientation to hold the objects with the exploration hand.
An extensive work has been done on finding an optimal
or suitable grasp on known, unknown or partially unknown
objects [13]. The approaches, such as [14], are advantageous
as they provide all possible grasps, whereas the approaches
based on learning from demonstration require an expert
and provide only a subset of feasible grasps, but with the
advantage of being faster.

The rest of the paper is organized as follows: in the next
section, we introduce our bimanual control framework and
the local finger exploration strategy. In Section III, methods
about data smoothing, object identification and grasp selec-
tion are presented. In Section IV, we present the experimental
setup with our humanoid robot iCub. Further, we present our
experimental results and discussion in Section V. Finally,
we give a conclusion and an outlook of future work in
Section VI.

II. BIMANUAL COMPLIANT TACTILE EXPLORATION

Our objective involves the identification of objects through
tactile exploration. However, the workspace of humanoid
robots is usually limited. Most daily objects are too large
and cannot be explored by a single arm and hand. In order
for the robot to gather enough information on the object’s
shape to allow unambiguous identification, the hand needs to
explore a large portion of the object. To this end, we must
extend the reachability of the exploring hand relatively to
the object. In order to achieve this, we use one hand of the
robot to hold an object, while the other hand explores it.
This allows to approach and touch the object from different
angles and with higher dexterity relatively to the workspace
of both arms.
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Fig. 2: Schematic of the bimanual constraint. The frames T L
0 and T R

0 of
the interest points should coincide to satisfy the bimanual constraint. The
frame T L

0 changes depending on where the object should be scanned and
the estimation of the object’s diameter.

A. Bimanual coordination

Let T 0
R and T 0

L be the homogeneous transformations
from the robot root frame to the frames R and L attached
respectively to the right and left arm’s ”interest points”. In
the rest of the paper, we will refer to the ”interest points” to
denote a) the center of the palm on the exploring hand and
b) the point to be reached on the object held by the other
hand.

The goal is to have both frames coincide: T 0
R = T 0

L ⇔
T L
R = I in which I is the identity matrix (see Fig. 2).
1) Motion generation: We generate a kinematic constraint

from the above static constraint in order for the system to
converge to this state. We give the following translational
and rotational velocities in Cartesian space until both frames
coincide:

vR =
tRL
‖ tRL ‖

· f(‖ tRL ‖) (1)

and vL = −vR. With vx being the translation velocity
vector of the frame x, expressed in the robot root frame,
tRL the translation vector from R to L, and f a function
from R+ to R+ designed to give a smooth and converging
motion. For the rotation, a similar constraint is expressed in
the axis-angle notation which defines a rotation with an axis
u and a rotation angle θ around this axis. Given the axis-
angle rotation < uR

L , θ
R
L > equivalent to the usual rotation

matrix notation RR
L , the rotational velocity is defined in axis-

angle notation: wR =< uR
L , ω > and wL =< uR

L ,−ω >
with ω = f(‖ θRL ‖). We chose to use the function
f(x) = a · exp(−w

x ), with parameters a and w determining
respectively the velocity of the motion far from the target
point and a measure of the closeness to the target.

2) Working at the limit of the workspace: Because the
workspace of the robot’s arms are often limited during
bimanual manipulation (e.g. the hands of the iCub robot
can barely reach each other), it is important to take into
account the non-feasibility of a given inverse kinematics
problem. Our IK solver uses a pseudo-inverse of the Jacobian
with optimization, this way we can weight some constraints
so as to satisfy them in priority. In our application, the
position constraints are more important than the orientation
constraints, and the orientation of the normal of the palm
(the right hand’s interest point) is more important than the



orientation of the other axes of the interest point’s frame.
Therefore, we express the orientation Jacobian in the interest
point’s frame and the desired axes are weighted as indicated
previously. These weights are only taken into account when
the IK problem has no solution and a compromise between
the constraints has to be found, therefore their choice is not
very sensitive and they are set empirically.

3) Collision avoidance: During the scanning of objects,
the goal is to keep one hand and fingers in contact with the
scanned object at all times. However, when both arms are
changing configuration to start a new “scan” from a different
angle, there is a need for collision avoidance in order for the
scanning hand not to hit the object while moving around it.
Because we do not know the exact shape of the object held
by one of the hands, we assume a cylinder with a sufficiently
large diameter, and require the end-effector to move outside
this cylinder during the motion, until the hand is aligned in
front of the target reaching point, where it is allowed to enter
the “collision area” (see Fig. 3). The corrected velocities for
collision avoidance are given in Table. I.
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Fig. 3: Scheme of an object and its collision avoidance virtual envelope.
A lateral safety zone is delimited by the parameter l, in which the exploring
hand can enter. The diameter of the virtual envelope is defined by r.

|∆x| ≤ l |∆x| > l

|∆z| > r
vR
L
′

= vR
L

vRL
′
z

= vRLz
· exp( −wout

|∆z−r| )

|∆z| ≤ r vRL
′
z

= −vav · exp( −win
|∆z−r| )

TABLE I: Velocity correction for collision avoidance, with vav a
predefined avoidance speed, wout and win parameters that regulate the
transition from collision avoidance to the normal behaviour of reaching the
starting scanning point, vR

L
′ the modified relative velocity between the right

and left frames to avoid collision, and vRLz
the z component of the velocity,

expressed in a coordinate system rotating around the object. Z is constrained
to be normal to the principal axis of the object (i.e. the scanning direction
x, see Fig. 3) and oriented around the x axis to point from the center of the
object towards the other hand.

B. Finger exploration strategy

1) Compliant tactile control: During the exploration of
the object, the tactile sensors provide contact information.
In order to obtain this information, the fingers must apply
enough pressure on the object. The tactile response is thus
used in a pressure loop designed to apply sufficient force and
obtain contact data, while not pressing too hard so as not to
damage the object being touched (see Fig. 4a). For ns tactile
sensor patches and na actuators, the motors are commanded

in current with u ∈ Rna following:

u = κ · Φ(S, S∗) (2)

with S, S∗ ∈ Rns respectively the current and desired tactile
response, κ ∈ Rna a vector of proportional gains for each
actuator, Φ : Rns → Rna a mapping between the tactile
sensor patches and corresponding motors. The mapping Φ
depends on the architecture of the robot hand – the number
of actuated joints, the number and disposition of the sensors
– and the desired behaviour1.

2) Thumb motion: On anthropomorphic robotic hands,
the thumb is usually equipped with an additional degree of
freedom which enables it to control its opposition to the other
fingers. During the scanning of objects, we use this DoF to
increase the amount of the object’s surface explored by the
thumb, especially for reaching areas otherwise difficult to ac-
cess (see Fig. 4b). A periodic swiping motion is implemented
and efficient enough to gather data more efficiently.

(a) Finger’s compliance during scan-
ning

(b) Thumb opposition

Fig. 4: Left: The fingers adapt to the size of the object in order to follow
compliantly the surface. Right: Illustration of the advantage of changing
the thumb’s opposition while scanning a glass: the thumb follows the high
curvature of the surface.

3) Detect loss of contact with the object: While scanning,
the fingers might slide off the object (for instance when
reaching an extremity). In that case, they might touch each
other and record the contact as if they were touching the
object. When this happens, the distance between the contacts
points on the two fingers is close to 0 and this allows us to
detect these events and to discard these contact points. This
is also used to detect that the exploration has reached the
end of the object and decide that the object can be scanned
from another orientation.

4) Approaching the object: When the exploring hand
comes in contact with the object, we need to detect precisely
when the hand touches the object. Tactile sensors seem a
good way to detect this contact. However, they should be
extremely sensitive and detect very light pressure. Otherwise,
when the exploring hand comes into contact with the object
for the first time, it may apply too much force on the object
– a small force on the object creates a high torque on the
hand holding the object. While exploring, we overcome this
problem by “pinching” the object so as to apply forces on

1In our implementation, each finger is controlled the same way, ns = 3
for each finger as we take directly the average value for each tactile patch as
inputs (one per phalanx, each composed of 12 or 16 taxels), and na = 2:
the first actuator of the finger controls the first phalanx and the second
actuator controls the second and third phalanx coupled together. For each
finger, Φ is defined as follows: Φ(s) = {min(e0, e1), e2}, with s the
average tactile response for each of the three phalanx (s0, s1 and s2 are
the average pressures on respectively the first, second and last phalanx and
ei = s∗i − si, with s∗i the corresponding desired pressures).



both sides of the object. Since our tactile sensors are not
sensitive enough, we use force-torque sensors embedded in
the robot’s arm to detect when the hand touches the object.
We use a first order band-pass filter to remove both the
low-frequency component of the signal due to the errors of
estimation of the robot’s limb’s own weight and smooth the
high-frequency component since the signal is very noisy.

III. OBJECT IDENTIFICATION AND GRASPING

In order to identify an object, the data collected from
tactile exploration is first filtered and smoothed using a
GP-based filter. The data can then be aligned with previ-
ously known object models and the average distance after
alignment is used as criterion for identification. After the
identification, a grasp is computed from previously learned
grasps.

A. Object identification
1) Data filtering and smoothing: As the data acquired

from tactile exploration is noisy and un-uniformly dis-
tributed, which is not suitable for object identification, a GP-
based filter is proposed in this section to smooth the data.
The basic idea is that only points that decrease uncertainty
are stored in the training dataset.

Because the tactile sensors can also provide normal infor-
mation for the points, a GP with derivative observations is
adopted here to compute the uncertainty [15] (it requires
the derivative of the covariance function with respect to
the input). With the same inputs, the GP with derivative
observations can provide the predictions on the derivative
(the normal information). Given a set of nt training input
points x = {xi ∈ R3}i=1..nt , the outputs are augmented with
normal information ŷ = {yi,ωi}i=1..nt , where ωi ∈ R3 is
the normal direction of the i-th point. yi equals to −1, 0
and 1 when the points are respectively inside, on and outside
the estimated implicit surface, on which the collected tactile
points are assumed located [11]. In practice, only one inside
point is required, which is chosen as the center of all the
collected points on the surface. For the outside points, 20
points are randomly sampled from a sphere with its diameter
20% larger than the distance between the center and the
farthest collected point on the surface.

In order to compute the prediction, the following identities
are necessary to construct the full covariance matrix K ∈
R4nt×4nt , which can be computed from the kernel function
and its derivatives [15].

cov(yi,yj) = k(xi,xj) (3)

cov(ωi
m,y

j) =
∂

∂xm
cov(yi,yj) (4)

cov(ωi
m,ω

j
n) =

∂2

∂xm∂xn
cov(yi,yj) (5)

m = 1, 2, 3, n = 1, 2, 3;

In this work we use a kernel function k that has been derived
from the thin plate spline in [16], which is widely used in
shape analysis and reconstruction [17].

k(xi,xj) = 2‖xi − xj‖3 − 3Ω‖xi − xj‖2 + Ω3 (6)

Where Ω ∈ R is the parameter that can be readily computed
from the training dataset. Ω = max{‖xi−xj‖, i = 1..nt, j =
1..nt}. In other words, Ω is the maximal distance in the
training inputs.

With the full covariance matrix, for a new tactile point x∗,
we can determine whether the point is on the surface of the
object by computing the predicted function value E(y∗) and
its normal direction E(ω∗) as follows:

E(ŷ∗) = E([y∗,ω
T
∗ ]T ) = K∗[K(x,x) + σ2I)]−1ŷ (7)

The points x∗ is said to be on the object surface if E(y∗) =
0. In our GP-based filter, our main novelty is to use the
covariance cov(ŷ∗) ∈ R4×4 at the testing points to filter and
smooth our collected datapoints. In the GP prediction, the
covariance implies the uncertainty about its prediction:

cov(ŷ∗) = K(x∗,x∗)−K∗[K(x,x) + σ2I)]−1KT
∗ (8)

where K∗ = K(x∗,x) denotes the 4× 4nt vector of covari-
ances evaluated at all pairs of the testing and training inputs,
and similarly for K(x,x) and K(x∗,x∗). The parameter
σ2 reflects the variance of noise in the output. This new
datapoint x∗ is stored in the training dataset if the uncertainty
about the predicted function value is above a given threshold,
i.e., cov(y∗) > Vthresh, where cov(y∗) is the first entry of
cov(ŷ∗). In this paper, the threshold Vthresh is set to the
same level as the noise’s variance. As the normal direction
is also available, a new datapoint is included if the predicted
normal direction E(ω∗) using equation (7) is very different
from the measured one ω∗, i.e., E(ω∗)Tω∗ < θthresh

2.
These datapoints usually mean that there is a large change
in the curvature of the object surface. Furthermore, as GP is
O(N3) in computation complexity, the number of training
datapoints should be limited. Therefore, the datapoint with
the smallest uncertainty in the training dataset is replaced
when the size of training dataset comes to its limitation
Slim

3, see Algorithm 1. In Fig. 5, we give an example using
data generated from an object point cloud. We can see that
the filtered points are more uniformly distributed and also
that more datapoints are kept in the region of the jug handle
where the curvature changes importantly.

2) Object identification: For each of the objects to ex-
plore, we assume that there is already a point cloud model
for it, which can be obtained either from a vision scanner
or from human demonstrations. In Section IV, we give
details on how we collect this point cloud model from
human demonstrations. Herein, for the i-th object, the point
cloud model is denoted as Oi = {pi,j}j=1..np . The object’s
identification algorithm tries to align the datapoints collected
so far with the available object point clouds Oi and the
one with the smallest alignment error is identified as the
corresponding object. To this end, after each scanning, the

2The value of E(ω∗)Tω∗ can vary between -1 and 1. As the normal
information is usually not as accurate as position information, we set
θthresh = cos(π/4) ' 0.7071, which corresponds to a change in
curvature of 45 degrees.

3The limit of the training dataset is chosen by considering the computation
time and model accuracy. In this paper, we set Slim = 120.



Algorithm 1: GP-based filter
Data: New collected data X∗ = x∗,y∗,ω∗
Result: The training dataset X = {xi,yi,ωi}i=1..nt

1 Compute Uncertainty: cov(y∗), see equation (8)
2 if cov(y∗) > Vthresh or E(ω∗)

Tω∗ < θthresh, then
X = {X ,X∗}, nt = nt + 1;

else
Keep the same X

3 Size Update:
4 if nt > Slim then

Compute the uncertainties for all the datapoints in the
training dataset and delete the datapoint with the smallest
uncertainty
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Fig. 5: An example to illustrate the performance of the GP-based filter.
Left: 500 datapoints are randomly sampled from the point cloud of a jug,
obtained from a 3D scanner. The surface is reconstructed with the method
in [12]. Right: With the filter, only 120 datapoints are selected, either
according to their prediction uncertainty (red dot) or from their normal
information (black dot and arrow).

points gathered so far X = xj , j = 1...nx are transformed
into the most similar pose using the iterative closest point
(ICP) algorithm.

As described in [18], ICP can compute the optimal trans-
formation (R,qt) between two corresponding datasets that
minimizes the following distance error:

Dist(X ,Oi) =
1

nx

nx∑
j=1

‖pi,j − (Rxj + qt)‖2 (9)

In our work, the correspondence between the measured
points and the object point cloud models are chosen with the
nearest neighbour match without replacement4. In general,
this method suffers from local minima. To counter this
effect, we run 10 different comparisons with 10 different
initializations of the initial points. These initial points are
uniformly obtained from different rotations R around the
object’s principal axis and its normalized translation com-
ponents are randomly sampled in [−0.5, 0.5].

For each available object model, we compute the minimal
distance after alignment, i.e. Dist(X ,Oi) and the object is
identified as the object with the minimal distance.

B. Grasp selection

For each object, we teach a set of suitable grasps by human
kinaesthetic teaching, see Fig. 6. We place the object in the

4The same point in the object point cloud model cannot be the corre-
spondence point for two different measured points.

(a) (b) (c)

Fig. 6: (a) The feasible grasps for a bottle (around the cap and the neck)
are taught by human demonstration; (b) The grasps are stored in the object’s
frame, only the relative hand position and orientation are used; (c) These
grasps are trained and encoded by GMM, here is shown the trained result
in the subspace of hand positions. The red surface corresponds to an iso-
surface of the likelihood function, defining the limit of the graspable space.

iCub’s hand and record the position of the fingers relative
to the objects as suitable grasps. These grasps are then
modelled with Gaussian Mixture Model (GMM), from which
one grasp is selected in real time after object identification.
This method has been proven to be fast and useful for some
real time tasks, such as catching an object in flight [19].

1) Graspable space modelling: In human kinaesthetic
teaching, the position h ∈ R3 and orientation o ∈ R6 (we
use the first two columns of the orientation matrix) of the
robot hand are recorded in the object frame. With these data,
the graspable space can be modeled using GMM as follows:

p(h,o) =
K∑

k=1

πkN (h,o, |µk,Σk) (10)

where K is the number of Gaussian components, πk is the
prior of the k-th Gaussian component and N (µk,Σk) is the
Gaussian distribution with mean µk and covariance Σk. The
graspable space is the constitution of all the feasible grasps,
i.e., G = {(h,o)|p(h,o|Ω) > Lthresh}. Lthresh is chosen
such that the likelihood of 99% of the training data is above
this value. For more details about learning graspable space
using GMM, one can refer to [20]. In Fig. 6, we show the
learned graspable space for a bottle used in our experiment.

Note: For the graspable space, we are only interested in
the hand position and orientation that can possibly lead to
a feasible grasp when the fingers are closed. The stability
conditions, such as force closure, are not necessarily ensured.
But one can also model the graspable space using grasps
that fulfill force closure, from which one can infer grasps
that are stable [20]. Note also that the method we propose
in this paper could also include the finger joints and tactile
response [21]. In principle, this increases the complexity of
the model and more training data are required.

2) Grasp selection: To determine the grasp that is closest
to the current position of the scanning hand, we find the
minimum of Q(h∗,o∗

1,o
∗
2):

Q(h∗,o∗
1,o

∗
2) = α1‖h∗−h‖2+α2[(o∗

1o1−1)2+(o∗
2o2−1)2]

(11)
h,o1,o2 are the current hand position, the first and

second column of the hand orientation respectively. α1, α2

are the penalty parameters for the position and orientation.
(h∗,o∗

1,o
∗
2) are the variables and correspond to the final



position and orientation at the grasping point. They must lie
in the graspable domain that is determined by the likelihood
threshold of the GMM. Determining the closest feasible
grasp can be formulated as a constrained based optimization
problem of the form:

minimize: Q(h∗,o∗
1,o

∗
2)

subject to: (h∗,o∗
1,o

∗
2) ∈ G (12)

To solve the problem efficiently, a gradient descent method
is used here. The initial points are chosen as the centers of
the K Gaussian functions (10). Once the grasp is selected,
we use our bimanual coordination algorithm with obstacle
avoidance to move the hand to the graspable posture.

IV. EXPERIMENT

The iCub humanoid robot (Fig. 8a) is used to explore
different everyday objects using both arms. We chose five
objects: 2 bottles, 1 jar, 1 phone receiver and 1 glass, shown
in Fig. 7. The two bottles are very similar and can test the
accuracy of the identification method. The phone’s profile
encompass sharp changes in curvature, a challenge for the
compliant control of the fingers. Scanning the glass is even
more challenging as it requires to control precisely for the
thumb’s motion in order to follow the edges. The jar has a
much larger diameter and involves two particular features:
the handle and the spout. During the exploration, one arm
holds the object, while the other arm explores it with its
fingers. The collected data are compared with data previously
collected manually in order to identify the object. During the
exploration, the robot attempts to identify the objects as well
as their positions and orientations. Then, from the previously
learned grasps, one grasp is selected and adopted by the free
hand, on the object (see Alg. 2).

(a) bottle 1 (b) bottle 2 (c) jar (d) phone (e) glass

Fig. 7: Five different everyday objects are used in our experiment. Handles
are mounted on the bottom of the objects in order to adapt to the size of
iCub hand.

A. Setup

We use both arms of iCub, each of which have 7 degrees
of freedom (DoFs). Each hand has 9 DoFs, 3 for the thumb, 2
for the index finger, 2 for the middle finger, 1 for the coupled
ring and little finger and 1 for the adduction/abduction.
Only the thumb, index and middle finger are equipped with
Tekscan5 tactile sensors (see Fig. 8b). The Tekscan sensors
have a spatial resolution of 4mm (6.2 sensors/cm2), the

5http://www.tekscan.com/

iCub

OptiTracker

(a) iCub (b) iCub’s hand equipped with
Tekscan tactile sensors

Fig. 8: An iCub humanoid robot (a) is used in our experiment. The thumb,
index and middle finger of the right hand are equipped with Tekscan sensors
(b). During the experiment, the objects are firmly held by the left hand (no
relative motion), while the right hand explores the object from different
orientations.

fingers are equipped with 3 ∗ 4 taxels – tactile pixels – per
phalanx, and 4 ∗ 4 taxels on their fingertip, which makes a
total of 120 taxels on the hand. A motion capture system
– OptiTrack6 – is used to track the position and orientation
of both hands to compensate for the inaccuracy of iCub’s
kinematics and obtain precise measurements. The contact
positions are obtained through forward kinematics starting
from the motion tracker, and given the geometry of the tactile
sensors.

B. Manual data collection

Prior to the exploration, we manually collect data from
the objects using the same setup with the difference that
the object is held by a human demonstrator in place of the
robot itself. An optical tracker is attached to the object while
the fingers of iCub are pressed against the object to collect
point cloud data all over the surface (see the top left image
on Fig. 1b). The acquired object point clouds are shown in
Fig. 9.

C. Exploratory procedure

For the exploration process, we only assume that the prin-
cipal axis of the object is available, for instance through basic
image processing. However, we know the precise position
of the hand holding the object through our motion capture
system – instead of using forward kinematics, imprecise
because of slack in the joints. This system is also used to
track the position of the right hand.

The right hand scans the object from one end to another
along this principal axis, and changes the angle of approach
iteratively around this principal axis at every scan. The
procedure is described in Algorithm 2. During the whole
exploration, both arms move simultaneously to achieve the
desired relative position and orientation between the inter-
est points (the palm and a point on the object’s surface),
therefore the indications in Alg. 2 are given in relative terms
between these two interest points.

V. RESULTS, DISCUSSION

a) Exploration Results: Each object is scanned using
Algorithm 2. The acquired point clouds are quite noisy
and non-uniformly distributed. As mentioned above, the raw

6http://www.naturalpoint.com/optitrack/
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Fig. 9: The object point clouds obtained from human teaching.

Algorithm 2: Exploratory procedure
1 θ ← θmin; \\ Angle of approach around the principal axis
2 while θ < θmax do
3 Go above initial scanning point;
4 while !contact do

Move hand and object towards each other;
5 Close fingers and activate finger compliant control;
6 while fingers in contact with object do
7 Slide the hand along the object’s principal axis;

8 Open fingers;
Try to identify object;

9 if object identified then
10 Compute and reach a grasping posture;
11 Grasp the object;

return 1;
12 θ ← θ + increment;

13 return 0;

point clouds are not suitable for object identification, due
to the difficulty in finding the correct corresponding points
for the ICP algorithm. With the GP filter in Algorithm 1,
the filtered point clouds become smoother, sparser and less
noisy, as shown in Fig. 11.

b) Object Identification Results: For each explored
object, we chose 10 different initial configurations for the
ICP algorithm, where the rotation R in (9) is uniformly
sampled around the principle axis of the object. The object
is identified as the object with the smallest distance among
the 10 different trials. The distance for each trial is shown in
Fig. 10 and the points after alignment are shown in Fig. 11.
We repeated the identification algorithm 10 times for each
object and the success rate of identification is always above
90%. The failure happens when bottle 2 is misidentified as
bottle 1 and the jar is misidentified as bottle 1. The statistics
for the distances are shown in Fig. 12.

c) Grasp Selection: After the object is identified, a
grasp is chosen and the right hand moves to the selected
grasp (section III-B.2), as shown in Fig. 13. Note that as
the object is firmly fixed on the left hand for experimental
purposes, we move the right hand to the chosen grasp without
switching the hand holding the object.

d) Discussion: The raw point cloud acquired with the
tactile sensors is very noisy and would make the identifi-
cation of the object very difficult without filtering. In our
experiments, we noticed that without the GP filter, it is very
hard to identify the jar and phone from raw data as their
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Fig. 12: Comparison of the aligned distance from Eq. (9) for all the
objects. The object with the smallest distance is chosen as the identification
result. For each object, we ran the identification algorithm 10 times.

surfaces are not as “smooth” as the surfaces of the other
objects. Also the selection of the grasp is done according
to a general distance criterion (Eq. 11). Other criteria, such
as manipulability and grasp stability can also be applied
here. Furthermore, in the current work, we did not include
the finger joints and tactile response in our graspable space
model, which is part of the possible improvements.

VI. CONCLUSION

We have presented a general approach for bimanual com-
pliant tactile exploration, with applications to object identifi-
cation, manipulation and grasping. The kinematic limitations
of the system, i.e., workspace limitation and collisions, are
considered in this exploration strategy, which is critical in
tactile exploration as suggested in [5]. Also, due to the in-
trinsically noisy and un-uniformly distributed characteristics
of tactile datapoints, a GP-based filter is proposed to smooth
the data, which can then be more easily used for object
identification. In order to grasp the object after identification,
we teach grasps for each object by human demonstration and
model the graspable space with GMM. A general distance
metric is adopted to choose a final feasible grasp given the
current hand configuration.

For our future work, we are interested in learning the
exploration strategy from human demonstration, where one
may often switch the hand holding the object during the
exploration. This opens a challenging research perspective
for both tactile exploration and robotic grasping.
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Fig. 10: Object identification with sparse point cloud starting from 10 different initial configurations.
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Fig. 11: The filtered object point clouds aligned with the trained object points cloud. Only 400 datapoints from the trained object point clouds are
displayed.
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Fig. 13: The selected grasp (hand position and orientation) for each explored object after identification.
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