Article type: Advanced Review

Article title: Climate change in Switzerland: A review of physical, institutional and political aspects

Authors:
Full name and affiliation; email address if corresponding author; any conflicts of interest

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stefan Brönnimann*</td>
<td>Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Oeschger Centre for Climate Change Research, University of Bern, Zähringerstrasse 25, 3012 Bern, Switzerland</td>
</tr>
<tr>
<td>Christof Appenzeller</td>
<td>Federal Office of Meteorology and Climatology MeteoSwiss, Krähbühlstrasse 58, 8044 Zürich, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Centre for Climate System Modeling C2SM, ETH Zürich, 8092 Zürich, Switzerland</td>
</tr>
<tr>
<td>Mischa Croci-Maspoli</td>
<td>Federal Office of Meteorology and Climatology MeteoSwiss, Krähbühlstrasse 58, 8044 Zürich, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Centre for Climate System Modeling C2SM, ETH Zürich, 8092 Zürich, Switzerland</td>
</tr>
<tr>
<td>Jürg Fuhrer</td>
<td>Agroscope, Climate/Air Pollution Research Group, Reckenholzstrasse 191, 8046 Zürich, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Oeschger Centre for Climate Change Research, University of Bern, Zähringerstrasse 25, 3012 Bern, Switzerland</td>
</tr>
<tr>
<td>Martin Grosjean</td>
<td>Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Oeschger Centre for Climate Change Research, University of Bern, Zähringerstrasse 25, 3012 Bern, Switzerland</td>
</tr>
<tr>
<td>Roland Hohmann</td>
<td>Federal Office for the Environment (FOEN), 3003 Bern, Switzerland</td>
</tr>
<tr>
<td>Karin Ingold</td>
<td>Institute of Political Science, University of Bern, Lerchenweg 36, 3009 Bern, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Oeschger Centre for Climate Change Research, University of Bern, Zähringerstrasse 25, 3012 Bern, Switzerland</td>
</tr>
<tr>
<td>Reto Knutti</td>
<td>Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstr. 16, 8092 Zürich, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Centre for Climate System Modeling C2SM, ETH Zürich, 8092 Zürich, Switzerland</td>
</tr>
<tr>
<td>Mark A. Liniger</td>
<td>Federal Office of Meteorology and Climatology MeteoSwiss, Krähbühlstrasse 58, 8044 Zürich, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Centre for Climate System Modeling C2SM, ETH Zürich, 8092 Zürich, Switzerland</td>
</tr>
<tr>
<td>Christoph C. Raible</td>
<td>Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Oeschger Centre for Climate Change Research, University of Bern, Zähringerstrasse 25, 3012 Bern, Switzerland</td>
</tr>
</tbody>
</table>
Abstract

Climate change is clearly discernible in observed climate records in Switzerland. It impacts on natural systems, ecosystems, and economic sectors such as agriculture, tourism, and energy, and it affects Swiss livelihood in various ways. The observed and projected changes call for a response from the political system, which in Switzerland is characterized by federalism and direct democratic instruments. Swiss climate science embraces natural and social sciences and builds on institutionalized links between researchers, public and private stakeholders. In this article, we review the physical, institutional, and political aspects of climate change in Switzerland. We show how the current state of Swiss climate science and policy developed over the past 20 years in the context of international developments and national responses. Specific to Switzerland is its topographic setting with mountain regions and lowlands on both sides of the Alpine ridge, which makes climate change clearly apparent and for some aspects (tourist sector, hydropower, and extreme events) highly relevant and better perceivable (e.g., retreating glaciers). Not surprisingly the Alpine region is of central interest in Swiss climate change studies.

Introduction

The annual mean air temperature in Switzerland has increased by 1.75 °C between 1864 and 2012 and is projected to rise more strongly until the end of the century, accompanied by changes in other variables such as precipitation, snow cover, and runoff. What does climate change mean for Switzerland and how does Switzerland deal with it? In this paper we review published literature
concerned with observed and projected climatic changes in Switzerland, their impacts, policy and politics of climate change, and the public perception. We discuss physical, political, and institutional aspects of climate change and show that climate change in all its facets affects livelihood in Switzerland: Impacts (e.g. on the water cycle, cryosphere and biodiversity) are discernible and are projected to continue or aggravate. The political system addresses climate change issues by developing strategies and measures for both mitigation and adaptation and by engaging in the international process. Science addresses climate change, and expertise has been built up during the last two decades. Causes and consequences of climatic changes are discussed in in the media and are a source of concern to many.

A specifically Swiss viewpoint emerges from its geographic setting as an Alpine country, its standing as a country with high income, education level, and living standard, and its political system which is characterized by federalism and direct democratic instruments. In the following we briefly introduce these aspects as a background of the remainder of the paper.

Climatography, economy, and policy

Although a small country, Switzerland encompasses a variety of climates mainly due to the Alps (Fig. 1). This arc-shaped, west-east oriented mountain chain leads to large spatial gradients in climate variables\(^1\).\(^2\). The Alps provide a barrier between the temperate European climate and the Mediterranean climate. Typical mountain effects such as Föhn or inner-alpine dry valleys add to the diversity of Alpine climate. The Swiss identity is strongly shaped by the Alps, and Alpine climates are part of it\(^3\). The orography promotes weather and climate related hazards such as heavy precipitation or weather induced gravitational processes. As a consequence, the Alps are often considered particularly vulnerable to climate change (with melting glaciers as an iconic example) and thus are seen as a key region for studying global change\(^1\) and sustainable development\(^4\). The Alpine focus stood at the beginning of the Swiss climate change research programs in the 1990s (see sidebar) NRP31 “Climatic Changes and Natural Hazards” (1992-1997) and CLEAR (“Climate and Environment in the Alpine Region”, 1997-2000).

Figure 1

The majority of the Swiss population does not live in the Alps, though, but in lowland cities and suburbs. Here, other climatic aspects might become important, including heatwaves and droughts, storms and floods, and peaks of air pollution. As a consequence, different climatic factors are relevant for Switzerland.
The implications caused by climate change depend on a country’s vulnerability, which is mitigated by its adaptive capacity. Switzerland has a high per capita income and is economically stable. Services are of particular importance in terms of income, whereas agriculture is the dominant land use type by area and produces the typical landscape. Several politically or economically important sectors such as tourism, energy (hydropower as well as river-cooled nuclear power), insurance, and agriculture may be vulnerable to climate change, as are Alpine traffic lines and other infrastructures. Climate change also affects natural systems. Switzerland thus needs to adapt to a diverse set of challenges.

Vulnerability and adaptive capacity also depend on social infrastructure and governance⁴. The Swiss political system relies on direct democracy. Switzerland has a federalist structure with 26 cantons. Although climate policy is mainly dealt with at the national level, cantons and even municipalities play an important role (e.g. in land use planning). According to the OECD Better Life Index, Switzerland has a high life quality (employment rate, life satisfaction, income), and the education level is generally high⁵.

Since the 1970s and 1980s, environmental concerns have been put on the political agenda in Switzerland. Following debates on nuclear power, industrial waste, chemical hazards, and air pollution, climate change became a topic of interest in the 1990s. The past two decades, which form a special focus of this paper, have been instrumental in shaping todays’ situation of Switzerland with respect to climate change science, policy, and links to the public.

Structure of the paper

Climate change in Switzerland is well covered in the peer-reviewed literature. In addition, a number of national reports on specific aspects have been produced, some of which are not peer-reviewed or only available in German, but nevertheless important and hence reviewed here. The paper is organized as follows. We first give an overview of Swiss science and relevant institutions (see Table 1). The next three Sections - on observed climate change, scenarios, and impacts - each summarizes first the institutional and historical aspects, then the science. Further sections discuss Swiss greenhouse gas emissions and climate policy and, finally, the public perception of climate change.

SWISS CLIMATE SCIENCE
This section reviews the role of Swiss institutions in climate research and climate research education at University level, the funding structure for fundamental and applied climate research, Swiss climate research profile and output, and participation and leadership in national and international networks.

Climate research institutions

The principal carriers of academic climate research are the cantonal Universities (Bern, Zurich, Basel, Geneva, Fribourg), the two Federal Institutes of Technology (ETH Zurich and EPF Lausanne), and Federal Research Institutes and Agencies such as the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss), the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), the Paul Scherrer Institute (PSI), and institutes for aquatic research (EAWAG), agriculture (Agroscope), and materials testing and research (EMPA) (see Table 1). Two important Swiss centres for climate research are the “Oeschger Centre for Climate Change Research” (OCCR) at the University of Bern and the “Center for Climate Systems Modeling” (C2SM) at ETH Zürich (with partners MeteoSwiss, Empa, WSL, and Agroscope). The University of Bern and ETH Zürich offer specialised MSc and PhD programmes in Climate Sciences.

C2SM puts its focus on “the development and application of climate models operating at various scales to improve our capability to understand and predict the Earth’s climate, including its weather systems, chemical composition and hydrological cycle” (http://www.c2sm.ethz.ch). The Oeschger Centre is broader in its scope, by combining modelling and observations in the areas of global and regional climate dynamics, climate risks and impacts, social sciences, climate economics and policy, and international law (http://www.oeschger.unibe.ch). In addition, the two Federal Institutes of Technology also run a “Competence Centre for Environment and Sustainability (CCES)”, which covers climate aspects.

Swiss climate research is mainly carried out through research initiatives at the level of individual research groups. In addition, Switzerland had several large research programmes in the area of climate research. There is typically one at a time (see sidebar). The largest programme was the Swiss National Centre of Excellence in Research on Climate (NCCR Climate), a collaborative 12-year long (2001–2013) multi-institutional interdisciplinary programme addressing “Climate Variability, Predictability and Climate Risks”6. The NCCR Climate research network consisted of over 130 scientists from 8 institutions and it formed an internationally competitive community in Switzerland. The leading house was located at the University of Bern.
In addition to climate-centred programmes, other national research programmes (such as NRP61 “Sustainable Water Management”) also have strong climate aspects.

Funding structure

The main extramural funding sources (i.e. aside direct University or ETH funding) for fundamental and applied research are the Swiss National Science Foundation (SNSF), oriented research initiated by Federal Agencies and Offices (Environment, Energy, Public Health, Agriculture, among others) and the Private Sector. For instance, the Swiss reinsurance company SwissRE was the main industry partner of the NCCR Climate, or the Swiss Mobiliar Insurance Cooperation provides funding for a Chair in ‘Climate Risks and Impacts’ at the University of Bern.

EU research programmes (FPs, ERC, COST, among others) have been particularly important for Swiss climate research. Since the start of FP3 in the early 1990s, Switzerland has participated in dozens of climate-related projects. ETH Zurich hosts the Swiss Climate-KIC offices. Climate-KIC is one of three Knowledge and Innovation Communities (KICs) created in 2010 by the European Institute of Innovation and Technology (EIT) and addresses climate change mitigation and adaptation.

Research profile and output

The Swiss climate research output is regularly summarized in the “Global Change Abstracts: The Swiss Contribution (GCA)”, a compendium of abstracts of papers on the topic of global climate and environmental change (http://www.proclim.ch/). In this collection, the subset ‘Climate change’ comprises nearly 1500 ISI indexed papers written or co-authored by Swiss scientists annually (data 2011), of which about 66% are published in the field of climate change-related earth system processes (including atmospheric sciences), 11% in past global changes, 13% in human dimensions of climate change, 5% in mitigation and adaptation technologies and 3% in general topics of climate change (see Fig. 2). This partitioning reflects the scientific profile, the structure and major topics of the scientific community in Switzerland.

National and international research network, leadership

A national academic network and platform for knowledge exchange with stakeholders is provided by ProClim, the Forum for Climate and Global Change of the Swiss Academy of Sciences founded in 1988. ProClim acts as the interface between academia, public administration, politics, the private
sector and the public. In 1996, the Federal council founded the “Organe consultatif sur les Changements Climatiques” (OcCC; Advisory Body on Climate Change) for the Swiss Government.

The federal administration (State Secretary of Research and Innovation, Federal Office of the Environment (FOEN), MeteoSwiss, among others) liaise with international governmental organizations such as the World Meteorological Organisation (WMO), the United Nations Framework Convention on Climate Change (UNFCCC), the Intergovernmental Panel on Climate Change (IPCC) and others, while the Swiss Academy of Sciences networks with the non-governmental research organizations such as the International Council for Science (ICSU) with its global environmental programmes (IGBP, WCRP, DIVERSITAS, IHDP). Swiss climate research contributes to international science services and hosts several international project offices, e.g. for “Past Global Changes” (PAGES, within IGBP), “Stratospheric Processes and their Role in Climate” (SPARC, within WCRP/WMO), the World Radiation Center (WRC) and others. Swiss scientists were very supportive in the IPCC process from its beginning in 1992 and have expanded their involvement through the present. In IPCC AR5, Switzerland participates with the Co-Chair of Working Group I, several Lead Authors, Contributing Authors, a Review Editor, and it hosts the Technical Support Unit for IPCC Working Group I at University of Bern.

OBSERVED CLIMATE CHANGE IN SWITZERLAND

Observing change

The first Swiss meteorological network was established in 1863 and gradually extended to include upper-air measurements (1942), phenology (1951), radiation (1991) and other observing systems. MeteoSwiss is responsible for climate monitoring in Switzerland. Monitoring of other climate variables such as greenhouse gas concentrations, glaciers, and runoff are carried out by other institutions. Switzerland contributes to global climate monitoring that started with the establishment of the Global Climate Observing System (GCOS) in 1992. MeteoSwiss hosts the national GCOS office, and acts as a competence centre for Alpine Meteorology and Climatology.

The Swiss meteorological surface network was to a good part automatized in 1980. Since 2004 the transition into a new meteorological network referred to as SwissMetNet has been taking place. In the early 1990s, within projects NORM90 and KLIMA90, MeteoSwiss re-evaluated and homogenized its climate data. For high quality climatological monitoring (and as Swiss contribution to the GCOS networks), the Swiss National Basic Climatological Network (NBCN) was set up in 2007 and carefully
homogenized data, suitable for climatological trend analysis, are available10. At the same time, also other monitoring networks were reviewed and their continuation was ensured7. This data were also the base for early climate change studies in Switzerland10-14. In the following we review the observed changes in meteorological variables in Switzerland since 1864.

Observed change

Surface air temperature and freezing level

Swiss annual surface air temperature has increased by +1.75°C between 1864 and 2012, which corresponds to a linear trend of about +0.12°C per decade (Fig. 3). Temperature trends have accelerated substantially for more recent time periods. Annual temperatures have increased by about 0.13 to 0.20°C per decade (spatial range across the country) over the last 100 years (1913-2012), by 0.34 to 0.47°C per decade for the last 50 years (1963-2012)15 and between 0.28 and 0.55°C per decade for the last 30 years (1983-2012). This is roughly two (last 100 years) to three (last 30 years) times the globally averaged temperature trend16 and is in agreement with the trends in other parts of western and central Europe. In the last 30 years, the trends were largest (highly significant) in spring and summer whereas less pronounced and mostly insignificant in autumn and winter. Since 1961, the zero degree level has increased by 60m per decade in winter to 75m per decade in summer17.

Precipitation

In the last 100 years (1913-2012), most stations show no significant trends in annual mean precipitation (Fig. 4). Precipitation trends are very sensitive to the chosen period. On the seasonal scale, significant increases are found for some stations in winter largely due to an increase in the first half of the record. No significant trends are found for other seasons, and trends are also insignificant or inconclusive during the last 50 years (1963-2012). During the last 30 years (1983-2012), mean precipitation is predominantly decreasing in winter and spring; for a minority of the stations, the trends (-10 to -22% per decade) are significant. Increases are found in summer, although these increases are significant only in the central parts of Switzerland. No clear tendencies are found for autumn. Of large interest are also changes in extreme precipitation. Schmidli and Frei18 investigated trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century (1901-1999). They found statistically significant increases in heavy precipitation measures in winter and
autumn. In spring and summer, the heavy precipitation and the spell-duration statistics did not show significant trends.

Figure 3, 4

Snow cover and glaciers

Swiss snow variability and trends have been analysed based on remote sensing data back to 1985\(^{[19]}\), and based on station data back to the 1950s\(^{[20]}\), to 1931\(^{[21,22]}\) and to 1864\(^{[23]}\). All studies found a decrease of the Alpine snow pack since the mid-1980s especially at low altitudes (<1300 m asl)\(^{[21]}\) which was shown to be predominantly linked to an increase in local temperature\(^{[20]}\). There is also a shortening of the snow season at all altitude levels\(^{[24]}\). Scherrer et al.\(^{[23]}\) showed that for several snow parameters, the lowest values since the late 19th century were found in the late 1980s and 1990s. In the last 10 years, a change towards more days with snow pack at low elevation stations is observed, however, highlighting the role of decadal variability. Clear decreasing trends in snowfall days relative to precipitation days are found since the 1960s\(^{[25]}\). Marty and Blanchet\(^{[26]}\) found in the last 80 years for all altitudes decreases in extreme snow depth. Negative trends are observed for extreme snowfalls at low and high altitudes.

Swiss glaciers have been receding since around 1980. In terms of mass, the current loss rate for a sample of eight Alpine glaciers is estimated as 2-3% per year\(^{[27]}\).

Sunshine duration and fog

The evolution of sunshine duration is very similar to the evolution of surface solar radiation, which has been discussed extensively in literature under the terms of solar dimming and brightening\(^{[28]}\). Sanchez-Lorenzo and Wild\(^{[29]}\) found that all sky surface solar radiation has been fairly stable with little variations in the first half of the 20th century, unlike the second half of the 20th century that is characterized by a dimming from the 1950s to the 1980s and a subsequent brightening. This is reflected in sunshine duration, which has increased by roughly 250-400 hours or almost 20% north of the Alps and by roughly 10% south of the Alps\(^{[27]}\) from 1980 to 2011. The number of very sunny days (relative sunshine duration >80%) shows significant increases since the 1980s whereas the number of very cloudy days (rel. sunshine duration <20%) decreases\(^{[27]}\). Scherrer and Appenzeller\(^{[30]}\) showed that the decade 1984-1993 was the foggiest and 1999-2008 the least foggy decade since 1901. In the most recent years a return towards the climatological mean could be observed.
Measurements of downwelling longwave radiation in Switzerland show a significant increase since the early 1990s\(^{31}\).

Heat waves, droughts, winter storms, thunder storms, hail and tornados

Over the period 1880 to 2005 the length of summer heat waves over Western Europe, including Switzerland, has doubled and the frequency of hot days has almost tripled\(^{32}\). In terms of standardized anomalies, the heat wave of 2003 was a 5-sigma event, while the strongest previous event in 1947 was a 3-sigma event\(^{33}\). No conclusive statements can be made about strong droughts in Switzerland. For southern Switzerland, Rebetez\(^{34}\) found increases in moderate droughts during the 20th century. Most Swiss stations show an increase of the maximum number of consecutive days without precipitation, however, the trend is not statistically significant\(^{27}\). The literature gives no conclusive results about winter storm trends in Europe including Switzerland\(^{35}\). Storm damages in Swiss forests increased\(^{36}\). Instrumental measurements from Zurich as well as reanalysis data show an increase in extreme winds between the 1950s and the 1990s, but a decrease since\(^{37,38,39}\). For thunder storms, hail, and tornados evidence for changes is more scant\(^{40}\).

Phenology

An increasing number of studies, based on the Swiss observing network since 1951 or satellite data since 1982\(^{41}\), show evidence of a shift in plant development towards an earlier onset in spring as a consequence of climate change. Spring and early summer phases are directly influenced by temperature. Averaged over of 15 spring pheno-phases, a trend of 1.5 days/decade was observed from 1965 to 2002, with a clear shift in 1988\(^{42}\). Series of single spring plants showed trends towards earlier appearance from -1 to -2.8 day/decade, stronger at lowland stations than at sites of higher elevation\(^{42,43}\). The correlation with temperature is high, while precipitation does not influence the main phenological pattern\(^{42,44}\). No clear trends are seen in autumn. Defila and Clot\(^{45}\) found a prolongation of the vegetation period of 13.3 days from 1951-2000, similar as in other European regions\(^{46}\).

CLIMATE CHANGE SCENARIOS FOR SWITZERLAND

Producing climate scenarios
At a global scale, climate change scenarios have been compiled on a regular basis since 1990 coordinated by the IPCC. Scenarios for Europe, based on regional models nested into global models, have first been prepared by Giorgi et al.47 In recent years, individual countries have started to develop regionally-focused climate scenarios to inform their stakeholders and decision makers, such as the United Kingdom in 200248.

In Switzerland, the first climate projections were obtained from statistical49 or dynamical50 downscaling of global model results, or from surrogate scenarios obtained with a regional model51,52. These early attempts were continued in the aforementioned projects NRP31 and CLEAR53 (see sidebar), which initiated the creation of a “Swiss climate community”. This community started to provide information on future climate to users54,55.

At about the same time, with future climate change becoming a topic of high political and societal relevance, the link between policy makers and science was institutionalized with the foundation of ProClim and OcCC (see Table 1). One of the first reports coordinated by OcCC focused on changes in heavy precipitation and flooding under climate change56.

In 2007, the growing Swiss climate research community released a first national climate report under the umbrella of OcCC and ProClim57. This comprehensive report included a set of Swiss climate scenarios for the years around 205058,59, also known as “CH2050 or CH2007 scenarios” (see sidebar), and a broad, mainly qualitatively described overview of expected impacts on various sectors in Switzerland, such as agriculture, ecosystems, water management, health, energy, tourism, infrastructure and insurances.

With the experience gained during NCCR Climate and the much larger community, this multi-institutional collaboration between C2SM, MeteoSwiss, ETH Zurich, the NCCR Climate, and OcCC (see Table 1, sidebar) lead to the development of a new set of Swiss climate scenarios, which were published in the CH2011 report60. These Swiss Climate Change Scenarios CH2011 serve as a common, consolidated basis for impact studies in Switzerland. Providing consistent and state-of-the-art information required specific analyses and an enhancement of established methods.

The CH2011 Swiss climate scenarios, which are described in the following, rely heavily on results from the large European research project “ENSEMBLES”59 and the Fourth Assessment Report of the IPCC60. The ENSEMBLES project provided a unique set of regional climate simulations over Europe that allows deriving scenarios in a multi-model approach. In addition, new statistical methods have been developed enabling a better quantification of uncertainties in climate projections and the derivation of probabilistic estimates61,62. The CH2011 report was externally reviewed.
The CH2011 projections serve as a common basis for political recommendations and many impact-related studies such as the Swiss climate change adaptation strategy63, the CC Hydro project exploring effects of climate change on water resources64 or the CH2014-Impact initiative. The feedback from applications and users helps to identify knowledge gaps and to develop data sets which match user needs. As a result the scenarios have been extended to include more regional65 or localized information66. A range of studies has also addressed extreme events, among these heat waves and summer temperature variability67,68, heavy precipitation events69 and wind storms70. Key developments will also be published in a CH2011 extension series. Currently, most of the efforts are still based on voluntary contributions in an academic environment, but with the current international and national activities aiming to strengthen climate services, a more sustainable process may be established.

Swiss climate scenarios

The CH2011 projections focus on changes in temperature and precipitation, reflecting the main quantities for which information is available and required by the users. Probabilistic seasonal mean changes are provided using a multi-model approach for three representative regions of Switzerland and for three different future pathways of anthropogenic emissions71. In addition, daily mean scenarios are made available both on a regional basis and at individual observational sites by downscaling, mainly to fulfill the needs of impact models that often require high resolution72. Expected changes in extremes are discussed based on a comprehensive literature review and on an analysis of climate indices in individual climate models.

The report shows that Swiss climate is projected to depart significantly from present and past conditions in the course of the 21st century (Fig. 5). Mean temperature will very likely increase in all regions and seasons. Summer mean precipitation will likely decrease by the end of the century all over Switzerland, while winter precipitation will likely increase in Southern Switzerland. In other regions and seasons, models indicate that mean precipitation could either increase or decrease.

Along with these changes in mean temperature and precipitation, the nature of extreme events is also expected to change. The CH2011 report indicates more frequent, intense and longer-lasting summer warm spells and heat waves while the number of cold winter days and nights is expected to decrease. Projections of the frequency and intensity of precipitation events are more uncertain, but substantial changes cannot be ruled out. In addition a shift from solid (snow) to liquid (rain) precipitation is expected, which would increase flood risk primarily in the lowlands.
Figure 5

Projection uncertainties were derived using a Bayesian methodology. However, given conceptual limitations of the global and regional climate modelling approach, the CH2011 report refrains from interpreting the projection uncertainties in a probabilistic way. Additionally incorporating expert judgement, a «lower estimate», «medium estimate», and «upper estimate» were defined and displayed with boxes as in Figure 5.

CLIMATE CHANGE IMPACTS

Assessing climate change impacts

Climate change impacts at a global level were assessed in the first IPCC Assessment report in 1990; work that had partly grown out of assessments of atmospheric change (air pollution, ozone loss, UV radiation), but encompassed all aspects of climate impacts. In Switzerland, responses of forests and grasslands to climate change were studied in the 1990s73,74, and in several NRP31 (see sidebar) sub-projects impacts on various areas such as tourism75, agriculture76,77, economy78, and natural hazards were studied and published in individual reports.

One of the first comprehensive summary-reports on climate change impacts in Switzerland was the aforementioned 2007 report “Climate Change and Switzerland 2050 – Impacts on Environment, Society and Economy”57 (see sidebar). The report targeted a broad audience and adopted a midterm perspective focusing on the year 2050 and a variety of sectors.

Following this report, a number of sectorial reports have been produced (many commissioned by government agencies, reflecting the need for information for policy makers), covering health79, hydropower80, water resources64, runoff81,82, tourism83, and other sectors.

To complement these sectorial reports and the more qualitative assessment of 2007[57], the Swiss scientific community launched an effort to quantify climate change impacts in a coordinated manner, with a standardized framework, and for the whole of Switzerland. Based on the new climate change scenarios for Switzerland CH2011 (see previous section and sidebar), and with major progress in impact modelling, the community has produced such a report, termed CH2014-Impacts84, which comprises a collection of currently quantifiable impacts with no claim to be comprehensive. CH2014-Impacts deals with climate change impacts on a short-, mid- and long-term perspective and for three emissions scenarios.
Projected Climate Change Impacts

Climate induced changes have already become apparent in the last decades. Studies have shown, e.g. the melting of Swiss glaciers since around 1980\(^7\), trends towards earlier grape harvests\(^8\), an increase in agricultural area suitable for grapevines\(^8^6\), an increase of lowland forest species at mid-elevation\(^8^7\), and an upward shift of the occurrence of pine mistletoe and an extension of the fungal fruiting season\(^8^8\). In the following we summarize the literature on projected impact for selected sectors (water resources, agriculture, forestry, and tourism), while other topics such as health or natural hazards cannot be covered in this paper.

Impacts on hydrology

With respect to the hydrological cycle, river runoff regimes are projected to shift from snow-controlled to rain-controlled under climate change\(^6^4,8^0,8^4\) (see also Fig. 6). Winter discharge is projected to increase at the expense of decreasing summer discharge\(^8^2\). The reason lies in projected changes in the cryosphere, in the precipitation increases (decreases) projected for winter (summer), and in projected changes in evapotranspiration. Large areas are projected to be deglaciated by the end of this 21st century based on the A1B scenario translating to a volume loss of 85-95%\(^8^4\). Additionally, multi-day snow cover is projected to become a rare phenomenon in the Swiss plateau, whereas snow depth and duration will be significantly reduced at higher altitudes\(^8^4,8^9\).

With respect to future hydropower generation, a recent report\(^8^0\) found that the total quantity of water that can be utilized for power generation may increase due to a more equal seasonal distribution of the runoff. On the long term (2085), however, decreasing production is expected for high altitude, glacier-fed catchments. In the lowlands, low-runoff situations may become more common\(^8^4\).

Figure 6

Impacts on agriculture

Projected temperature change and changes in the hydrological cycle also affect vegetation and crops. A moderate increase in temperature may lead to increased yields of maize\(^9^0,9^1\), and grassland productivity may benefit from more favourable temperature and radiation conditions\(^9^2,9^3\) and an extended growing season\(^8^4,9^4,9^5\). However, longer term projections suggest an increase in production risks due to more variable weather\(^9^6,9^7\). This includes drought risks\(^9^8\) leading in some regions to a
higher water demand that could exceed the limits of surface water availability for irrigation95,99. Rising temperature maxima increase the risk of heat stress in livestock95,100. Because of more frequent and intense rainfalls during the winter/spring seasons, and due to changes in rainfall erosivity and reduced soil cover101, soil erosion risks are likely to increase96,102, in particular in northern parts of the Alps.

Impacts on forests

In Swiss forests, climate change is expected to affect tree species distribution in particular for the two most important tree species of Switzerland, Norway spruce and European beech. For strong warming (A1B, A2 scenarios) spruce and beech are at risk in large parts of the Plateau region84 which supports findings for European forest land being suitable only for Mediterranean oak forest type with low economic value and reduced carbon sequestration by 2100103. Even a warming of only 2 °C was found not to be safe for ecosystem functions in dry regions, while in wetter regions forests may be comparatively resistant to warming104.

Impacts on tourism

Projected reduced snow cover directly impacts the snow-dependent winter tourism105 which could substantially decrease the number of snow-reliable areas under high emission scenarios84. Some of this reduction could be compensated by expanded application of artificial snowmaking, which would, however, require substantial investments and entail costs and non-negligible environmental impacts86,106-108. Müller83 identifies not only the lack of snow, but also the lack of a “winter atmosphere”, the scarcity of water (for artificial snowmaking), and the possible increase of natural hazards, and adaptation costs (e.g., costs of changing the offer towards less snow-dependent activities) as important factors. When the reduction in snow cover in competing international destinations is taken into account, simulations suggest that Swiss winter tourism could actually increase its revenues109-110.

SWISS CLIMATE POLICY

In this section we present the performance of Switzerland in terms of stabilizing its CO\textsubscript{2} emissions and meeting its commitment under the Kyoto Protocol. Next, we present Swiss climate policy and how it was gradually defined in the political process. This section also addresses the adaptation
strategy that is being developed and implemented and Switzerland's contribution to international policy making.

Global and Swiss climate targets

Switzerland contributed to the drafting of the United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and ratified it 1993. The UNFCCC calls for a stabilization of "greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system". Rich countries such as Switzerland are explicitly called to contribute to global efforts. Specific targets were set in the 1997 Kyoto Protocol, which Switzerland ratified in June 2003.

With the ratification of the Protocol, Switzerland committed itself to reduce its net emissions of six greenhouse gases by 8% over the period 2008–12 compared to 1990. This target was copied from that of the European Union. Before ratification of the Kyoto Protocol, a target limited to energy-related CO₂ emissions was set in the CO₂ act of 2000 (10% below the 1990 level in 2008–2012). It was assumed that this would be sufficient to meet the 8% Kyoto reduction target for all six greenhouse gases, considering that the former amounted to 80% of the latter.

Figure 7

The targets under the Kyoto Protocol and the CO₂ act are shown as horizontal lines in Fig. 7. Based on the latest estimates, the targets for the period 2008-2012 can be met both under the Kyoto Protocol and the CO₂ act. Under the Kyoto Protocol, the use of flexible mechanisms contributes substantially to meeting the targets. Afforestation and forest management are estimated to contribute 1.7 million tons of CO₂ per year. The use of certified emission reductions (CERs) will contribute another 2.8-3.0 million tons of CO₂ per year.

For the Post-Kyoto period, despite disappointing results in the international arena, the Parliament approved a revised CO₂ act that entered into force in 2013 and sets a Kyoto-type target for overall greenhouse gas emissions 20% below the 1990 level in 2020 (square in Fig. 7). The act has a provision that this target could be tightened by the government to a maximum of 40% in the context of an international agreement. Like the earlier act, the revised act requires as a general rule that the emissions mitigation takes place within Switzerland, yet it allows for “appropriate” recognition of abatement obtained abroad.
The overall target was broken up into three sectorial intermediate targets for 2015: −22% in the buildings sector, −7% in the industry sector and stabilization at the 1990-level for the transportation sector. All these targets imply actual reductions relative to the current and to the predicted business-as-usual levels.

Based on various simulations, Switzerland can pursue an ambitious reduction target with moderate costs for the economy111-119. Even the concurrent phase out of nuclear power does not alter this result120-121. The Swiss government decided in May 2011, after the Fukushima accident, that the existing nuclear power plants will not be replaced when they reach the end of their service life. The level of electricity supply is to be assured through increased energy efficiency and the expansion of hydropower and new renewables. Only if this proves insufficient, fossil-fuel-based electricity production and imports will be expanded. In that case, all additional CO$_2$ emissions will have to be compensated.

Swiss greenhouse gas emissions

Switzerland belongs to the countries with the best environmental indicators in the OECD, including greenhouse gas emissions. It contributed 0.17% of world CO$_2$ emissions in 2000. Its 5.3 tons of CO$_2$ emissions per inhabitant per year (6.3 tons of CO$_2$ eq.) is only half the OECD average (12.2 tons), but above the world average of 4 tons of CO$_2$. Relative to GDP, Switzerland emitted 0.26 tons CO$_2$/1000 USD compared to an OECD average of 0.74. Note, however, that if emissions abroad related to Swiss consumption are taken into account, Swiss emissions are comparable to those of other Western European countries. The total primary energy supply per Swiss inhabitant is 3.4 t crude oil equivalent, which is below that of other Western European countries, but almost twice the global average.

An inventory of Swiss CO$_2$ and greenhouse gas emissions exists for the period 1990-2011 (Fig. 7), but depending on the political framework (see next subsection), different metrics are used. Under the Kyoto Protocol, all CO$_2$ emissions as well as emissions of other greenhouse gases are accounted for (Fig. 7, red curves), while under the national CO$_2$ act (2000-2012), only energy-related CO$_2$ emissions are taken into account (e.g. excluding emissions from refineries, waste and incineration, geogenic emissions from cement production, and others), and they are corrected for interannual temperature variability due to the large contribution of room heating (blue curve in Fig. 7). Around 80% of the Swiss greenhouse gas emissions are energy-related CO$_2$ emissions (ca. 75% of Swiss energy consumption is from fossil fuels).
Instruments of Swiss climate mitigation policy

Switzerland addresses its mitigation target with a combination of measures in various areas. The main foundations are the federal act on the reduction of CO₂ emissions (“CO₂ act”) of 2000 and the federal energy act of 1998. The CO₂ act counted in a first phase on voluntary efforts, to be complemented, if insufficient, by a CO₂ tax. The energy act called for extensive collaboration with the private sector to promote both, energy efficiency and renewable energy. In addition, Switzerland counted on various existing policies and measures that have a direct or indirect impact on GHG emissions to meet its emissions targets\(^{122}\). They concern energy, agriculture, forestry, transportation, environmental protection and use a mix of economic instruments, regulation, public investments, and voluntary approaches. Economic instruments encompass subsidies for energy conservation, particularly in buildings, the development of renewable energy sources, and the reduction of intensive agriculture. Taxes on gasoline, which have a revenue purpose, increase its price at the pump by about 50–60%, and a new incentive tax was introduced in 2001 on heavy goods vehicles. Regulation is widespread in energy production and consumption, both in the form of technical prescriptions and emission limits. Legislation limits the reduction of forest size since 1876 (the ratification of the forestry law). Finally, the promotion of hydro- and nuclear power (the latter until the end of nuclear power plant service life) and of public transportation also contributes to lower the CO₂ intensity of the Swiss economy.

However, the voluntary efforts plus complementary measures could not possibly meet the target without the tax\(^{123}\). This was predicted by several simulations of the development of the Swiss economy and its energy use, some commissioned by the Federal administration\(^{124-128}\). It was therefore necessary to prepare the second phase of the CO₂ act with the CO₂ tax. To avoid the tax on motor fuels, the Swiss Petrol Union launched a “climate penny” (or “climate cent”) proposal\(^{129}\). Under this proposal, a contribution of 0.015 CHF (ca. 0.015 USD) would be levied on every litre of gasoline and diesel to feed a fund that would buy carbon reduction certificates abroad and, in Switzerland, subsidise energy conservation and substitution.

This proposal marked a turn in Swiss climate policy and reanimated discussions about the introduction of different CO₂ instruments. As earlier studies on Swiss climate mitigation policy showed\(^{130,131}\), an important reorganization of actors in the policy process took place: Between the first phase of voluntary measures (1995-2000) and the second phase where new instruments (e.g. tax and climate penny) were negotiated (2002-2008), political parties, industry and transport
representatives changed positions and strategies. The voluntary agreements were no longer a sufficient solution; the actors had to decide between supporting the tax or the climate penny.

A deadlock between a “pro-environment coalition” and a “pro-economy coalition”132 was broken through two “policy brokers” – a Federal agency and a centre-right party133. They proposed the CO\textsubscript{2} tax only on heating and process fuels and the climate penny on motor fuels. The latter was introduced in October 2005 by a private organization independent from the Federal administration. The CO\textsubscript{2} tax on heating and process fuels was only introduced in January 2008. It took the Parliament almost four years to agree on its rate and modalities.

The tax was initially set to 12 CHF/tCO\textsubscript{2} (ca. 12 USD/tCO\textsubscript{2}) and raised to 36 CHF (ca. 36 USD/tCO\textsubscript{2}) in 2010. Large emitters and energy-intensive firms could be exempted, provided that they committed to reduce their emissions by an equivalent amount. This opportunity was grasped by more than one third of the Swiss economy. Gradually their commitments were transformed into registered emissions rights, which are tradable among concerned firms. The CO\textsubscript{2} act of 2000 stated that the revenues of the CO\textsubscript{2} tax were to be fully redistributed to the population and economic sectors. The Parliament decided to reserve a large share for subsidies to energy refurbishments of buildings.

The revised CO\textsubscript{2} act of 2013 prolongs the CO\textsubscript{2} tax on heating fuels, first at the level of 36 CHF/tCO\textsubscript{2}, then rose to 60 CHF/tCO\textsubscript{2} (ca. 60 USD/tCO\textsubscript{2}) in 2014, with a third of its revenues to be channelled into the promotion of energy conservation in buildings. As to the transport sector, the two coalitions again were in opposition concerning the reduction target (less so concerning the instruments, Sutter, 2011). The government finally decided that motor fuel importers must compensate 25% of the implied CO\textsubscript{2} and a binding CO\textsubscript{2} target is introduced fleet-wise for new cars (130gCO\textsubscript{2}/km by 2015). If these two measures are not sufficient to meet the emissions target for motor fuels, they will also be subject to a CO\textsubscript{2} tax. Large industrial emitters are granted emissions rights that should become tradable on the EU-ETS in the near future.

Adaptation

The publication of the IPCC Fourth Assessment Report60 established that despite all efforts being made by the international community to mitigate the increase of atmospheric greenhouse gas concentrations, climate change cannot be prevented but merely dampened. This result made many industrialized countries investigate climate change impacts, some with considerable investments in data collection and modelling, and to develop their own adaptation strategy. The section above showed that the Swiss scientific community is improving its understanding of climate change.
impacts in Switzerland and finding that they might be sizable, even if much of the assessment is still qualitative. The insights of an earlier assessment57 made the Federal Council include adaptation to climate change as a complementary second pillar next to mitigation in the revised CO\textsubscript{2} act134. Article 8 of the act mandates the federal government (1) to “coordinate measures to mitigate and cope with damages to people and assets which could occur due to increased greenhouse concentrations”, and (2) “to arrange for the development and provision of fundamentals needed to implement such measures”.

For the implementation of Article 8 the Federal Council is developing an adaptation strategy, the first part of which was adopted in 2012135. Key elements of the first part of the Swiss adaptation strategy are (1) general objectives and principles, (2) sectorial strategies for those sectors most affected by climate change in Switzerland, and (3) a discussion of the most significant challenges Switzerland is facing in adapting to climate change.

In the second part of the adaptation strategy (to be adopted in spring 2014), adaptation measures are presented and coordinated in a joint action plan. As key elements, the action plan contains a summary of the Federal Administrations measures to achieve the sectorial adaptation goals as defined in the first part of the strategy and an outline of coordinated approaches to tackle the cross-sectorial challenges.

At this stage, the strategy is still mainly qualitative, without a strong scientific base for setting priorities. To address this deficiency, the FOEN (Federal Office for the Environment) is conducting a nation-wide analysis of climate change induced risks and opportunities (to be completed in 2016).

Participation in international negotiations

In international climate negotiations and since the late 1990s, Switzerland adopted the position of a non-aligned country136. As a non-EU member state, it developed strategies to gain access to the highest levels of negotiation by weaving partnerships with groups of very heterogeneous states. In 1999 for instance, Switzerland participated within the UNFCCC in the creation of the Environmental Integrity Group (EIG) with Mexico, South Korea, Monaco and Lichtenstein. None of the EIG member belongs to any of the four key blocks in climate negotiation (G77, China, USA and EU). Concerning mitigation issues, the position of Switzerland is close to that of the EU. The country supports the 2\textdegree{} target and aims at reducing its emissions by 20\% by 2020 (relative to 1990).

Since 2006 and the UNFCCC Conference in Nairobi, the mandate of the Swiss government includes the proposition of a global CO\textsubscript{2} levy designed to provide the means to fund adaptation in developing
countries. Also in 2013, at the COP19 in Warsaw, Switzerland reconfirmed this engagement: to promote the Green Climate Fund, transparent financing mechanisms and the inclusion of a large number of donors would be necessary. Thus, more strongly than in its domestic climate policy, Switzerland aims at the introduction of incentives and financing mechanisms and the commitment of the private sector to promoting international adaptation instruments.

PUBLIC PERCEPTION OF CLIMATE CHANGE IN SWITZERLAND

Institutions operating observing systems report climate change and science informs us about the causes. However, the public perception of climate change does not correspond directly to the observed changes and their explanations. This has been a matter of research internationally during the past years. Obviously, media coverage and interpersonal communication matter, hence the media themselves play a role as well as the means of communication, e.g. through visualisation. Further, personal factors matter. The public perception of climate change is related to personal experience, knowledge, education, and trust in societal actors such as administrative agencies and scientific institutions. Expectations have also been shown to affect perception of climate change. In this Section we review studies on climate change perception in Switzerland.

Climate change perception, environmental concern and knowledge

Surveys on public perception of climate change in European countries (including Switzerland) show that climate change is perceived by most respondents as real and partly man-made. Many feel that their personal comfort will be at risk. The public perception of climate change is related to the level of environmental concern, which increases with the level of education. According to surveys, Switzerland exhibits a very high level of environmental concern in an international comparison, though unchanged since the 1990s.

However, the same studies also show that a high level of environmental values does not preclude misconception with respect to climate change, and this is also found for Switzerland, despite an increase in people’s knowledge related to CO₂. Climate change is not necessarily perceived by the European public as a domestic issue and the same was found for Switzerland (e.g. farmers were more concerned about the consequences in southern countries than in Switzerland).

Media coverage on climate change in Switzerland is not well studied. Studer analysed the coverage of the four IPCC Assessment Reports in newspapers from the German and French-speaking
parts of Switzerland. The newspapers focused on attribution, model projections, and impacts on specific regions (Switzerland, Africa, coastal regions). In addition, topics such as uncertainties or the relation between science, politics, and the public were raised. Newspapers from the German speaking part of Switzerland followed more closely the wording of the IPCC reports and reported more often on natural sciences or the science-policy interface, while the French-language newspapers chose a simpler language and reported more often on economical and political aspects.

Perception of Retreating glaciers and extreme events
Most respondents in a recent global survey144 indicated that they have personally experienced climate change and this is an important factor in the perception of the problem141. Climate change in a narrow sense (a change in temperature or precipitation over a 30-year period) can hardly be perceived sensually, but only indirectly through phenomena which the individual relates to climate change, such as shifting seasons, retreating glaciers or an extreme weather event.

For Switzerland, retreating glaciers play a special role, as glaciers are part of the Swiss identity. It is thus interesting to briefly discuss the perception of glacier changes and specifically their visualisation in the course of time (see also Fig. 8). For agricultural communities in the Swiss Alps, growing glaciers were primarily a threat. In the early 19th century, glaciers were “discovered” as beautiful landscape elements by early travellers and became a motif in protoromantic and romantic paintings148. In the late 19th century, the ice age theory, which revived age-old fears of an eternal winter, made glaciers a symbol of climate change149. Glaciers and palm trees combined in one scenery were used in the early 20th century to illustrate ice ages and climate change, and in the late 20th century to illustrate global warming. The same motif was used in tourist advertisement since the late 19th century - and today - to illustrate the diversity of the Alpine landscape149.

Today, palm trees ragged by strong winds illustrate changes in extremes, and pairs of glacier photos (then and now) stand for relentless warming (e.g. in the movie „An Inconvenient Truth“). A climate change iconography developed140. Though clearly a consequence of climate change, retreating glaciers are also a pictorial symbol with a long and changing history, which might affect current perception.

Figure 8
Similarly, experienced extremes or disasters are often perceived as signs of climate change. Particularly, the heatwave of 2003 had a large impact on public perception of climate change in Switzerland. As the human lifespan is too short to perceive changes in very rare events, perceived
extremes need to be confronted with a societal memory150 or scientific interpretation. In Switzerland, natural disasters were frequent in the 19th century, but the traditional disaster memory was largely lost during the 1910s to 1970s period, when only few natural disasters occurred (termed „disaster gap“151). Today, natural disasters are often depicted in the media as related to climate change (e.g. a landslide in Brienz, Switzerland, in „An Inconvenient Truth“) even if they are not, highlighting the difficulty of perceiving climate change through experienced extremes.

Conclusion

Similar to most other western European countries, Switzerland has experienced a pronounced temperature increase during the past century. The annual mean air temperature has increased by 1.75 °C over the past 150 years. Temperature is projected to rise even faster until the end of the century, depending on the emission scenario, accompanied by changes in other variables such as precipitation, snow cover, and runoff.

So, what does climate change mean for Switzerland? Impacts of climate change have been observed in the cryosphere, biodiversity, and other areas. For the future, runoff regimes are projected to shift from snow-controlled to rain-controlled, agriculture will face increased heat stress for livestock, and tree species distribution will change. The tourist industry will have to cope with shorter ski seasons and the urban population will be exposed to more heat days, to name just a few of the expected impacts.

How does Switzerland deal with climate change? The topic of climate change is well rooted in political and public discussions in Switzerland. Swiss climate policy has long relied on mitigation and specifically on voluntary measures, which are supplemented by a CO\textsubscript{2} tax on some fuel categories. The Federal Government has recently acknowledged adaptation as a second pillar next to mitigation and is in process of establishing an adaptation strategy. There is an internationally well embedded scientific community, which during the recent years has produced a consistent set of climate scenarios and a quantitative although not comprehensive climate change impact report based on these.

This current situation is the product of a development that started 20 years ago, as is shown in this review. Climate change became a topic of public concern in Switzerland in the early 1990s. Through a sequence of national research programmes, Swiss climate research has built up significant expertise since that time, formed a community and an institutionalized interface between science,
the public, policy makers, and private stakeholders developed. During the same period, a Swiss climate policy emerged and was gradually defined in the political process.

While Switzerland shares many facets of climate change, climate change science and the public discourse with other Western European countries, a specifically Swiss aspect is its Alpine setting. The Alps make climate change more apparent and for some aspects (tourist sector, hydropower, and extreme events) particular relevant and better perceivable (e.g., retreating glaciers). Not surprisingly the Alpine region is of central interest in Swiss climate change studies.

Notes

\(^{a}\) At the 1992 Rio Conference, Switzerland was instrumental in inserting the Chapter “Sustainable Mountain Development” into Agenda 21.

\(^{b}\) Climate change is understood in a broad sense encompassing atmospheric and planetary research, climate system science, climate impacts on natural and managed ecosystems, and human dimensions of climate change.

References

29 Sanchez-Lorenzo A, Wild M. Decadal variations of estimated surface solar radiation over Switzerland since the late 19th century, 1885-2010, Atmospheric Chemistry and Physics 2012, 12:8635-8644. doi: 10.5194/acp-12-8635-2012

59 van der Linden P, Mitchell JFB, eds. ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 2009, 160.

65 MeteoSwiss (Eds.). Klimaszenarien Schweiz - eine regionale Übersicht, Fachbericht MeteoSchweiz 2013, 243, 36.

27

83 Müller H. Der Schweizer Tourismus im Klimawandel. Staatssekretariat für Wirtschaft SECO, Bern, 2011, 64.

84 CH2014-Impacts. Toward Quantitative Scenarios of Climate Change Impacts in Switzerland, published by OCCRMeteoSwiss, FOEN, C25M, Agroscope, ProClim, Bern, Switzerland, in press...

98 Calanca P. Climate change and drought occurrence in the Alpine region: how severe are becoming the extremes? Global and Planetary Change 2007, 57:151–160.

100 Fuhrer J, Calanca P. Klimawandel beeinflusst das Tierwohl bei Milchkühen. *Agrarforchung* 2012, 3:132-139

101 Wanner C. Climate change and soil erosion in Switzerland. MSc Thesis 2013, University of Zurich, Zurich, Switzerland, 62p.

136 Ingold K, Pflieger G. Two levels, two strategies: explaining the gap between Swiss national and international responses towards Climate Change. 2014, submitted.

146 Karrer, SL. Swiss farmers’ perception of and response to climate change, Phd thesis ETH No. 20410, Federal Technical University, Switzerland, 2012.

Sidebar

Main National Climate Research Programmes funded by the Swiss National Science Foundation

National Research Project NRP31 “Climatic Changes and Natural Hazards” (1992-1997)

Swiss Environmental Priority Programme, specifically subproject “Climate and Environment in the Alpine Region” CLEAR (1997-2000)

National Competence Centre for Research (NCCR) in Climate (2001-2013)

Initiatives of the scientific community

Climate Change and Switzerland 2050 – Impacts on Environment, Society and Economy (CH2050) (2007)

Swiss Climate Change Scenarios - CH2011 (2011)

Toward Quantitative Scenarios of Climate Change Impacts in Switzerland - CH2014-Impacts (2014)

Tables

Table 1. Acronyms of Swiss Institutions

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroscope</td>
<td>Research Institute of the Federal Office for Agriculture</td>
</tr>
<tr>
<td>C2SM</td>
<td>Centre for Climate Systems Modelling</td>
</tr>
<tr>
<td>eawag</td>
<td>Swiss Federal Institute of Aquatic Science and Technology</td>
</tr>
<tr>
<td>EMPA</td>
<td>Swiss Federal Laboratory for Materials Testing and Research</td>
</tr>
<tr>
<td>FOEN</td>
<td>Federal Office of the Environment</td>
</tr>
<tr>
<td>MeteoSwiss</td>
<td>Federal Office for Meteorology and Climatology</td>
</tr>
<tr>
<td>OcCC</td>
<td>Organe consultatif sur les Changements Climatique (Advisory Body on Climate Change for the Swiss Government)</td>
</tr>
<tr>
<td>OCR</td>
<td>Oeschger Centre for Climate Change Research</td>
</tr>
<tr>
<td>ProClim</td>
<td>Forum for Climate and Global Change of the Swiss Academy of Sciences</td>
</tr>
<tr>
<td>PSI</td>
<td>Paul Scherrer Institute</td>
</tr>
<tr>
<td>SNSF</td>
<td>Swiss National Science Foundation</td>
</tr>
<tr>
<td>WSL</td>
<td>Swiss Federal Institute for Forest, Snow and Landscape Research</td>
</tr>
</tbody>
</table>

Fig. 1: Switzerland is characterized by its variety of landscapes, comprising the Jura Mountains in the northwest, the Alps, and in between the densely populated Swiss Plateau (Satellite Image: © CNES / Spot Image / swisstopo, NPOC).

Fig. 2: Number of scientific papers published by Swiss scientists in areas related to climate change (source: ProClim).
Fig. 3: Annual mean temperature anomalies in Switzerland 1864-2012 shown as deviation from the mean of 1961-1990 based on 12 long series of the NBCN. Years with positive anomalies (warmer) are shown in red and those with negative anomalies (cooler) in blue. The black line shows 20-year Gaussian low pass filtered data.

Fig. 4: Annual mean precipitation anomalies in Switzerland 1864-2012 shown as deviation from the mean of 1961-1990 based on 12 long series of the NBCN. The years with positive anomalies (wetter) are shown in green and those with negative anomalies (drier) in brown. The black line shows 20-year Gaussian low pass filtered data.
Fig. 5. The three pathways of past and future anthropogenic greenhouse gas emissions used in CH2011, along with corresponding projected annual mean warming for entire Switzerland and summer precipitation change for the 30-year average centered at 2085 (adapted from CH201140 and CH201484).

Fig. 6. Observed and modelled annual mean runoff at Massa (blue and grey curves), a catchment that includes the Aletsch Glacier. The dashed line indicates annual mean precipitation. Top: Contribution of ice melt, snow melt, and rainfall to runoff and fraction of glaciated area (red dashed), from FOEN (2012)64.
Fig. 7. Swiss greenhouse gas emissions since 1990 according to the Kyoto Protocol and the CO$_2$ act. Targets are indicated with dashed lines.

Fig. 8. Stamp visualizing temperature change and retreating glaciers in Switzerland, issued 2009 (© Die Post).

Further resources: Swiss Database on Climate Impacts SWIDCHI (http://swidchi.epfl.ch)

Related Articles

<table>
<thead>
<tr>
<th>DOI</th>
<th>Article title</th>
</tr>
</thead>
<tbody>
<tr>
<td>wcc.255</td>
<td>Head L, Adams M, McGregor HV, Toole, S. Climate Change and Australia. WIREs Climate Change, published Online: Oct 9 2013</td>
</tr>
<tr>
<td>wcc.258</td>
<td>Carvalho A, Schmidt L, Duarte Santos F, Delicado, A. Climate change research and policy in Portugal. WIREs Climate Change, published Online: Nov 21 2013.</td>
</tr>
</tbody>
</table>