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Abstract

We become increasingly dependent on online services; therefore, their availability and correct

behavior become increasingly important. Software replication is a popular technique for

ensuring that computer systems continue to provide a correct service even when some of their

components fail. By replicating a service on multiple servers, clients are guaranteed that even

if some replica fails, the service is still available.

At the core of software replication is the consensus problem, where a set of processes has to

agree on a single value. A large number of consensus algorithms for different system models

have been proposed. The most general system models (for which consensus is solvable) do

not make strong assumptions on the synchrony (allow period of asynchrony) and assume

that a subset of processes can fail completely arbitrarily (Byzantine faults). However, solving

consensus in the presence of arbitrary faults and asynchrony is hard and demands sophisti-

cated algorithms. Most of the existing consensus algorithms that deal with arbitrary faults are

monolithic and developed from scratch, or by modifying existing algorithms in a non-modular

manner. As a consequence, these algorithms are rather complex and hard to understand. We

impute this complexity to the lack of adequate abstractions.

The motivation of this thesis is suggesting abstractions that simplify the understanding of exist-

ing consensus algorithms with arbitrary faults and allow modular design of novel algorithms.

The thesis also aims to clarify relations between consensus and the total-order broadcast

problem in the presence of arbitrary faults.

In the context of the consensus problem with arbitrary process faults, the literature distin-

guishes (1) authenticated Byzantine faults, where messages can be signed by the sending

process, and (2) Byzantine faults, where there is no mechanism for signatures. Consensus

protocols that assume Byzantine faults (without authentication) are harder to develop and

prove correct than algorithms that consider authenticated Byzantine faults, even when they

are based on the same idea. We propose an abstraction called weak interactive consistency (or

WIC), that allows us to design consensus algorithms that can be instantiated into algorithms

for authenticated Byzantine faults (signed messages) and algorithms for Byzantine faults. In

other words, WIC unifies Byzantine consensus algorithms with and without signatures. This is

illustrated on two seminal Byzantine consensus algorithms: the Castro-Liskov PBFT algorithm

(no signatures) and the Martin-Alvisi FaB Paxos algorithms (signatures). WIC allows a very

concise expression of these two algorithms. Furthermore, WIC turns out to be fundamental ab-
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straction for solving consensus in the transmission fault model. The transmission fault model

captures faults without blaming a specific component for the fault, and it is well-adapted to

dynamic and transient faults. Using WIC we designed a consensus algorithm that overcomes

limitations of all existing solutions to consensus in this model, which assume the synchronous

system model, or require strong conditions for termination that exclude the case where all

messages of a process can be corrupted.

Then we go one step further in unifying consensus algorithms by proposing a generic consensus

algorithm that highlights, through well chosen parameters, the core mechanisms of a number

of well-known consensus algorithms including Paxos, OneThirdRule, PBFT and FaB Paxos.

Interestingly, the generic algorithm allows us to identify a new Byzantine consensus algorithm

that requires n > 4b, in-between the requirement n > 5b of FaB Paxos and n > 3b of PBFT (b is

the maximum number of Byzantine processes).

Afterwards, we study the relation between consensus and total-order broadcast in the presence

of Byzantine faults. Total-order broadcast is defined for a set of processes, where each process

can broadcast messages, with the guarantee that all processes in this set see the same sequence

of messages. Among the several definitions of Byzantine consensus that differ only by their

validity property, we identify those equivalent to total-order broadcast. We also give the first

deterministic total-order broadcast reduction to consensus with constant time complexity

with respect to consensus.

Finally, we consider state-machine replication (SMR) with Byzantine faults. State-machine

replication is a general approach for replicating services that can be modeled as a state

machine. The key idea of this approach is to guarantee that all replicas start in the same state

and then apply requests from clients in the same order, thereby guaranteeing that the replica

states do not diverge. Recent studies has shown that most BFT-SMR algorithms do not actually

perform well under performance attacks by Byzantine processes. We propose a new BFT-SMR

algorithm, called BFT-Mencius, that guarantees, assuming a partially synchronous system

model, that the latency of updates of correct processes is eventually upper-bounded, even

under performance attacks by Byzantine processes. BFT-Mencius is a modular, signature-

free algorithm based on a new communication primitive called Abortable Timely Announced

Broadcast (ATAB). We evaluate the performance of BFT-Mencius in cluster settings, and show

that it performs comparably to the state-of-the-art algorithms such as PBFT and Spinning in

fault-free configurations and outperforms these algorithms under performance attacks by

Byzantine processes.

Keywords: Distributed Algorithms, Consensus, Unification, Authentication, Byzantine Fault

Tolerance, Total-Order Broadcast, Reduction, State Machine Replication, Performance Attack,

Bounded Delay.
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Résumé

Nous sommes de plus en plus dépendants des services en ligne, et donc, de leur bon fonction-

nement et de leur disponibilité. La réplication logicielle est une solution couramment utilisée

pour assurer qu’un système informatique continue à fournir un service correct en dépit de la

défaillance de certains de ses composants. En répliquant un service sur plusieurs serveurs, les

clients ont l’assurance que le service reste disponible même si certaines répliques subissent

une défaillance.

Le problème de consensus, où un ensemble de processus doivent se mettre d’accord sur une

valeur commune, est au cœur de la réplication logicielle. Un grand nombre d’algorithmes de

consensus ont été proposés avec différentes hypothèses sur les caractéristiques du système

considéré. Le modèle le plus général (dans lequel le problème de consensus peut être résolu)

ne fait pas de suppositions fortes sur le synchronisme du système (le système peut se compor-

ter de manière asynchrone temporairement), et suppose qu’un sous-ensemble des processus

peut subir des défaillances arbitraires (fautes byzantines). Cependant, résoudre le problème

de consensus en présence d’asynchronisme et de fautes byzantines est difficile et repose sur

des algorithmes sophistiqués. La plupart des algorithmes de consensus qui peuvent traiter

des fautes byzantines sont monolithiques. Ils ont été développés soit en partant d’une feuille

blanche, soit en modifiant des algorithmes existants d’une manière non-modulaire. Ainsi, ces

algorithmes sont complexes et difficiles à comprendre. Nous imputons cette complexité à

l’absence d’abstractions adéquates.

L’objectif de cette thèse est de proposer des abstractions que simplifient la compréhension

des algorithmes de consensus existants traitant les fautes byzantines, et de permettre la

conception de nouveaux algorithmes de manière modulaire. Cette thèse a aussi pour objectif

de clarifier la relation entre les problèmes de consensus et de diffusion atomique en présence

de fautes byzantines.

Dans le contexte du problème de consensus avec des fautes arbitraires de processus, la

littérature distingue (1) les fautes byzantines authentifiées, où les messages peuvent être signés

par le processus émetteur, et (2) les fautes byzantines, où il n’y a pas de mécanisme de signature.

Les protocoles de consensus qui supposent des fautes byzantines (sans authentification) sont

plus complexes à développer et à prouver que les algorithmes qui considèrent des fautes

byzantines authentifiées, même quand ils sont fondés sur la même idée. Nous proposons

une abstraction nommée Consistance Interactive Faible (Weak Interactive Consistency, WIC).
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Cette abstraction nous permet de concevoir des algorithmes de consensus qui peuvent être

instanciés pour des fautes byzantines authentifiées (avec messages signés) ou pour des fautes

byzantines. Autrement dit, WIC unifie les algorithmes de consensus pour fautes byzantines

avec et sans signatures. Nous illustrons ceci avec deux algorithmes de consensus fondateurs :

l’algorithme PBFT de Castro et Liskov (sans signatures) et l’algorithme FaB Paxos de Martin et

Alvisi (avec signatures). WIC permet de décrire ces deux algorithmes de manière très concise.

De plus, WIC est une abstraction fondamentale pour résoudre le problème de consensus

dans le modèle de faute de transmissions (transmission fault model). Le modèle de fautes

de transmissions exprime les fautes sans mettre en cause de composants spécifiques. Il est

adapté aux fautes dynamiques et transitoires. Nous avons conçu un algorithme de consensus

utilisant WIC qui s’affranchit des limitations de tous les algorithmes de consensus proposés

dans ce modèle, c’est-à-dire qu’il ne suppose pas un système synchrone, et qu’il peut terminer

même si tous les messages d’un processus peuvent être corrompus.

Nous faisons ensuite un pas de plus dans l’unification des algorithmes de consensus. Nous

proposons un algorithme de consensus générique qui met en évidence au travers d’un en-

semble de paramètres, les mécanismes centraux de plusieurs protocoles de consensus dont

Paxos, OneThirdRule, PBFT, et FaB Paxos. Cet algorithme générique nous permet d’identifier

un nouvel algorithme de consensus pour fautes byzantines qui nécessite n>4b, quand FaB

Paxos nécessite n>5b et PBFT nécessite n>3b (b étant le nombre maximum de processus

byzantins).

Dans le chapitre suivant, nous étudions la relation entre consensus et diffusion atomique en

présence de fautes byzantines. Dans un ensemble de processus où chaque processus peut

diffuser des messages, la diffusion atomique assure que tous les processus de l’ensemble

reçoivent la même séquence de messages. Sur l’ensemble des définitions du problème de

consensus avec des fautes byzantines qui diffèrent seulement par leur propriété de vali-

dité, nous identifions celles qui sont équivalentes au problème de diffusion atomique. Nous

donnons aussi la première réduction déterministe de problème de diffusion atomique au

problème de consensus avec une complexité en temps constante par rapport au problème de

consensus.

Finalement, nous étudions la réplication de machine à états (state machine replication, SMR)

dans le contexte des fautes byzantines. La réplication de machines à états est une approche

générale pour répliquer des services qui peuvent être modélisés comme une machine à états.

Le principe de cette approche est de garantir que toutes les répliques démarrent dans le

même état et exécutent les requêtes des clients dans le même ordre, pour assurer que l’état

des répliques ne diverge pas. Des études récentes ont montré que la plupart des algorithmes

BFT-SMR ont de mauvaises performances en cas d’attaque sur les performances par des

processus byzantins. Nous proposons un nouvel algorithme BFT-SMR, appelé BFT-Mencius,

qui garantit dans le cas d’un système partiellement synchrone, que la latence sur les mises

à jour des processus corrects est éventuellement bornée, même en cas d’attaque sur les

performances par des processus byzantins. BFT-Mencius est en algorithme modulaire ne

nécessitant pas de signatures. Il est fondé sur une nouvelle primitive de communication

appelée Abordable Timely Announced Broadcast. Les performances de BFT-Mencius, évaluées
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sur une grappe de calcul, sont comparables à celles des algorithmes de l’état de l’art tels

que PBFT et Spinning dans les exécutions sans fautes et sont meilleures que celles de ces

algorithmes en cas d’attaque sur les performances par des processus byzantins.

Mots clés : Algorithmes distribués, problème de consensus, unification, authentification,

fautes byzantines, diffusion atomique, réduction, réplication de machine à états, attaque sur

les performances, délais borné.
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1 Introduction

1.1 Thesis Context

We leave in an era in which computing is ubiquitous, where most people use online services

everyday. As we become highly dependent on these services, their availability and correct

functioning are extremely important. The nature of some services such as banking applica-

tions or applications that store medical records, makes outage or malfunction expensive or

unacceptable. Therefore, it is not surprising that a lot of effort is put to ensure high availability

and reliability of these services. However, because of the importance that online services have

in modern society, we have similar expectation for our favorite email service, search service,

social application, even our favorite online game.

However computers fail. The causes of faults are various, including faulty hardware, bit flips

caused by ionizing radiation, overheating, human error and software bugs. Finally, computers

malfunction because of the presence of malicious software such as viruses, worms, etc, or

because they are under attack by hackers. Therefore, the important research question is how

to build reliable systems from components that are inherently unreliable.

There are several approaches to this problem. For instance, the likelihood of failures can

be decreased by designing better hardware and software (fault avoidance). However, this

approach has high costs and can only decrease the likelihood of faults, it can never eliminate

them completely. Another approach, which is the topic of this thesis, is called fault-tolerance.

A system is said to be fault-tolerant if it will continue operating in spite of the failure of some

of its components. A popular way of achieving fault tolerance is software replication: By

replicating a service on multiple servers, clients are guaranteed that even if some replica fails,

the service is still available. Software replication is widely used because of its generality (can

be applied to most services) and its low cost (use of the off-the-shelf hardware).
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Chapter 1. Introduction

State Machine Replication State machine replication (SMR) is a general approach for repli-

cating services that can be modeled as a deterministic state machine [Lam78, Sch90]. The key

idea of this approach is to guarantee that all replicas start in the same state and then apply

requests from clients in the same order, thereby guaranteeing that the replicas’ states will not

diverge.

The problem of agreeing on a order for a sequence of requests is an example of the total-

order broadcast (or atomic broadcast ) problem. Total-order broadcast is defined for a set of

processes, where each process can broadcast messages, with the guarantee that all processes

in this set see the same sequence of messages. At the heart of atomic broadcast, and therefore

of state machine replication, is the consensus problem, where a set of processes has to agree

on a single value. The two problems are in fact closely related, meaning that a solution to one

can be used to solve the other.

Consensus Consensus is probably the most fundamental problem in fault-tolerant dis-

tributed computing. As such, it has been heavily studied for the last 30 years, both from a

theoretical and practical perspective. This explains the numerous consensus algorithms that

have been published, with different features and for different fault models.

The difficulty of solving consensus depends both on the failure assumptions (type and number

of failures) and on the degree of synchrony of the system. The two main models considered

in distributed computing are: the synchronous system model and the asynchronous system

model. In a synchronous system model there is (1) a known bound∆ on the transmission delay

of messages, and (2) a known bound Φ on the relative speed of processes. On the other hand,

in an asynchronous system there is no bound on the transmission delay of messages and no

bound on the relative speed of processes. This typically models a system with unpredictable

load on the network and on the CPU.

Most research on consensus algorithms is considering component fault models, where faults

are attached to a component that is either a process or a link. With respect to process/link

faults, consensus can be considered with different fault assumptions. On the one end of

the spectrum, processes/links can commit so called benign faults (processes fail only by

crashing and links only loose messages); on the other end, faulty processes/links can exhibit an

arbitrary behavior. Furthermore, in the context of a component fault model, faults are mainly

permanent (as opposed to transient faults): if a process or link commits a fault, the process/link

is considered to be faulty during whole execution. It follows that not all components can be

faulty (at most f out of n per run), which is referred to as static faults (as opposed to dynamic

faults that can affect any component).

In the context of arbitrary process faults, the literature distinguishes authenticated Byzantine

faults, where messages can be signed by the sending process (with the assumption that the

signature cannot be forged by any other process), and Byzantine faults, where there is no
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mechanism for signatures (but the receiver of a message knows the identity of the sender)1.

Consensus protocols that assume Byzantine faults (without authentication) are harder to

develop and prove correct [ST87].

An alternative approach to the component fault models is the transmission fault model that

captures faults without blaming a specific component for the fault [SW89]. The transmission

fault model is well-adapted to dynamic and transient faults.

Unfortunately, consensus is impossible to solve with a deterministic algorithm2 in an asyn-

chronous system even if only single process may crash [FLP85]. Although it is possible to solve

consensus in the synchronous system model with Byzantine processes, it is not considered

as a good idea from a practical point of view. The reason is that the synchronous system

model requires to be pessimistic when defining the bounds on message transmission delays

(and process relative speeds). Pessimistic bounds have a negative impact on the performance

of consensus algorithms. Furthermore, considering synchronous solutions in the context

of arbitrary faults might be dangerous: an attacker may simply target the timely delivery of

messages in order to compromise the correctness of the protocol.

Therefore, the research community has focused its attention on intermediate models, with

weaker assumptions than the synchronous model, but where consensus is still solvable. One

such model is the partially synchronous model [DLS88], which relaxes the assumptions of the

synchronous system by requiring that the timing bounds hold only eventually. It is possible to

solve consensus in the partially synchronous system model, and contrary to the synchronous

system model, the partially synchronous system model does not require being too pessimistic

when defining the bounds on message transmission delays and process relative speeds.

Total-Order Broadcast The relation of consensus and total-order broadcast (called also

atomic broadcast), including the reduction of total-order broadcast to consensus, is well

understood in the case of benign faults [CT96a]. On the contrary, little is known on the relation

between total-order broadcast and the consensus problem in the context of Byzantine faults.

One can also observe that there exist several definitions of consensus with Byzantine faults

(which differ in the validity property), and it is not clear at all which one should be considered

for reduction of total-order broadcast.

Byzantine Fault Tolerance under Attack Byzantine fault-tolerant (BFT) state machine repli-

cation algorithms allow computer systems to continue to provide a correct service even when

some of their components behave in an arbitrary way, either due to faults or due to a malicious

intruder. However, recent studies have shown that most BFT-SMR systems do not actually

tolerate Byzantine faults well [CWA+09, ACKL11]. More precisely, it has been shown that a

faulty process exhibiting performance failures can delay the ordering of requests, causing a

1In [LSP82], the latter is called Byzantine faults with oral messages.
2A deterministic algorithm is an algorithm that does not use randomization (random number generation).
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considerable increase in latency and a great reduction in throughput. Performance failures

were defined as Byzantine processes behaving as a “correct but very slow” servers.

This led to the definition of a new performance criterion, called bounded-delay [ACKL11].

Bounded-delay requires that, in a (long enough) period of synchrony the latency of updates

initiated by correct processes is eventually upper-bounded3, even in the presence of Byzantine

processes. In a similar spirit, Clement et al. [CWA+09] have advocated what they called robust

BFT. That is, they propose to shift the focus from algorithms that optimize only best case

performance, and to design algorithms that can offer predictable performance under the

broadest possible set of circumstances—including when faults occur.

1.2 Thesis Motivation

Dealing with arbitrary faults and asynchrony is hard and requires sophisticated algorithms.

Most of the existing algorithms (that deal with arbitrary faults) are monolithic and developed

from scratch, or obtained by modifying existing algorithms in a non-modular manner. As a

consequence, these algorithms are rather complex and hard to understand. We impute this

complexity to the lack of adequate abstractions.

1.3 Thesis Goal

The goal of this thesis is suggesting abstractions that improve the understanding of existing

fault tolerant algorithms (that deal with arbitrary faults) and allow modular design of novel

algorithms. The thesis also aims to clarify relations between fundamental problems, such as

consensus and total-order broadcast, in the presence of arbitrary faults.

1.4 Thesis Contribution

The thesis makes the following contributions:

Unifying Byzantine Consensus Algorithms with Weak Interactive Consistency Consensus

protocols that assume Byzantine faults (without authentication) are harder to develop and

prove correct [ST87] than algorithms that consider authenticated Byzantine faults, even when

they are based on the same idea. We propose an abstraction called weak interactive consistency

(or WIC), that allows us to design a consensus algorithm that can be instantiated into an

algorithm for authenticated Byzantine faults (signed messages) and algorithm for Byzantine

faults, i.e., it unifies Byzantine consensus algorithms with and without signatures. The power

of WIC is illustrated on two seminal Byzantine consensus algorithms: the Castro-Liskov

PBFT algorithm [CL02] (no signatures) and the Martin-Alvisi FaB Paxos algorithm [MA06]

3The additional assumption is that a system that is not overloaded and where processes have sufficient band-
width to communicate. Without such assumptions it is hard to provide any guarantees.
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(signatures). WIC allows a very concise expression of these two algorithms.

Tolerating Permanent and Transient Faults Transmission faults allow us to reason about

permanent and transient faults in a uniform way. However, all existing solutions to consensus

in this model are either in the synchronous system model, or require strong conditions for

termination, that exclude the case where all messages of a process can be corrupted. We

propose a consensus algorithm for the transmission fault model that does not have those

limitations. The algorithm considers a system parameterized with α and f . In every round

each process can receive up to α corrupted messages; eventually rounds are synchronous and

the messages sent by at most f processes are corrupted. Before these synchronous rounds,

any number of benign faults is tolerated. Depending on the nature and number of permanent

and transient transmission faults, we obtain different conditions on n (number of processes)

for solving consensus.

Generic Consensus Algorithm for Benign and Byzantine Faults Numerous consensus algo-

rithms have been published, with different features and for different fault models. Understand-

ing these numerous algorithms could be made easier by identifying the core mechanisms on

which these algorithms rely. We propose a generic consensus algorithm that highlights, through

well chosen parameters, the core mechanisms of a number of well-known consensus algo-

rithms including Paxos [Lam98], OneThirdRule [CBS09a], PBFT [CL02] and FaB Paxos [MA06].

Interestingly, the generic algorithm allowed us to identify a new Byzantine consensus algo-

rithm that requires n > 4b, in-between the requirement n > 5b of FaB Paxos and n > 3b of

PBFT (b is the maximum number of Byzantine processes). The generic consensus algorithm

contributes to identify key similarities rather than non fundamental differences between

consensus algorithms.

On the Reduction of Total-Order Broadcast to Consensus with Byzantine Faults We inves-

tigate the reduction of total-order broadcast to consensus in systems with Byzantine faults.

Among the several definitions of Byzantine consensus that differ only by their validity property,

we identify those equivalent to total-order broadcast. Finally, we give the first total-order

broadcast reduction algorithm to consensus that has constant time complexity with respect to

consensus.

Bounded Delay in Byzantine Tolerant State Machine Replication We propose a new state

machine replication protocol for the partially synchronous system with Byzantine faults. The

algorithm, called BFT-Mencius, guarantees that the latency of updates initiated by correct

processes is eventually upper-bounded, even in the presence of Byzantine processes. BFT-

Mencius is based on a new communication primitive, Abortable Timely Announced Broadcast

(ATAB), and does not use signatures. We evaluate the performance of BFT-Mencius in the
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cluster settings, and show that it performs comparably to the state-of-the-art algorithms in

fault-free configurations and outperforms them under performance attacks by Byzantine

processes.

1.5 Outline

Chapter 2 provides the background material, including definitions and problem statements.

Chapter 3 introduces weak interactive consistency abstraction (WIC) and show how it can

be used to express concisely two well-known consensus algorithms. Chapter 4 shows the

usefulness of WIC abstraction in the context of transmission fault model, where it is the key

abstraction for solving consensus in a very weak model that considers both transient and

permanent faults. in Chapter 5 we present our generic consensus algorithm that captures

the core mechanisms of numerous consensus algorithms. In Chapter 6 we study the relation

between total-order broadcast and consensus in systems with Byzantine faults. Chapter 7

presents new BFT state machine replication protocol that performs well under performance

attacks by Byzantine processes. The thesis concludes in Chapter 8 that summarizes main

results and identifies areas for future research.
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2 Preliminaries

The chapter introduces the problems considered in this thesis, and defines the partially

synchronous system model and the basic round model.

2.1 Consensus Problem

The consensus problem is defined over a set of processes Π, where each process p ∈Π starts

with a given initial value, and later decides on a common value. In this thesis we will consider

the consensus problem in the context of arbitrary process faults and in the context of the

transmission fault model. The consensus definitions are slightly different in these two cases.

2.1.1 Arbitrary Process faults

In the context of arbitrary process faults, we differentiate honest processes that execute

algorithms faithfully, from Byzantine processes [LSP82], that exhibit arbitrary behavior. Honest

processes can be correct or faulty. An honest process is faulty if it eventually crashes, and is

correct otherwise. The set of honest processes is denoted by H and the set of correct processes

by C . The consensus problem is formally specified by the following properties:

• Agreement: No two honest processes decide differently.

• Termination: All correct processes eventually decide.

• Weak Validity: If all processes are honest and if an honest process decides v , then v is

the initial value of some process.

• Strong Unanimity: If all honest processes have the same initial value v and an honest

process decides, then it decides v .

There are other definitions, which instead of Weak Validity and Strong Unanimity, consider a

different validity property. They will be discussed in Chapter 6.
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2.1.2 Transmission Faults

In the context of the transmission fault model, we consider the following specification of the

consensus problem:

• Agreement: No two processes decide differently.

• Termination: All processes eventually decide.

• Integrity: If all processes have the same initial value this is the only possible decision

value.

As in the transmission fault model there are no faulty processes, all processes must decide the

initial value in the Integrity clause, and all processes must make a decision by the Termination

clause.

2.2 Total-order Broadcast

Total-Order Broadcast is defined in terms of two primitives, to-broadcast and to-deliver. A

process p that wishes to broadcast a message m taken from the set of messages M invokes

to-broadcast(m). A message m is delivered by process q by executing to-deliver(m). We

assume that the sender of a message can be determined from the message (denoted by

sender (m)) and that all messages are unique. Both can be easily achieved by adding process

identifiers and sequence numbers to messages. Total-order broadcast fulfills the following

properties [HT94]:

• TO-Validity: If a correct process p invokes to-broadcast(m), then p eventually executes

to-deliver(m).

• TO-Agreement: If a correct process p executes to-deliver(m), then every correct process

q eventually executes to-deliver(m).

• TO-Integrity: For any message m, every correct process p executes to-deliver(m) at most

once. Moreover, if sender (m) is correct, then it previously invoked to-broadcast(m).

• TO-Order: If correct processes p and q execute to-deliver(m) and to-deliver(m′), then p

delivers m before m′ if and only if q delivers m before m′.
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2.3 State Machine Replication

State machine replication (SMR) is a general approach for replicating services that can be

modeled as a deterministic state machine [Lam78, Sch90]. The key idea of this approach

is to guarantee that all replicas start in the same state and then apply requests from clients

in the same order, thereby guaranteeing that the replicas’ states will not diverge. Following

Schneider [Sch90], we note that the following is key for implementing a replicated state

machine tolerant to (Byzantine) faults:

• Replica Coordination. All [non-faulty] replicas receive and process the same sequence

of requests.

Moreover, as Schneider also notes this property can be decomposed into two parts, Agreement

and Order: Agreement requires all (non-faulty) replicas to receive all requests, and Order

requires that the order of received requests is the same at all replicas.

There is an additional requirement that needs to be ensured by Byzantine tolerant state ma-

chine replication: only requests proposed by clients are executed. This requirement is trivially

ensured by using cryptographic signatures to sign client requests. Request authentication can

also be achieved using message authentication codes (MAC) [CL02, AABC08a].

2.4 Partially Synchronous System Model

The partially synchronous system model [DLS88] lies between a synchronous system and an

asynchronous system. It relaxes the assumptions of the synchronous system, by requiring that

the timing bounds hold only eventually. We can distinguish partial synchrony for processes

and partial synchrony for communication. There are two variants of the partially synchronous

model, depending on the assumptions on the bound ∆ on message transmission delay and Φ

on relative process speed:

Unknown bounds The bounds ∆ and Φ hold from the beginning but are unknown (i.e., ∆

and Φ depend on the run).

Known bounds The bounds ∆ and Φ are known but hold only after an unknown time called

Global Stabilization Time (GST) (i.e., GST varies from run to run). It is also assumed that

channels may lose messages before GST but the channels among correct processes are

reliable after GST.
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2.5 The Basic Round Model

The basic round model is a computational model that was introduced in [DLS88] as a conve-

nient abstraction on top of the partially synchronous system model. Using this abstraction,

rather than the raw system model, improves the clarity of the algorithms and simplifies the

proofs. In the basic round model, distributed algorithms are expressed as a sequence of

rounds. Each round r consists of a sending step, a receive step, and a state transition step:

1. In the sending step of round r , each process p sends a message to each process according

to a “sending” function Sr
p . 1

2. In the receive step of round r , each process q receives a subset of all messages sent in

round r (it can be the empty set); messages received by process p in round r are denoted

by ~µr
p (~µr

p [q] is the message received from q). The receive step is implicit, i.e., it does

not appear in the algorithm. Note that this implies that a message sent in round r can

only be received in round r (rounds are closed).

3. In the state transition step of round r (that takes place at the end of round r ), each

process p computes a new state according to a “transition” function T r
p that takes as

input the vector of messages it received at round r and its current state.

[DLS88] shows how to implement rounds that are eventually synchronous in the presence

of Byzantine processes, i.e., eventually, for all rounds r , all messages sent in a round r by a

correct process are received in the round r by all correct processes.

The state2 of process p in round r is denoted by sr
p ; the message sent by an honest process is

denoted by Sr
p (sr

p ). We will refer to some field fld of a message m using notation m.fld.

1Without loss of generality, the same message is sent to all.
2 Note that referring to the state of a Byzantine process does not make sense.
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3 Unifying Byzantine Consensus
Algorithms with WIC

As explained in Chapter 1, in the context of arbitrary process faults, the literature distinguishes

authenticated Byzantine faults, where messages can be signed by the sending process (with

the assumption that the signature cannot be forged by any other process), and Byzantine

faults, where there is no mechanism for signatures (but the receiver of a message knows the

identity of the sender). In this chapter we introduce an abstraction called weak interactive

consistency (WIC) that unifies consensus algorithms with and without signed messages. WIC

can be implemented with and without signatures.

The power of WIC is illustrated on two seminal Byzantine consensus algorithms: the Castro-

Liskov PBFT algorithm [CL02] (no signatures) and the Martin-Alvisi FaB Paxos algorithm

[MA06] (signatures). WIC allows a very concise expression of these two algorithms.

Publication: Zarko Milosevic, Martin Hutle and André Schiper. Unifying Byzantine Con-

sensus Algorithms with Weak Interactive Consistency. In 13th International Conference On

Principle Of Distributed Systems (OPODIS 2009), Nimes, France, December 15 - December 18,

2009.

3.1 Introduction

Consensus protocols that assume Byzantine faults (without authentication) are harder to

develop and prove correct [ST87]. As a consequence, they tend to be more complicated and

harder to understand than the protocols that assume authenticated Byzantine faults, even

when they are based on the same idea. The existence of these two fault models raises the fol-

lowing question: is it possible to design a consensus algorithm such that it can be instantiated

into an algorithm for authenticated Byzantine faults and an algorithm for Byzantine faults?

This question has been addressed by Srikanth and Toueg in [ST87] for the Byzantine agreement
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problem,1 by defining the authenticated broadcast primitive. Authenticated broadcast is a

communication primitive that provides additional guarantees compared to, e.g., a normal

(unreliable) broadcast. Srikanth and Toueg solve Byzantine agreement using authenticated

broadcast, and show that authenticated broadcast can be implemented with and without

signatures.

However, authenticated broadcast does not encapsulate all the possible uses of signed mes-

sages when solving consensus. One typical example is the Fast Byzantine Paxos algorithm

[MA06], which relies on signed messages whenever the coordinator changes.

Complementing the approach of [ST87], we define an abstraction different from authenti-

cated broadcast that we call weak interactive consistency. 2 Interactive consistency is defined

in [PSL80] as a problem where correct processes must agree on a vector such that the i th

element of this vector is the initial value of the i th process if this process is correct. Our

abstraction is a weaker variant of interactive consistency, hence the name “weak” interac-

tive consistency. Similarly to authenticated broadcast, weak interactive consistency can be

implemented with and without signatures. We illustrate the power of weak interactive consis-

tency by reexamining two seminal Byzantine consensus algorithms: the Castro-Liskov PBFT

algorithm, which does not use signatures [CL02], and the Martin-Alvisi FaB Paxos algorithm,

which relies on signatures [MA06]. We show how to express these two algorithms using the

weak interactive consistency abstraction, and call these two algorithms CL (for Castro-Liskov),

resp. MA (for Martin-Alvisi).

Both CL and MA are very concise algorithms. Moreover, replacing in CL weak interactive

consistency with a signature-free implementation basically leads to the original signature-free

PBFT algorithm, while replacing in MA weak interactive consistency with a signature-based

implementation basically leads to the original signature-based FaB Paxos algorithm. In the

latter case, the algorithm obtained is almost identical to the original algorithm; in the former

case, the differences are slightly more important. In addition, using MA with a signature-free

implementation of WIC allows us to derive a signature-free variant of FaB Paxos.

Roadmap The rest of the chapter is structured as follows. Weak interactive consistency is

informally introduced in Section 3.2, and then formally defined in Section 3.3. In Section 3.4

we show that weak interactive consistency can be implemented with and without signatures.

Section 3.5 describes the MA consensus algorithm (FaB Paxos expressed using weak interac-

tive consistency) and the CL consensus algorithm (PBFT expressed using weak interactive

consistency). Section 3.6 discusses related work, and Section 3.7 concludes the chapter.

1In this problem, a transmitter sends a message to a set of processes, all processes eventually deliver a single
message, and (i) all correct processes agree on the same message, (ii) if the transmitter is correct, then all correct
processes agree on the message of the transmitter.

2In [Lam83], Lamport defines "Weak Interactive Consistency Problem", as a general problem of reaching agree-
ment. In [DGG00a], Doudou et al. define an abstraction called "Weak Interactive Consistency" (or WIConsistency),
with a different definition than ours. We explain the difference in Section 3.6.

12



3.2. Weak interactive consistency: an informal introduction

p1

p2

p3

p4

v1

v2

v3

v4

x
x
x
x

Figure 3.1: Coordinator change: p1 is the new coordinator.

3.2 Weak interactive consistency: an informal introduction

3.2.1 On the use of signatures

We start by addressing the following question: where are signatures used in coordinator based

consensus algorithms? Signatures are typically used each time the coordinator changes, as

done for example in the FaB Paxos algorithm [MA06]. The corresponding communication

pattern is illustrated in Figure 3.1, and addresses the following issue. Assume that the previous

coordinator has brought the system into a configuration where a process already decided v ; in

this case, in order to ensure safety (i.e., agreement) the new coordinator can only propose v .

This is done as follows. First every process sends its current estimate to the new coordinator

(vi sent by pi to p1 in Figure 3.1). Second, if the coordinator p1 receives a quorum of messages,

then p1 applies a function f that returns some value x. The quorum ensures that if a process

has already decided v , then f returns v . Finally, the value returned by f is then sent to all (x

sent by p1 in Figure 3.1).

This solution does not work with a Byzantine coordinator: the value sent by the coordinator p1

might not be the value returned by f . Safety can here be ensured using signatures: Processes

pi sign the estimates vi sent to the coordinator p1, and p1 sends x together with the quorum

of signed estimates it received. This allows a correct process pi , receiving x from p1, to verify

whether x is consistent with the function f . If not, then pi ignores x.

Are signatures mandatory here? We investigate this question, first addressing safety and then

liveness.

3.2.2 Safe updates requires neither signatures nor a coordinator

As said, safety means that if a process has decided v , and thus a quorum of processes had

v as their estimate at the beginning of the two rounds of Figure 3.1, then each process can

only update its estimate to v . This property can be ensured without signatures and without

coordinator: each process pi simply sends vi to all, and each process pi behaves like the

coordinator: if pi receives a quorum of messages, it updates its estimate with the value

returned by f .
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p1

p2

p3

p4
init forward echo

Figure 3.2: Three rounds to get rid of signatures when changing coordinator to p1.

This shows that updating the estimate maintaining safety does not require a coordinator.

However, as we show in the next section, a coordinator is reintroduced for liveness.

3.2.3 Coordinator for liveness

The coordinator in Figure 3.1 has two roles: (i) it ensures safety (using signatures), and (ii)

it tries to bring the system into a univalent configuration (if not yet so), in order to ensure

liveness (i.e., termination) of the consensus algorithm. A configuration typically becomes

v-valent as soon as a quorum of correct processes update their estimate to v . This is ensured

by a correct coordinator, if its message is received by a quorum of correct processes. Ensuring

that a quorum of correct processes update their estimate to the same value v can also be

implemented without signatures with an all-to-all communication schema, if all correct

processes receive the same set (of quorum size) of values. Indeed, if two correct processes apply

f to the same set of values, they update their estimate to the same value.

However, ensuring that all correct processes receive the same set of messages is problematic

in the presence of Byzantine processes: (i) a Byzantine process can send v to some correct

process pi and v ′ to some other correct process p j , and (ii) a Byzantine process can send v to

some correct process pi and nothing to some other correct process p j .

These problems can be addressed using two all-to-all rounds and one all-to-coordinator

rounds, as shown in Figure 3.2 (to be compared with the “init” round followed by the “echo”

round of authenticated broadcast [ST87], see Figure 3.3).

These three rounds can be seen as one all-to-all macro-round that “always” satisfies integrity

and “eventually” satisfies consistency:

Integrity. If a correct process p receives v from a correct process q in super-round r , then v

was sent by q in super-round r .

Consistency. (i) If a correct process pi sends v in super-round r , then every correct process

receives v from pi in super-round r , and (ii) all correct processes receive the same set of

messages in super-round r .
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p1

p2

p3

p4
init echo

Figure 3.3: Two rounds to get rid of signatures for authenticated broadcast [ST87].

As noted in Section 3.2.2, integrity ensures safety. As noted at the beginning of this section,

eventual consistency allows us to eventually bring the system into a univalent configuration,

thus ensuring liveness.

In the scheme of Figure 3.2 we combine the concept of a coordinator as depicted in Figure 3.1

with the authentication scheme of [ST87] depicted in Figure 3.3.

This schema ensures that in synchronous rounds (which eventually exist in a partially syn-

chronous model, see Section 2.4), messages received by a correct coordinator in the “forward”

round (see Figure 3.2), are received by all correct processes in the “echo” round (see Figure

3.2). 3 Note that without having the coordinator, the authentication scheme of [ST87] is not

able to provide a super-round such that all processes receive the same set of messages at the

end of this super-round, since a Byzantine process can always prevent this from happening.

We call the problem of always ensuring integrity and eventually consistency the weak inter-

active consistency problem, or simply WIC.4 We show below that WIC is a unifying concept

for Byzantine consensus algorithms. WIC can be implemented with signatures in two rounds

(Figure 3.1), or without signatures in three rounds (Figure 3.2), as shown in Section 3.4.

3.3 Definition of WIC

Assuming synchronous rounds is a strong assumption that we do not want to consider here.

On the other side, an asynchronous system is not strong enough: WIC is not implementable

in such a system. We consider a third option, i.e., the partially synchronous system model (see

Section 2.4). More precisely we consider an abstraction on top of the partially synchronous

system model, namely the basic round model (see Section 2.5). Among the n processes in our

system, we assume that at most b are Byzantine. We do not make any assumption about the

behavior of Byzantine processes.

3The authentication scheme of [ST87] ensures that, during the synchronous rounds, if a message is received by
a correct process in some round r ′, then it is received by all correct processes the latest in round r ′+1.

4The relation with “interactive consistency” [PSL80], is explained in Section 3.1.
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In every round of the basic round model, if an honest process sends v , then every honest

process receives v or nothing. This can formally be expressed by the following predicate (⊥
represents no message reception):

P int(r ) ≡∀p, q ∈H : (~µr
p [q] = Sr

q (sr
q ) ) ∨ (~µr

p [q] =⊥)

The basic round model ensures that rounds are eventually synchronous, i.e., eventually, for all

rounds r , messages sent in round r by a correct process are received in round r by all correct

processes. The fact that a round r is synchronous is formally expressed by the following

predicate:

Pgood(r ) ≡∀p, q ∈C : ~µr
p [q] = Sr

q (sr
q )

We have informally defined WIC by an integrity property and by a consistency property that

must hold “eventually”. The integrity property is expressed by the predicate P int . “Eventual”

consistency formally means that there exists a synchronous round r in which consistency

holds:

Pcons(r ) ≡Pgood(r )∧∀p, q ∈C : ~µr
p =~µr

q

Therefore, WIC is formally expressed by the following predicate:

∀r : P int(r )∧∃r : Pcons(r )

Note that Pcons(r ) is stronger than Pgood(r ). Consider two correct processes p and q , and a

Byzantine process sending a message m to all processes in round r : Pgood(r ) allows m to be

received by p and not by q ; Pcons(r ) does not allow this.

3.4 Implementing WIC

For implementing WIC, we show in this section that rounds that satisfy Pgood can be trans-

formed into a round that satisfies Pcons. This transformation can be formally expressed thanks

to the notion of predicate simulation. Intuitively, an algorithm A is a predicate simulation of

P ′ from P , if several rounds where P holds simulate one round where P ′ holds. Formally,

given (macro) round r , we say that an algorithm A is a k-round simulation of predicate P ′

(e.g., Pcons) from predicate P (e.g., Pgood), if there is a sequence of k rounds 〈r,1〉 to 〈r,k〉
(rounds 〈r,1〉 to 〈r,k〉 define a macro-round r ) such that: (i) P holds for each round 〈r, i 〉,
i ∈ [1,k]; (ii) each process p executes A in each round 〈r, i 〉, i ∈ [1,k]; (iii) for each process p,

the message mp sent by p in round 〈r,1〉 is the message sent by p in (macro) round r ; (iv)

for each process p, the messages received by p in (macro) round r are computed by p at the

end of round 〈r,k〉; and (v) P ′ holds for (macro) round r . We also say that (macro) round r is

simulated by the k rounds 〈r,1〉 to 〈r,k〉.
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Algorithm 3.1 Getting WIC from Pgood ∧P int with signatures

1: Initialization:
2: ∀q ∈Π : receivedp [q] ←⊥
3: Round ρ = 〈r,1〉:
4: Sρp :
5: send σp (mp ,r ) to coord(r )
6: T ρ

p :
7: if p = coord(r ) then
8: receivedp ←~µ

ρ
p

9: Round ρ = 〈r,2〉:
10: Sρp :
11: if p = coord(r ) then
12: send receivedp to all
13: T ρ

p :
14: for all q ∈Π do
15: ~Mp [q] ←⊥
16: if signature of~µρp [coord(r )][q] is valid then

17: (msg ,r ound) ←σ−1(~µρp [coord(r )][q])
18: if r ound = r then
19: ~Mp [q] ← msg

We give two simulations, one with and one without digital signatures. Both simulations rely on

a coordinator. The simulation with signatures requires two rounds with the communication

pattern of Figure 3.1, whereas the simulation without signatures requires three rounds with

the communication pattern of Figure 3.2. The coordinator of macro-round r is denoted by

coord(r ). Interestingly, there is also a decentralized (i.e., coordinator-free) simulation of Pcons ,

that is signature-free, and that requires b +1 rounds [BS10].

We will analyze the two simulations in the following cases: (i) coor d(r ) is correct and the

rounds satisfy Pgood, and (ii) coor d(r ) may be faulty and only P int holds for the rounds. In

case (i), we have a translation of Pcons from Pgood. Case (ii) ensures that the translation is

always harmless, even if the coordinator is faulty.

Therefore, the big picture is the following. [DLS88] shows how to implement rounds for which

Pgood eventually holds. Moreover, the rotating coordinator paradigm eventually ensures

macro-rounds with a correct coordinator. Together, this eventually ensures case (i).

3.4.1 Simulation with signatures

Algorithm 3.1 is a 2-round simulation with signatures that preserves P int (i.e., if P int holds for

every round, then P int holds for the macro-round). Moreover, when coor d(r ) is correct, it

simulated Pcons from Pgood. At the beginning of Algorithm 3.1 every process p has a message

mp (line 5); at the end every process p has a vector ~Mp of received messages (lines 15, 19) 5.

5When round r is simulated using Algorithm 3.1, mp is initially set to the Sr
p (sr

p ) and in the end~µr
p is set to ~Mp .
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Vector receivedp (line 8) represents the messages that p received (one element per process).

Message m signed by p is denoted by σp (m). The function σ−1 allows us to get back the

original message out of a signed message.

Algorithm 3.1 is straightforward: each process p sends its signed message mp to the coordi-

nator (line 5) in round 〈r,1〉. In round 〈r,2〉, the coordinator forwards all messages received

(line 12).

Proposition 3.1. Algorithm 3.1 preserves P int(r ).

Proof. Every process checks at lines 16 and 18 whether the signature and the macro-round

number of the message are valid. Since signatures cannot be forged, for all correct processes

p, q , if p receives m 6= ⊥ from q , then q has sent m.

Proposition 3.2. If coor d(r ) is correct, then Algorithm 3.1 simulates Pcons from Pgood.

Proof. Since we have Pgood(〈r,1〉), the correct coordinator receives in round 〈r,1〉 the message

from all correct processes, and possibly from some faulty processes. Since the coordinator is

correct and we have Pgood(〈r,2〉), all messages received by the coordinator are forwarded in

round 〈r,2〉, and received by all correct processes.

From Propositions 3.1 and 3.2 follows directly that repeating Algorithm 3.1 with a rotating

coordinator ensures WIC (after GST). Indeed, by Proposition 3.1, predicate P int(r ) holds for

each (simulated) round r . During a synchronous period (after GST) we have Pgood(r ) for

every r , and eventually a correct coordinator, i.e., the assumptions of Proposition 3.2. By

Proposition 3.2 we have Pcons(r ) for some (simulated) round r . Thus WIC holds.

3.4.2 Simulation without signatures

Algorithm 3.2 is a 3-round simulation with signatures, inspired by [CL02], that preserves P int

(i.e., if P int holds for every round, then P int holds for the macro-round). Moreover, when

coor d(r ) is correct, it simulated Pcons from Pgood. It requires n ≥ 3b +1. At the beginning

of Algorithm 3.2 every process p has a message mp (line 7); at the end every process p has a

vector ~Mp of received messages (lines 22, 24) 6.

We informally explain Algorithm 3.2 using Figure 3.4. Compared to Figure 3.2, Figure 3.4 shows

only the messages relevant to v2 sent by p2. Process p1 is the coordinator. In round 〈r,1〉,
process p2 sends v2 to all. In round 〈r,2〉, all processes send the value received from p2 to

the coordinator. The coordinator then compares the value received from p2 in round 〈r,1〉,
say v2, with the value indirectly received from the other processes. If at least 2b +1 values

v2 have been received by the coordinator p1, then p1 keeps v2 as the value received from p2.

6When round r is simulated using Algorithm 3.2, mp is initially set to the Sr
p (sr

p ) and in the end~µr
p is set to ~Mp .
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Algorithm 3.2 Getting WIC from Pgood ∧P int without signatures

1: Initialization:
2: ∀q ∈Π : receivedp [q] ←⊥
3: Round ρ = 〈r,1〉:
4: Sρp :
5: send mp to all
6: T ρ

p :

7: receivedp ←~µ
ρ
p

8: Round ρ = 〈r,2〉:
9: Sρp :
10: send receivedp to coord(r )
11: T ρ

p :
12: if p = coord(r ) then
13: for all q ∈Π do
14: if

∣∣{q ′ ∈Π :~µρp [q ′][q] = receivedp [q]
}∣∣< 2b +1 then

15: receivedp [q] ←⊥
16: Round ρ = 〈r,3〉:
17: Sρp :
18: send 〈receivedp〉 to all
19: T ρ

p :
20: for all q ∈Π do
21: if (~µρp [coord(r )][q] 6= ⊥) ∧ ∣∣{i ∈Π :~µρp [i ][q] =~µρp [coord(r )][q]

}∣∣≥ b +1 then

22: ~Mp [q] ←~µ
ρ
p [coord(r )][q]

23: else
24: ~Mp [q] ←⊥

Otherwise p1 sets the value received from p2 to ⊥. This guarantees that, if p1 keeps v2, then at

least b +1 correct processes have received v2 from p2 in round 〈r,1〉.

Finally, in round 〈r,3〉 every process sends the value received from p2 in round 〈r,1〉 to all. The

final value received from p2 at the end of round 〈r,3〉 is computed as follows at each process

pi . Let vali be the value received by pi from coordinator p1 in round 〈r,3〉. If vali is ⊥ then

pi receives ⊥ from p2. Process pi receives ⊥ from p2 in another case: if pi did not receive b+1

values equal to vali in round 〈r,3〉. Otherwise, at least b +1 values received by pi in round

〈r,3〉 are equal to vali , and pi receives vali from p2.

Proposition 3.3. Algorithm 3.2 preserves P int(r ).

Proof. Let p, q be two correct processes. Assume for the sake of contradiction that Sr
p (sr

p ) = v ,

~Mq [p] = v ′, where v ′ 6= v , v ′ 6= ⊥. Therefore, by line 21, we have
∣∣∣{i :~µρq [i ][p] = v ′

}∣∣∣ ≥ b +1.

Consequently, for at least one correct process c we have~µρq [c][p] = v ′. Element~µρq [c][p] is the

message received by c from p in round 〈r,1〉, which is receivedc [p]. However, receivedc [p] = v ′

is in contradiction with the assumption that p and c are correct.

Proposition 3.4. If coor d(r ) is correct, then Algorithm 3.2 simulates Pcons from Pgood.

19



Chapter 3. Unifying Byzantine Consensus
Algorithms with WIC

p1

p2

p3

p4
〈r,1〉

v2

v2
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v2

〈r,2〉 〈r,3〉

Figure 3.4: Simulation without signatures from the point of view of v2 sent by p2 (p1 is the
coordinator).

Proof. Let p, q be two correct processes, and s some other process (not necessarily correct).

Let c be the correct coordinator. Let Pgood(〈r,1〉), Pgood(〈r,2〉) and Pgood(〈r,3〉) hold. We first

show (i) ~Mp [q] = Sr
q (sr

q ) , and then (ii) (~Mp [s] = v 6= ⊥) ⇒ (~Mq [s] = v). Note that from (ii) it

follows directly that (~Mp [s] =⊥) ⇒ (~Mq [s] =⊥).

(i): In round 〈r,1〉, process q sends v = Sr
q (sr

q ) to all, and because of Pgood(〈r,1〉), v is received

by all correct processes. For all those correct processes i , we have receivedi [q] = v (*). In round

〈r,2〉, every correct process forwards v to the coordinator c, and c receives all these messages.

Since n ≥ 3b +1 there are at least 2b +1 correct processes. Therefore the condition of line 14 is

false for q because
∣∣{q ′ ∈Π :~µρc [q ′][q] = receivedc [q]

}∣∣≥ 2b +1 , i.e., receivedc [q] is not set to

⊥. By (*) above, we have receivedc [q] = v . Because of Pgood(〈r,3〉) all messages sent by correct

processes in round 〈r,3〉 are received by all correct processes. Thus, for p at line 21, we have

~µ
ρ
p [coor d(r )][q] 6= ⊥. Moreover, by (*), condition

∣∣{i ∈Π :~µρp [i ][q] =~µρp [coor d(r )][q]
}∣∣≥ b +1

is true. This leads p to execute line 22, i.e., assign v to ~Mp [q].

(ii): Let us assume ~Mp [s] = v 6= ⊥, and consider Algorithm 3.2 from the point of view of p.

Consider the loop at line 20 for process s. By line 22, we have ~µρp [coor d(r )][s] = v . Since

the coordinator is correct, in order to have ~µρp [coor d(r )][s] = v , the condition of line 14 is

true at c for process s, i.e.,
∣∣{q ′ ∈Π :~µρc [q ′][s] = receivedc [s]

}∣∣≥ 2b +1. This means that at least

2b +1 processes, including at least b +1 correct processes, have received from s in round 〈r,1〉
the same message that c received from s, namely v (?). In round 〈r,3〉, these b +1 correct

processes send received to all. Because Pgood(〈r,3〉) holds, all these messages are received by

q in round 〈r,3〉 (??). Consider now Algorithm 3.2 from the point of view of q , and again

the loop at line 20 for process s. Since the coordinator is correct, it sends at line 18 the same

message to p and to q , i.e., at q we also have ~µρq [coor d(r )][s] = v . By (?) and (??), the

condition
∣∣∣{i ∈Π :~µρq [i ][s] =~µρq [coor d(r )][s]

}∣∣∣ ≥ b +1 is true. Therefore q executes line 22

with~µρp [coor d(r )][s] = v .

From Propositions 3.3 and 3.4 follows directly that repeating Algorithm 3.2 in the basic round

model with a rotating coordinator ensures WIC.
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3.5 Achieving Consensus with WIC

In this section we show how to express the consensus algorithms of Castro-Liskov [CL02]

and Martin-Alvisi [MA06] using WIC. The algorithm of Castro and Liskov solves a sequence

of instances of consensus (state machine replication). For simplicity, we consider only one

instance of consensus.

Both, [CL02] and [MA06] achieve only weak validity (see Section 2.1). Weak validity allows

correct processes to decide on the value that is not initial value of some correct process. With

strong unanimity (see Section 2.1), however, this is only possible if not all correct processes

have the same initial value. We give algorithms for both, weak validity and strong unanimity,

and show that strong unanimity is in fact easy to ensure.

3.5.1 On the use of WIC

We express the algorithms of this section in the round model defined in Section 2.5. All rounds

of MA and CL require P int to hold. Some of the rounds require Pcons to eventually hold. These

rounds can be simulated using, e.g., Algorithm 3.1 or Algorithm 3.2. We explicitly mention

those rounds of MA and CL as rounds “in which Pcons must eventually hold”. The other rounds

of MA and CL are ordinary rounds.

3.5.2 MA algorithm

The algorithm of Martin and Alvisi [MA06] is expressed in the context of “proposers”, “accep-

tors” and “learners”. For simplicity, we express here consensus without considering these

roles.

We give two algorithms. The first solves consensus with weak validity and is given as Algo-

rithm 3.3. In the first phase it corresponds to the “common case” protocol of [MA06]. All

later phases correspond to the “recovery protocol” of [MA06] (see Algorithm 3.4). The second

algorithm solves consensus with strong unanimity, and is even simpler: all phases are identi-

cal, see Algorithm 3.4. In both algorithms, the notation #(v) is used to denote the number of

messages received with value v , i.e., #(v) ≡
∣∣∣{q ∈Π : ~µr

p [q] = v
}∣∣∣.

For MA with weak validity, the first phase needs an initial coordinator, which is denoted by

coord. Note that WIC is relevant only to rounds 2φ−1, φ> 1, of Algorithm 3.4. If rounds 2φ−1

are simulated using Algorithm 3.1, we get the original algorithm of [MA06]. If rounds 2φ−1

are simulated using Algorithm 3.2, we get a new algorithm. In this new algorithm, similarly to

the algorithm in [MA06], fast decision is possible in two rounds; however, signatures are not

used in the recovery protocol.

The basic technique of these algorithm is that a value that is decided is locked in the sense that

a sufficiently high quorum of processes retain this value as estimate. A similar algorithmic
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Algorithm 3.3 MA (weak validity)

1: Initialization:
2: xp ← vp ∈V /* vp is p’s initial value */

3: Round r = 1:
4: Sr

p :
5: if p = coord then
6: send xp to all
7: T r

p :
8: if~µr

p [coord] 6= ⊥ then
9: xp ←~µr

p [coord]

10: Round r = 2:
11: Sr

p :
12: send xp to all
13: T r

p :
14: if ∃v̄ 6= ⊥ : #(v̄) ≥ d(n +3b +1)/2e then
15: DECIDE v̄

16: Round r ≥ 3:
17: Same as Algorithm 3.4 without Initialization

schema can be found in algorithms for benign [BGMR01, PSUC02, Lam05, CBS09b] and

arbitrary [BCBG+07] faults.

The algorithms consist of a sequence of phases, where each phase φ has two rounds 2φ−1

and 2φ. Every process p maintains a single variable xp initialized to p’s initial value. In round

2φ−1 of Algorithm 3.4 (that is used also in phases φ > 1 for Algorithm 3.3), if a process p

receives at least n −b messages then it updates xp , and sets xp to the smallest most often

received value of the current round. In round 2φ, if a process p receives at least d(n+3b+1)/2e
times the same value v then it decides on v . The values of thresholds are chosen such that if

some process decides v in a round r , then in any round r ′ > r , at all correct processes p only v

can be assigned to xp . This is the case as in any set of n −b messages received in round r ′ > r

by a correct process, v is always the most often received value. Therefore, in rounds r ′ > r only

v can be decided.

Both algorithms require n ≥ 5b + 1. Agreement, weak validity and strong unanimity hold

without synchrony assumptions. Termination requires (i) one phase φ such that Pcons(2φ−1)

holds, and (ii) one phase φ′ ≥φ such that Pgood(2φ′) holds. 7

The first part of the predicate ensures the existence of a round in which correct processes

receive the same set of at least n − b messages which includes messages from all correct

processes. This guarantees that at the end of round 2φ−1 all correct processes adopt the same

value for xp . The second part of the predicate forces every correct process to make a decision

at the end of round 2φ′.

7 For simplicity, we have not included a boolean to prevent a process from deciding more than once, e.g.,
Algorithm 3.4, line 14.
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Algorithm 3.4 MA (strong unanimity)

1: Initialization:
2: xp ← vp ∈V /* vp is p’s initial value */

3: Round r = 2φ−1: /* round in which Pcons must eventually hold */
4: Sr

p :
5: send xp to all
6: T r

p :
7: if #(⊥) ≤ b then
8: xp ← min

{
v : 6 ∃v ′ ∈V s.t . #(v ′) > #(v)

}
9: Round r = 2φ:
10: Sr

p :
11: send xp to all
12: T r

p :
13: if ∃v̄ 6= ⊥ : #(v̄) ≥ d(n +3b +1)/2e then
14: DECIDE v̄

Theorem 3.1. If n ≥ 5b + 1 then Algorithm 3.3 (resp. Algorithm 3.4) ensures weak validity

(resp. strong unanimity) and agreement. Termination holds if in addition the following condi-

tion holds:

∃φ : Pcons(2φ−1)∧∃φ′ ≥φ : Pgood(2φ′)

Proof.

The proofs for termination with weak validity and strong unanimity are the same, and the

proofs for agreement are almost identical. Weak validity is trivially satisfied. Therefore, we

prove only MA with strong unanimity (Algorithm 3.4).

Agreement: Assume for a contradiction that process p decides v in round r = 2φ, and process

p ′ decides v ′ 6= v in round r ′ = 2φ′. W.l.o.g. assume φ′ ≥φ.

If φ=φ′ then d(n +3b +1)/2e−b correct processes have sent v to p and d(n +3b +1)/2e−b

correct processes have sent v ′ to p ′. Since 2(d(n +3b +1)/2e−b)+b > n, there is one correct

process q that has sent v to p and v ′ to p ′. A contradiction with the assumption that q is

correct.

Else, we haveφ′ >φ. By line 13, at least d(n+3b+1)/2e−b correct processes p have xp = v at the

end of phase φ. We show now that for all phases φ′′ >φ, every time line 8 is executed at some

correct process q , xq is updated only to v . By the condition of line 7, q has received at least n−b

values different from⊥. In any subset of size≥ n−b, at least d(n+3b+1)/2e−2b values are v and

at most n−d(n+3b+1)/2e+b are 6= v ; thus because of d(n+3b+1)/2e−2b > n−d(n+3b+1)/2e+b

no value can occur more often in~µ than v .

Therefore, in all phases φ′′ >φ, at least d(n +3b +1)/2e−b correct processes p have xp = v . It

follows directly that only v can be decided in these phases, and thus also in φ′.

Strong unanimity: If n ≥ 3b + 1, then n −b ≥ d(n + 3b + 1)/2e−b. Therefore if all correct

23



Chapter 3. Unifying Byzantine Consensus
Algorithms with WIC

processes have the same initial value v , we have initially at least d(n +3b +1)/2e−b processes

p with xp = v . By an argument used in the proof of agreement, only v can be decided.

Termination: Let φ0 be such that Pcons(2φ0 −1) holds. Therefore the condition of line 7 is

true for all correct processes. Moreover, Pcons(2φ0 −1) ensures that all correct processes p,

when executing line 8, set xp to the same value, say v . By an argument used in the proof of

agreement, after phase φ0, correct processes p can only update xp to v at line 8.

Let φ′
0 ≥ φ0 such that Pgood(2φ′

0) holds. In round 2φ′
0, n − b correct processes send v . If

n ≥ 5b +1, then n −b ≥ d(n +3b +1)/2e; therefore the condition of line 13 is true for all correct

processes, which decide at line 14.

Note that n ≥ 5b + 1 is only needed for termination, while only n ≥ 3b + 1 is needed for

agreement and strong unanimity.

3.5.3 CL algorithm

The algorithm of Castro and Liskov [CL02] solves a sequence of instances of consensus (state

machine replication). For simplicity, we consider only one instance of consensus. As for MA,

we give two algorithms.

The first solves consensus with weak validity and is given as Algorithm 3.5. The first phase

corresponds to the “normal case” protocol of [CL02]. All later phases correspond to the “view

change protocol” of [CL02] (cf. Algorithm 3.6). The second algorithm solves consensus with

strong unanimity, and is even simpler: all phases are identical, see Algorithm 3.6. In both

algorithms, the notation #(v) is used to denote the number of messages received with value v ,

i.e., #(v) ≡
∣∣∣{q ∈Π : ~µr

p [q] = v
}∣∣∣.

For CL with weak validity, the first phase needs an initial coordinator, which is denoted by

coord. WIC is relevant only to rounds 3φ− 2, φ > 1 (cf. Algorithm 3.6). If rounds 3φ− 2,

φ> 1 are simulated using Algorithm 3.2, we get an algorithm close to the original algorithm

of [CL02]. If rounds 3φ−2, φ> 1 are simulated using Algorithm 3.1, we get a variant of PBFT

with signatures.

Both algorithms (CL with weak validity and CL with strong unanimity) require n ≥ 3b +
1. Agreement, weak validity and strong unanimity hold without synchrony assumptions.

Termination requires (i) one phase φ such that Pcons(3φ−2), Pgood(3φ−1) and Pgood(3φ)

hold. In the following we explain the basic mechanisms behind CL with strong unanimity (the

same mechanisms are also used in CL with weak validity).

De discuss now Algorithm 3.6. Algorithm 3.6 consists of a sequence of phases, where each

phase φ has three rounds 3φ−2, 3φ−1 and 3φ. The algorithm is based on the last voting

mechanism [CBS09b] that was first introduced in the Paxos algorithm by Lamport [Lam98]

for benign faults. More precisely, the algorithm uses a timestamp variable tVote in addition to
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Algorithm 3.5 CL (weak validity)

1: Initialization:
2: xp ← vp ∈V /* vp is the initial value of p */
3: pre-votep ←; /* see Algorithm 3.6 */
4: votep ←⊥ /* see Algorithm 3.6 */
5: tVotep ← 0 /* see Algorithm 3.6 */

6: Round r = 3φ−2 = 1:
7: Sr

p :
8: if p = coor d then
9: send 〈xp〉 to all
10: T r

p :
11: if~µr

p [coor d ] 6= ⊥ then
12: add (~µr

p [coor d ],φ) to pre-votep

13: Round r = 3φ−1 = 2:
14: Sr

p :
15: if ∃(v,φ) ∈ pre-votep then
16: send 〈v〉 to all
17: T r

p :
18: if #(v) ≥ d(n +b +1)/2e then
19: votep ← v
20: tVotep ←φ

21: Round r = 3φ= 3:
22: Sr

p :
23: if tVotep =φ then
24: send 〈votep〉 to all
25: T r

p :
26: if ∃v̄ 6= ⊥ : #(v̄) ≥ d(n +b +1)/2e then
27: DECIDE v̄

28: Round r ≥ 4:
29: Same as Algorithm 3.6 without Initialization

to the variable vote. Whenever a process p updates votep in round 3φ−1, tVotep is set to φ

(line 31 and 32). If enough processes update vote in round 3φ−1, then a decision is possible

in round 3φ. Note the condition at line 30: It ensures that in round 3φ−1, all processes that

update vote, update it to the same value. This ensures that in round 3φ, processes attempt to

decide on one single value, which is necessary for agreement.

In order to deal with invalid votes sent by Byzantine processes, C L maintains also a pre-vote

variable, which stores pairs (v,φ). Having (v,φ) ∈ pre-votep means that p added (v,φ) to

pre-votep in phase φ (at line 20 or line 24). The pre-vote variable ensures that a message with

invalid values for vote and tVote will not affect the safety properties of the algorithm. It is

mainly used in round 3φ−2, which has two roles, the first related to agreement and strong

unanimity, and the second related to termination:
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Algorithm 3.6 CL (strong unanimity)
1: Initialization:
2: xp ← vp ∈V /* vp is the initial value of p */
3: pre-votep ←; /* set of (v,φ), where φ is the phase in which v is added to pre-votep */
4: votep ←⊥ /* the most recent vote */
5: tVotep ← 0 /* phase in which votep was last updated */

6: Procedure pre-votep .add(v,φ) :
7: if ∃(v,φ′) ∈ pre-votep then
8: remove (v,φ′) from pre-votep
9: add (v,φ) to pre-votep

10: Round r = 3φ−2: /* round in which Pcons must eventually hold */
11: Sr

p :
12: send 〈votep , tVotep ,pre-votep ,xp〉 to all
13: T r

p :
14: proposalsp ←; ; Ip ←; /* temporary variables */
15: if~µr

p contains at least d(n +b +1)/2e messages 〈vote, tVote,pre-vote,x〉 then
16: for all m ∈~µr

p do

17: if
∣∣∣{m′ ∈~µr

p : (m′.tVote < m.tVote)∨ (m′.tVote = m.tVote∧m′.vote = m.vote)
}∣∣∣≥

d(n +b +1)/2e and∣∣∣{m′ ∈~µr
p : ∃(v,φ′) ∈ m′.pre-vote s.t .φ′ ≥ m.tVote∧ v = m.vote

}∣∣∣≥ b +1 then

18: proposalsp ← proposalsp ∪m.vote

19: if
∣∣∣proposalsp

∣∣∣> 0 then

20: pre-votep .add(min(proposalsp ),φ)
21: else if exist at least d(n +b +1)/2e messages m′ ∈~µr

p : m′.vote =⊥ then

22: Ip ←
{

m.x s.t . m ∈~µr
p

}
23: x ← min

{
v : 6 ∃v ′ ∈ Ip s.t . #(v ′) > #(v)

}
24: pre-votep .add(x,φ)

25: Round r = 3φ−1:
26: Sr

p :
27: if ∃(v,φ) ∈ pre-votep then
28: send 〈v〉 to all
29: T r

p :
30: if #(v) ≥ d(n +b +1)/2e then
31: votep ← v
32: tVotep ←φ

33: Round r = 3φ:
34: Sr

p :
35: if tVotep =φ then
36: send 〈votep〉 to all
37: T r

p :
38: if ∃v̄ 6= ⊥ : #(v̄) ≥ d(n +b +1)/2e then
39: DECIDE v̄

1. Safety role of round 3φ−2:

(a) For Agreement: If a process p has decided v in some phase φ0, then for any process

q , only v can be added to pre-voteq (at line 20 or line 24) in phases φ>φ0.
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(b) For Strong Unanimity: If all processes have the same initial value v , then only v

can be added to pre-voteq (at line 20 or line 24).

2. Termination role of round 3φ−2: In a consistent round where correct processes receives

messages from all correct processes, all processes add the same value to pre-voteq (at

line 20 or line 24).

We explain now the lines 15-24 of Algorithm 3.6:

• Lines 15-18 ensures 1a. More precisely, they ensure the selection of the most recent vote

in the set pre-vote of some correct process. This is basically the same mechanism as

in Paxos, adapted to tolerate invalid votes sent by Byzantine faults. Selecting the most

recent vote among the set of majority processes (in Paxos) can be expressed as follows:

mostRecentV ←
{

v : (v, tVote) ∈~µr
p ∧

∣∣∣{q :~µr
p [q] = (v ′, tVote′)∧ tVote ≥ tVote′

}∣∣∣> n

2

}

In Paxos, this selection rule ensures agreement since the most recent vote is always v

if some process decided v before. In CL, a message sent by a Byzantine process can

contain (vote, tVote) with tVote equal (or higher) to the highest timestamp of a process,

but with a vote that is different than some value v decided by some correct process

before. Therefore, the above selection rule does not ensure 1a, since several values

can satisfy the condition. More precisely, in case some correct process has decided a

value v before, the invalid vote (v ′, tVote′) with v ′ 6= v sent by a Byzantine process might

be selected if tVote is high enough. Therefore, in order to transform the condition to

ensure 1a even in the presence of Byzantine processes, it is necessary to: (i) transform

condition tVote ≥ tVote′ into

tVote > tVote′∨ (v = v ′∧ tVote = tVote′)

and to use a higher threshold (namely d(n+b+1)/2e) as done by the first part of the con-

dition at line 17, and (ii) to prevent selection of a value v ′ from an invalid pair (v ′, tVote)

sent by a Byzantine process. This is achieved by the second part of the condition at

line 17 that requires that selected pair must be in the pre-vote of at least one correct

process (ensured by the threshold b +1). With this, if a process has previously decided

v̄ , then only v̄ can be selected by the condition at line 17 and added to proposalsp at

line 18. 8

8Consider two phases φ0 and φ0 +1, such that a process has decided v̄ in phase φ0. We assume that n = 4 and
b = 1. This means that at least d(n +b +1)/2e−b = 2 correct processes have tVote =φ0 and vote = v̄ . Consider in
phase φ0 +1 that (v, tVote) ∈ proposalsp at a correct process p with v 6= v̄ . This means that p, in round 3(φ0+1)−2,

received d(n +b +1)/2e = 3 messages with either (v, tVote,−,−), or (−, tVote′,−,−) and tVote′ < tVote. Since n = 4
and b = 1, at least one of these messages is from a correct process c such that votec = v̄ and tVotec = φ0. Since
v 6= v̄ , we must have φ0 < tVote. However, in phase φ0 +1, no correct process p can have (v, tVote) with ts >φ0 in
pre-votep . Therefore, by the second part of the condition at line 17, we will not have v ∈ proposalsp .
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We consider now lines 19 and 20 of Algorithm 3.6. As we just explained, if a correct process

has previously decided v̄ , then at a correct process p only v̄ can be in proposalsp , that is,

|proposals| = 1. In this case, by line 20, the function (v̄ ,φ) is added to pre-votep . If no correct

process has decided, we can have |proposals| > 1. In this case, if some round 3φ− 2 is a

consistent round, then all processes consider the same set proposals, which ensures 2.

Lines 21 and 21 ensure 1b: in case no (vote, tVote) pair is selected by the condition at line 17

(|proposalsp | = 0) 9, it is ensured that in case all correct processes have the same initial value v ,

v is always selected. This is achieved by selecting the smallest most often received initial value

(line 23).

Theorem 3.2. If n ≥ 3b + 1 then Algorithm 3.5 (resp. Algorithm 3.6) ensures weak validity

(resp. strong unanimity) and agreement. Termination holds if in addition the following condi-

tion holds:

∃φ : Pcons(3φ−2)∧Pgood(3φ−1)∧Pgood(3φ).

The result follows from the proof of agreement, strong unanimity and termination. Weak

validity is trivially satisfied. We start with two definitions.

Definition 3.1. Correct process p has pre-prepared value v in phase φ if (v,φ) ∈ pre-votep at

the end of phase φ.

Definition 3.2. Correct process p has prepared value v in some phase φ if votep = v and

tVotep =φ at the end of phase φ.

Proof of agreement

Lemma 3.1. For all b ≥ 0, any two sets of size d(n +b +1)/2e have at least one correct process in

common.

Proof. We have 2d(n +b +1)/2e ≥ n +b +1. This means that the intersection of two sets of size

d(n +b +1)/2e contains at least b +1 processes, i.e., at least one correct process. The result

follows directly from this.

Lemma 3.2. If some correct process q decides v in phaseφ0, then in all phasesφ>φ0, all correct

processes can only pre-prepare value v.

Proof. We prove the result by induction on φ.

Base step φ=φ0+1 : Assume by contradiction that p is some correct process that pre-prepares

v ′ 6= v in phase φ0 +1. This implies that either (i) line 20 or (ii) line 24 was executed by p in

phase φ0 +1 where v ′ was pre-prepared by p.

9For instance this is the case initially as vote =⊥ and pre-vote =; at all correct processes.
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For (ii), the conditions of line 15 and line 21 have both to be true. If the condition of line 15

is true, this implies that~µr
p contains at least d(n +b +1)/2e messages. Since q has decided in

phase φ0, q received at least d(n +b +1)/2e messages with v at line 38. All correct processes c

who sent a message with v have prepared v in phase φ0 (see lines 31, 32 and 35), i.e., votec = v

and tVotec = φ0. Let us denote this set of correct processes with Qc . By Lemma 3.1 the

intersection of two sets of size d(n +b +1)/2e contains at least one correct process. Therefore,

in the d(n +b +1)/2e messages received (line 15) there is at least one message sent by process

from Qc , i.e., the condition at line 21 cannot be true. So line 20 (case (i)) was executed by p.

For (i), the conditions at line 15, line 17 and line 19 have to be true. We show that if the

condition at line 15 is true, and the first part of the condition at line 17 is true, then the

second part of the condition at line 17 is false, which establishes the contradiction. Let us

denote by mv ′ the message that leads p to pre-prepare v ′ 6= v , i.e., mv ′ ∈~µr
p and mv ′ .vote = v ′.

By Lemma 3.1, ~µr
p at line 16 contains at least one message m′ sent by a process in Qc , i.e.,

m′.vote = v and m′.tVote =φ0. So the first part of the condition at line 17 can only be true for

mv ′ if
∣∣∣{m′ ∈~µr

p : (m′.tVote < mv ′ .tVote)
}∣∣∣≥ d(n +b +1)/2e. This holds only if mv ′ .tVote >φ0

(*), since (as shown above) any set of size d(n +b +1)/2e contains at least one message m sent

by a process in Qc , i.e., m.tVote =φ0.

The second part of the condition at line 17, because of the condition ≥ b+1, can only be true for

mv ′ if there is a message m in~µr
p sent by a correct process c such that: (v ,φ) ∈ pre-votec (**) and

φ≥ mv ′ .tVote and v = mv ′ .vote. However, for any correct process c, if (v ,φ) ∈ pre-votec , then

φ≤φ0 (***). From (**) and (***) we get φ0 ≥ mv ′ .tVote: a contradiction with mv ′ .tVote >φ0, see

(*).

Induction step from φ to φ+1: Arguments similar to the base step can be used to prove the

induction step.

Lemma 3.3. If v is the only value that can be pre-prepared by correct processes in phase φ, then

v is the only value that can be prepared in phase φ.

Proof. If v is the only value that can be pre-prepared by correct processes in phase φ, then v

is the only value that can be sent by correct process at line 28 in phase φ. Because there are at

most t Byzantine processes, and t < d(n +b +1)/2e, for all correct processes holds that if exists

some value that satisfies the condition at line 30, then it must be v . So v is the only value that

can be prepared by correct processes at line 31 in phase φ.

Proposition 3.5. Algorithm 3.6 ensures agreement if n ≥ 3b +1.

Proof. Letφ0 be the first phase in which some correct process decides v . Since b < n/3, line 38

ensures that another correct process that decides in phase φ0 also decides v . By Lemma 3.2

and Lemma 3.3, in all phases φ>φ0, all correct processes can only set votep to v . So in round

r = 3φ, correct processes cannot decide a value different from v .
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Proof of strong unanimity

Strong unanimity follows from the following two lemmas.

Lemma 3.4. If n ≥ 3b+1, then any set of d(n+b+1)/2e processes contains a majority of correct

processes.

Proof. We have d(n+b+1)/2e ≥ (n+b+1)/2. If n ≥ 3b+1, then (n+b+1)/2 ≥ (3b+1+b+1)/2 =
2b +1. Therefore, d(n +b +1)/2e ≥ 2b +1.

Lemma 3.5. If all correct processes have the same initial value v, then in all phases φ, v is the

only value that can be pre-prepared by correct processes.

Proof. Assume by contradiction that φ is the first round where a value different from v is

pre-prepared at some correct process p. This implies that either (i) line 20 or (ii) line 24 was

executed. By assumption, we have (v,−−) ∈ pre-votep or pre-votep =;.

For (i), line 19, line 17 and line 15 have to be true. If pre-votep = ;, the second part of the

condition at line 17 is always false. If pre-votep 6= ;, only values (v,−−) are in pre-votep , and

thus the second part of the condition at line 17 can be true only for message m ∈~µr
p such that

m.vote = v .

For (ii), line 24 is executed, i.e., the conditions at line 21 and line 15 have to be true. This

means that ~µr
p contains at least d(n +b +1)/2e messages. By Lemma 3.4, there is a majority

of messages sent by correct processes in~µr
p . Since all correct processes have the same initial

value v , x is set to v at line 23, and p pre-prepares v .

So v is the only value that can be pre-prepared by correct processes in phase φ. Contradiction.

Proposition 3.6. If n ≥ 3b +1, Algorithm 3.6 ensures strong unanimity.

Proof. Assume that all correct processes have the same initial value v . By Lemma 3.5, v is the

only value that can be prepared by correct processes. By Lemma 3.3, v is the only value that

can be prepared by correct processes. Therefore, v is the only value that can be sent by correct

processes at line 36 (*). If n > b, we have d(n +b +1)/2e > b (**). From (*) and (**), it follows

that the condition at line 38 can only be true for v , i.e., v is the only value that can be decided

at line 39.

Proof of termination

Proposition 3.7. If n ≥ 3b +1 and ∃φ0 : Pcons(3φ0 −2)∧Pgood(3φ0 −1)∧Pgood(3φ0), then

Algorithm 3.6 ensures termination.
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Proof. Predicate Pcons(3φ0 −2) ensures that, in round 3φ0 −2, for any two correct processes

p and q , we have ~µr
p = ~µr

q , with at least n − b messages in ~µr
p (1). If n ≥ 3b + 1, we have

n−b ≥ d(n+b+1)/2e (2). (1) and (2) ensure that the condition of line 15 is true at each correct

process in phase φ0.

Part A: We prove that all correct processes will pre-prepare the same value at line 20 or 24 in

phase φ0. There are two cases to consider: (i) some correct process prepared a value in some

phase smaller than φ0, or (ii) there is no such process.

Case (i): Let φ<φ0 be the largest phase in which some correct process prepared some value v

(line 31). By the condition of line 30, if n > b then all correct processes that prepare a value in

phase φ, prepare the same value v . If n ≥ 3b +1, we have n − t ≥ d(n +b +1)/2e. It follows that

in case (i) the first part of the condition at line 17 holds for at least one message m (3).

We consider now the second part (i.e., the second line) of that condition. If n ≥ 3b+1, we have

d(n +b +1)/2e−b ≥ b +1. Therefore if p prepares v in phase φ, by the condition of line 30, at

least b+1 correct processes have pre-prepared v in phase φ. If v is pre-prepared by p in phase

φ, then v stays pre-prepared by p (see lines 7–9). Therefore the second part of the condition at

line 17 holds for at least one message m (4).

From (3) and (4), it follows that the condition of line 19 is true at all correct processes in phase

φ0. Moreover, predicate Pcons(3φ0−2) ensures that for two correct processes p and q , we have

proposalsp = proposalsq . Therefore p and q pre-prepare the same value at line 20.

Case (ii): By hypothesis, for all correct processes p, we have votep =⊥. Predicate Pcons(3φ−2)

ensures that~µr
p contains the message of all correct processes. If n ≥ 3b +1, we have n −b ≥

d(n +b +1)/2e. Therefore the condition at line 21 is true at each correct process. Moreover,

since for any two correct process p and q we have~µr
p =~µr

q , all correct processes will assign the

same value to x (line 23), and pre-prepare the same value at line 24.

Part B: From Part A, there exists a value v such that all correct processes p have (v,φ0) ∈
pre-votep at the beginning of round 3φ0 − 1. Therefore all correct processes send v to all

at line 28. The predicate Pgood(3φ0 −1) ensures that all correct processes receive all these

messages, set votep to v (line 31), and send v to all at line 36. The predicate Pgood(3φ0) ensures

that all correct processes receive all these messages, and decide at line 39 in phase φ0.

CL vs. PBFT

As mentioned in Section 3.1, replacing in CL round 3φ−2 with a signature-free WIC imple-

mentation basically leads to the original signature-free PBFT algorithm. There are a few

differences.

1. CL assumes n ≥ 3b +1 while PBFT assumes for simplicity n = 3b +1. This explains why

d(n +b +1)/2e appears in CL instead of 2b +1 in PBFT.
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2. In PBFT a process p may wait for more the n −b messages. This happens each time p

can know, based on the content of messages, that it received messages from Byzantine

processes. Indeed, if p knows that x messages are from Byzantine processes, and since

channels are reliable, it is safe for p to wait for n − (b −x) messages. Such mechanism in

which a process looks at the content of the message is not needed in CL.

3. In PFBT the decision can be on a special "null" value, while in CL the decision is always

on a “real” value.

4. Consider finally round 3φ−2 of Algorithm 3.6, and our signature-free implementation

of WIC, see Figure 3.4 and Algorithm 3.2. Messages of round 〈r,1〉 basically correspond

to the “view-change” messages of PBFT. Messages of round 〈r,2〉 basically correspond

to the “view-change-ack” messages of PBFT. The difference is in round 〈r,3〉: (i) in PBFT

only the coordinator (p1 in Figure 3.4) sends its message, say m〈r,1〉
p1

, and piggybacks on

it the hashes of the messages p1 received in round 〈r,1〉. Let p2 receive m〈r,3〉
p1

. If m〈r,3〉
p1

piggybacks the hash of some message m〈r,1〉
p3

that is not received by p2 in round 〈r,2〉,
then p2 sends a request to get m〈r,2〉

p3
. If p3 is Byzantine, it might not resend the message.

Therefore the coordinator resends the requested message, and the correct processes

that has received this message will resend a “view-change-ack” message. Process p2 can

accept the message if it receives b corresponding “view-change-ack” messages. This

“pull” strategy avoids sending messages that are not needed. For simplicity, we did not

include such an optimization in CL.

3.6 Related work

As already said in Section 3.1, we are not the first one to consider a weaker variant of interactive

consistency. Doudou et al. [DGG00b] define an abstraction called weak interactive consistency

(WIConsistency) with a definition different from ours. With WIConsistency each correct

process proposes its initial value, and processes must eventually decide on the same vector

of values which contains at least one value corresponding to the initial value of a correct

process. They use this abstraction to derive a state machine replication protocol resilient to

authenticated Byzantine faults. However, while to go from WIC to consensus is not trivial,

going from WIConsistency to consensus is straightforward 10. In this sense, WIC is a better

building block for consensus.

To the best of our knowledge, there is little work that has proposed consensus algorithms

based on abstractions that can be instantiated into (i) algorithms that use signatures and

(ii) algorithms that do not use signatures. We are only aware of the work of Skrikanth and

Toueg [ST87] related to authenticated broadcast (already mentioned in Section 3.1).

On the other hand, several papers consider the idea of automatically translated benign proto-

cols into the protocols that tolerates Byzantine faults. In the context of synchronous systems,

10In order to solve consensus using WIConsistency, processes propose their initial values to WIConsistency and
then apply deterministic function on the decided vector to get a decision value for consensus.
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Neiger, Toueg and Bazzi [NT90, BN01] developed methods to automatically translate protocols

tolerant to benign faults into ones tolerant to more severe faults, including Byzantine faults. In

the context of asynchronous systems, Bracha [Bra87] and Coan [Coa88] show how to translate

round-based algorithms, where each process waits for n −b messages before proceeding to

the next round. More recently, Ho et al. [HDVR07, HvRBD08] introduce an abstraction called

ordered authenticated reliable broadcast (OARcast) to translate a crash-tolerant algorithm

into an algorithm tolerating the same number of Byzantine faults. Compared to [Bra87] and

[Coa88], Ho et al. are able to translate more algorithms. In [HDVR07] the authors illustrate

their approach by translating the normal case of the Oki and Liskov Viewstamped Replica-

tion protocol [OL88] into a protocol that closely resembles the normal case of PBFT. Finally,

Clement et al. [CJKR12] have shown a generic translation from a crash-tolerant algorithm

into a Byzantine-tolerant one, using non-equivocation and transferable authentication; the

translation requires the same number of processes as crash-tolerant algorithm. This work is

inspired by several proposals [CMSK07, LDLM09] to add a trusted hardware component to

each process, in order to make Byzantine fault tolerant algorithms more efficient in terms

of number of processes required to tolerate b Byzantine faults (the number of processes is

decreased from 3b +1 to 2b +1).

What is common to all these approaches is that transformations permanently restrict the

behaviour of Byzantine processes to resemble honest (but potentially crashed) processes. On

the other hand, WIC restricts the behavior of Byzantine processes only eventually and only for

some rounds (so called WIC rounds). On the other hand, WIC does not restrict the content

of the message received from a Byzantine process. Contrary to the translation approaches

mentioned above, the message content does not need to correspond to the correct execution

of an honest process, i.e., it can be arbitrary.

Orthogonal to our approach, several authors proposed authentication schemes that use

symmetric message authentication codes (MACs) in order to achieve properties similar to

public-key signature schemes, e.g., [AABC08b, RPS12].

3.7 Conclusion

The chapter has introduced the weak interactive consistency (or WIC) abstraction, and has

shown that WIC allows to unify Byzantine consensus algorithms with and without signatures.

This has been illustrated on two seminal Byzantine consensus algorithm, namely on the FaB

Paxos algorithm [MA06] and on the PBFT algorithm [CL02]. In both cases this leads to a very

concise algorithm.
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4 Tolerating Permanent and Transient
Value Faults

Transmission faults allow us to reason about permanent and transient value faults in a uniform

way. However, all existing solutions to consensus in this model are either in the synchronous

system, or require strong conditions for termination, that exclude the case where all messages

of a process can be corrupted. In this chapter we overcome this limitation by relying on the

weak interactive consistency abstraction introduced in Chapter 3.

The system considered in this chapter is parameterized with α and f . In every round each

process can receive up to α corrupted messages; eventually rounds are synchronous and the

messages sent by at most f processes are corrupted. Before these synchronous rounds, any

number of benign faults is tolerated. The chapter presents an algorithm that solves consensus

if either n > 3α+3 f , or n > 4 and α= f =1, or n > 2α and f =0.

Publication: Zarko Milosevic, Martin Hutle and André Schiper. Tolerating Permanent and

Transient Value Faults. In Distributed Computing, DOI: 10.1007/s00446-013-0199-7.

Brief announcement at the 31st Annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing (PODC 2012), Madeira, Portugal, July 16 - July 18, 2012.

4.1 Introduction

As explained in Chapter 1, most research on consensus algorithms is considering component

fault models, where faults are attached to a component that is either a process or a link.

Furthermore, in the context of a component fault model, faults are mainly permanent (as

opposed to transient faults): if a process or link commits a fault, the process/link is considered

to be faulty during the whole execution. It follows that not all components can be faulty (at

most f out of n per run), which is referred to as static faults (as opposed to dynamic faults that

can affect any component).

Most research on consensus is about tolerating permanent and static process and/or link

faults. While processes and links can be considered faulty, most of the literature considers
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only process faults. In the context of Byzantine faults, where at most f processes can behave

arbitrarily, we can cite the early work of Lamport, Shostak and Pease [PSL80, LSP82] for a

synchronous system. Consensus in a partially synchronous system with Byzantine faults is

considered in [DLS88, ADGFT06, MA06]. Byzantine variants of Paxos [Lam98] include [CL02,

Lam01, ACKM06, Lam11]. Only few authors solve consensus in the synchronous system

model where, in addition to Byzantine processes, a small number of links connecting correct

processes may be arbitrary faulty during the entire execution of a consensus algorithm [PS85,

SAAAA95, SCY98]. However, only a very limited number of links can be faulty.

There are two major problems of a priori blaming some component for the failure [SW89,

SW07, CBS09b]. First, it may lead to undesirable consequences if faults are permanent: for

example, in the classical Byzantine fault model, where a bounded number of processes can

behave arbitrarily (even maliciously), the entire system will be considered faulty even if only

one message from each process is received corrupted. Second, when solving consensus, faulty

processes are typically not obliged to make a decision or they are allowed to decide differently

than correct processes.

Some work in the component fault model has addressed transient and dynamic faults [BSW11].

This paper solves consensus in the hybrid fault model for synchronous systems, where every

process is allowed to commit up to f sa
l arbitrary send link failures and experience up to

f r a
l arbitrary receive link failures without being considered as arbitrary faulty. Tolerating

additional fs send and fr receive omissions (i.e., message loss) requires to increase the number

of processes by small multiples of fs and fr .

Finally, note that when a process q receives a corrupted message from p, it makes no difference

for q whether p is faulty and therefore sends a message that was not consistent with the

protocol, or the message is corrupted by the link between p and q . Actually, for q these two

cases are indistinguishable. Nevertheless, these two cases are not equivalent in the component

fault model.

Alternative approach: Transmission fault model. These observations led to the definition

of the transmission fault model that captures faults without blaming a specific component

for the fault [SW89]. The transmission fault model is well-adapted to dynamic and transient

faults.

Consensus under transmission faults in a synchronous system has been considered initially

in [SW89]. In [CBS09b], this work combined with ideas from [Gaf98], is extended to non-

synchronous systems with only benign transmission faults, leading to the Heard-Of Model

(HO model). The paper gives several consensus algorithms under benign transmission faults.

In [BCBG+07], the HO model for benign faults is extended to value faults. There, consensus

under transmission faults (both benign and value faults) is solved for the first time in a non-

synchronous setting. For safety, only the number of corrupted messages is restricted, that
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is, in each round r of the round based model, every process p receives at most α corrupted

messages.1 However, for liveness, some additional assumptions are necessary, namely rounds

in which some subset of processes does not receive any corrupted messages.2 This means that,

despite the possibility to handle dynamic and transient value faults in a non-synchronous

system, [BCBG+07] cannot tolerate permanent faults located at some process p, where all

messages from p might be (always) corrupted.

This raises the following question: is it possible to design a consensus algorithm in the general

transmission fault model, with non-synchronous assumptions, that does not require such a

strong condition for liveness?

In this chapter we give a positive answer to the above question by presenting a consensus

algorithm for transmission faults (both benign and value faults) that does not exclude per-

manent faults. The key insight in achieving this goal is using the weak interactive consistency

(WIC) abstraction introduced in Chapter 3 in the context of the classical component fault

model. It turns out that WIC is also a fundamental building block for solving consensus under

transmission value faults.

The consensus algorithm presented in this chapter is inspired by the CL algorithm (Algo-

rithm 3.6 from Section 3.5.3) for the classical Byzantine fault model, which we have adapted to

the transmission fault model. The algorithm requires a round in which consistency eventually

holds (processes receive the same set of messages). This round is used to bring the system

in the univalent configuration, and later rounds are used to “detect” that the system entered

a univalent configuration and allows processes to decide. So the key is to achieve WIC in

the weak model that we consider in this chapter. This is the most important contribution

of the chapter. We show that WIC can be simulated from eventually synchronous rounds in

the presence of both static and dynamic value faults. The benefits of this approach are the

following:

• First, contrary to most of the related work on transmission faults and on the hybrid

fault model (where both processes and links can be arbitrary faulty), which considers

the synchronous system model, our consensus algorithm can also be used in systems,

where synchrony assumptions hold only eventually.

• Second, contrary to the algorithms in [BCBG+07], our algorithm can also be used in

systems with permanent faults located at a process p, where all messages from p might

be (always) corrupted.

• Third, by considering the transmission fault model, the algorithm can tolerate dynamic

and transient value faults in addition to only permanent and static faults of the compo-

nent fault model. As we explain in Section 4.7, considering (only) transmission faults

allows a variety of interpretations, making it possible to apply our algorithms to a variety

1This assumption potentially allows corrupted messages on all links in a run; therefore it models dynamic faults.
2This assumption makes sense in the context of transient faults.

37



Chapter 4. Tolerating Permanent and Transient Value Faults

of system models: partially synchronous system with Byzantine processes, partially

synchronous system with Byzantine processes eventually restricted to ”symmetrical

faults” [SWR02], partially synchronous system with Byzantine processes, where, before

stabilization time, in every round processes can receive some (bounded) number of

corrupted messages from correct processes, etc.

Remark. Note that despite the similarity in title, [AH93] addresses a different topic. The

paper investigates the possibility of designing protocols that are both self-stabilizing and fault-

tolerant in an asynchronous system. A self-stabilizing distributed algorithm is an algorithm

that, when started in an arbitrary state, guarantees to converge to a legitimate state and then

forever remains in a legitimate state. Solving one-shot consensus, which is the subject of this

chapter, is impossible in the context of self-stabilization, because a process can start in any

state, i.e., its first step can be deci de(v), where v is an arbitrary value.

In the model considered in this chapter, (transmission) faults do not corrupt the initial con-

figuration (the system starts in a pre-defined state) but may disturb the execution of the

protocol. Therefore, the protocols presented in this chapter cannot deal with an arbitrary

initial configuration.

Roadmap The rest of the chapter is structured as follows. We describe the transmission

fault model we consider in Section 4.2. In Section 4.3 we introduce the communication

predicates that we consider in this chapter. Section 4.4 shows how to simulate WIC under

weak communication predicates considered in this chapter, while Section 4.5 shows how to

solve consensus with WIC in the weak model considered in this chapter. In Section 4.6 we

discuss in detail the combination of the consensus algorithm and the WIC simulation. In

Section 4.7 we argue that Byzantine faults and permanent value faults located at a process are

indistinguishable, and thus our algorithms also work (but not only) in a partial synchronous

model with Byzantine processes. We conclude the chapter in Section 4.8.

4.2 Model

We use a slightly extended version of the round-based model of [BCBG+07]. In this model,

we reason about faults only as transmission faults, without looking for a “culprit” for the

fault [BCBG+07]. Therefore there are no “faulty” processes and no state corruption in our

model, but messages can be arbitrarily corrupted (or lost) before reception. Nevertheless, as

we explain in Section 4.7, the model can be used to reason about classical Byzantine faults.

Computations in this model are structured in rounds, which are communication-closed layers

in the sense that any message sent in a round can be received only in that round. As messages

can be lost, this does not imply that the system is synchronous. An algorithm A is specified by

sending function Sr
p and transition function T r

p for each round r and process p. We now give
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a formal definition of the round-based model considered, and introduce the notions of (i) the

heard-of set HO(p,r ), which captures synchrony and benign faults, (ii) the safe heard-of set

SHO(p,r ), which handles corruptions, i.e., captures communication safety properties, and (iii)

consistency CONS(r ), which is true in round r , if all processes receive the same set of messages

at round r .

4.2.1 Heard-Of Sets and Consistent Rounds

Let Π be a finite non-empty set of cardinality n, and let ~M be a set of messages (optionally

including a null placeholder indicating the empty message). To each p in Π, we associate

a process, which consists of the following components: A set of states denoted by statesp , a

subset initp of initial states, and for each positive integer r called round number, a message-

sending function Sr
p mapping statesp to a unique message from ~M , and a state-transition

function T r
p mapping statesp and partial vectors (indexed by Π) of elements of ~M to statesp .

The collection of processes is called an algorithm on Π.

In each round r , a process p:

1. applies Sr
p to the current state and sends the message returned to each process,3

2. determines the partial vector ~µr
p , formed by the messages that p receives at round r ,

and

3. applies T r
p to its current state and~µr

p .

The partial vector~µr
p is called the reception vector of p at round r .

Computation evolves in an infinite sequence of rounds. For each process p and each round r ,

we introduce two subsets of Π. The first subset is the heard-of set, denoted HO(p,r ), which is

the support of~µr
p , i.e.,

HO(p,r ) =
{

q ∈Π : ~µr
p [q] is defined

}
.

A process q is in the set HO(p,r ) if p receives a message from process p in round r . Note that

the message received may be corrupted. The second subset is the safe heard-of set, denoted

SHO(p,r ), and defined by

SHO(p,r ) =
{

q ∈Π : ~µr
p [q] = Sr

q (sq )
}

,

where sq is q’s state at the beginning of round r . A process q is in the set SHO(p,r ) if the

message received by p is not corrupted. In addition, for each round r , we define the consistency

flag, denoted CONS(r ), which is true if all processes receive the same set of messages in round

3W.l.o.g., the same message is sent to all. Because of transmission faults, this does not prevent two processes p
and q from receiving different messages from some process s.
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r , i.e.,

CONS(r ) =∀p, q ∈Π2 : ~µr
p =~µr

q .

From the sets HO(p,r ) and SHO(p,r ), we form the altered heard-of set denoted AHO(p,r ) as

follows:

AHO(p,r ) = HO(p,r ) \ SHO(p,r ).

For any round r , and for any set of rounds Φ, we further define the safe kernel of r resp. Φ:

SK(r ) = ⋂
p∈Π

SHO(p,r ) SK(Φ) = ⋂
r∈Φ

SK(r )

The safe kernel consists of all processes whose messages were received correctly by all pro-

cesses. We use also SK = SK(N). Similarly, the altered span (of round r ) denotes the set of

processes from which at least one process received a corrupted message (at round r ):

AS(r ) = ⋃
p∈Π

AHO(p,r ) AS = ⋃
r>0

AS(r )

We also extend the notion of CONS in a natural way to a set Φ of rounds, i.e., CONS(Φ) =∧
r∈ΦCONS(r ).

4.2.2 HO Machines

A heard-of machine for a set of processes Π is a pair (A ,P ), where A is an algorithm on Π,

and P is a communication predicate, i.e., a predicate over the collection

(
(
HO(p,r ),SHO(p,r )

)
p∈Π ,CONS(r ))r>0

A run of an HO machine M is entirely determined by the initial configuration (i.e., the collec-

tion of process initial states), and the collection of the reception vectors
(
~µr

p

)
p∈Π, r>0

.

4.2.3 Simulation of communication predicates

We have already introduced the notion of predicate simulation in Section 3.4. In this chapter

we will need to simulate4 communication predicates P ′ using some HO machine M = (A ,P ).

Intuitively, in such a simulation, several rounds of M will be used to simulate one round in

which predicate P ′ holds. If the run of M consists of k rounds, then algorithm A is a k round

simulation of P ′ from P .

In the following we formally define the predicate simulation in the context of the HO model.

4The notion of a simulation differs from the notion of a translation of the HO model for benign faults. A
translation establishes a relation purely based on connectivity, while with value faults, also some computation is
involved.
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Let k be any positive integer, and let A be an algorithm that maintains a variable mp∈~M and

M sgp ∈ ~M n at every process p. We call macro-round ρ the sequence of the k consecutive

round k(ρ−1)+1, . . . ,kρ. The variable mp is an input variable that can be set externally in

every macro-round.5

The value of mp at the beginning of macro-round ρ is denoted m(ρ)
p , and the value of M sgp at

the end of macro-round ρ is denoted M sg (ρ)
p .

For the macro-round ρ, we define in analogy to the definitions of Section 4.2.1:

HO(p,ρ) =
{

q ∈Π : M sg (ρ)
p [q] is defined

}
SHO(p,ρ) =

{
q ∈Π : M sg (ρ)

p [q] = m(ρ)
q

}
CONS(ρ) = (∀p, q ∈Π2 : M sg (ρ)

p = M sg (ρ)
q )

We say that the HO machine M = (A ,P ) simulates the communication predicate P ′ in k

rounds if for any run of M , the collection (HO(p,ρ),SHO(p,ρ))p∈Π, CONS(ρ))ρ>0 satisfies

predicate P ′.

Given a simulation A of P ′ from P , any problem that can be solved with P ′ by algorithm

A ′ can be solved with P instead by simply simulating rounds of the algorithm A ′ using

algorithm A . In such a composed algorithm, the input variable m(ρ)
p of algorithm A is set at

each macro-round ρ to the value returned by the sending function of A ′, and the transition

function of A ′ is applied to the output M sg (ρ)
p of algorithm A .

4.2.4 Consensus

Formally, an HO machine (A ,P ) solves consensus, if any run for which P holds, satisfies

Agreement, Termination and Integrity (see Section 2.1). To make this definition non-trivial,

we assume that the set of HO and SHO collections for which P holds is non-empty.

4.3 Communication predicates

In this section we introduce the communication predicates that will be used in the chapter. As

already mentioned, we reason about faults only as transmission faults. This allows us to deal

with both permanent and transient faults, but also with static and dynamic faults.

5The sending function in a simulation algorithm is thus a function that maps statesp and the input from ~M to a

unique message from ~M ; while the state-transition function T r
p is a function that maps statesp , the input from ~M ,

and a partial vector (indexed by Π) of elements of ~M to statesp .
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4.3.1 Predicates that capture static and dynamic value faults

A dynamic fault is a fault that can affect any link in the system — as opposed to static faults

that affect the links of at most f out of n processes per run [BCBG+07]. We start with static

faults:

P
f

per m :: |AS| ≤ f (4.1)

with f ∈ N and N = {0, . . . ,n}. Pper m is the name of the predicate, and f is a free param-

eter. P
f

per m is a safety predicate that models static faults, where corrupted messages are

received only from a set of f processes. In Section 4.7 we will argue that such an assumption

corresponds to a system with at most f Byzantine processes.

For algorithms in this chapter we will consider the weaker safety predicate P
f

dyn (∀ f ∈ N ,

P
f

per m implies P
f

dyn) that restricts the number of corrupted messages only per round and per

process:

P
f

dyn :: ∀r > 0,∀p ∈Π : |AHO(p,r )| ≤ f

with f ∈ N and 0 ≤ f ≤ n. Predicate P
f

dyn potentially allows corrupted messages on all links in

a run, it therefore models dynamic value faults.

4.3.2 Predicates that restrict asynchrony of communication and dynamism of
faults

Predicates Pper m and Pdyn only restrict the number of value faults; however, it does not tell

us anything about liveness of communication. From [FLP85] we know that we cannot solve

consensus in an asynchronous system if all messages sent by one process may be lost. On the

other hand, Santoro and Widmayer [SW89] showed that consensus is impossible to solve in a

synchronous system if, at each time unit, there is one process whose messages may be lost.

Therefore, in order to solve consensus we need to restrict asynchrony of communication and

dynamism of faults.

A synchronous system could be modeled as follows:

P
f

SK :: |SK | ≥ n − f (4.2)

P
f

SK requires that there is a set of processes (safe kernel) of size n − f whose messages are

correctly received in every round. From

∀ f ∈ N , P
f

SK ⇒P
f

per m
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it follows that P
f

SK implies static faults only. However, we want to study consensus with

dynamic faults. We consider therefore the following predicate:

P
f ,k
¦SK :: ∀r > 0 ∃ro > r, Φ= {r0, . . . ,r0 +k −1} : |SK(Φ)| ≥ n − f (4.3)

with f ∈ N and k > 0. This predicate (repeatedly) requires a safe kernel of size n − f only

eventually and only for k rounds. It also restrict the dynamism of value faults during these k

round; i.e., corrupted messages can only be received from at most f processes.

In the chapter we will consider P¦SK always in conjunction, either with Pper m or Pdyn. When

we assume P¦SK with Pper m , i.e., P
f ,k
¦SK ∧P

f
per m , transmission value faults are static (benign

transmission faults are not restricted, so they can be dynamic). On the other hand, when we

assume P¦SK with Pdyn, i.e., P
f ,k
¦SK ∧P α

dyn with f ≤α, transmission value faults are no more

static: P
f ,k
¦SK alone does not imply P

f ′
per m for any f ′ < n.

The implementation of the predicate P¦SK in a partially synchronous system (in conjunction,

either with Pper m or Pdyn) is not discussed in this chapter. The reader is referred to [DLS88,

BHSS12].

4.3.3 Permanent versus Transient Faults

Both predicates, Pper m∧P¦SK and Pdyn∧P¦SK allow permanent faults. Consider for example

a run and a process p, where every process receives a corrupted message from p in every

round:

∀q ∈Π,r > 0 : p 6∈ SHO(q,r )

and all other messages are received correctly. Such a run is included in the set of runs given by

Pper m ∧P¦SK and Pdyn ∧P¦SK , and thus the algorithms given later in the chapter can solve

consensus in such a run. More precisely, P
f

per m ∧P
f
¦SK and P

f
dyn ∧P

f
¦SK permit the existence

of up to f such processes. As pointed out in Section 4.7, this allows our algorithms to solve

consensus also, e.g., in classical models with Byzantine faults, and addresses the question

raised in the introduction. Indeed, this contrasts with [BCBG+07], where, although also Pdyn

is considered (named Pα there), eventually there has to be a round, where a sufficiently large

subset of processes do not receive any corrupted messages. There, (most) faults have to be

transient.
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4.3.4 Weak Interactive Consistency

Informally speaking, weak interactive consistency combines the requirement of a consistent

round (CONS(r ) in our model) with some requirements on liveness and safety of communi-

cation. As explained in Section 3.3, it can be seen as a weaker version of interactive consis-

tency [PSL80]. In a component fault model, an algorithm that solves interactive consistency

allows correct processes to agree on a vector, where at least n − f entries correspond to the

initial values of the corresponding correct processes ( f is the maximum number of faulty

processes).

Interactive consistency, when seen as a communication primitive, can be captured by the

following predicate:

P
f

IC :: |SK| ≥ n − f ∧∀r > 0 : CONS(r )

When we express the result of [PSL80] in our model, their algorithm allows a f + 1 round

simulation of P
f

IC from P
f

SK if n > 3 f . Note that ∀ f ∈ N , P
f

IC ⇒P
f

per m .

We define the weak interactive consistency in this chapter with the following predicate:

P
f
¦cons :: ∀r > 0 ∃ro > r : |SK(r0)| ≥ n− f ∧CONS(r0)

This predicate requires that there is always eventually a consistent round with a safe kernel

of size n − f . In contrast to P
f

SK and P IC , this predicate requires these safe kernels only

eventually and then only for a single round. Also faults are no more static: P
f
¦cons alone does

not imply P
f ′

per m for any f ′ < n. Note that P
f
¦cons is a stronger predicate than P

f ,1
¦SK : although

both predicates require a safe kernel of size n − f and both restrict the dynamism of value

faults for a single round, P
f
¦cons in addition requires that consistency holds during this round,

i.e., for any two processes p and q we have~µp =~µq .

However, P¦cons can be simulated from P¦SK . In the next section, we give such simulation,

and then establish the link to solving consensus.

4.4 Simulating weak interactive consistency P¦cons from eventually

safe kernels P¦SK

In this section we give a simulation of P¦cons from P¦SK in the presence of dynamic (and static)

value faults (Pdyn). Then we introduce a generic predicate P¦cons⊕SK that can be simulated

from P¦SK . The predicate P¦cons⊕SK , in conjunction with Pdyn or Pper m , is later used in

Section 4.5 to solve consensus.

In Section 3.4.2 we have shown a signature-free WIC simulation from eventually synchronous

rounds in the context of classical Byzantine faults (Algorithm 3.2). This result can be expressed

in the framework of this chapter by the following theorem:
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p1

p2

p3

p4
3ρ−2

v2

v2

v2

v2

3ρ−1 3ρ

Figure 4.1: The communication scheme of the simulation of P
f
¦cons ∧P

f
per m from P

f ,3( f +1)
¦SK ∧

P
f

per m (Algorithm 3.2 from Section 3.4.2) from the point of view of v2 sent by p2 (p1 is the
coordinator, n = 4, f = 1).

Theorem 4.1. If n > 3 f andα= f , Algorithm 3.2 (from Section 3.4.2) is a simulation of P
f
¦cons∧

P
f

per m from P
f ,3( f +1)
¦SK ∧P

f
per m .

Figure 4.1 gives a communication pattern of the Algorithm 3.2 from the point of view of

messages sent by process p2.

In this section we show a simulation of P¦cons from P¦SK and the weaker predicate Pdyn

that (partially) preserves Pdyn. More precisely, we show a simulation from P
f
¦SK ∧P α

dyn into

P
f
¦cons ∧P

β

dyn with β≥α: the simulation may only partially preserve P α
dyn in the sense that the

number of corruptions in the simulated rounds may increase from α to β≥α, depending on

n. As already mentioned in Section 4.2.3, a simulation is an algorithm that maintains at each

process p two variables: an input variable mp that is set at the beginning of every macro-round

ρ (Algorithm 4.1, line 6), and an output variable M sgp whose value is considered at the end of

every macro-round ρ (Algorithm 4.1, lines 31 and 33). The special value ⊥ represents the case

when a (reception) vector does not contain a message from the respective process.

The simulation requires four rounds, as shown by Algorithm 4.1. As we can see, β is not a

parameter of the algorithm. Fixing β leads to some requirement on n. More precisely, given f ,

α≥ f , β≥α, Algorithm 4.1 requires n > (β+1)(α+ f )
β−α+1 . Similarly to Algorithm 3.2 in Section 3.4.2,

it is coordinator-based.

The communication pattern of Algorithm 4.1 is very similar to Algorithm 3.2 with the addition

of one “all-to-all” round (see Figure 4.2, to be compared with Figure 4.1). We explain Algo-

rithm 4.1 from the point of view of the message sent by process p2. In round 4ρ−3, process

p2 sends message v2 to all.6 In round 4ρ−2, all processes send to all the value received from

p2, and then compare the value v2 received from p2 in round 4ρ−3 with the value indirectly

received from the other processes in round 4ρ−2. If at least n− f values v2 have been received

6In the description of Algorithm 4.1, in case of messages that contain a vector of messages, we focus only on
those elements of the vectors that are related to the message sent by process p2.
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Algorithm 4.1 Simulation of P
f
¦cons ∧P

β

dyn from P
f ,4( f +1)
¦SK ∧P α

dyn

1: Initialization:
2: M sgp ← (⊥, . . . ,⊥) /* M sgp is the output variable */
3: coordp = ρ mod n +1

4: Round r = 4ρ−3:
5: Sr

p :
6: send mp to all /* mp is the input variable */
7: T r

p :
8: firstp ←~µr

p
9: conf p ← (⊥, . . . ,⊥)

10: Round r = 4ρ−2:
11: Sr

p :
12: send firstp to all
13: T r

p :
14: for all q ∈Π do

15: if
∣∣∣{i ∈Π :~µr

p [i ][q] = firstp [q]
}∣∣∣≥ n − f then

16: conf p [q] ← firstp [q]

17: Round r = 4ρ−1:
18: Sr

p :
19: send conf p to all
20: T r

p :
21: if p = coordp then
22: for all q ∈Π do

23: if
∣∣∣{i ∈Π :~µr

p [i ][q] = conf p [q]
}∣∣∣<α+ f +1 then

24: conf p [q] ←⊥
25: Round r = 4ρ :
26: Sr

p :
27: send conf p to all
28: T r

p :
29: for all q ∈Π do

30: if
∣∣∣{i ∈Π : ~µr

p [i ][q] =~µr
p [coordp ][q]

}∣∣∣≥α+1 then

31: M sgp [q] ←~µr
p [coordp ][q]

32: else
33: M sgp [q] ←⊥

by process p, then p keeps v2 as the message received from p2. Otherwise, the message

received from p2 is ⊥ (line 9). As explained later, rounds 4ρ−3 and 4ρ−2 filter the values for

rounds 4ρ−1 and 4ρ in order to ensure P
β

dyn from P α
dyn. Rounds 4ρ−1 and 4ρ are very similar

to rounds 3ρ−1 and 3ρ in Algorithm 3.2.

Algorithm 4.1 relies on a coordinator for ensuring P
f
¦cons : all processes assign to M sgp the

value received from the coordinator in round 4ρ (see line 31). This is achieved during a macro-

round in which the size of the safe kernel is at least n − f , with the coordinator in the safe

kernel. Since consistency is ensured under the same conditions as with Algorithm 3.2, we use

exactly the same mechanism in Algorithm 4.1.
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p1

p2

p3

p4

p5
4ρ−3

v2

v2

v2

v2

v2

4ρ−2 4ρ−1 4ρ

Figure 4.2: Algorithm 4.1 from the point of view of v2 sent by p2; p1 is the coordinator, n = 5,
f = 1.

p1

p2

p3

p4
3ρ−2

v2

v ′
2

v ′
3

v3

3ρ−1 3ρ

v ′
2,v ′

3

v ′
2,v3

v ′
3

Figure 4.3: Algorithm 3.2 does not preserves P α
dyn; from the point of view of p2 and p3, that

sends correspondingly v2 and v3 in round 3ρ−2, and reception of process p4 of messages
sent by p2 and p3. n = 4, f =α= β= 1 and p1 is coordinator. Message received by p4 from
coordinator in round 3ρ is corrupted; other messages are correctly received. Absence of arrows
represents message loss.

The additional complexity of Algorithm 4.1 comes from the part responsible for ensuring P
β

dyn.

We start by explaining on Figure 4.3 why Algorithm 3.2 does not preserve P α
dyn for the simplest

case f = α = 1, n = 4. According to P 1
dyn, every process can receive at most one corrupted

message per round. In round 3ρ−2, process p3 receives the corrupted message v ′
2 from p2,

and p4 receives the corrupted value v ′
3 from p3. These values are sent to the coordinator p1 in

round 3ρ−1. Finally, in round 3ρ, process p4 receives v ′
2, v ′

3 from p1, v ′
2, v3 from p3, and v ′

3

from itself. Since there are f +1 values equal to those sent by coordinator, p4 considers v ′
2,

respect. v ′
3, as messages received from p2, respect. p3, in macro-round ρ, violating P 1

dyn. The

problem comes from the fact that dynamic faults have a cumulative effect, i.e., messages that

are corrupted in round 3ρ−2 add to corrupted messages from round 3ρ.

We now explain why the addition of round 4ρ−2 allows us to cope with this issue. Informally

speaking, the role of round 4ρ−2 in Algorithm 4.1 is to transform dynamic faults into some

maximum number of static faults, i.e., into some maximum number of faults localized at some
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firstp1
firstp1

firstp2
firstp2

firstp3
firstp3

firstp4
firstp4

×
×

×
×

×
×

×
×

Figure 4.4: After round 4ρ−3: Two examples (left and right) of corrupted values received
(represented by ×).

fixed set of processes. Consider rounds 4ρ−3 and 4ρ−2, with n = 4, α= f = 1. In round 4ρ−3,

predicate P α
dyn ensures that, in total, at most n ·α= 4 corrupted values are received. In other

words, among the vectors firstp1
to firstp4

received (line 8), at most n ·α= 4 elements can be

corrupted (see Figure 4.4, where × represents possible corrupted values). In round 4ρ−2, each

process pi sends vector firstpi
to all processes. Consider the reception of these four vectors by

some process p j . Since α= 1, one of these vectors can be received corrupted at p j . Figure 4.5

shows four examples, two starting from Figure 4.4 left, two starting from Figure 4.4 right.

To understand which value p adopts from q (lines 15 and 16) we need to look at column q

in Figure 4.5. From line 16, p adopts a corrupted value from q only if column q contains

at least n − f = 3 corrupted values. In Figure 4.5 (a), no column satisfies this condition, i.e.,

p adopts no corrupted value. In Figure 4.5 (b), columns 2 and 1 satisfy this condition, i.e.,

corrupted values can be adopted from p2 or p1. It is easy to see that in the case n = 4, f =α= 1,

corrupted values can be adopted from at most one process. In other words, rounds 4ρ−3 and

4ρ−2 has transformed α= 1 dynamic fault into at most β= 1 static faults. In the case n = 5,

f = α = 2, rounds 4ρ−3 and 4ρ−2 transform α = 2 dynamic fault into at most β = 3 static

fault.

Transformingα dynamic faults intoβ≥α static faults allows us to rely on the same mechanism

as in Algorithm 3.2 for the last two rounds of the simulation. Note that in rounds 4ρ−1 and 4ρ

of Algorithm 4.1 we have dynamic faults, while in rounds 3ρ−1 and 3ρ of Algorithm 3.2 faults

were static. Nevertheless the same mechanisms can be used in both cases.

Theorem 4.2. If n > (β+1)(α+ f )
β−α+1 , n > α+ f , α ≥ f , and β ≥ α, then Algorithm 4.1 simulates

P
f
¦cons ∧P

β
corr from P

f ,4( f +1)
¦SK ∧P α

dyn.

The theorem follows directly from Lemmas 4.1 and 4.2: the first lemma considers P
β
corr and

P α
dyn, the second P

f
¦cons and P

f ,4( f +1)
¦SK .

Lemma 4.1. If n > (β+1)(α+ f )
β−α+1 and β≥α, then Algorithm 4.1 simulates P

β
corr from P α

dyn.

Proof. We need to show that for every macro-roundρ, and every process p, we have |AHO(p,ρ)| ≤
β, i.e., at most β messages are corrupted.
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~µp j [p1] ~µp j [p1]

~µp j [p2] ~µp j [p2]

~µp j [p3] ~µp j [p3]

~µp j [p4] ~µp j [p4]

× × × ×
×

×
×

×
×

×
× × × ×

(a) Starting from Figure 4.4 left

~µp j [p1] ~µp j [p1]

~µp j [p2] ~µp j [p2]

~µp j [p3] ~µp j [p3]

~µp j [p4] ~µp j [p4]

× × × ×
×

×
×

×
×

×
× × × ×

(b) Starting from Figure 4.4 right

Figure 4.5: After round 4ρ−2: (a) Two examples of vectors received by some p j starting from
Fig. 4.4 left; (b) Two examples of vectors received by some p j starting from Fig. 4.4 right
(corrupted values are represented by ×).

Assume by contradiction that there is a process p so that |AHO(p,ρ)| > β. That is, we have

|S| ≥β+1 for

S = {
s ∈Π : M sgp [s] 6= ms and M sgp [s] 6= ⊥}

For all s ∈ S, let m′
s denote M sgp [s]. The output M sgp [s] is set at line 31. Because of line 30,

this implies that

∀s ∈ S :
∣∣∣{i ∈Π : ~µ4ρ

p [i ][s] = m′
s

}∣∣∣≥α+1.

Because of |AHO(p,4ρ)| ≤α, at the end of round 4ρ−1 we have

∀s ∈ S,∃is ∈Π : conf is
[s] = m′

s .

Since in round 4ρ−1 the elements of conf can only be set to ⊥, the same condition needs to

holds also at the end of round 4ρ−2. Because of line 15, this implies

∀s ∈ S,∃is ∈Π,∃Qs ⊆Π, |Qs | ≥ n − f ,∀q ∈Qs :

~µ
4ρ−2
is

[q][s] = m′
s .

Because of |AHO(p,2)| ≤α, at the end of round 4ρ−3 we have

∀s ∈ S,∃Q ′
s ⊆Π, |Q ′

s | ≥ n − f −α : ∀q ∈Q ′
s :

firstq [s] = m′
s .

Note that firstq =~µ4ρ−3
q . The number of tuples (q, s) such that ~µ4ρ−3

q [s] = m′
s is thus at least
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(β+1)(n− f −α). From this it follows that there is at least one process q0 where the number of

corrupted messages in the first round is⌈
(β+1)(n − f −α)

n

⌉
=α+

⌈
(β+1)(n − f −α)−nα

n

⌉
>α

where the last inequation follows from n > (β+1)(α+ f )
β−α+1 and β≥α, which ensures (β+1)(n − f −

α)−nα> 0. Therefore AHO(q0,4ρ−3) >α, which contradicts the assumption AHO(q0,4ρ−3) ≤
α.

Lemma 4.2. If n >α+ f and α≥ f , then Algorithm 4.1 simulates P
f
¦cons from P

f ,4( f +1)
¦SK .

Proof. Let ρ denote a macro-round, let Φ= {
4ρ−3, . . . ,4ρ

}
be the set of rounds of ρ, and let

c0 = ρ mod n +1 be the coordinator of ρ such that

c0 ∈ SK(Φ) ∧|SK(Φ)| ≥ n − f .

Such a macro-round exists, because (i) P
f ,4( f +1)
¦SK holds and (ii) the coordinator is chosen using

a rotating coordinator scheme (the coordinator of macro-round ρ is process ρ mod n +1). We

show that with Algorithm 4.1 (i) CONS(ρ) and (ii) |SK(ρ)| ≥ n − f .

(i) Assume by contradiction that for two processes p and q , M sg (ρ)
p and M sg (ρ)

q differ by the

message of process s ∈Π, that is M sg (ρ)
p [s] 6= M sg (ρ)

q [s]. By round 4ρ, every process adopts

the value of c0 or sets M sg (ρ)[s] to ⊥; when c0 ∈ SK(Φ) it follows that M sg (ρ)
p [s] or M sg (ρ)

q [s]

is ⊥. W.l.o.g. assume that M sg (ρ)
p [s] = v and M sg (ρ)

q [s] = ⊥. For rounds r ∈ [4ρ−1,4ρ], let

Rr
p (v, s) :=

{
q ∈Π : ~µr

p [q][s] = v
}

represent the set of processes from which p receives v at

position s. Similarly, for rounds r ∈ [4ρ−1,4ρ], let

Qr (v, s) :=
{

q ∈Π : Sr
q (sr

q )[s] = v
}

represent the set of processes that sent v at position s.

By line 30, if M sg (ρ)
p [s] = v , then |R4ρ

p (v, s)| ≥α+1, and c0 ∈ R4ρ
p (v, s). Since c0 ∈ SK(Φ), we have

c0 ∈Q4ρ(v, s) and thus, by line 23, |R4ρ−1
c0

(v, s)| ≥α+ f +1. From this and |SK(Φ)| ≥ n − f , we

have |R4ρ−1
c0

(v, s)∩SK(Φ)| ≥α+1. Therefore, at least α+1 processes p ′ in SK(Φ), including c0,

have conf p ′[s] = v . It follows that |R4ρ
q (v, s)| ≥ α+1, and c0 ∈ R4ρ

q (v, s). This contradicts the

assumption that the condition in line 30 is false for process q .

(ii) For every processes p ∈Π and q ∈ SK(Φ), by definition we have firstp [q] = mq at the end

of round 4ρ−3. In round 4ρ−2, for every process s ∈ SK(Φ), firsts is received. Therefore, by

line 15 since |SK(Φ)| ≥ n − f , at every process p ∈Π we have conf p [q] = mq , for all q ∈ SK(Φ)

(*). In round 4ρ−1 , c0 receives conf q ′ [q] = mq from every process q ′ ∈ SK(Φ), and thus there

is no q ∈ SK(Φ) s.t. c0 sets conf c0
[q] to ⊥ (**). In round 4ρ, since c0 ∈ SK (Φ), every process

p receives the message from c0. In addition, since n ≥ f +α+1 and |SK(Φ)| ≥ n − f , every
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process receives the message from n − f ≥α+1 processes in SK(Φ). By (*), (**) and line 30, for

all processes p and all q ∈ SK(Φ), we have M sgp [q] = mq . Thus SK(Φ) ⊆ SK(ρ), which shows

that SK(ρ) ≥ n − f .

Corollaries 4.1 and 4.2 follow from Lemma 4.1.

Corollary 4.1. If n > (α+1)(α+ f ), then Algorithm 4.1 preserves P α
dyn.

By Corollary 4.1, preserving P α
dyn leads to a quadratic dependency between n and α. Corol-

lary 4.2 shows the surprising result that, allowing more than α corruptions in the simulated

round, leads instead to a linear dependency between n and α. Note that the simulation

mentioned in Corollary 4.2 is not useful if
⌊

η
η−1α

⌋
≥ n.

Corollary 4.2. For any η ∈R, η> 1, if n > η(α+ f ), then Algorithm 4.1 simulates P

⌊
η

η−1α
⌋

dyn from

P α
dyn.

Proof. Let ξ= η
η−1 . From bξαc > ξα−1 = α

η
η−1 −1 = αη−η+1

η−1 it follows that bξαc+1
bξαc−α+1 < η. The

corollary follows from Lemma 4.1 by setting β= bξαc.

4.4.1 Generic predicate

In Section 4.5 we solve consensus using the following generic predicate, which combines

P¦cons and P¦SK :

P
f ,b,k
¦cons⊕SK ::∀φ> 0,∃φ0 ≥φ, CONS((φ0 −1)k +1) ∧|SK (Φ)| ≥ n − f ,

where Φ= {
(φ0 −1)k +1−b, . . . ,φ0k

}
It defines a phase with k rounds, where the first round of some phase φ0 is consistent and all

rounds of phase φ0 plus the preceding b rounds have safe kernel of size at least equal to n − f .

Obviously, P¦cons⊕SK can be simulated from P¦SK and Pdyn using Algorithm 4.1. Algorithm 4.1

simulates the first round of a phase, and a trivial simulation (where messages are just delivered

as received) are used for the other rounds. Ensuring that the coordinator is in the safe kernel

requires f +1 phases. The first macro-round of a phase requires 4 rounds, and the others k −1

only 1 round. Therefore f +1 phases correspond to (k +3)( f +1) rounds. This leads to:

Corollary 4.3. If n > (β+1)(α+ f )
β−α+1 , n > α+ f , α ≥ f , and β ≥ α, then P

f ,b,k
¦cons⊕SK ∧P

β

dyn can be

simulated from P
f ,K
¦SK ∧P α

dyn, where K = (k +3)( f +1)+b + (k +2).

Note that the additional term k +2 for K stems from the fact that the rounds with a safe kernel

are not necessarily aligned to the phases of P
f ,b,k
¦cons⊕SK .
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4.5 Solving consensus with eventual consistency

In this section we use the generic predicate P¦cons⊕SK to solve consensus. In a consensus

algorithm below, the notation #(v) is used to denote the number of messages received with

value v , i.e.,

#(v) ≡
∣∣∣{q ∈Π :~µr

p [q] = v
}∣∣∣ .

4.5.1 The BLV algorithm

Algorithm 4.2 BLV algorithm

1: Initialization:
2: votep ← initp ∈V
3: tsp ← 0
4: historyp ← {

(i ni tp ,0)
}

5: Round r = 3φ−2:
6: Sr

p :
7: send 〈votep , tsp ,historyp〉 to all
8: T r

p :
9: selectp ←FBLV T,β(~µr

p )
10: if selectp 6= null then
11: historyp ← historyp ∪{

(selectp ,φ)
}

12: Round r = 3φ−1:
13: Sr

p :
14: if ∃(v,φ) ∈ historyp then
15: send 〈v〉 to all
16: T r

p :
17: if #(v) ≥ T then
18: votep ← v
19: tsp ←φ

20: Round r = 3φ:
21: Sr

p :
22: if tsp =φ then
23: send 〈votep〉 to all
24: T r

p :
25: if ∃v̄ 6= ⊥ : #(v̄) ≥ T then
26: DECIDE v̄

The algorithm we present is called BLV . It is inspired by CL algorithm (Algorithm 4.2) pre-

sented in Section 3.6, that we adapted for transmission value faults. BLV is designed to work

under P α
dyn. For safety, BLV requires n > 2(α+ f ) and T > n

2 +α. Termination is achieved if in

addition the following predicate holds:
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Algorithm 4.3 Function FBLV T,β(~M)

27: possibleV ← {
(v, ts) : ∃i ∈Π : (v, ts) = ~M [i ] ∧ ∣∣{q : ~M [q] = (v ′, ts′,−)∧ ((v = v ′∧ ts = ts′)∨ ts > ts′)}

∣∣≥ T
}

28: confirmedV ← {v : (v, ts) ∈ possibleV ∧ |{q : ~M [q] = (−,−,history)∧ (v, ts) ∈ history}| >α }

29: if |confirmedV | ≥ 1 then
30: return min(confirmedV )
31: else if {q : ~M [q] = (−,0,−)} ≥ T then
32: return minimal v , such that ∃(v,0,−) ∈ ~M and 6 ∃(v ′,0,−) ∈ ~M s.t . #((v ′,0,−)) > #((v,0,−))
33: else
34: return null

P
f

BLV :: ∀φ> 0,∃φ0 >φ : CONS(3φ0 −2)∧∀r ∈ {3φ0 −2, . . . ,3φ0} : |SK (r )| ≥ n − f

The P
f

BLV predicate ensures the existence of a phase φ0 such that: (i) in the first round of φ0

processes receive the same set of messages, and (ii) in all three rounds of φ0 processes receive

at least n − f uncorrupted messages.

Obviously, P
f ,0,3
¦cons⊕SK implies P

f
BLV . Weak interactive consistency ensures that at the end of

round 3φ0 −2, all processes select the same value. The condition that there exists a large

enough safe kernel in phase φ0 finally forces every process to make a decision at the end of

round 3φ0.

The code of BLV is given as Algorithm 4.2. It consists of a sequence of phases, where each

phase φ has three rounds 3φ−2, 3φ−1 and 3φ. The algorithm uses a timestamp variable ts in

addition to to the variable vote. Whenever a process p updates votep in round 3φ−1, t sp is

set to φ (line 18 and 19). If enough processes update vote in round 3φ−1, then a decision is

possible in round 3φ. The condition at line 17 ensures that in round 3φ−1, all processes that

update vote, update it to the same value. This ensures that in round 3φ, processes attempt to

decide on one single value, which is necessary for agreement.

In order to deal with value faults, BLV maintains also a history variable, which stores pairs

(v,φ). Having (v,φ) ∈ historyp means that p added (v,φ) to historyp in phase φ (line 11). The

history variable ensures that a corrupted message with invalid values for vote and tsp will not

affect the safety properties of the algorithm.

Similarly as in Algorithm 4.2 round 3φ−2 has two roles, the first related to agreement and

integrity, and the second related to termination:

1. Safety role:

(a) For Agreement: If a process p has decided v in some phase φ0, then for any process

q , only v can be assigned to selectq at line 9 in phases φ>φ0.
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(b) For Integrity: If all processes have the same initial value v , then only v can be

assigned to selectp at line 9.

2. Termination role: In a consistent round with safe kernel of size n − f , all processes must

assign the same value to select at line 9.

Line 9 refers to the selection function FBLV T,β, which takes as input the messages received

in round 3φ−2. We explain now this function (Algorithm 4.3):

• Line 27 (together with line 28) ensures 1a. More precisely, it ensures selection of the

most recent vote in the history of some process. If a process has previously decided v̄ ,

then only v̄ can be in confirmedV .7

• Line 28 prevents from returning a value v from a pair (v, ts) that is from a corrupted

message: the pair must be in the history of at least one process. Therefore, a pair (v, ts)

is considered only if it is part of the history in at least α+1 messages received. Together

with line 27, it also ensures 1b: when all processes have the same initial value, no other

value is in the historyp variable of processes.

We consider now lines 29 and 30 of Algorithm 4.3. As we just explained, if a process has

previously decided v̄ , then only v̄ can be in confirmedV , that is, |confirmedV | = 1. In this case,

by line 30, the function FBLV T,β returns v̄ . If no correct process has decided, we can have

|confirmedV | > 1. In this case, if some round 3φ−2 is a consistent round with safe kernel of

size n − f , then all processes consider the same set confirmedV , which ensures 2. Lines 31

and 32 are for the case where not all processes have the same initial value. Termination would

be violated without these lines.

Correctness of the BLV algorithm

First we introduce some notation. For any variable x local to process p, we denote x(r )
p the

value of xp at the end of round r . For any value v ∈V and any process p, at any round r > 0,

we define the sets Rr
p (v) and Qr

p (v) as follows:

Rr
p (v) :=

{
q ∈Π : ~µr

p [q] = v
}

Qr
p (v) :=

{
q ∈Π : Sr

q (p, sq ) = v
}

,

7Consider two phases φ0 and φ0 +1, such that a process has decided v̄ in phase φ0. We consider the more
general case with dynamic faults, and we assume that n = 5, f =α= 1 and T = 4. This means that at least T −α= 3
processes have ts =φ0 and vote = v̄ . Consider in phase φ0 +1 that (v, ts) ∈ possi bl eVp at p with v 6= v̄ . This means
that p, in round 3(φ0+1)−2, has received T = 4 messages with either (v, ts,−), or (−, ts′,−) and ts′ < ts. Since n = 5
and T = 4, at least one of these messages is from a process c such that votec = v̄ and tsc =φ0. Since v 6= v̄ , we must
have φ0 < ts. However, in phase φ0 +1, no process p can have (v, ts) with ts >φ0 in historyp . Therefore, by line 28,
we will not have v ∈ confirmedV .
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where sq denotes q ’s state at the beginning of round r . The set Rr
p (v) (resp. Qr

p (v)) represents

the set of processes from which p receives v (resp. which ought to send v to p) at round

r . Since at each round of the consensus algorithm, every process sends the same message

to all, the sets Qr
p (v) do not depend on p, and so can be just denoted by Qr (v) without any

ambiguity.

We start our correctness proof with a general basic lemma:

Lemma 4.3. For any process p and any value v, at any round r , we have:

|Rr
p (v)| ≤ |Qr (v)|+ |AHO(p,r )|

Proof. Suppose that process p receives a message with value v at round r > 0 from process q .

Then, either the code of q prescribes it to send v to p at round r , i.e., q belongs to Qr (v) and

thus q is also in SHO(p,r ), or the message has been corrupted and q is in AHO(p,r ). It follows

that Rr
p (v) ⊆Qr (v)∪AHO(p,r ), which implies |Rr

p (v)| ≤ |Qr (v)|+ |AHO(p,r )|.

Definition 4.1. A value v is locked in a phase φ by process p if votep = v and t sp =φ at the end

of round 3φ−1.

Lemma 4.4. If T > n
2 +α, then in any run of the HO machine (BLV ,P α

dyn) there is at most one

locked value per phase.

Proof. Assume by contradiction that there exist two processes p and q that lock different val-

ues v and v ′ in some phaseφ0 > 0. From line 17 we deduce that |R3φ0
p (v)| ≥ T and |R3φ0

q (v ′)| ≥ T .

Then Lemma 4.3 (note that this lemma holds also for BLV) ensures that |Q3φ0 (v)| ≥ T −α and

|Q3φ0 (v ′)| ≥ T −α when P α
dyn holds.

Since each process sends the same value to all at each round, the sets Q3φ0 (v) and Q3φ0 (v ′)
are disjoint if v and v ′ are distinct values. Hence,

|Q3φ0 (v)∪Q3φ0 (v ′)| = |Q3φ0 (v)|+ |Q3φ0 (v ′)| ≥ 2T −2α.

Consequently, since T > n
2 +α, we derive that |Q3φ0 (v)∪Q3φ0 (v ′)| > n, a contradiction.

Lemma 4.5. If T > α, then in any run of the HO machine (BLV ,P α
dyn) there is at most one

possible decision value per phase.

Proof. Assume by contradiction that there exist two processes p and q that decide on dif-

ferent values v and v ′ in some phase φ0 > 0. From line 25 we deduce that |R3φ0
p (v)| ≥ T and

|R3φ0
q (v ′)| ≥ T . Then Lemma 4.3 and P α

dyn ensure that |Q3φ0 (v)| ≥ T −α and |Q3φ0 (v ′)| ≥ T −α.

Since each process sends the same value to all at each round, the sets Q3φ0 (v) and Q3φ0 (v ′) are

disjoint since v and v ′ are distinct values. Hence, when T >α, the sets Q3φ0 (v) and Q3φ0 (v ′)
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are not empty, and so by line 22, there exist two processes p ′ and q ′ that have votep ′ = v ,

t sp ′ =φ0, voteq ′ = v ′ and t sq ′ =φ0 . A contradiction with Lemma 4.4.

Lemma 4.6. If T > n
2 +α, then in any run of the HO machine (BLV ,P α

dyn), if process p decides

v in phase φ0 > 0, then for all later phases φ>φ0 and all processes q, (v,φ) is the only pair that

can be added to historyq .

Proof. Assume by contradiction that φ1 >φ0 is the first phase where a pair (v1,φ1) with v1 6= v

is added to the historyq at process q . This implies that if history at some process contains a

pair (v ′,φ′) with v ′ 6= v , then φ′ ≤φ0 (*).

Since by our assumption q added (v ′,−) to historyq in phase φ1, this implies that FBLV T,β

returns v ′ at line 9 in phase φ1. Therefore, either (i) line 30 or (ii) line 32 of Algorithm 4.3 was

executed by q in phase φ1.

In case (ii), the condition of line 31 has to be true. This implies that |R3φ1−2
q ((−,0,−))| ≥ T , and

thus, by Lemma 4.3, |Q3φ1−2((−,0,−))| ≥ T −α.

We prove an intermediate result: In phases φ such that φ0 ≤φ<φ1, we have |{q ∈
Π : vote3φ−1

q = v∧t s3φ−1
q ≥φ0}| ≥ T−α. Since p decides v in phaseφ0, |R3φ0

p (v)| ≥ T ,

and thus by Lemma 4.3, we have |Q3φ0 (v)| ≥ T −α. From the code of the BLV

algorithm, we have Q3φ0 (v) = {q : vote3φ0−1
q = v∧t s3φ0−1

q =φ0}, therefore the claim

holds for phase φ0.

We now show that any process that locked value v in phase φ0 (see Definition 4.1)

and updates vote in phase φ such that φ0 < φ < φ1, sets it to v . This ensures

the claim. Assume by contradiction that one of these processes q ′ sets voteq to

v ′ in round 3φ− 1. By line 17, |R3φ−1
q (v ′)| ≥ T . Then Lemma 4.3 ensures that

|Q3φ−1(v ′)| ≥ T −α. Since T >α, we have |Q3φ−1(v ′)| > 0, i.e. at least one process

sent v ′ at line 15. Therefore, by line 14 at least one process has (v ′,φ0 + 1) in

history, a contradiction with the assumption that φ1 is the first phase where a pair

(v ′,−) is added to history at some process.

So we have also |⋃ts≥φ0
Q3φ1−2((v, t s,−))| ≥ T −α. Since in each round, every process sends

the same value to all, and φ0 > 0, the sets X (v) =⋃
t s≥φ0

Q3φ1−2((v, t s,−)) and Q3φ1−2((−,0,−))

are disjoint. Hence,

|X (v)∪Q3φ1−2((−,0,−))| = |X (v)|+ |Q3φ1−2((−,0,−))| ≥ 2T −2α.

Together with T > n
2 +α, we derive that |⋃t s≥φ0

Q3φ1−2((v, t s,−))∪Q3φ1−2((−,0,−))| > n, a

contradiction.
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In case (i), the condition at line 29, has to be true, i.e., v ′ need to be part of confirmedV set at

line 28. Value v ′ can be part of the set confirmedV only if (v ′, t s′) is part of the set possibleV at

line 27. We show that if (v ′, t s′) is part of the set possibleV at line 27, v ′ cannot be part of the

set confirmedV at line 28, which establishes the contradiction.

If the pair (v ′, t s′) is added to the set possibleV at line 27, then HO(q,3φ1 − 2) ≥ T . Since

2T −α> n+α, |HO(q,3φ1−2)∩⋃
ts≥φ0

Q3φ1−2((v, t s,−))| >α. Therefore, since P α
dyn holds, any

set of messages of size T contains at least one message m with m.vote = v and m.ts ≥φ0 (**).

So we have |{m′ ∈~µr
q : (m′.ts < ts′)}| ≥ T and, because of (**), ts′ >φ0.

The value v ′ is added to the set confirmedV at line 28 only if there are at least α+1 messages

m in~µ3φ−2
q such that: (v ,φ) ∈ m.history and φ≥ ts′ and v = v ′. Since t s′ >φ0, by (*), q receives

at most α such messages, a contradiction.

Proposition 4.1 (Agreement). If T > n
2 +α, then no two processes can decide differently in any

run of the HO machine (BLV ,P α
dyn).

Proof. Let a phase φ0 > 0 be the first phase at which some process p makes a decision, and let

v be the p’s decision value. Assume that process q decides v ′ at phase φ′. By definition of φ0,

we have φ′ ≥φ0.

We proceed by contradiction and assume that v 6= v ′. By Lemma 4.5, we derive that φ′ >φ0.

Since q decides at round 3φ′, by line 25 we have |R3φ′
q (v ′)| ≥ T . By Lemma 4.3, we have

|Q3φ′
(v ′)| ≥ T −α. Since T > α, there is at least one process p ′ that sends v ′ in round 3φ′.

By line 22 and line 19 we have that process p ′ sends it’s current vote in round 3φ′ only if

vote is updated in round 3φ′ − 1. Therefore, |R3φ′−1
p ′ (v ′)| ≥ T , i.e. by Lemma 4.3, we have

|Q3φ′−1(v ′)| ≥ T −α. Since T >α, at least one process q ′ sends v ′ in round 3φ′−1. By line 14, if

q ′ sends v ′ in round 3φ′−1, then ∃(v ′,φ′) ∈ history3φ′−2
q ′ , a contradiction with Lemma 4.6.

Lemma 4.7. If T > 2α, then in any run of the HO machine (BLV ,P α
dyn) where all the initial

values are equal to some value v, for all processes q, historyq contains only pairs (v,−).

Proof. Since all processes have v as their initial value, history at all processes is initialized

to (v,0). Assume by contradiction that φ0 is the first phase where a pair (v ′,−) is added to

historyp at some process p (*). This implies that FBLV T,β returns v ′ at line 9. Therefore,

either (i) line 30 or (ii) line 32 of Algorithm 4.3 was executed by p in phase φ0.

For (i), the condition at line 29 has to be true, i.e., v ′ needs to be in confirmedV at line 28. This

means that p received more than α messages m = (−,−,hi stor ym) with (v ′, t s) ∈ hi stor ym

in round 3φ0 − 2. By Lemma 4.3 and P α
dyn, at least one process sends a message m =

〈−,−,hi stor ym〉 with (v ′, t s) ∈ hi stor ym in round 3φ0 −2, a contradiction with (*).

For (ii), the condition of line 31 has to be true. If this condition is true, this implies that

|HO(p,3φ0 −2)| ≥ T . Since T > 2α, P α
dyn holds, and all processes have the same initial value v ,
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v is returned at line 32 and (v,φ0) is added to the historyp . A contradiction.

Proposition 4.2 (Integrity). If T > 2α, then in any run of the HO machine (BLV ,P α
dyn) where

all the initial values are equal to some value v, the only possible decision value is v.

Proof. By contradiction, assume that phase φ0 > 0 is the first phase in which some process p

decides v ′ 6= v .

Since p decides at round 3φ0, by line 25 we have |R3φ0
p (v ′)| ≥ T . By Lemma 4.3 and P α

dyn, we

have |Q3φ0 (v ′)| ≥ T −α. Since T >α, there is at least one process q that sends v ′ in round 3φ0.

By line 22 and line 19, we have that process q sends it’s current vote in round 3φ0 only if vote is

updated in round 3φ0 −1. Therefore, |R3φ0−1
q (v ′)| ≥ T , i.e., by Lemma 4.3 and P α

dyn, we have

|Q3φ0−1(v ′)| ≥ T −α. Since T >α, at least one process q ′ sends v ′ in round 3φ0−1. By line 14, if

q ′ sends v ′ in round 3φ0−1, then ∃(v ′,φ0) ∈ history3φ0−2
q ′ , a contradiction with Lemma 4.7.

Proposition 4.3 (Termination). If n > 2( f +α), T > n
2 +α and f ≤α, then any run of of the HO

machine (BLV ,P α
dyn ∧P

f
BLV ) satisfies the Termination clause of consensus.

Proof. By P
f

BLV , there exists a phase φ0 such that

CONS(3φ0 −2)∧∀r ∈ {3φ0 −2, . . . ,3φ0} : SK (r ) ≥ n − f .

Therefore, in round 3φ0−2, for any two processes p and q , we have~µr
p =~µr

q , and |SHO(p,3φ0−
2)∩SHO(q,3φ0 −2)| ≥ n − f .

Part A. We now prove that select3φ0−2
p will be the same at all processes p, i.e., that FBLV T,β

returns the same value at all processes, and all processes add the same pair to history in round

3φ0 −2. There are two cases to consider: (i) some process p ∈ SK(φ0) locked a value in some

phase smaller than φ0, or (ii) there is no such process in SK(φ0).

Case (i): Let φ<φ0 be the largest phase in which some process p locked some value v (line 18).

By Lemma 4.4 and since Q > n
2 +α, all processes that lock a value in phase φ, lock the same

value v . Since n > 2( f +α) and T > n
2 +α, n − f ≥ T ; therefore in case (i) at least a pair (v,−) is

added to the set possibleV at line 27 of Algorithm 4.3 (*).

We consider now line 28 of Algorithm 4.3. If p locked value v in phase φ, then |R3φ−1
p (v)| ≥

T , i.e., by Lemma 4.3, we have |Q3φ−1(v)| ≥ T −α when P α
dyn holds. Because of line 14 of

Algorithm 4.2, at least T −α processes have (v,φ) in history. By assumption, n > 2( f +α)

and T > n
2 +α, therefore n − f +T > n +α. Therefore, because of |SK(φ0)| ≥ n − f , any set of

messages received in round 3φ0 −2 contains more than α messages m with (v,φ) ∈ m.history.

Since n > 2( f +α) and T > n
2 +α, n− f ≥ T (***), and therefore v is added to the set confirmedV

at line 28 of Algorithm 4.3 (**).
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From (*) and (**), it follows that the condition of line 29 of Algorithm 4.3 is true at all processes

in phase φ0. Moreover, since function FBLV T,β is deterministic and CONS(3φ0 −2) holds,

for any two processes p and q , we have selectp = selectq at line 9. Therefore p and q add the

same pair to history at line 11.

Case (ii): By hypothesis, for all processes p ∈ SK(φ0), we have tsp = 0. By (***) n − f ≥ T

and therefore the condition at line 31 of Algorithm 4.3 is true at each process. Moreover, by

CONS(3φ0 −2) we have for any two processes p and q ~µr
p =~µr

q . Therefore, the value returned

at line 32 of Algorithm 4.3 is the same at all processes, and they will add the same pair to

hi stor y at line 11 of Algorithm 4.2.

Part B. From Part A, there exists a value v such that at all processes p we have (v,φ0) ∈
historyp at the beginning of round 3φ0 −1. Therefore all processes send v to all at line 15.

By |SK(3φ0 −1)| ≥ n − f we have that all processes receive at least n − f messages equal to

v , and since by (***) n − f ≥ T , they all set votep to v (line 18) and send v to all at line 23.

By |SK(3φ0)| ≥ n − f and the same reasoning we can show that all processes receive n − f

messages equal to v in round 3φ0, and since by (***) n − f ≥ T , decide v at line 26 in phase

φ0.

Combining Propositions 4.1, 4.2, and 4.3, we get the following theorem:

Theorem 4.3. If n > 2(α+ f ) and T > n
2 +α, then the HO machine 〈BLV ,P f

BLV ∧P α
dyn〉 solves

consensus.

Note that the BLV algorithm can also be used in the model considered in [BCBG+07], where

all faults are transient. By Theorem 4.3, the BLV algorithm solves consensus in this model if

n > 2α ( f = 0), in contrast to algorithm AT,E in [BCBG+07], which requires n > 4α. Algorithm

UT,E ,α in [BCBG+07] requires n > 2α but, contrary to BLV , requires for safety that in every

round every process receives a sufficient number of correct messages. This is not required

by BLV , which is still correct even if processes do not receive any correct message in some

rounds.

4.6 Deriving the overall resilience of BLV

In this section we look at the overall resilience of the BLV consensus algorithm together with

the P
f

BLV predicate simulation algorithm.

When solving consensus in the presence of dynamic value faults (P¦SK ∧P
f

dyn), the BLV and

the simulation algorithm have different requirements on n.

From Corollary 4.3 and the fact that P
f ,0,3
¦cons⊕SK implies P

f
BLV we get:

Corollary 4.4. If n > (β+1)(α+ f )
β−α+1 , n > α+ f , α ≥ f , and β ≥ α, then Algorithm 4.1 simulates

P
f

BLV ∧P
β

dyn from P
6( f +1)+5
¦SK ∧P α

dyn.
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From Corollary 4.4 for any β≥α, we can simulate P
f

BLV ∧P
β
corr from P

f ,6( f +1)+5
¦SK ∧P α

dyn if

n > (β+1)(α+ f )

β−α+1
∧ n >α+ f

On the other hand, from Theorem 4.3 we know that we can solve consensus with BLV under

P
f

BLV ∧P
β
corr if

n > 2(β+ f ).

Combining these conditions and setting β= kα, where k ∈R, k ≥ 1, we can solve consensus

with Algorithm 4.2 and Algorithm 4.1 under P
f ,6( f +1)+5
¦SK ∧P α

dyn if the following two conditions

hold:

n > (kα+1)(α+ f )

kα−α+1
(4.4)

n > 2(k −1)α+2(α+ f ). (4.5)

We first consider α> 1, then α= 1.

Caseα> 1: We can obtain different resilience bounds depending on the choice of k.

Choosing k = 1 leads to the quadratic dependency from Corollary 4.1, and is thus not what we

want to achieve here.

For k ≥ 2, condition (4.5) implies condition (4.4) for any α > 1, because kα+1
kα−α+1 ≤ 2. Thus,

when choosing k ≥ 2, the smallest n is obtained with k = 2:

n > 4α+2 f .

In case 1 < k < 2, the optimal choice of k depends onα and f . As special case we get for k = 1.5

from condition (4.4), n > 3α+2
α+2 (α+ f ), i.e.,

n > 3(α+ f )

while from condition (4.5) we get

n > 3α+2 f

Since both conditions should hold, it follows that n > 3(α+ f ).

Case α = 1: For the special case α = 1 and f = 1, conditions (4.5) and (4.4) become n >
2(k −1)+4 and n > 2(k+1)

k . We obtain the smallest value for n by choosing k = 1, which leads
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to n > 4.

Discussion: The results show that k = 1 (i.e., β = α) leads to the smallest value of n only

when α = 1. In cases where α > 1, a better choice is k = 1.5 (i.e., β = 1.5α). This is a non

intuitive result.

4.7 Communication predicates and corresponding systems

In the HO model, there are no faulty processes and no state corruption. Nevertheless, for

predicates that characterize permanent faults, the model can be used to reason about classical

Byzantine faults. This implies that the algorithm in this paper can be used also to solve

consensus in the classical Byzantine fault model. We develop this observation first for a

synchronous system (for simplicity), and then extend it to our model.8

Let Sf denote a synchronous system with reliable links and at most f Byzantine processes,

and consider on the other hand an HO machine with |SK| ≥ n − f . For correct processes, a run

in Sf is indistinguishable from a run of the HO machine. Therefore, an algorithm that solves

consensus with |SK| ≥ n − f allows in Sf correct processes to solve consensus. Note that in

Sf faulty processes do not follow the protocol. It is then natural that they do not follow the

specification of consensus.

The same indistinguishability argument can be applied to (i) the weaker partial synchronous

system [DLS88] with at most f Byzantine processes and (ii) the HO model with P
f

per m ∧P
f ,∞
¦SK .

For correct processes in the model (i), a run is indistinguishable from a run in model (ii), and

so an HO algorithm that solves consensus allows correct processes in the fault-prone system

to solve consensus.

The predicate P α
dyn ∧P

f ,k
¦SK , α ≥ f , can correspond to a partially synchronous system with

at most f Byzantine processes, where in addition, before stabilization time, in every round

processes can receive α− f corrupted messages from correct processes (*). This spectrum

of interpretations, which includes permanent faults (see Sect. 4.3.3) contrary to [BCBG+07],

shows the benefit of considering the consensus problem in a model with (only) transmission

faults.

Further, these interpretations show that the BLV consensus algorithm presented in this chap-

ter can be used in classical system models. This allows us to compare BLV with existing

consensus algorithms, specifically consensus algorithms that tolerate arbitrary faults (process

and/or link faults). The comparison appears in Table 4.1. For BLV we assume the interpreta-

tion (*) in the preceding paragraph.

8This observation was made already in [Lam01] and [BCBG+07], but without giving algorithms supporting the
observation.
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4.8 Conclusion

The transmission fault model allows us to reason about permanent and transient value faults

in a uniform way, which makes the model very attractive. However, all existing solutions

to consensus in this model are either in the synchronous system model, or require strong

conditions for termination that exclude the case where all messages of a process can be

corrupted. The chapter has shown that this limitation can be overcome thanks to the weak

interactive consistency predicate that states the existence of a round where all processes

receive the same set of messages. The simulation of weak interactive consistency from a

predicate that corresponds to a partially synchronous system parameterized with α (in every

round each process can receive up to α corrupted messages) and f (at most f processes

are corrupted) has been given. The simulation is compatible with permanent and transient

faults. The chapter has pointed out two options for the simulation: preserving or not the

number of corrupted messages in each round. The first option requires n > (α+1)(α+ f ).

The second option requires n > η(α+ f ). Combining the BLV consensus algorithm with this

second simulation leads to n > 3(α+ f ) for α> 1 and n > 4 for α= 1.
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5 Generic Consensus Algorithm for
Benign and Byzantine Faults

In the Chapter 3 we introduced the weak interactive consistency (WIC) abstraction, and have

shown how it allows us to unify Byzantine consensus algorithms with and without signatures.

In this chapter we go one step further (in unifying consensus algorithms) by proposing a

generic consensus algorithm that highlights, through well chosen parameters, the core mecha-

nisms of a number of well-known consensus algorithms including Paxos [Lam98], OneThir-

dRule [CBS09a], PBFT [CL02] and FaB Paxos [MA06]. Interestingly, the generic algorithm

allows us to identify a new Byzantine consensus algorithm that requires n > 4b, in-between

the requirement n > 5b of FaB Paxos and n > 3b of PBFT (b is the maximum number of

Byzantine processes). The chapter contributes to identify key similarities rather than non

fundamental differences between consensus algorithms.

Publication: Olivier Rütti, Zarko Milosevic, André Schiper. Generic construction of consen-

sus algorithms for benign and Byzantine faults. In The 40th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN 2010), Chicago, Illinois, USA, June 28 -

July 1, 2010.

5.1 Introduction

Our generic consensus algorithm assumes a partially synchronous system model [DLS88] (see

Section 2.4). However, in order to improve the clarity of the algorithms and simplify the proofs,

as in [DLS88], we consider an abstraction on top of the system model, namely the round

model (see Section 2.5). Expressing a consensus algorithm in the round model or directly in

the partially synchronous system, does not change its core mechanisms.

The generic algorithm consists of successive phases, where each phase is composed of three

rounds: a selection round, a validation round and a decision round. The validation round

may be skipped by some algorithms, which introduces a first dichotomy among consensus

algorithms: those that require the validation round, and the others for which the validation
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round is not necessary. We further subdivide the algorithms that require a validation round in

two, based on the state variables required. This lead us to identify three classes of consensus

algorithms: OneThirdRule and FaB Paxos belong to class 1, Paxos to class 2 and PBFT to class 3.

Our generic algorithm is based on four parameters: two functions (FLV and Validator),

the threshold parameter TD, and a FLAG (FLAG = ∗ or FLAG = φ). The functions FLV and

Validator are characterized by abstract properties; TD is defined with respect to n (number of

processes), f (maximum number of honest faulty processes, see Section 2.1) and b (maximum

number of Byzantine processes). We prove correctness of the generic consensus algorithm

by referring only to the abstract properties of our parameters. The correctness proof of any

specific instantiated consensus algorithm consists simply in proving that the instantiations

satisfy the abstract properties of FLV and Validator.

This is not the first tentative to propose a generic consensus algorithm, but it goes significantly

beyond previous approaches. Mostéfaoui et al. [MRR02] propose a consensus framework

restricted to benign faults, which allows unification of leader oracle, random oracle and fail-

ure detector oracle. Guerraoui and Raynal [GR04] propose a generic consensus algorithm,

where the generality is encapsulated in a function called Lambd a. The Lambd a function

encapsulates our selection and validation rounds. This does not allow the paper to iden-

tify the differences between two of our three classes of consensus algorithms. Moreover, as

for [MRR02], the paper is restricted to benign faults. Later, Guerrraoui and Raynal [GR07] pro-

posed a generic version of Paxos in which communication (using shared memory, storage area

networks, message passing channels or active disks) is encapsulated in the Omega abstraction.

The paper is also restricted to benign faults. Apart from this work, several other authors

proposed abstractions related to Paxos-like protocols, e.g., [Lam01, LCAA07, Cac10, Lam11].

More generally, Song et al. [SvRSD08] proposed building blocks that are used to construct a

skeletal consensus algorithm. The skeletal algorithm is then used to instantiate three con-

sensus algorithms: Paxos, Chandra-Toueg [CT96a] and the Ben-Or consensus algorithm for

Byzantine faults [BO83]. The skeletal algorithm is expressed in terms of several process roles,

selectors, archivers and deciders, and parameterized with two quorum systems, the selectors

quorum system S r and archivers quorums system A . The algorithm proceeds in multiple

instances (corresponds to rounds, phases or ballots in other approaches) where each instance

corresponds to a sub-protocol that itself might decide. The agreement among multiple in-

stances is ensured by proposing a "safe" value, captured by the notion of guarded proposal,

that is similar to our FLV function. The difference is that contrary to the FLV function, that

is defined with the abstract properties, the guarded proposal is not a parameter, but already

represents an instantiation that covers three consensus algorithms considered. This is the

main limitation of the approach, as the instantiation of the guarded proposal does not gener-

alize to some seminal consensus algorithms such as PBFT and FaB Paxos. The role of the S r

quorum is to prevent archivers from archiving different suggestions in the same instance and

is similar to our Validator parameter. The instantiation of the A quorum system is the same

for all three consensus algorithms considered and consists of all processes, while algorithms
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use different instantiations of S r .

Finally, Zieliński [Zie06] proposed an agreement framework based on the optimistically termi-

nating consensus (OTC) abstraction. OTC can be seen as a weaker variant of consensus that

terminates only if all correct processes propose the same value (and no correct process stop

an OTC instance)1). Reconstructing consensus algorithm within the OTC framework means

obtaining an algorithm that matches latency (number of communication steps) in favorable

scenarios (when the first coordinator is correct) and the number of required processes of

the original algorithm. The paper shows how multiple well-known consensus algorithms

can be reconstructed from these algorithms, e.g., CT, Paxos, OTR, FaB Paxos and PBFT. The

reconstruction is based on the two coordinator-based consensus algorithms based on the

OTC abstraction, one for benign faults and the other for Byzantine faults that uses signatures.

Informally speaking, these algorithms capture the "good case" (called also normal case) of

consensus algorithms2, but simplifies the "recovery" part (as the focus is on the best-case

latency). Therefore, the framework does not correctly capture the recovery part of consensus

algorithms (considered as the most complex part of the algorithms). For example the algo-

rithm for benign case does not have the timestamp variable required by Paxos, or does not

capture correctly the "view change" protocol of PBFT.

Roadmap The rest of the chapter is organized as follows. Section 5.2 introduces the system

model. We derive our generic consensus algorithm and prove its correctness in Section 5.3. In

Section 5.4 we present three instantiations of the FLV function that lead to the three classes of

consensus algorithms. Section 5.5 gives examples of instantiations and Section 5.6 concludes

the chapter.

5.2 Model

Unless stated otherwise, in the rest of the chapter we consider the partially synchronous

system model. As explained in Section 2.5, we consider an abstraction on top of the system

model, namely the basic round model. Among the n processes in our system, we assume at

most b Byzantine processes and at most f faulty (honest) processes (see Section 2.1). We do

not make any assumption about the behavior of Byzantine processes.

We consider the communication predicates introduced in Section 3.3: P int , Pgood and Pcons .

In the benign fault model (i.e., b = 0), Pcons can be implemented using the implementation of

Pgood described in [DLS88] if we assume that no crash occurs in good periods. In Section 3.4

two coordinator-based implementations of Pcons have been proposed, for Byzantine faults

and authenticated Byzantine faults. As already mentioned in Section 3.4, there is also a

1Apart from the pr opose(v) primitive that process uses to propose a value v to OTC, there is also a stop
primitive to stop processing messages in the OTC instance.

2The algorithm differ in OTC implementations.
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decentralized (i.e., coordinator-free) implementation of Pcons for the Byzantine fault model

that requires b +1 micro-rounds [BS10]. The predicate Pcons allows us to describe consensus

algorithms without making difference between authenticated Byzantine faults and Byzantine

faults. Therefore, in this chapter we use the term Byzantine faults for both fault models, except

if explicitly mentioned.

A phase is a sequence of rounds. We define a good phase of k rounds as a phase such that

Pcons holds in the first round, and Pgood holds in the remaining k −1 rounds.

5.3 Deriving a generic consensus algorithm

The goal of this section is to understand what are the core mechanisms (sometimes also

called "building blocks" [SvRSD08]) present in existing consensus algorithms. Identifying

these mechanisms and the properties they provide will allow us to derive a generic consensus

algorithm.

5.3.1 Very simple consensus algorithm

We start our quest for a generic consensus algorithm with a very simple consensus algorithm

(code shown as Algorithm 5.1). Algorithm 5.1 consists of a single round in which each process

collects initial values from all processes, then applies a deterministic function to choose some

value v (line 5) and then decides on v . The notation #(v) is used to denote the number of

messages received with value v , i.e., #(v) ≡
∣∣∣{q ∈Π : ~µr

p [q] = v
}∣∣∣.

Algorithm 5.1 Very simple consensus algorithm

1: Round r = 1:
2: Sr

p :
3: send 〈i ni tp〉 to all

4: T r
p :

5: v ← min
{

v : 6 ∃v ′ ∈V s.t . #(v ′) > #(v)
}

6: DECIDE v

Theorem 5.1. Algorithm 5.1 solves consensus if n > 2b + f and Pcons(1) holds.

Proof. Termination and Weak Validity trivially holds. Agreement holds from Pcons(1) and the

fact that all processes choose the decision values using the deterministic min function at line 5.

We now prove that Strong Unanimity also holds.

We assume that initial value of all honest processes is v . The proof is by contradiction. We

assume by contradiction that there is an honest process p that decides v ′ 6= v . Therefore, v ′

is the smallest most frequent value received by p in round 1 at line 5. By Pcons(1), process p

receives at least n−b− f messages equal to v in round 1. Furthermore, since there are at most

b Byzantine processes, p received at most b messages equal to v ′. Since n > 2b + f , p received
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more than b messages equal to v , and at most b messages equal to v ′. Therefore, the value

selected at line 5 is v and p decided v. A contradiction.

5.3.2 Generic Algorithm: Draft 1

Algorithm 5.1 is not correct in the partially synchronous system model because Pcons cannot

be ensured from the beginning. To remedy this, a consensus protocol has to invoke multiple

instances of a sub-protocol. Such sub-protocols have been called rounds, phases, views or

ballots. In this chapter, we use the term phase, where a phase itself consists of rounds. Using

this terminology, we can say that Algorithm 5.1 consists of a single phase with a single round.

In the partially synchronous system model, algorithms consist of a sequence of phases, where

each phase contains some fixed number of rounds.

Having multiple phases requires additional mechanisms compared to Algorithm 5.1:

(i) A mechanism to detect that a decision is possible in a given phase. Clearly, this mecha-

nism must ensure that two honest processes that decide in a given phase, decide the

same value.

(ii) A mechanism to ensure consistency among decisions made by honest processes in

different phases.

(iii) A mechanism to ensure that all correct processes eventually decide.

Concerning (i), we introduce the notion of decision quorum captured by parameter TD. The

parameter TD defines the number of identical votes required to decide. More precisely, once a

process p observes that TD processes (decision quorum) have voted for some value v , then it

can decide on v . There are some obvious restrictions on the value of TD:

• To ensure strong unanimity, we must have TD > b, i.e., a decision quorum must contain

at least one honest process.

• To ensure termination, the votes of faulty (honest) and Byzantine processes must not be

required to decide. Hence, TD ≤ n −b − f .

Concerning (ii), we introduce the notion of locked value 3 and the function FLV (~µr
p ) (stands

for "Find the Locked V alue") used to retrieve locked value (if there is some) from a set of

messages received.4 A value v is locked in round r if:

1. An honest process has decided v in round r ′ < r , or

3The definition of locked value in some other works, e.g. [DLS88], differs from our definition.
4FLV is not really a function. It is rather a problem defined by properties. However, calling it a function is more

intuitive.
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2. All honest processes have the same initial value v .

Item 2 is meaningful only if strong unanimity has to be ensured, or if all processes are honest.

In all other cases, item 2 can be ignored. From this definition it follows that, if v is locked in the

context of a consensus algorithm then the configuration is v-valent. However, the opposite is

not true (e.g., if a configuration is v-valent in round r , and the first honest process p decides v

in round r ′ ≥ r , then v is not locked in round r , but only in round r ′+1 > r ).

The basic idea for ensuring agreement among different phases is the following. If some value

v is locked in round r , then any honest process p that updates its variable votep
5 in round

r , can only, thanks to the function FLV (~µr
p ), update it to v . In addition to normal values, the

function FLV may return the following special values:

• ? if no value is locked, i.e., any value can be assigned to votep

• null if not enough information is provided to FLV through~µr
p

The FLV (~µr
p ) function is defined by the following three properties:

• FLV -validity: If all processes are honest and FLV (~µr
p ) returns v such that v 6= ? and

v 6= null , then ∃ process q such that v =~µr
p [q].vote.

• FLV -agreement: If value v is locked in round r , only v or null can be returned.

• FLV -liveness: If ∀q ∈C : ~µr
p [q] 6= ⊥, then null cannot be returned.

FLV -validity and FLV -agreement are for safety, while FLV -liveness is for liveness. Note that, as

FLV is used to find the locked value, its instantiations depend on the TD parameter (since TD

defines when a value becomes locked).

Starting from Algorithm 5.1 and using parameters TD and FLV (~µr
p ), we obtain a first draft of

our generic consensus algorithm, see Algorithm 5.2. Algorithm 5.2 consists of a sequence of

phases that can be seen as successive trials to decide on a value. Each phase φ consists of two

rounds, respectively called selection round (r = 2φ−1) and decision round (r = 2φ).

The selection round (r = 2φ−1) selects a value that will be considered for the decision. Each

process p first sends its state (votep ) to all processes. Based on the set of messages received,

each honest process selects a value. If any value can be selected (i.e., FLV (~µr
p ) returns ?), the

selected value is deterministically chosen among ~µr
p . If FLV (~µr

p ) returns neither ? nor null ,

then the returned value is selected. If FLV (~µr
p ) returns null , then votep is not updated.

The decision round (r = 2φ) determines the conditions that must hold for a process to decide.

Each process starts by sending its vote to all processes. A process then decides if it receives a

5Variable votep is p’s estimate of the decision value.
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Algorithm 5.2 Generic Algorithm – Draft 1 (boxes represent parameters)

1: Initialization:
2: votep := i ni tp /* value considered for consensus */

3: Selection Round r = 2φ−1:
4: Sr

p :
5: send 〈votep〉 to all
6: T r

p :

7: sel ectp ← FLV (~µr
p )

8: if sel ectp = ? then
9: sel ectp ← choose deterministically a value among the votes received
10: if sel ectp 6= null then
11: votep ← sel ectp

12: Decision Round r = 2φ:
13: Sr

p :
14: send 〈votep〉 to all

15: T r
p :

16: if received at least TD messages with the same vote 〈v〉 then
17: DECIDE v

threshold number TD of identical votes. To ensure agreement we require TD > n+b
2 (majority

despite Byzantine processes [MR97]), so that two honest processes that decide in the same

phase decide the same value.

In order to guarantee that all correct processes eventually decide we rely on the notion of

good phase (Sect. 5.2). A good phase ensures that all correct processes receive the same set

of messages in the selection round, and therefore select the same value.6 Since all correct

processes update vote to the same value, they all decide in the decision round of the good

phase.

5.3.3 Generic Algorithm: Draft 2

With Draft 2 we manage to reduce TD. Remember that TD ≤ n−b− f , i.e., n ≥ TD+b+ f , which

means that a smaller TD leads to a smaller n.

In the decision round of Draft 1 (Algorithm 5.2), the votes sent by honest processes can be

different. Therefore, to prevent two honest processes from deciding different values in the

same phase, we must have TD > n+b
2 . This condition can be relaxed if honest processes would

vote for at most one value in a phase—the validated vote. In this case, TD > b is enough, since

it ensures that the decision quorum contains at least one honest process.

To ensure that honest processes vote for at most one value in a phase, we need to add one more

round to Algorithm 5.2 — the validation round — and to introduce the timestamp variable

6FLV -liveness ensures that the selected value cannot be null .
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t sp . For every process p, the timestamp t sp represents the most recent phase in which the

vote of process p (votep ) has been validated in the validation round. The second draft of our

generic algorithm is presented as Algorithm 5.3.

The validation round is executed as follows. Each process p first sends the value selected

in the selection round (sel ectp ), if non-null . Based on the set of messages received, each

process tries to determine a validated value v . If it observes that a majority despite Byzantine

processes (i.e., more than n+b
2 ) have selected the same value v , then votep is set to v and t sp

is updated to the current phase number φ. This mechanism ensures that all honest processes

that validate some value v in phase φ, consider the same value. The role of line 24 is explained

later.

Algorithm 5.3 Generic Algorithm – Draft 2 (boxes represent parameters)

1: Initialization:
2: votep := i ni tp ∈V /* value considered for consensus */
3: t sp := 0 /* last phase in which votep has been validated */
4: hi stor yp := {(i ni tp ,0)} /* updates to the variable votep */

5: Selection Round r = 3φ−2:
6: Sr

p :
7: send 〈votep , t sp ,hi stor yp〉 to all
8: T r

p :

9: sel ectp ← FLV (~µr
p )

10: if sel ectp = ? then
11: sel ectp ← choose deterministically a value among the votes received

12: if sel ectp 6= null then
13: votep ← sel ectp

14: hi stor yp ← hi stor yp ∪ {(votep ,φ)}

15: Validation Round r = 3φ−1: /* executed only if FLAG =φ */
16: Sr

p :

17: if sel ectp 6= null then
18: send 〈votep〉 to all
19: T r

p :

20: if there is a value v such that |
{

q ∈Π :~µr
p [q] = 〈v〉

}
| > n+b

2 then
21: votep ← v
22: t sp ←φ

23: else
24: votep ← v such that (v, t sp ) ∈ hi stor yp /* revert the value of votep to ensure consistency

with t sp */

25: Decision Round r = 3φ:
26: Sr

p :
27: send 〈votep , t sp〉 to all

28: T r
p :

29: if received at least TD messages with the same value 〈v, FLAG 〉 then
30: DECIDE v

Introducing the validation round and the timestamp variable requires changes in the decision
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round. In the decision round we need to distinguish two cases: (i) honest processes vote for at

most one value (thanks to the validation round), and (ii) honest processes can vote for different

values (no validation round) 7. We introduce the parameter FLAG to distinguish between these

two cases. In case (i) FLAG is an integer (the current phase number); in case (ii) FLAG is the

special wildcard value ∗. In line 29, if FLAG =∗ then all votes are taken into account, and the

validation round is not needed. Otherwise, FLAG =φ (current phase number), and only the

votes with t sp =φ are taken into account.

The votep and t sp variables are not only used within one phase, but also between phases, in

order to ensure that if one honest process decides v in phase φ, honest processes select v in

the selection round of phase φ+1. In the context of Byzantine faults, we need a mechanism

to prove that some value v may have been validated in some previous phase (to filter out

invalid votes sent by Byzantine processes). The mechanism is based on an additional variable

hi stor yp , which is a list of pairs (v,φ): each pair denotes that vote has been set to v in the

selection round of phase φ, i.e., that value v may have been validated in phase φ. Variable

hi stor y is sent together with vote and t s in the selection round, where it is used by the FLV

function: a pair (vote, t s) is considered valid if at least b +1 processes sent it in their hi stor y

variable.8 Furthermore, hi stor yp is updated at line 14 in order for process p to remember

what was the value chosen in the selection round of phase φ. The hi stor yp is also used at

line 24 to revert the value of the votep to be consistent with the current value of t sp in case no

value has been validated during the current validation round. 9 In the context of (only) benign

faults, variable hi stor y can be ignored.

5.3.4 Generic Algorithm: final version

In Algorithm 5.3 in every round all processes send messages to all processes. This can be

avoided by introducing the notion of validator. Validators are processes that have a special

role in the validation round. The intuition is the following: instead of all processes being

involved in the selection of a validated vote, this task is devoted to a subset of processes called

validators. The question is how to select the validators. We express this through the function

Validator(p,φ)10 that returns a set of processes S ⊆Π representing the validators for process

p in phase φ. Note that in the benign fault model, Validator(p,φ) can be one single process,

namely the leader process or the process selected by the rotating coordinator paradigm.

Validator(p,φ) is defined by the following three properties:

7In case (ii), an honest process p votes for at most one value v per phase, but another honest process q can vote
for v ′ in the same phase. This is not possible in case (i).

8Another solution is to rely on authentication, i.e., to consider the authenticated Byzantine fault model.
9Note that votep is updated both in the selection and the validation round (see line 13 and line 21) with the

value selected in the selection round. On the other hand t sp is updated only during the validation round (line 22)
if some value has been validated. Therefore, there is a need for a mechanism at line 24 to ensure that, at the end of
the validation round, t sp represents the last phase in which votep has been validated.

10As for FLV , Validator is not really a function. It is rather a problem defined by properties. However, calling it a
function is somehow more intuitive.
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Algorithm 5.4 Generic Algorithm (boxes represent parameters)

1: Initialization:
2: votep := i ni tp /* value considered for consensus */
3: t sp := 0 /* last phase in which votep has been validated */
4: hi stor yp := {(i ni tp ,0)} /* updates to the variable votep */

5: Selection Round r = 3φ−2: /* round in which Pcons must eventually hold */
6: Sr

p :
7: send 〈votep , t sp ,hi stor yp〉 to all
8: T r

p :

9: sel ectp ← FLV (~µr
p )

10: if sel ectp = ? then
11: sel ectp ← choose deterministically a value among the votes received

12: if sel ectp 6= null then
13: votep ← sel ectp

14: hi stor yp ← hi stor yp ∪ {(votep ,φ)}

15: Validation Round r = 3φ−1: /* executed only if FLAG =φ; round in which Pgood must eventually
hold */

16: Sr
p :

17: if p ∈ Validator(p,φ) and selectp 6= null then

18: send 〈sel ectp〉 to all
19: T r

p :

20: if there is a value v such that |
{

q ∈ Validator(p,φ) :~µr
p [q] = 〈v〉

}
| >

| Validator(p,φ) |+b

2

then
21: votep ← v
22: t sp ←φ

23: else
24: votep ← v such that (v, t sp ) ∈ hi stor yp /* revert the value of votep to ensure consistency

with t sp */

25: Decision Round r = 3φ: /* round in which Pgood must eventually hold */
26: Sr

p :
27: send 〈votep , t sp〉 to all

28: T r
p :

29: if received at least TD messages with the same value 〈v, FLAG 〉 then
30: DECIDE v

• Validator-validity:

If |Validator(p,φ)| > 0 then |Validator(p,φ)| > b.

• Validator-agreement:

∀p, q ∈H and∀φ, if |Validator(p,φ)| > 0 and |Validator(q,φ)| > 0, then Validator(p,φ) =
Validator(q,φ).

• Validator-liveness:

There exists a good phase φ0 such that:

∀p ∈C : |Validator(p,φ0)∩C | > |Validator(p,φ0)|+b
2 .
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Validator-validity ensures at least one non-Byzantine validator in the validator set in the

presence of Byzantine processes (b > 0), while Validator-agreement requires that honest

processes consider the same non-empty set of validators. Without this requirement, honest

processes might consider a different set of validators, and potentially consider a different

value as a valid vote. Validator-liveness is a non-triviality requirement: without this property

returning always empty set would be a possible instantiation of the Validator parameter. As

for the progress of the generic algorithm it is necessary that correct processes vote for the same

value in the decision round, Validator-liveness requires that eventually all correct processes

consider the same set of validators (non-empty) such that a majority despite Byzantine faults

(namely |Validator(p,φ0)|+b
2 ) are correct processes.

Introducing Validator(p,φ) leads to Algorithm 5.4. In the validation round, only validators

send messages. Line 20 matches line 20 of Algorithm 5.3. Specifically, expression
|val i d ator sp |+b

2

of Algorithm 5.4 matches expression n+b
2 of Algorithm 5.3. If p observes that a majority despite

Byzantine faults have selected the same value v , then v is a validated value, and p sets

votep to v , and updates its timestamp t sp to φ. Otherwise, the vote is reverted to the value

corresponding to t sp (line 24).11

5.3.5 Correctness of the Generic Algorithm

We now prove that the generic algorithm (Algorithm 5.4) solves consensus. Our proof is based

on two lemmas.

Lemma 5.1. If Validator-validity holds, then the following property holds on every honest

process h and in every phase φ: if process h set voteh to v and t sh to φ at lines 21-22, then at

least one honest process has sent 〈v〉 at line 18.

Proof. Assume that a process h set voteh to v and t sh toφ at lines 21-22. Therefore, Validator(h,φ)

is non empty at line 20 in phase φ. By Validator-validity, we have |Validator(h,φ)| > b and
|Validator(h,φ)|+b

2 > b. Therefore, condition at line 20 can only be true for v if an honest process

has sent 〈v〉 at line 18.

Lemma 5.2. In every phase φ, if (i) Validator-validity and Validator-agreement hold, (ii) an

honest process p updates votep to v and t sp to φ, and (iii) another honest process q updates

voteq to v ′ and t sq to φ (lines 21-22), then v = v ′.

Proof. Assume for a contradiction that in some phase φ0 two honest processes p and q have

respectively votep = v and t sp =φ0, and voteq = v ′ and t sq =φ0. This means that in round

3φ0 −1 at least x −b honest processes (x > |Validator(p,φ0)|+b
2 ) send message 〈v,−〉 and at least

y −b honest processes (y > |Validator(q,φ0)|+b
2 ) send message 〈v ′,−〉. By Validator-agreement we

have that Validator(p,φ0) = Validator(q,φ0). Therefore, x −b + y −b > |Validator(p,φ0)|−b.

11Line 24 is not mandatory, but it allows us to simplify the instantiation of function FLV (~µr
p ).

75



Chapter 5. Generic Consensus Algorithm for Benign and Byzantine Faults

By Validator-validity, it follows that at least one honest process h sent 〈v,−〉 to one process

and 〈v ′,−〉 to another process. A contradiction with the fact that h is an honest process.

Theorem 5.2. If (i) function FLV (~µr
p ) satisfies FLV -validity and FLV -agreement, (ii) function

Validator(p,φ) satisfies Validator-validity and Validator-agreement, (iii-a) FLAG =φ and TD >
b or (iii-b) FLAG =∗ and TD > n+b

2 , then Algorithm 5.4 ensures weak validity, strong unanimity

and agreement.

Termination holds if (iv) TD ≤ n −b − f , (v) function FLV (~µr
p ) satisfies FLV -liveness, and (vi)

there is a good phase φ0 in which Validator-liveness holds.

Proof. (a) Agreement: Assume for a contradiction that process p decides v in round r = 3φ,

and process p ′ decides v ′ 6= v in round r ′ = 3φ′. We consider the following two cases for line 29:

FLAG =∗ and FLAG =φ.

FLAG = ∗: This means that at least TD processes (at least TD −b honest) sent 〈v, 〉 in round

r = 3φ, and at least TD processes (at least TD −b honest) sent 〈v ′, 〉 in round r ′ = 3φ′ (*). We

have two cases to consider: φ=φ′ and φ>φ′.
• φ=φ′: By (*), TD −b honest processes sent 〈v, 〉 and TD −b honest processes sent 〈v ′, 〉 in

round r = 3φ. From (iii-b), (TD −b)+ (TD −b) > n−b. It follows that one honest process h sent

〈v, 〉 to one process and 〈v ′, 〉 to another process. A contradiction with the fact that h is an

honest process.

• φ′ > φ: Let φ′ be the smallest phase > φ in which some honest process decides v ′ 6= v . By

definition of a locked value, v is locked in all phases >φ. Together with the FLV -agreement

property, no honest process updates its vote with a value v̂ 6= v in the selection round of a

phase >φ. Since there is no validation round (i.e., FLAG =∗), no honest process updates its

vote with a value v̂ 6= v after phase φ. Together with (*), TD −b honest processes sent 〈v, 〉, and

TD −b honest processes sent 〈v ′, 〉 in round r ′ = 3φ′. From (iii-b), (TD −b)+ (TD −b) > n −b.

It follows that one honest process h sent 〈v, 〉 to one process and 〈v ′, 〉 to another process. A

contradiction with the fact that h is an honest process.

FLAG =φ: This means that at least TD processes (at least TD −b honest) sent 〈v,φ〉 in round

r = 3φ, and at least TD processes (at least TD −b honest) sent 〈v ′,φ′〉 in round r ′ = 3φ′ (**). We

have two cases to consider: φ=φ′ and φ>φ′.
• φ=φ′: By (**), TD −b honest processes sent 〈v,φ〉 and TD −b honest processes sent 〈v ′,φ〉.
From (iii-a), there is an honest process h that validates v (set voteh to v and t sh to φ) and

an honest process h′ that validates v ′ (set voteh′ to v ′ and t sh′ to φ) at lines 21-22 of round

r̂ = 3φ−1. A contradiction with Lemma 5.2 and (ii).

• φ′ > φ: Let φ′ be the smallest phase > φ in which some honest process decides v ′ 6= v . By

definition of a locked value, v is locked in all phases >φ. By (**), TD −b honest processes sent

〈v ′,φ〉. From (iii-a), there is an honest process h that validates v ′ (set voteh′ to v ′ and t sh′ to
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φ) at lines 21-22 of round r̂ ′ = 3φ′−1. By (ii) and Lemma 5.1, there is an honest process h′ that

sent 〈v ′,−〉 at line 18. Therefore, the function FLV (~µr
p ) returns v ′ or ? at line 9 on process h′. A

contradiction with the FLV -agreement property and the fact that v is locked.

(b) Weak Validity: Follows from the FLV -validity property and the assumption that all processes

are honest.

(c) Strong Unanimity: Unanimity follows from Lemma 5.1 together with (ii), the FLV -agreement

property, (iii-a) and (iii-b).

(d) Termination: Letφ0 be the good phase in which Validator-liveness holds. By Pcons(3φ0−2),

all correct processes receive the same set of messages in round 3φ0−2 and therefore select the

same value. By FLV -liveness and Pcons(3φ0 −2), the value selected cannot be null . Thus, at

the end of round r = 3φ0 −2, all correct processes have the same value for sel ectp , and votep

(***). Let denote this value with v . We have two cases to consider: FLAG =∗ and FLAG =φ.

FLAG =∗: The validation 3φ0 −1 round is skipped. Together with (***), all correct processes

send the same message 〈v,−〉 at line 27. By Pgood(3φ0) and (iv), all correct processes receives

at least TD messages 〈v,−〉 in round r = 3φ0, and therefore decide.

FLAG =φ: Let us call validator any process that is in a set Validator(p,φ0) where p is a correct

process. By Validator-liveness and Validator-agreement, all correct processes p consider the

same set Validator(p,φ0) at line 20. By Validator-liveness, the set Validator(p,φ0) contains

more than |Validator(p,φ0)|+b
2 correct processes (****). Since FLAG = φ, the validation round

3φ0 −1 is executed. Together with (****), Pgood(3φ0 −1) and lines 20-22, all correct processes

update votep to v and t sp to φ0. By Pgood(3φ0) and (iv), all correct processes receives at least

TD messages 〈v,φ0〉 in round r = 3φ0, and therefore decide.

5.3.6 Optimizations

We point out here several simple optimizations of Algorithm 5.4, to which we will refer later

when discussing instantiations of our generic algorithm.

(i) If FLAG =φ, processes in the selection round can send their message only to the pro-

cesses in the Validator set (instead to all processes).

(ii) The selection round can be suppressed in the first phase. As a consequence, if FLAG =∗
then a decision is possible in one round if all correct processes have the same initial

value and Pgood holds in the first round. If FLAG =φ, suppressing the selection round

in the first phase requires to initialize the variable sel ectedp to i ni tp .12

12Note that it is safe to select i ni tp at the first round for the following reason. If no value is initially locked,
then any value may be selected by honest process. If some value v is initially locked, then by definition all honest
processes have i ni tp = v , and all honest processes select v .
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(iii) If Unanimity is not considered, then the selection round of the first phase can be

simplified by having a predetermined process (an initial coordinator) that sends its

initial value to all processes. Processes set sel ectedp to the received value without

executing the FLV (~µr
p ) function. If the initial coordinator is a correct process, then all

correct processes might set sel ectedp to the same value, and a decision in possible in

the first phase.

(iv) The functionality of the decision round of phase φ and of the selection round of phase

φ+1 can be provided in one single round.

5.4 Instantiations of Parameters and Classification of Algorithms

We present now instantiations of FLV and Validator. The FLV function is used to find the

locked value, therefore depends on the decision mechanism, i.e., on TD and FLAG. We identify

three instantiations of the FLV function (see Table 5.1). The first one is for the case FLAG =∗
and TD > n+3b+ f

2 , and uses only variable votep ; the second one is for the case FLAG = φ

and TD > 3b + f , and uses variables votep and t sp ; the last one is for the case FLAG =φ and

TD > 2b + f , and uses all three variables votep , t sp and hi stor yp . This leads to three classes

of consensus algorithms, as shown in Table 5.1. Algorithms that belong to the same class have

the same values for the parameters FLAG and TD. Therefore algorithms from the same class

have the same constraint on n (follows from n ≥ TD +b + f ) and have the same number of

rounds per phase (depending on the value of FLAG). Note that for the first round of each

phase, Pcons is required to eventually hold, while for the other rounds of each phase (only)

Pgood should eventually hold.

One can observe the following tradeoff among these three classes. When FLAG = ∗ and

TD > n+3b+ f
2 (class 1), only two rounds per phase are needed and the process state is the

smallest, but class 1 requires the largest n (n > 5b +3 f ). Table 5.1 lists well-known algorithms

that correspond to a given class. These examples are discussed in Section 5.5.

We can make the following comments. First, to the best of our knowledge, no existing algorithm

corresponds to class 2, case f = 0 (Byzantine faults). We call this new algorithm MQB (Masking

Quorum Byzantine consensus algorithm).13 Second, Table 5.1 shows that despite its name,

the FaB Paxos algorithm does not belong to the same class as the Paxos algorithm.

We now present the three instantiations of the FLV function that lead to the three classes of

consensus algorithms. Instantiations of the Validator function are discussed later.

5.4.1 Instantiations of FLV (~µr
p )

We give here the instantiations of FLV for the three classes of algorithm. The differences

between the three instantiations have their roots in the use of a different class of Byzantine

13The quorums used in this algorithm satisfy the property of masking quorums [MR97].
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quorum systems [MR97]: class 1 uses opaque quorums, class 2 masking quorums and class 3

dissemination quorums. In addition to the decision quorum, defined by the decision mecha-

nism, i.e., the parameters TD and FLAG, to simplify description of the FLV instantiations, we

introduce also the selection quorum used in the FLV instantiations to select a "safe" value.

The complexity of the FLV function depends on the intersection property of the decision

and selection quorums: the instantiation of the FLV function of class 1 is the simplest, while

the instantiation of the FLV function of class 3 is the most complex as it uses the weakest

dissemination quorums. The three classes of quorum systems have different requirements on

the number of processes (see Table 5.1). Before discussing the FLV instantiations, we provide

a short background on Byzantine quorum systems.

Byzantine quorum systems

We define a quorum system over a set of processes Π as a collection Q = {
Q1, ...,Qn

}
such that

∀Q1,Q2 ∈Q : |Q1 ∩Q2| > 0

Malkhi and Reiter [MR97] proposed three ways of strengthening the basic intersection property

to enable quorum systems to be used in systems with Byzantine faults. For the following

definitions we assume that there is a (unknown) set B of up to b processes that are Byzantine.

We start with the simplest variant of Byzantine quorum systems called dissemination quorums,

where the intersection of any two quorums contains at least one honest process:

|Q1 ∩Q2 \ B | > 0

We illustrate the dissemination quorums on Figure 5.1.

Masking quorum systems are second alternative, where the intersection of any two quorums

contains more honest processes than the number of Byzantine processes in either quorum:

|Q1 ∩Q2 \ B | > |Q2 ∩B |

We illustrate the masking quorums on Figure 5.2.

Finally, with opaque quorum systems the number of honest processes in the intersection of

any two quorums Q1 and Q2 exceeds the number of Byzantine processes together with the

number of processes in Q2 but not in Q1:

|Q1 ∩Q2 \ B | > |(Q1 ∩B)∪ (Q2 \Q1)|

We illustrate the opaque quorums on Figure 5.3.
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p1 p2

Byz.

p4 p3

Q1

Q2

Figure 5.1: Dissemination quorums. The system consists of four processes p1 to p4, p2 is a
Byzantine process.

p1 p2

Byz.

Q1

Q2

p3

p4p5

Figure 5.2: Masking quorums. The system consists of five processes p1 to p5, p2 is a Byzantine
process.

FLV (~µr
p ) for class 1

We start with the FLV function for class 1 (FLAG =∗ and TD > n+3b+ f
2 ), see Algorithm 5.5. The

selection quorum is any set of processes of size bigger than 2(n −TD +b).
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p1 p2

Byz.

Q1

Q2

p3p4

p5p6

Figure 5.3: Opaque quorums. The system consists of six processes p1 to p6, p2 is a Byzantine
process.

Algorithm 5.5 FLV (~µr
p ) for class 1

1: cor r ectV otesp ←
{

v :
∣∣∣{(v,−,−) ∈~µr

p

}∣∣∣> n−TD+b
}

2: if |cor r ectV otesp | = 1 then
3: return v s.t . v ∈ cor r ectV otesp
4: else if |~µr

p | > 2(n −TD +b) then
5: return ?
6: else
7: return null

Algorithms of class 1 relies on opaque quorums. Therefore, if some value v1 is stored by the

decision quorum (because some honest process decided v1), then in any selection quorum,

the votes with the value v1 always outnumbers votes sent by Byzantine processes and votes

(potentially different than v1) sent by honest processes not part of the decision quorum (see

Figure 5.3 where v1 is denoted with green color).

We now explain Algorithm 5.5 in more details. Line 1 of Algorithm 5.5 is for FLV -agreement

as we now explain with a simple example. Let v1 be locked in round r because some honest

process p has decided v1 in round r −1. By Algorithm 5.4, p has received in the decision

round r −1 at least TD votes v1. At least TD −b votes v1 are from honest processes (see 1 at

Figure 5.4), i.e., a process can receive at most n − (TD −b) votes equal to v2 6= v1 (*) (see 2

at Figure 5.4). Therefore, the condition of line 1 can only hold for v1, i.e., among the values

different from ? and null , FLV can only return v1. For FLV -agreement to hold, Algorithm 5.5

must also prevent ? to be returned when v1 is locked. The condition of line 4 ensures this.

Here is why. Assume that the condition of line 4 holds. This means that ~µr
p contains more
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V1 V1V1 V1 V2 V2

TD - b n - TD + b

n - TD + b1

> 2(n - TD + b)

Byz.

33

1 2

4

Figure 5.4: Illustration of FLV for class 1 with v1 locked (n = 6, b = 1, f = 0, TD = 5)

than 2(n −TD +b) messages (see 3 at Figure 5.4). With (*),~µr
p contains more than n −TD +b

messages equal to v1 (see 4 at Figure 5.4). By line 1, we have v1 ∈ cor r ectV otesp , and

as shown above, only v1 can be in cor r ectV otesp . Therefore, the condition of line 2 holds:

Algorithm 5.5 cannot return ? when v1 is locked.

Property FLV -liveness is ensured by lines 4 and 5 of Algorithm 5.5. This is because when

TD > n+3b+ f
2 , we have n−b− f > 2(n−TD +b). Therefore, receiving a message from all correct

processes (i.e., |~µr
p | ≥ n −b − f ) implies that the condition of line 4 holds, i.e., null is not

returned. Property FLV -validity is trivially ensured by lines 1-3.

Theorem 5.3. If FLAG =∗, then Algorithm 5.5 ensures FLV -validity and FLV -agreement. More-

over, FLV -liveness holds if TD > n+3b+ f
2 .

Proof.

FLV -validity: FLV -validity follows from lines 1-3.

FLV -agreement: Let r = 3φ−2 be the smallest selection round in which value v is locked.

By definition of a locked value, we have two cases to consider (1) all honest processes have

votep = v and unanimity must be ensured (and r = 1), or (2) v has been decided in round

r ′ = 3φ−3 by some honest process p. We now show that for both cases at least TD −b honest

processes sent 〈v,−,−〉 in round r (*).

Case 1: Trivially follows from initialization and TD ≤ n −b − f .

Case 2: By Algorithm 5.4, the process p received at least TD messages 〈v,−〉 in round r ′. There-

fore, at least TD−b honest processes send 〈v,−〉 in round r ′, i.e., at least TD−b honest processes

have their vote set to v , and send 〈v,−,−〉 in round r .

We now show that when property (*) holds, Algorithm 5.5 ensures FLV -agreement. Assume for
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the contradiction that a non null value v ′ 6= v is returned. Two cases must be considered.

v ′ is returned at line 3: Because cor r ectV otesp is not empty, the set~µr
p contains more than

n −TD +b messages 〈v ′,−,−〉. A contradiction with (*).

? is returned at line 5: This means that~µr
p contains more than 2(n −TD +b) messages. By (*),

~µr
p contains at most n −TD +b messages 〈v ′ 6= v,−,−〉, and therefore, more than n −TD +b

messages 〈v,−,−〉. By line 1, the set cor r ectV otesp is not empty. By lines 2-3, value v is

returned. A contradiction.

This shows that Algorithm 5.5 ensures FLV -agreement in round r . Therefore, no honest pro-

cess p updates its variable votep and sel ectp to a value v ′ 6= v in selection round r . Because

FLAG =−, the validation round is skipped. Therefore, property (*) holds in selection round

r ′′ = 3φ+1. With similar arguments as above, we can show that Algorithm 5.5 ensures FLV -

agreement in round r ′′. By a simple induction on φ, we can show that Algorithm 5.5 ensures

FLV -agreement in all rounds.

FLV -liveness: Property FLV -liveness is ensured by lines 4-5. This is because when TD > n+3b+ f
2 ,

we have n−b− f > 2(n−TD+b). Therefore, receiving messages from all correct processes (i.e.,

|~µr
p | ≥ n −b − f ) implies that the condition of line 4 holds.

FLV (~µr
p ) for class 2

For class 2 we have TD ≤ n+3b+ f
2 (n < 5b +3 f ), which means that opaque quorums cannot be

used: the locked value does not necessarily outnumber other values. Therefore, an additional

mechanism is needed: the timestamp t sp . By considering a vote and timestamp pair (instead

of only vote), it is possible to ignore "outdated" votes sent by honest processes. As the valida-

tion round ensures only one valid vote per phase, the locked value can only be the vote with

the highest timestamp. This mechanism can be denotes as the "last voting rule" [CBS09a].

However, as a Byzantine process can always send a vote with an arbitrary large timestamp,

it is necessary to authenticate the vote-and-timestamp pairs. Algorithms of class 2 relies on

the properties of masking quorums to authenticate vote-and-timestamp pairs. As with the

masking quorums, the intersection of any two quorums contains more honest processes than

Byzantine processes in either quorum, an honest process considers a vote-and-timestamp

pair as valid only if it is received from at least b +1 processes. Therefore, once an honest

process decides some value v1 in phase φ1, any selection quorum (any set of processes of size

bigger than n −TD +2b) contains at least b +1 messages with vote = v1 and t s =φ1.

The FLV function for class 2 (FLAG =φ and TD > 3b + f ) is shown in Algorithm 5.6.

Lines 1 (where {#. . .#} denotes a multiset) and 2 Algorithm 5.6 are for FLV -agreement, as we
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( V1 ,  Φ1) ( V1 ,  Φ1)( V1 ,  Φ1) ( V2 ,  Φ2 > Φ1 )

 

( V2 , Φ2’ < Φ1 )

TD - b n - TD + b

 b1

> n - TD + 2b

Byz.

1 2

3

4

Figure 5.5: Illustration of FLV for class 2 with v1 locked (n = 5, b = 1, f = 0, TD = 4)

Algorithm 5.6 FLV (~µr
p ) for class 2

1: possi bl eV otesp ← {#(vote, t s,−) ∈~µr
p :

|{(vote′, t s′,−) ∈~µr
p : vote = vote′∨ t s > t s′}|

> n −TD +b #}
2: cor r ectV otesp ← {(vote,−,−) ∈ possi bl eV otesp :

|{#(vote′,−,−) ∈ possi bl eV otesp : vote = vote′#}| > b}

3: if |cor r ectV otesp | = 1 then
4: return v s.t . (v,−,−) ∈ cor r ectV otesp
5: else if |~µr

p | > n −TD +2b then
6: return ?
7: else
8: return null

now explain with the simple example. Let v1 be locked in round r , phase φ1 +1, because

some honest process p has decided v1 in round r − 1, phase φ1. By Algorithm 5.4, p has

received in the decision round r −1 at least TD messages 〈v1,φ1〉. At least TD −b messages

are from honest processes that have votep = v1 and t sp = φ1 (see 1 at Figure 5.5), i.e., at

most n−b− (TD −b) = n−TD honest processes have votep = v2 6= v1 (*) (see 2 at Figure 5.5).

Because only one value can be validated by honest processes in phase φ1 (Lemma 5.2), all

honest processes with votep = v2 6= v1 have t sp <φ1. It follows that for every honest process

p, we have votep = v1 or t sp <φ1 (**). Together with (*), no message 〈v2 6= v1,−,−〉 sent by an

honest process can satisfy the condition of line 1. In other words, the set possi bl eV otesp may

contain at most b messages 〈v2 6= v1,−,−〉, namely the messages sent by Byzantine processes.

Line 2 prevents such messages to be in cor r ectV otesp . This shows that among the values

different from ? and null , only v1 can be returned.

For FLV -agreement to hold, Algorithm 5.6 must also prevent ? to be returned when v1 is

locked. The condition of line 5 ensures this. Here is why. Assume that the condition of line

5 holds. This means that~µr
p contains more than n −TD +2b messages (see 3 at Figure 5.5).

From (*), a process can receive at most n −TD +b messages with vote = v2 6= v1. It follows

that the set ~µr
p contains at least b + 1 messages 〈v1,φ1,−〉 from honest processes (see 4

at Figure 5.5). With (**) and the fact that ~µr
p contains more than n −TD +b messages from

honest processes (see Figure 5.5), the b +1 messages 〈v1,φ1,−〉 satisfy the condition of line 1.
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By line 2, 〈v1,φ1,−〉 is in cor r ectV otesp . Moreover, as discussed above, only v1 can be in

cor r ectV otesp . Therefore, the condition of line 3 holds: Algorithm 5.6 cannot return ? when

v1 is locked.

Property FLV -liveness is ensured by lines 5 and 6 of Algorithm 5.6. This is because when

TD > 3b + f , we have n −b − f > n −TD +2b. Therefore, receiving a message from all correct

processes (i.e., |~µr
p | ≥ n −b − f ) ensures that the condition of line 5 holds, i.e., null cannot be

returned. Property FLV -validity is trivially ensured by lines 1-4.

Theorem 5.4. If FLAG =φ, Validator(p,φ)-validity and Validator(p,φ)-agreement hold, then

Algorithm 5.6 ensures FLV -validity and FLV -agreement. FLV -liveness holds if in addition

TD > 3b + f .

Proof.

FLV -validity: FLV -validity follows from lines 1-4.

FLV -agreement: Let r = 3φ−2 be the smallest selection round in which value v is locked.

By definition of a locked value, we have two cases to consider (1) all honest processes have

votep = v and unanimity must be ensured (and r = 1), or (2) v has been decided in round

r ′ = 3φ−3 by some honest process p. We now show that for both cases in round r at least

TD − b honest processes sent 〈v, φ̂ ≥ φ− 1,−〉 (*), and for all honest processes q , we have

(voteq = v ∨ t sq <φ−1) (**).

Case 1: Trivially follows from initialization and TD ≤ n −b − f .

Case 2: By Algorithm 5.4, the process p received at least TD messages 〈v,φ−1〉 in round r ′.
Therefore, at least TD−b honest processes send 〈v,φ−1〉 in round r ′, i.e., at least TD−b honest

processes have their vote set to v , and send 〈v,φ−1,−〉 in round r (which shows (*)). This

means that an honest process p updates votep to v and t sp to φ in the validation round of

phase φ−1. By Validator(p,φ)-validity, Validator(p,φ)-agreement and Lemma 5.2, no honest

process update its vote to a value v ′ 6= v in this validation round (which shows (**)).

We now show that when properties (*) and (**) hold, Algorithm 5.6 ensures FLV -agreement.

Assume for the contradiction that a non null value v ′ 6= v is returned. Two cases must be

considered.

v ′ is returned at line 4: Because cor r ectV otesp is not empty, the multi-set possi bl eV otesp

contains more than b messages 〈v ′,−,−〉. It follows that an honest process sent a message

〈v ′,φ′,−〉. By (**), φ′ < φ−1. By line 1, more than n −TD honest processes sent a message

〈v ′′,φ′′,−〉 with v ′′ = v ′ or φ′′ <φ′ <φ−1. A contradiction with (*).

? is returned at line 6: This means that~µr
p contains more than n−TD +2b messages (and more
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than n −TD +b messages from honest processes (***)). By (*),~µr
p contains at most n −TD +b

messages different from 〈v, φ̂≥φ−1,−〉, and therefore, more than b messages 〈v, φ̂≥φ−1,−〉.
By line 1, (**) and (***), the multi-set possi bl eV otesp contains more than b messages 〈v,−,−〉.
Therefore, the set cor r ectV otesp contains a message 〈v,−,−〉. By lines 3-4, value v is returned.

A contradiction.

This shows that Algorithm 5.6 ensures FLV -agreement in round r . Therefore, no honest

process p updates its variable votep and sel ectp to a value v ′ 6= v in selection round r .

By Validator(p,φ)-validity and Lemma 5.1, no honest process p updates its vote to a value

v ′ 6= v in the validation round r +1. Therefore, properties (*) and (**) hold in selection round

r ′′ = 3φ+1. With similar arguments as above, we can show that Algorithm 5.6 ensures FLV -

agreement in round r ′′. By a simple induction on φ, we can show that Algorithm 5.6 ensures

FLV -agreement in all rounds.

FLV -liveness: Property FLV -liveness follows from lines 5 and 6. This is because when TD >
3b+ f , we have n−b− f > n−TD+2b. Therefore, receiving messages from all correct processes

(i.e.,~µr
p ≥ n −b − f ) ensures that the condition of line 5 holds.

FLV (~µr
p ) for class 3

The FLV (~µr
p ) function for class 3 also relies on the "last Voting" mechanism. However, for class

3 we have TD ≤ 3b + f (n < 4b +2 f ), which means that the masking quorums cannot be used

and a different mechanism for authenticating vote-and-timestamp pairs is needed. The idea

is to use the hi stor y log. As explained in Section 5.3.3, a pair (vote, t s) is considered valid if

at least b +1 processes have it in their hi stor y variable.

The FLV function for class 3 (FLAG = φ and TD > 2b + f ) is shown in Algorithm 5.7. The

selection quorum is any set of processes of size bigger than n −TD +b. Algorithms of class 3

rely on dissemination quorums.

Similarly to Algorithm 5.6, lines 1 and 2 of Algorithm 5.7 are for FLV -agreement, as we now

explain with a simple example. Let v1 be locked in round r of phase φ1 +1, because some

honest process p has decided v1 in round r −1 of phase φ1. Consider Figure 5.6. For the

same reason as for Algorithm 5.6, at least TD − b honest processes have votep = v1 and

t sp = φ1 (*), as shown by 1 at Figure 5.6. Furthermore, at most n −TD honest processes

have votep = v2 6= v1 (see 2 at Figure 5.6). As for class 2, for every honest process p, we

have votep = v1 or t sp < φ1 (**). Together with (*), no message 〈v2 6= v1,−,−〉 sent by an

honest process can satisfy the condition of line 1(see Figure 5.6). Said differently, apart from

messages 〈v1,−,−〉, only messages 〈v2 6= v1,φ2,−〉 sent by Byzantine processes can be in

the set possi bl eV otesp . Because honest processes can only update history at line 14 of

Algorithm 5.4, no honest process has a pair (−,φ2 >φ1) in its history in the sending step of
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Algorithm 5.7 FLV (~µr
p ) for class 3

1: possi bl eV otesp ← { (vote, t s,−) ∈~µr
p :

|{(vote′, t s′,−) ∈~µr
p : vote = vote′∨ t s > t s′}|

> n −TD +b }
2: cor r ectV otesp ← {v : (v, t s,−) ∈ possi bl eV otesp ∧

|{(vote′, t s′,hi stor y ′) ∈~µr
p : (v, t s) ∈ hi stor y ′}| > b }

3: if |cor r ectV otesp | = 1 then
4: return v s.t . (v,−,−) ∈ cor r ectV otesp
5: else if |cor r ectV otesp | > 1 then
6: return ?
7: else if |

{
(vote, t s,−) ∈~µr

p : t s = 0
}
| > n −TD +b then

8: if there is a value v such that~µr
p contains a majority of messages (v,−,−) then /* only for unanimity */

9: return v
10: else
11: return ?
12: else
13: return null

round r . It follows that only messages 〈v1,−,−〉 can be in cor r ectV otesp at line 2. Therefore,

when a value v1 is locked, lines 1 and 2 prevent any value v 6= v1 or ? to be returned at lines 4

and 6. By (*) together with φ1 > 0, condition of line 7 never holds in our example.

( V1 , Φ1 , history2)

TD - b  n - TD + b

correct processes

( V2 ,  Φ2’ <  Φ1 , history3) ( V2 ,  Φ2 > Φ1 , history4)( V1 , Φ1 , history1)

Byz.

1 2

Figure 5.6: Illustration of FLV for class 3 (n = 4, b = 1, f = 0, TD = 3)

The role of lines 8-11 is to ensure FLV -agreement when strong unanimity is considered. Let

all honest processes have initially votep = v1. With the same arguments as above, it follows

that no value different from v1 can be in cor r ectV otesp at line 2, and therefore no value

different than v1 cannot be returned at line 4. As cor r ectV otesp contains at most one value,

the condition of line 5 is never true so ? is never returned at line 6. However, the condition

of line 7 might hold. In this case, ~µr
p contains more than n −TD messages 〈v1,0,−〉 from

honest processes, and at most b messages 〈v2 6= v1,0,−〉 from Byzantine processes. Because

TD ≤ n −b − f , we have n −TD ≥ b, and v1 is returned at line 9, which ensures FLV -agreement.

Let us now discuss FLV -liveness. For this property to hold, we need a stronger variant of

Validator-val i di t y :14

14This stronger variant was not introduced in Section 5.3.4, since the proof of the generic Algorithm 5.4 does
not require the stronger variant. In the proof of Algorithm 5.4, the stronger variant is hidden in the FLV -l i veness
property.
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• Validator-str ongV ali di t y :

If |Validator(p,φ)| > 0 then |Validator(p,φ)| > 3b.

With Validator-str ongV ali di t y the following Lemma 5.1 holds:

Lemma 5.3. If Validator-str ongV ali di t y holds, then the following property holds on every

honest process h and in every phase φ: if process h set voteh to v and t sh to φ at lines 21-22 of

Algorithm 5.4, then at least b +1 honest process has sent 〈v〉 at line 18.

Proof. Assume that a process h set voteh to v and t sh to φ at lines 21-22 of Algorithm 5.4.

Therefore, Validator(h,φ) is non empty at line 20 in phase φ. By Validator-str ongV ali di t y ,

we have |Validator(h,φ)| > 3b and |Validator(h,φ)|+b
2 > 2b. Therefore, condition at line 20 can

only be true for v if an at least b +1 honest process has sent 〈v〉 at line 18.

We now explain how Algorithm 5.7 ensures FLV -liveness when Validator-str ongV ali di t y

holds. Let ~µr
p contains the messages from all the n −b − f correct processes. There are two

cases to consider: (1) correct processes sent only 〈−,0,−〉, (2) at least one correct process

sent 〈−, t s > 0,−〉. Note that TD > 2b + f ensures n −b − f > n −TD +b (*). In case (1), by

(*) the condition of line 7 holds, and null cannot be returned at line 13 of Algorithm 5.7.

In case (2), let ν denote the subset of messages in ~µr
p that are from correct processes, and

let t sν be the highest timestamp in ν. By Lemma 5.2 there is a unique value vν such that

〈vν, t sν,−〉 ∈ ν. Together with (*), this ensures that the set possi bl eV otesp is not empty, and

contains 〈vν, t sν,−〉. By Lemma 5.3, any correct process that validates vν in the validation

round 3 t sν−1 received vν from at least b+1 correct processes. Therefore, at least b+1 correct

processes have selected vν in round 3 t sν−2, and these processes have (vν, t sν) is their history.

This implies that the set cor r ectV otesp is non empty, and a non-null value is returned at

line 4 or 6, which ensures FLV -liveness.

Theorem 5.5. If FLAG =φ, Validator(p,φ)-validity and Validator(p,φ)-agreement hold, then

Algorithm 5.7 ensures FLV -validity and FLV -agreement. FLV -liveness holds if in addition

TD > 2b + f and Validator-strongValidity holds.

Proof.

FLV -validity: FLV -validity follows from the lines 1-4 and 8-9.

FLV -agreement: Let r = 3φ−2 be the smallest selection round in which value v is locked.

By definition of a locked value, we have two cases to consider (1) all honest processes have

votep = v and unanimity must be ensured (and r = 1), or (2) v has been decided in round

r ′ = 3φ−3 (and thus, φ−1 ≥ 1) by some honest process p. We now show that for both cases in

round r at least TD −b honest processes sent 〈v, φ̂≥φ−1,−〉 (*), for all honest processes q , we

have (voteq = v ∨ t sq <φ−1) (**), and for any element (vote, t s) in the set hi stor yq of any
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honest process q , we have (t s≤φ−1) (***). In addition, if less than TD −b honest processes

have t sp > 0, then all honest processes have votep = v (****).

Case 1: Trivially follows from initialization and TD ≤ n −b − f .

Case 2: By Algorithm 5.4, the process p received at least TD messages 〈v,φ−1〉 in round r ′.
Therefore, at least TD − b processes send 〈v,φ− 1〉 in round r ′, i.e., at least TD − b honest

processes have their vote set to v , and send 〈v,φ−1,−〉 in round r (which shows (*)). This

means that an honest process p updates votep to v and t sp to φ in the validation round of

phase φ−1. By Validator(p,φ)-validity, Validator(p,φ)-agreement and Lemma 5.2, no honest

process update its vote to a value v ′ 6= v in this validation round (which shows (**)).

Property (***) trivially follows from the fact that for each honest process the last update of

history occured in round 3(φ−1)−2. Property (****) trivially follows from φ̂≥φ−1 ≥ 1 and (*),

which implies that the precondition of (****) cannot be true.

We now show that when properties (*), (**), (***) and (****) hold, Algorithm 5.7 ensures FLV -

agreement. Assume for the contradiction that a non null value v ′ 6= v is returned. Four cases

must be considered.

v ′ is returned at line 4: Because cor r ectV otesp is not empty, the set~µr
p contains a message

〈v ′,φ′,−〉 in possi bl eV otesp such that an honest process h has (v ′,φ′) in hi stor yh (see line 2).

By (***), φ′ ≤ φ−1. By line 1, more than n −TD honest processes sent a message 〈v ′′,φ′′,−〉
with v ′′ = v ′ or φ′′ <φ′ ≤φ−1. A contradiction with (*).

? is returned at line 6: Same arguments as the case v ′ is returned at line 4.

v ′ is returned at line 9: By line 7, the set~µr
p contains more than n −TD +b messages 〈−,0,−〉.

Therefore, less than TD −b honest processes has t sp > 0. By (****), all honest processes has

votep = v . Therefore~µr
p contains more than n −TD messages 〈v,0,−〉 and at most b messages

〈v ′,0,−〉. Because TD ≤ n−b− f , there is a majority of messages 〈v,0,−〉 in~µr
p . A contradiction

with line 8 and the fact that v ′ is returned at line 9.

? is returned at line 11: Same arguments as the case v ′ is returned at line 9.

This shows that Algorithm 5.7 ensures FLV -agreement in round r . Therefore, no honest process

p updates its variable votep and sel ectp to a value v ′ 6= v in selection round r . Furthermore,

no honest process p adds a tuple (v ′ 6= v,φ) in selection round r . By Validator(p,φ)-validity

and Lemma 5.1, no honest process p updates its vote to a value v ′ 6= v in the validation round

r +1. Therefore, properties (*), (**), (***) and (****) hold in selection round r ′′ = 3φ+1. With

similar arguments as above, we can show that Algorithm 5.7 ensures FLV -agreement in round

r ′′. By a simple induction on φ, we can show that Algorithm 5.7 ensures FLV -agreement in all

rounds.
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FLV -liveness: Let ~µr
p contain the messages from all the n −b − f correct processes. There

are two cases to consider: (1) correct processes sent only 〈−,0,−〉, (2) at least one correct

process sent 〈−, t s > 0,−〉. Note that TD > 2b + f ensures n −b − f > n −TD +b (*). In case

(1), by (*) the condition of line 7 holds, and null cannot be returned at line 13. In case

(2), let S denote the subset of messages in ~µr
p that are from correct processes, and let t sS

be the highest timestamp in S. By Validator(p,φ)-validity, Validator(p,φ)-agreement and

Lemma 5.2, there is a unique value vS such that 〈vS , t sS ,−〉 ∈ S. Together with (*), this ensures

that the set possi bl eV otesp is not empty, and contains 〈vS , t sS ,−〉. Validator-strongValidity

ensures that |val i d ator sp | > 0 implies |val i d ator sp | > 3b. As a result, any correct process

that validates vS in the validation round 3 t sS −1 received 〈vS ,−〉 from more than (3b)+b
2 = 2b

processes. Therefore, at least b +1 correct processes have selected vS in round 3 t sS −2, and

these processes have (vS , t sS) in their history. This implies that the set cor r ectV otesp is non

empty, and a non-null value is returned at line 4 or 6.

5.4.2 Instantiations of Validator(p,φ)

A trivial instantiation of the Validator function consists in always returning the whole set

of processes Π. This trivially satisfies Validator-validity, Validator-strongValidity, Validator-

agreement and Validator-liveness. To our knowledge, this instantiation is used in all algo-

rithms for Byzantine faults. However, another possible instantiation can be considered in

the Byzantine fault model: it consists in returning the same set S of b +1 processes at every

process, e.g., S defined by a deterministic function of the phase φ.15

In the benign fault model, it is sufficient that the Validator function always returns a single

process rather than a set of processes. One such instantiation is the well known rotating

coordinator function used in [CT96b]. Another example involves message exchange (these

messages can be piggybacked on existing messages). In each phase every process chooses

a potential validator q and informs q by sending him a message. If some process q receives

messages from a majority, then q becomes the validator, and q informs all processes that the

output of Validator function is q . If a process does not receive such a message within some

timeout, the Validator function returns;. It can easily be shown that this instantiation satisfies

Validator-validity, Validator-agreement and Validator-liveness.16 We call this instantiation

majority voting validator selection; it is used for example in the prepare phase of Paxos [Lam98].

15Note that this instantiation does not satisfy Validator-strongValidity.
16For Validator-liveness to hold, it is necessary to have a phase in which all correct processes choose the same

validator.
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5.5 Instantiations of Algorithm 5.4

In this section we show several well-known consensus algorithms derived from Algorithm 5.4.

Note that even though the instantiated algorithms are expressed in the round model, which is

not the case of many well-known consensus algorithms, the core mechanisms are the same.17

5.5.1 Class 1 algorithms

OneThirdRule [CBS09a] The OneThirdRule algorithm assumes benign faults only (b = 0) and

requires n > 3 f to tolerate f benign faults.

The instantiated version of the OneThirdRule algorithm (that we call Inst-OneThirdRule), is

obtained from Algorithm 5.4 with the following parametrization: TD = d2n+1
3 e,18 FLAG =∗ and

Algorithm 5.5 with TD = d2n+1
3 e as the FLV instantiation.

Algorithm 5.8 OneThirdRule algorithm (n > 3 f ) [CBS09a]

1: Initialization:
2: votep := i ni tp

3: Round r :
4: Sr

p :
5: send 〈votep〉 to all
6: T r

p :
7: if received more than 2n/3 messages then
8: xp := the smallest most often received value
9: if more than 2n/3 values received are equal to v then
10: DECIDE v

We now compare Inst-OneThirdRule with the original algorithm (Algorithm 5.8). In Algo-

rithm 5.8, the functionality of the selection round and of the decision round are merged into

one single round (see optimization (iv), Sect. 5.3.6). With TD = d2n+1
3 e, it is easy to see that the

condition for deciding is the same in the two algorithms (compare line 29 of Algorithm 5.4

and line 9 of Algorithm 5.8). However, the selection condition of the two algorithms have

(minor) differences. Specifically, it is easy to see that whenever some value is selected by

Algorithm 5.8 (lines 7 and 8), then some value (not necessarily the same) is also selected by

Algorithm 5.5. The opposite is not true. If the number of messages received is not larger than

2n/3, Algorithm 5.8 will not select any value, while Algorithm 5.5 may still select a value by

line 3.

FaB Paxos [MA06] The FaB Paxos algorithm is designed for the Byzantine fault model ( f = 0)

and requires n > 5b to tolerate b Byzantine faults. The algorithm is expressed in the context

17We ignore differences in the way algorithms implement phase change (timeout based mechanisms, failure
detector based approaches, sending NACK messages, etc), message acceptance policies, retransmission rules, etc.

18TD is chosen such that the same number of messages allow the condition at line 29 of Algorithm 5.4 and the
condition at line 4 of Algorithm 5.5 to hold.
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of "proposers", "acceptors" and "learners". For simplicity, in our framework, consensus

algorithms are expressed without considering these roles.

The following parametrization leads to Inst-FaB Paxos: TD = d(n +3b +1)/2e, FLAG =∗ and

Algorithm 5.5 with TD = d(n +3b +1)/2e as the FLV instantiation.

We now compare Inst-FaB Paxos with FaB Paxos. With TD = d(n +3b +1)/2e, the deciding con-

dition is the same in both algorithms. However, the selection condition of the two algorithms

have (minor) differences. With FaB Paxos, the selection rule is applied when n −b messages

are received. In that case, a value v is selected if it appears at least d(n −b +1)/2e times in the

set of received messages; otherwise any value can be selected.19 Therefore, if a number of

received messages is smaller than n −b, FaB Paxos will not select any value, while Inst-FaB

Paxos may still select a value by line 3 of Algorithm 5.5. Another difference is that FaB Paxos

does not ensure the strong unanimity property, which allows a simpler selection round in the

first phase (see Optimization (iii), Sect. 5.3.6).

5.5.2 Class 2 algorithms

Algorithm 5.9 FLV for class 2 with b = 0, TD = dn+1
2 e

1: possi bl eV otesp ← { (vote, t s,−) ∈~µr
p :

|{(vote ′, t s′,−) ∈~µr
p : vote = vote ′∨ t s > t s′}| > n

2

2: if |possi bl eV otes| = 1 then
3: return v s.t . (v,−,−) ∈ possi bl eV otes
4: else if |~µr

p | > n
2 then

5: return ?
6: else
7: return ⊥

Paxos [Lam98] Paxos assumes benign faults only (b = 0) and requires n > 2 f .

We get Inst-Paxos from Algorithm 5.4 with the following parametrization: TD = dn+1
2 e,20

FLAG =φ, Validator(p,φ) implemented by majority voting (see Section 5.4.2), and Algo-

rithm 5.9 as the FLV instantiation. Although we can use Algorithm 5.6 with TD = dn+1
2 e as an

instantiation of the FLV function, with only benign faults, Algorithm 5.6 can be simplified as

we explain now. In addition, we apply Optimization (i), Sect. 5.3.6.

We now explain how to get Algorithm 5.9 from Algorithm 5.6. When b = 0, the set cor r ectV otesp

is the same as the set possi bl eV otesp , which means that the set cor r ectV otesp is not

needed.21

19Note that when TD = d(n +3b +1)/2e, the condition at line 1 of Algorithm 5.5 for selecting a value v requires
a smaller number of messages to be received than in FaB Paxos. For example, when n = 7 and b = 1, FaB Paxos
requires at least 4 messages equal to v to be received (at least d(n −b + 1)/2e(= 4)), while Algorithm 5.5 with
TD = d(n +3b +1)/2e requires 3 messages (more than n−b−1

2 (= 2)).
20Same argument as in footnote 18: same value for TD in the decision round and in the FLV function.
21We can also use a set instead of a multiset for possi bl eV otes.
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We now compare Inst-Paxos with Paxos. The decision rule is the same in both algorithms.

The selection conditions are not necessarily the same. Paxos selects the vote with the highest

timestamp, or any value if there are no votes with t s > 0. On the other hand, Inst-Paxos

selects the value with the highest timestamp that is locked (returned by FLV (~µr
p ) function,

see Algorithm 5.9). Otherwise, if the FLV (~µr
p ) function returns ?, Inst-Paxos selects any value

chosen by some deterministic function (see line 11 of Algorithm 5.4). If the deterministic

function at line 11 returns the value with the highest timestamp, then the selection condition

of Inst-Paxos and Paxos are the same.

CT [CT96b]

Like Paxos, CT — the Chandra-Toueg consensus algorithm using the ♦S failure detector —

assumes benign faults only (b = 0) and requires n > 2 f . Paxos and CT use the same selection

and decision conditions, and from this point of view rely on the same core mechanisms. The

difference is in the Validator(p,φ) implementation: CT is based on a rotating coordinator.

MR [MR99] The Mostéfaoui-Raynal algorithm (MR) is designed for benign faults and requires

n > 2 f . It assumes “reliable channels”, which allows for some optimizations. The reliable

channel assumption can be expressed in the round model by the following predicate:

Pr el (r ) ≡∀p ∈C : |{m ∈~µr
p : m 6= ⊥}| ≥ n − f .

Let us consider an instantiation of Algorithm 5.4, with Pr el in every round, and the following

parametrization: TD = dn+1
2 e, Validator(p,φ) implementing the rotating coordinator function

and Algorithm 5.10 as the FLV instantiation. Algorithm 5.10 is a simplification of Algorithm 5.6

with only benign faults and reliable channels. We call this algorithm Inst-MR.

We now compare Inst-MR with MR. The validation and the decision condition are the same in

both algorithms.22 Furthermore, in both algorithms the validation round for phase φ+1 is

executed in parallel with decision (and selection) round of phase φ. The selection condition of

the MR algorithm expressed as a FLV (~µr
p ) function (Algorithm 5.10) is a variant of Algorithm 5.6.

We now explain how to get Algorithm 5.10 from Algorithm 5.6. Because n− f > n−TD and Pr el

hold in every round, we have that |~µr
p | ≥ n− f in all rounds and lines 5, 7 and 8 of Algorithm 5.6

can be suppressed. Since the algorithm considers only benign faults and assumes reliable

channels, line 1 of Algorithm 5.10 is equivalent to lines 1-3 of Algorithm 5.6.

Note that in the original MR algorithm, a variable t sp is not explicitly used. Basically, MR

needs to distinguish only two cases, t sp =φ and t sp <φ. Instead of (votep , t sp ), the first case

can be represented by votep , while the second case can be represented by votep =⊥, where

⊥ is a special value different from all “normal” values of votep .

22In MR algorithm the functionalities of the selection and decision rounds are provided in the same round (see
Optimization (iv)).
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Algorithm 5.10 Instantiation of FLV function based on MR algorithm [MR99]
1: if received message 〈v,φ−1〉 then
2: return v
3: else
4: return ?

DLS algorithms [DLS88] There are three consensus algorithms in [DLS88]: one for benign

faults (requires n > 2 f ) one for authenticated Byzantine faults (n > 3b) and one for Byzantine

faults (also n > 3b). Let us denote these three algorithms by b-DLS (benign), a-DLS (authenti-

cated) and B-DLS (Byzantine) and let us concentrate only on the former and the latter. The

algorithm B-DLS belongs to class 3, and b-DLS to class 2. We discuss only b-DLS in more

details since it is simpler.

Let us consider an instantiation of Algorithm 5.4, with TD = f +1, FLAG =φ and Validator(p,φ)

implementation based on the rotating coordinator paradigm and Algorithm 5.11 as the instan-

tiation of the FLV function. We call this algorithm Inst-b-DLS.

We now compare Inst-b-DLS with b-DLS. The validation and the decision condition are the

same in both algorithms. Although the selection conditions are the same, there is a small

difference in how the selection logic is executed. Namely, the b-DLS algorithm relies on a

mechanism called locking (which is different from the notion of locking used in this chapter):

Whenever votep = v with v different from a special value A , then p has locked value v ; If

votep =A (special value) then p has not locked any value. Furthermore, b-DLS relies on a

lock-release mechanism that takes place in the additional round (called lock-release round).

The lock-release round is executed immediately before the selection round of the next phase,

in which processes exchange messages (vote and t s) to possibly unlock locked values, i.e.,

reset votep to A . When Pgood holds in the lock-release round r , then at most one value is

locked in round r +1.

By contrast, in Inst-b-DLS the lock-release mechanism is simulated inside the FLV function,

i.e., there is no need for the additional round. Lines 1-4 of Algorithm 5.11 correspond to the

lock-release mechanism.

We now explain with a simple example how Algorithm 5.11 ensures FLV -agreement. Let v1 be

locked in round r of phase φ1 +1, because some honest process p has decided v1 in round

r −1 of phase φ1. Then at least TD = f +1 honest processes have votep = v1 and t sp =φ1 (*),

as shown by 1 at Figure 5.7. Furthermore, at most n −TD processes have votep = v2 6= v1

(see 2 at Figure 5.6). For every process p, we have votep = v1 or t sp <φ1 (*).

If some value v 6= null is returned at line 7 or 9, this implies that vector Vp contains at least

n− f messages. As TD = f +1, then n ≥ 2 f +1, and therefore any set of n− f messages contains

at least one message with vote = v1 and t s =φ1 (see 3 at Figure 5.7). Because of (*), after

lines 1-4 are executed, v1 is the only value different from A in the vector Vp . Therefore,

the set possi bl eV otesp contains only (v1,φ1) and v1 is returned at line 7, which ensures
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FLV -agreement.

When Pgood holds, lines 8-9 ensure FLV -liveness as~µr
p contains at least n − f messages.

Algorithm 5.11 Instantiation of FLV function based on [DLS88]
1: Vp ←~µr

p
2: for i = 1 to n do
3: if ∃(vote, t s) ∈~µr

p s.t . t s >Vp [i ].t s then
4: Vp [i ] ← (A ,−)

5: possi bl eV otesp ← { (vote,−) ∈Vp :
|{(vote ′,−) ∈V r

p : vote = vote ′∨ vote ′ =A }| ≥ n − f

6: if |possi bl eV otesp | = 1 then
7: return v s.t . (v,−) ∈ possi bl eV otesp

8: else if |~µr
p | ≥ n − f then

9: return ?
10: else
11: return null

1

   ( V2 , Φ2 <  Φ1 )      ( V1 ,  Φ1 )       ( V1 , Φ1 )

n - TD TD 

n - f

2

3

Figure 5.7: Illustration of FLV function based on [DLS88] (n = 3, b = 0, f = 1, TD = 2)

MQB MQB is a new Byzantine consensus algorithm that requires n > 4b. It is obtained by

instantiation of Algorithm 5.4 with FLAG = φ and Validator(p,φ) returning always Π; this

corresponds to Algorithm 5.3. We consider the FLV instantiation given by Algorithm 5.6 and

TD = dn+2b+1
2 e.23

Compared to PBFT, MQB has the advantage not to need the variable hi stor yp , at the cost of

requiring n > 4b instead of n > 3b (for PBFT).

5.5.3 Class 3 algorithms

PBFT [CL02]

PBFT is an algorithm that solves a sequence of instances of consensus (in the context of state

23Same argument as in footnote 18: same value for TD in the decision round and in the FLV function.
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machine replication). We consider here the instantiation of a single instance of consensus

that represents the “core” of the PBFT algorithm. PBFT is designed for Byzantine faults ( f = 0)

and requires n > 3b.

We get Inst-PBFT from Algorithm 5.4 with the following parametrization: TD = 2b+1, FLAG =φ,

Validator(p,φ) =Π and Algorithm 5.12 as the FLV instantiation. Algorithm 5.12 is a simplifica-

tion of Algorithm 5.7 when strong unanimity is not considered (which is the case for PBFT).

We also set n = 3b +1, as in PBFT.

We now show how to get the FLV Algorithm 5.12 from Algorithm 5.7 if strong unanimity is not

considered. Indeed, in this case, lines 8-9 of Algorithm 5.7 can be removed, and the conditions

of line 5 and line 7 of Algorithm 5.7 can be merged into line 5 of Algorithm 5.12.

Algorithm 5.12 FLV for class 3 with TD = 2b +1 and n = 3b +1
1: possi bl eV otesp ← { (vote, t s,−) ∈~µr

p :
|{(vote ′, t s′,−) ∈~µr

p : vote = vote ′∨ t s > t s′}| > 2b
2: cor r ectV otesp ← {v : (v, t s,−) ∈ possi bl eV otesp ∧

|{(vote ′, t s′,hi stor y ′) ∈~µr
p : (v, t s) ∈ hi stor y ′}| > b }

3: if |cor r ectV otesp | = 1 then
4: return v s.t . (v,−,−) ∈ cor r ectV otesp

5: else if |cor r ectV otesp | > 1 or |
{

(vote, t s,−) ∈~µr
p : t s = 0

}
| > 2b then

6: return ?
7: else
8: return null

We now compare Inst-PBFT with PBFT. The validation and decision rounds are the same

in both algorithms. There is a small difference in the selection condition of the selection

round: whenever Inst-PBFT selects any value using some deterministic function (see line 11

of Algorithm 5.4), PBFT selects a special "null" value. Therefore, in PFBT the decision can be

on a special "null" value, while in Inst-PBFT the decision is always on a "real" value.

Since the strong unanimity property is not considered, we can apply optimization (iii) (Sect. 5.3.6)

to the selection round of Inst-PBFT. With this modification, the first phase of Inst-PBFT corre-

sponds to the "common case" and all later phases correspond to the "view change protocol"

of PBFT.

5.5.4 Where is the leader in the generic algorithm ?

Most of the consensus algorithms discussed (e.g., Paxos, CT, PBFT, FaB Paxos) are so called

leader-based protocol, i.e., there is a designated process called leader (sometimes called also

coordinator or primary) that has a special role in the execution of the algorithm. The leader

role does not explicitly appear in the Algorithm 5.4. It is hidden either in the implementation of

the Pcons predicate, e.g., in case of PBFT and FaB Paxos (see Section 3.4), or as an instantiation

of the Validator parameter, for example in Paxos.
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5.6 Conclusion

The chapter has presented a generic consensus algorithm that highlights the core mechanisms

of various consensus algorithms for benign and Byzantine faults. The generic algorithm has

four parameters: TD, FLAG, Validator and FLV . Instantiation of these parameters led us to

distinguish three classes of consensus algorithms into which well-known algorithms fit. It

allowed us also to identify the new MQB algorithm. We believe that our classification should

contribute to a better understanding of the jungle of consensus algorithms.
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6 On the Reduction of Total-Order
Broadcast to Consensus

In this chapter we investigate the reduction of total-order broadcast to consensus in systems

with Byzantine faults. Among the several definitions of Byzantine consensus that differ only

by their validity property, we identify those equivalent to total-order broadcast. Finally, we

give the first total-order broadcast reduction algorithm to consensus with a constant time

complexity with respect to consensus.

Publication: Zarko Milosevic, Martin Hutle and André Schiper. On the Reduction of Atomic

Broadcast to Consensus with Byzantine Faults. In 30th International Symposium On Reliable

Distributed Systems (SRDS 2011), Madrid, Spain, October 4 - October 18, 2011.

6.1 Introduction

The relation of consensus and total-order broadcast (called also atomic broadcast), including

the reduction of total-order broadcast to consensus, is well understood in the case of crash

faults [CT96a]. On the contrary, little is known about the relation between total-order broad-

cast and the consensus problem in the context of Byzantine faults. Although there is a huge

amount of literature on the implementation of total-order broadcast with Byzantine faults, and

some of them even use some sort of agreement as a building block, most of these papers do

not—strictly speaking—reduce total-order broadcast to consensus.1 In fact, we are aware only

of two reductions of total-order broadcast to consensus with Byzantine faults [CNV06, DFK06],

and in our opinion this work does not fully clarify the relation of consensus and total-order

broadcast.

It is easy to observe that the standard reduction of total-order broadcast to consensus with

benign faults does not work with Byzantine faults. One can also observe that there exist several

definitions of consensus with Byzantine faults (which differ in the validity property), and it

is not clear at all which one should be considered for a total-order broadcast reduction. In

1We discuss these papers in Section 6.7.
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addition, the relation between these definitions of consensus and total-order broadcast is only

partially understood.

Contribution. The first question addressed in the chapter is the relation between these various

definitions of consensus for Byzantine faults and the total-order broadcast problem. We

show that only some of the consensus validity properties in the literature lead to consensus

problems that are equivalent to total-order broadcast. We also show that consensus with

weak unanimity [DLS88] is not sufficient to solve total-order broadcast, while with strong

validity [FG03] consensus is harder than total-order broadcast.

After that, we give a reduction of total-order broadcast to range validity consensus [DH08].2

The reduction has a constant time complexity with respect to consensus, which is not the case

for the reduction in [CNV06, DFK06].

After the reduction of total-order broadcast to range validity consensus, we give a reduction

of range validity consensus to binary consensus that has constant time complexity (with

respect to binary consensus). This implies that total-order broadcast can be reduced to binary

consensus with constant time complexity (with respect to binary consensus).

About constant time reductions. The key feature of range validity consensus that allows us to

achieve constant time reduction to consensus is the fact that it constrains the decision value

even if not all initial values of correct processes are the same. This is not the case with the strong

unanimity [DLS88] consensus, which was used in the reduction in [DFK06]. The reduction

in [DFK06] requires, as written by the authors, a “deterministic and fair rule” for choosing

which messages to propose to consensus such that eventually all correct processes propose the

same set of messages. However, [DFK06] gives no examples of such a rule. Moreover, relying

on such a mechanism clearly leads to a reduction algorithm that does not have constant

time complexity with respect to consensus. The reduction in [CNV06] relies on abortable

consensus [MR10, CNV06],3 which restricts a decision value to the default value ⊥ if not

all initial values of correct processes are the same. The consequence is that the reduction

algorithm only makes progress when the initial values of correct processes are the same. This

leads to an algorithm that does not have constant time complexity with respect to consensus.

Roadmap The system model and problem definitions are given in Section 6.2. We then

compare the different definitions of consensus and total-order broadcast in Section 6.3. In

Section 6.4, the reduction of total-order broadcast to range validity consensus is presented.

Solving range validity consensus is addressed in Section 6.5. The reduction of total-order

broadcast to binary consensus with constant time complexity with respect to consensus is

2We denote with range validity the validity property used in [DH08], which requires the decision value to be in
the range of initial values of correct processes.

3In [MR10] abortable validity is called non-intrusion validity, and the corresponding consensus intrusion-
tolerant Byzantine consensus. In [CNV06] it is called multi-valued consensus validity.
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discussed in Section 6.6. Section 6.7 is devoted to related work, and Section 6.8 concludes the

chapter.

6.2 Definitions

We consider a system of n processes Π = {1, . . . ,n} that are connected with asynchronous

reliable links. At most b processes may fail in an arbitrary way (Byzantine faults). A correct

process is the one that is not Byzantine. Links satisfy the integrity property, i.e., a message that

is received from a process was also sent by this process. We do not use signatures.

6.2.1 Reliable Unique Broadcast

In our reduction we use reliable unique broadcast [ADGFT06], 4 a broadcast primitive slightly

different from reliable broadcast [HT94, CKPS01]. As shown in [ADGFT06], the primitive can

be implemented in an asynchronous system with reliable links. Reliable unique broadcast is

defined in terms of two primitives, rubcast and rubdeliver. A process p that wants to broadcast

a message m invokes rubcastp (k,m) with a tag k it has not used before. This message is then

delivered by executing rubdeliverq (k,m, p) at process q . Reliable unique broadcast fulfills the

following properties:

• Validity: If a correct process p invokes rubcastp (k,m), and this is the only invocation of

p for index k, then p eventually executes rubdeliverp (k,m, p).

• Agreement: For any two correct processes p and q , if p executes rubdeliverp (k,m, s),

then q eventually executes rubdeliverq (k,m, s).

• Integrity: For any index k and process q , a correct process p executes rubdeliverp (k,m, q)

at most once. Moreover, if q is correct, then q previously invoked rubcastq (k,m).

Observe that rubcastq (k,m) provides stronger guarantees than rbcastq (m′) (reliable broad-

cast) with m′ = 〈k,m〉. With the latter, a correct process could deliver both m′ = 〈k,m〉 and

m′′ = 〈k,m〉. With the former, because of the integrity property, a correct process cannot

deliver (k,m) and (k,m).

6.2.2 Consensus

As explained in Section 2.1, in the consensus problem, every process has an initial value from

a set V and has eventually to irrevocably decide on a value from V . The problem is defined by

an agreement, a termination, and a validity property. As will be explained in the next section,

there are several variants of the validity property.

4In [ADGFT06] the primitive is called consistent unique broadcast.
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The interface to consensus uses two primitives, proposep (i , v) to denote the start of a con-

sensus instance i at p with the initial value v , and decidep (i ,d) to denote termination at p of

consensus instance i with the decision value d .

6.3 Total-order broadcast reduction and the validity property of con-

sensus

Consensus is defined by three properties, validity, agreement and termination. With benign

faults, agreement can be uniform or non uniform, termination requires that all correct pro-

cesses decide, and the standard validity property states that the decision must be the initial

value (taken from a set V ) of some process. Other validity properties have also been consid-

ered [Lyn96]. However, it is well understood that the standard validity property above allows

the reduction of total-order broadcast to consensus in an asynchronous system with benign

faults.

With Byzantine faults, more definitions of consensus have been proposed, which differ only

by the validity property (with Byzantine faults, only non uniform agreement makes sense).

Depending on the validity property, the definition of consensus can be weaker, stronger or

equivalent to total-order broadcast, as we now show. We consider the following definitions:

• Strong validity ([Nei94, FG03]): If a correct process decides on v , then v is the initial

value of some correct process.5

• Weak unanimity [DLS88]: If all correct processes have the same initial value, and no

process is faulty, then this is only possible decision value.

• Strong unanimity [DLS88]: If all correct processes have the same initial value, then this

is the only possible decision value.

Abortable validity considers a special decision value ⊥. This special value can be decided if

not all correct processes have the same initial value:

• Abortable validity ([CNV06, MR10]):6

(a) If all correct processes have the same initial value, then this is the only possible

decision value.

5Strong validity can be seen as the counterpart, in the context of Byzantine faults, of the standard validity
property with benign faults: If a correct process decides v, then v is the initial value of some process. Indeed, since it
does not make sense to refer to the initial value of a Byzantine process, the definition becomes: If a correct process
decides v, then v is the initial value of some correct process.

6In [CNV06] this is called multi-valued consensus validity, and is defined by three validity properties MVC1
to MVC3. The MVC1 validity property corresponds to abortable validity (a). The MVC2 validity property can be
rephrased as follows: If a correct process decides v, then v was proposed by some correct process. Together with
MVC3, we get abortable validity (b).

102



6.3. Total-order broadcast reduction and the validity property of consensus

(b) If a correct process decides v , then v is the initial value of some correct process, or

v =⊥.

The last validity property considered is introduced (without name) in [DH08]. We call it range

validity since the decision value is in the range of initial values of correct processes. Range

validity requires the domain V of initial values to be totally ordered:

• Range validity [DH08]: There exist two distinct correct processes p1, p2, so that every

decision value dq of a correct process q is between the initial values of p1 and p2 (C is

the set of correct processes, vp denotes the initial value of process p):

∃p1, p2 ∈C : ∀q ∈C : vp1 ≤ dq ≤ vp2 .

We have the following relations between these validity properties: strong validity implies

range validity and abortable validity; both range validity and abortable validity imply strong

unanimity; strong unanimity implies weak unanimity.

The special case |V | = 2 is called binary consensus. For |V | = 2, strong validity, range validity,

strong unanimity and abortable validity are equivalent. In our proofs, when referring to binary

consensus, we will assume the “strong unanimity” formulation.

In the rest of the section, we compare the difficulty of these various consensus problems with

total-order broadcast.

6.3.1 Total-order broadcast is harder than weak unanimity consensus

We show that with n > 3b, total-order broadcast is harder than weak unanimity consensus.7 To

do so, we first show that whenever total-order broadcast is solvable, range validity consensus

is also solvable.

Lemma 6.1. If n > 3b, then range validity consensus can be reduced to total-order broadcast.

Proof. The reduction is as follows. First, every process total-order broadcasts its initial value,

and waits until n −b messages are delivered. When a process has to-delivered n −b messages,

it orders the values of these messages in ascending order and decides on the value at (b +1)st

position.

Termination. Since total-order broadcast guarantees the delivery of all messages from correct

processes, and there are at least n −b correct processes, all correct processes decide.

Agreement. Since total-order broadcast ensures that all messages are delivered in total-order,

the set of the n −b first messages is the same at all correct processes, and thus all correct

processes decide on the same value.

7Consensus with validity property X will simply be called “X consensus” or “X validity consensus”.
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Range Validity. After values from the first n −b messages are ordered, we have two cases to

consider: (1) the b first values are from faulty processes, (2) the b first values contain at least

one value from a correct process. It is easy to see that in both cases range validity holds.

Since range validity implies strong unanimity validity, we have the following corollary:

Corollary 6.1. If n > 3b, then strong unanimity consensus can be reduced to total-order broad-

cast.

Now we show that for n > 3b, the solvability of weak unanimity consensus does not imply

solvability of total-order broadcast. We start with a lemma.

Lemma 6.2. Strong unanimity consensus cannot be reduced to weak unanimity consensus.

Proof. Assume by contradiction that such a reduction T exists. Then T , together with weak

unanimity consensus, solves strong unanimity consensus, and in particular in all runs where

at least one process is faulty and weak unanimity consensus always decides a fixed value v0

(independently of the initial values of correct processes). Now consider a modified algorithm

T ′ that uses always v0 instead of the output of weak unanimity consensus. Clearly, for all

runs of T ′ there is a run of T that is indistinguishable to the correct processes, and thus they

decide as in T . This means that T ′ is a deterministic algorithm that solves strong unanimity

consensus in an asynchronous systems with at least one faulty process. A contradiction with

the FLP impossibility result [FLP85].

We can now prove the above claim.

Proposition 6.1. If n > 3b, total-order broadcast cannot be reduced to weak unanimity consen-

sus.

Proof. Assume by contradiction that total-order broadcast can be reduced to weak unanimity

consensus. If n > 3b, by Corollary 6.1, consensus with strong unanimity can be reduced to

total-order broadcast. Thus, strong unanimity consensus is reducible to consensus with weak

unanimity. A contradiction with Lemma 6.2.

From Corollary 6.1 and Proposition 6.1 it follows that with n > 3b total-order broadcast is

harder than weak unanimity consensus.

6.3.2 Strong validity consensus is harder than total-order broadcast

We show that strong validity consensus with more than three values (|V | > 3) is harder than

total-order broadcast. To do so, we will use the result from [CNV06] that total-order broadcast

can be reduced to binary consensus.
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Proposition 6.2. If n > 3b, then total-order broadcast can be reduced to binary consensus.

Proof. The result is proven in [CNV06].

Proposition 6.3. If n > 3b, then total-order broadcast can be reduced to strong validity consen-

sus.

Proof. If n > 3b then by Proposition 6.2 total-order broadcast can be reduced to binary con-

sensus, that is strong validity consensus with |V | = 2.

We now show that the opposite does not hold in general.

Proposition 6.4. For |V | > 3, in general strong validity consensus cannot be reduced to total-

order broadcast.

Proof. The proof is by contradiction. Consider a synchronous system with n = 4 and b = 1. We

first show that in this setting, total-order broadcast is solvable. Indeed, in this setting binary

consensus is solvable. If binary consensus is solvable, by Proposition 6.2 total order-broadcast

is also solvable.

Let us assume by contradiction that there is a reduction of strong validity consensus to total-

order broadcast in an asynchronous system. With the result of the previous paragraph, this

means strong validity consensus is solvable in a synchronous system with n = 4 and b = 1. This

contradicts the results from [FG03], where it is shown that solving strong validity consensus in

a synchronous system requires n > b ·max(3, |V |).

6.3.3 Consensus problems equivalent to total-order broadcast

The other consensus problems introduced, namely strong unanimity consensus, abortable

validity consensus and range validity consensus are all equivalent to total-order broadcast.

This result follows from three propositions:

Proposition 6.5. If n > 3b, total-order broadcast and range validity consensus are equivalent.

Proof. From Proposition 6.2 it follows that if n > 3b total-order broadcast can be reduced

to binary consensus, that is range validity consensus with |V | = 2. On the other hand, by

Lemma 6.1, if n > 3b range validity consensus can be reduced to total-order broadcast.

Proposition 6.6. If n > 3b, total-order broadcast and abortable validity consensus are equiva-

lent.

Proof. This result is proven in [CNV06].
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Proposition 6.7. If n > 3b, total-order broadcast and strong unanimity consensus are equiva-

lent.

Proof. From Corollary 6.1 it follows that if n > 3b strong unanimity consensus can be reduced

to total-order broadcast. On the other hand, by Proposition 6.2 if n > 3b then total-order

broadcast can be reduced to binary consensus, that is strong unanimity consensus with |V | = 2.

This shows that total-order broadcast and strong unanimity consensus are equivalent.

6.4 Reducing total-order broadcast to consensus with range valid-

ity

In this section we give a reduction of total-order broadcast to consensus with range valid-

ity, the first constant time reduction of total-order broadcast to consensus for Byzantine

faults. For range validity consensus we assume that V is a countable set, and without loss of

generalization, we assume that V is the set {0, . . . , |V |−1} if V is finite, orN0 if V is infinite.

6.4.1 Reduction algorithm

The reduction is given as Algorithm 6.1. It uses reliable unique broadcast. In order to

to-broadcast a message, the message is first rubcast together with a local sequence num-

ber lsn (line 8). When this message is rubdelivered it is stored in the variable rubdelivered for

further processing (line 10).

The main loop (lines 14-26) is executed when there are messages that are rubdelivered but

not yet to-delivered. The code between two wait statements (e.g., lines 13-18) and the “upon”

blocks are executed atomically. We call each iteration of the main loop a “round”. In the sequel,

we denote with xp the value of a variable x at process p, and for any round r > 0 we denote

with xr
p the value of xp at the beginning of round r (a round begins at line 14). In every round r ,

Algorithm 6.1 executes n instances of range validity consensus in parallel, see lines 14 and 18.

Consensus instance (r −1) ·n+π is used to agree which messages to-broadcasted by process π

are to-delivered in round r . A process p proposes in consensus instance (r −1) ·n +π the

difference between rdel_snp [π] and decided_snp [π], where

• rdel_snp [π] contains the highest sequence number, such that all messages from π with

a smaller sequence number are rubdelivered at p, and

• decided_snp [π] contains the sequence number of the last message from π that is to-

delivered by p.

The decision value of consensus instance (r −1) ·n +π determines the number of messages

from π that will be to-delivered in round r . Finally, all messages from π are to-delivered by all

correct processes in the order of their sequence numbers lsn.
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Algorithm 6.1 Total-order broadcast by reduction to range-validity consensus
1: r ← 0
2: to-delivered←;
3: rubdelivered ←;
4: lsn ← 0
5: decided_sn[1 . . .n] ← [0 . . .0]

6: upon to-broadcast(m) do
7: lsn ← lsn+1
8: rubcast(lsn,m)

9: upon rubdeliver(i ,m, q) do
10: rubdelivered ← rubdelivered∪{〈m, i , q〉}
11: loop
12: wait until rubdelivered− to-delivered 6= ;
13: r ← r +1
14: for π= 1 to n do
15: rdel_sn[π] ← largest `, so that ∀ j ,1 ≤ j ≤ ` : 〈−, j ,π〉 ∈ rdelivered
16: v[π] ← min(rdel_sn[π]−decided_sn[π],max(V ))
17: range-propose((r −1) ·n +π, v[π])
18: for π= 1 to n do
19: wait until range-decide((r −1) ·n +π,decision[π])
20: if decision[π] > 0 then
21: for `= decided_sn[π]+1 to decided_sn[π]+decision[π] do
22: wait until ∃msg = 〈m,`,π〉 : msg ∈ rubdelivered
23: if 〈m,−,−〉 6∈ to-delivered then
24: to-deliver(m)
25: to-delivered← to-delivered∪msg
26: decided_sn[π] ← decided_sn[π]+decision[π]

We illustrate Algorithm 6.1 on a simple example using Figure 6.1. We consider a scenario with

four processes (p4 is the Byzantine process), where process p1 initially executes to-broadcast(m1).

The execution of the algorithm starts by process p1 executing rubcast(1,m1). Once a correct

process executes rubdeliver(1,m1, p1) it starts in parallel next four range validity consensus

instances. In the scenario considered on Figure 6.1 correct processes start consensus instances

after executing rubdeliver(1,m1, p1). As this is the first message rubdelivered from process

p1, processes propose 1 in the consensus instance that "belongs" to process p1. As correct

processes have not rubdelivered messages from other processes they propose 0 in the corre-

sponding consensus instances of other processes. Eventually, all correct processes decide in

the consensus instances started. As all correct processes propose 1 in the consensus instance

that belongs to process p1, the decision value must be 1. At this point correct processes

to-deliver the next not delivered message from process p1, i.e., message m1 in this case.

Remark Executing range validity consensus n times in parallel, as done in Algorithm 6.1,

has a high message complexity. This cost can easily be reduced to the message complexity of

one instance of range validity, with larger messages. The solution consists of executing one

instance of consensus on a “vector of n elements” instead of “n instances of range consensus”
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to-bcast(m1) to-deliver(m1) p1

p2

p3

p4

to-deliver(m1)

to-deliver(m1)

(1,m1) (1,m1,p1)
1 0 0 0 1 0 0 0

(1,m1,p1)
1 0 0 0 1 0 0 0

1 0 0 01 0 0 0
(1,m1,p1)

Byzantine process

(1,m1)

rubcast(1,m1)

(1,m1,p1)

rubdeliver(1,m1,p1)

0

propose(0)

0

decide(0)

Figure 6.1: Illustration for Algorithm 6.1, n = 4,b = 1, process p4 is a Byzantine process. Process
p1 executes to-broadcast(m1).

in parallel. The consensus then operates simultaneously on each entry of the vector, providing

an independent element-wise range consensus semantics for each of the vector’s elements.

6.4.2 Proof of Algorithm 6.1

Lemma 6.3. For all correct processes p and q, and all r > 0, decided_snr
p = decided_snr

q .

Proof. The proof is by induction on r . For r = 1, at all processes decided_snr = [0 . . .0], and

thus the lemma holds. Assume now that the lemma is true for r − 1. When the correct

processes decide consensus instances (r −2)n +1 to (r −2)+n in round r −1, because of the

agreement property of range validity consensus they all decide the same values. Thus, at

the end of round r −1 (at line 26), all processes update decided_sn consistently. Therefore,

decided_snr
p = decided_snr

q and the lemma holds also for r .

Lemma 6.4. For all correct processes p and q, and all r > 0, to-deliveredr
p = to-deliveredr

q .

Proof. The proof is by induction on r . For r = 1, at all processes to-deliveredr =;, and thus

the lemma holds. Assume now that the lemma is true for r −1. By the agreement property
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of consensus, all correct processes terminate consensus instance (r −2)n +π for π= 1..n in

round r −1 with the same decision decision(π) (?). The value of decided_sn in round r −1 at

line 21 is equal to decided_snr−1, therefore by Lemma 6.3, decided_sn has the same value at

line 21 in round r −1 at all correct processes (??). By (?) and (??), for every instance π= 1..n

of loop at line 18 all correct processes will execute the same number of iterations at line 21. For

each iteration they will consider the same message due to the agreement property of reliable

unique broadcast. By induction assumption we have to-deliveredr−1
p = to-deliveredr−1

q , and

since the value of to-delivered at line 23 at round r −1 is equal to to-deliveredr−1, the condition

at p and q at line 23 of round r −1 will evaluate to the same value. Therefore, p and q will

update to-delivered in round r −1 at line 25 to the same value, so the lemma holds also for

r .

Lemma 6.5. If a message m is to-delivered at a correct process p in round r , it is also to-delivered

in round r at any correct process q.

Proof. By Lemma 6.4 we have to-deliveredr−1
p = to-deliveredr−1

q and to-deliveredr
p = to-deliveredr

q

(for r = 1 the result follows also from line 2 of the reduction algorithm) (*). We have

to-deliveredr
p = to-deliveredr−1

p ∪ todel r
p

where todel r
p denotes the messages to-delivered by p in round r (**). From (*) and (**) we

have todel r
p = todel r

q . If m is to-delivered by p in round r , we have m ∈ todel r
p . So we also

have m ∈ todel r
q , i.e., m is to-delivered by q in round r .

Lemma 6.6 (TO-Validity). If a correct process p invokes to-broadcastp (m), then p eventually

executes to-deliverp (m).

Proof. Assume by contradiction that a message m to-bcast by p is the first message to-

bcast by p that is not to-delivered by some correct process q . When process p invokes

to-broadcastp (m), the local sequence number lsn is incremented and the message 〈lsn+1,m〉
is rubcast. Messages that are to-bcast by p before m are rubcast with sequence number

smaller than lsn+1 and by assumption all these messages are to-delivered. By line 26 (update

of decided_snq [p]), ∃r s.t. eventually decided_snr
q [p] = lsn. From Lemma 6.3 follows that at all

correct processes we have decided_sn[p]r = lsn.

By the termination property of reliable unique broadcast, all messages 〈i ,−〉 with i = 1..lsn+1

are eventually rubdelivered at all correct processes. Because 〈lsn+1,m〉 was rubcast by a

correct process, by the agreement and integrity property of reliable unique broadcast, all

correct processes eventually rubdeliver 〈lsn+1,m〉, and have 〈m, lsn+1, p〉 in rubdelivered.

Therefore, in round r all correct processes propose in the consensus instance (r −1) ·n +p

a value larger or equal to 1 (see lines 16-17).8 By the range validity property of consensus,

decisionq [p] is therefore larger or equal to 1 and m is to-delivered. A contradiction.

8For simplicity we assume that V is infinite: otherwise the same reasoning will apply for some round r ′ > r .
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Lemma 6.7 (TO-Agreement). For any two correct processes p and q, if p executes to-deliverp (m),

then q eventually executes to-deliverq (m).

Proof. Follows directly from Lemma 6.5.

Lemma 6.8 (TO-Integrity). For any message m, every correct process p executes to-deliverp (m)

at most once. Moreover, if the sender q of message m is correct, then q previously invoked

to-broadcastq (m).

Proof. The first part of the claim follows directly from line 23. For the second part, a message

is to-delivered at a correct process p only if p rubdelivered 〈i ,m, q〉 before. If the sender

q is correct, by the integrity property of reliable unique broadcast, q previously invoked

rubcastq (−,m). By lines 6 and 8, q previously invoked to-broadcastq (m).

Lemma 6.9 (TO-Order). If some correct process p executes to-deliverp (m) before to-deliverp (m′),

then every correct process q executes to-deliverq (m′) only after it has executed to-deliverq (m).

Proof. Let p and q be correct processes such that to-deliverp (m), to-deliverp (m′), to-deliverq (m),

and to-deliverq (m′) are executed. Let further rx , resp. r ′
x , denote the value of r when message

m, resp. m′, is delivered at process x ∈ {
p, q

}
.

By Lemma 6.5, messages m and m′ are each delivered in the same rounds by all correct

processes, i.e., rp = rq and r ′
p = r ′

q . If messages m and m′ are delivered in different rounds,

then either rp < r ′
p and rq < r ′

q , or rp > r ′
p and rq > r ′

q , and the order property holds. If m

and m′ are delivered in the same round r , then the messages are delivered in the order of the

process IDs and l sn, and the TO-Order property holds.

From Lemmas 6.6–6.9 and the fact that reliable unique broadcast can be implemented in

an asynchronous system with reliable links when n > 3b [ADGFT06], we get the following

theorem:

Theorem 6.1. If n > 3b, then Algorithm 6.1 is a reduction of total-order broadcast to range

validity consensus in an asynchronous system with reliable links.

6.4.3 Why reliable unique broadcast?

We illustrate now on an example why reliable unique broadcast [ADGFT06] (rather than

reliable broadcast [HT94, CKPS01]) is needed in Algorithm 6.1. Consider n = 4,b = 1, processes

denoted by i ∈ [1,4], and process 4 being the faulty process. If reliable broadcast is used in

Algorithm 6.1, then processes 1 and 2 may rdeliver, from process 4 at line 9, m′ = 〈1,m〉 resp.

m′′ = 〈1,m〉. By the Agreement property of reliable broadcast, all correct processes eventually

rdeliver m′ = 〈1,m〉 and m′′ = 〈1,m〉 from process 4. Therefore, all correct processes will

eventually start round k proposing 1 for consensus instance (k −1) ·n+4. By the range validity
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property of consensus, all processes will decide 1 in the consensus instance (k −1) ·n +4.

Therefore, process 1 will adeliver m and process 2 will adeliver m, violating the TO-order

property.

6.4.4 Time complexity of Algorithm 6.1

We express the time complexity τTO
m of our reduction algorithm as the upper bound of the

duration between the total-order broadcast of some message m by a correct process and the

delivery of m at all correct processes.9 We express τTO
m in terms of the maximum execution

time of consensus — denoted by τC — and the maximum communication delay δ. For τC , we

consider the starting time of an instance of consensus to be the time at which the last input

event of a correct process occurs, and the ending time to be the time at which the last output

event (decision value) of a correct process occurs. We define δ as the maximum transmission

delay on messages exchanged among correct processes. We have the following result:

Theorem 6.2. [Time complexity] If |V | =∞, for Algorithm 6.1 we have τTO
m ≤ 2τC +3δ.

Proof. Let τC
r v denote the maximum execution time of range validity consensus. We show that

ordering an arbitrary message from a correct process takes at most 2τC
r v +3δ time. , i.e., for any

message m we have τTO
m = eT O

m − sT O
m ≤ 2τC

r v +3δ (sT O
m being time when m is to-broadcast and

eT O
m being time when last correct process to-deliver m). In the proof we assume that reliable

unique broadcast is implemented as in [ADGFT06] and therefore has time complexity of 3δ.

Assume that a correct process p to-broadcasts message m at time sT O
m . Then, also at time sT O

m ,

message m is rubcast with the next index `. Since p is correct, for all j , 0 < j < `, messages

have been rubcast before. By time sT O
m +3δ, all these messages have been rubdelivered at

all correct processes. Therefore, at every correct process q , the set rubdeliveredq contains

a message 〈−, j , p〉 for all 0 < j ≤ ` (?). At most τC
r v later, every process has started a new

consensus instance with an index k such that k = (r − 1) ·n + p. By (?), rdel_sn[p] ≥ ` at

line 15 of round r at all correct processes. Now, if decided_sn[p] ≥ `, all correct processes

already to-delivered message m before, and because of τTO
m ≤ 2τC

r v +3δ we are done. Othewise,

decided_sn[p] < ` at line 16 in round r . Then because |V | =∞, at all correct processes we have

that v[p] = rdel_sn[p]−decided_sn[p] at line 16, and this value is proposed to consensus in-

stance (r −1)·n+p. By the range validity property of consensus, decision[p], the decision value

of consensus instance (r −1)·n+p is greater or equal to v[p]. Therefore, at all correct processes

decided_sn[p] + decision[p] ≥ decided_sn[p] + rdel_sn[p] − decided_sn[p] ≥ rdel_sn[p] ≥ `.

Therefore, message 〈m, p〉 will be to-delivered at line 24. This will happen at all correct

processes at latest at time sT O
m +2τC

r v +3δ. The theorem follows.

9Since communication delays are unbounded in an asynchronous system, the analysis is done for finite runs,
where a maximum value exists for every run. To simplify the notation, we drop the reference to runs.
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Algorithm 6.2 Reduction of range validity consensus to binary consensus (code of process p)
1: r ← 0
2: rubdelivered ←;
3: upon range-propose(v) do
4: rubcast(1, v) /* 1 is the local index number, see Sect.6.2.1; each process rubcasts only once. */

5: upon rubdeliver(1, v, q) do
6: rubdelivered ← rubdelivered∪{〈1, v, q〉}
7: wait until |rubdelivered| ≥ n −b
8: loop
9: r ← r +1
10: for π= 1 to n do
11: v[π] ← 1 if 〈−,π〉 ∈ rdelivered otherwise 0
12: bin-propose((r −1) ·n +π, v[π])
13: for π= 1 to n do
14: wait until bin-decide((r −1) ·n +π,decision[π])
15: Π1 ←

{
q ∈Π : decision[q] = 1

}
16: if |Π1| ≥ n −b then
17: for all i ∈Π1 do
18: wait until ∃m : msg = 〈1,m, i 〉 ∈ rubdelivered
19: dec ← max v s.t .

∃qv ∈Π1 : (1, v, qv ) ∈ rubdelivered∧|{q ∈Π1 : (1, v ′, q) ∈ rubdelivered s.t . v ′ ≥ v}| ≥ b +1
20: range-decide(dec)

6.5 Solving range validity consensus

In order to complete the contribution of the previous section, we discuss now the solution of

range validity consensus. In Section 6.5.1 we show that range validity consensus is reducible to

binary consensus with constant time complexity. The reduction is given by Algorithm 6.2. Solv-

ing range validity consensus by reduction to binary consensus with constant time complexity

allows us to obtain reduction of total order broadcast to binary consensus that has constant

time complexity, as we will show in Section 6.6. Then, in Section 6.5.2 we explain briefly how

range validity consensus can be solved directly in the partially synchronous model [DLS88].

6.5.1 Reduction of range validity consensus to binary consensus

Algorithm 6.2 starts by having processes rubcast their initial value (line 4). After delivery of

n −b initial values (line 7), processes execute a sequence of rounds: in each round r , n binary

consensus instances, namely instances (r −1) ·n+ i , i = 1..n, are executed in parallel. A correct

process proposes 1 in consensus instance (r −1) ·n + i if it has rubdelivered the initial value of

process i ; otherwise it proposes 0 (line 11). The algorithm terminates in a round in which at

least n −b binary consensus instances decide 1 (line 16). Line 19 ensures that the decision

value is greater or equal than the initial value of at least one correct process. Moreover, since

n > 3b, line 19 also ensures that the decision value is smaller or equal than the initial value of

at least one correct process.
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The next theorem establishes the correctness of the reduction:

Theorem 6.3. If n > 3b then Algorithm 6.2 reduces range validity consensus to binary consensus.

Proof. To avoid ambiguity we use the prefix range resp. bin to distinguish the proposal and

decision events of the two consensus specifications.

Agreement. Because of the agreement property of binary consensus, for any round r , the set

Π1 is the same at all correct processes p. By the agreement and integrity property of reliable

unique broadcast, if two correct processes rubdeliver a message with the same tag from some

process, they rubdeliver the same message. Since the deterministic rules at lines 15-19 are

based only on the set Π1 and messages rubbcast by processes from the set Π1, it follows that

all correct processes decide the same value.

Termination. By the validity and agreement properties of reliable unique broadcast all correct

processes eventually rubdeliver messages from all correct processes (?). Since there are at

most b Byzantine processes, no correct process waits forever at line 7. By the termination

property of binary consensus, no correct process waits forever at line 14. Furthermore, by (?),

eventually all correct processes have received messages from all correct processes, so they

propose 1 for all consensus instances (r −1) ·n +π that correspond to correct processes π. By

the agreement property of binary consensus, these instances of binary consensus decide 1.

Therefore, the set Π1 eventually has n −b elements and the condition at line 16 evaluates to

true.

If a process waits at line 18 to rubdeliver (1,m, q), this means that the decision value of binary

consensus instance (r −1) ·n +q was 1. By the validity property of binary consensus, at least

one correct process proposed 1 for this binary consensus instance. Therefore, by line 11, this

process rubdelivered (1,m, q). By the agreement property of reliable unique broadcast, all

correct processes eventually rubdeliver (1,m, q), so no process waits forever at line 18.

Range Validity. A value v is decided if (i) there are at least b +1 values v ′ such that v ′ ≥ v ,

and (ii) if v is the maximum value among the values that satisfies condition (i) (see line 19).

Condition (i) ensures that there is at least one initial value of a correct process that is greater

or equal than the decision value (?). Further, a value is decided only if the set Π1 contains at

least n −b values. Since we assume that n > 3b, the number of values that satisfies condition

(i) is n −2b > b, so at least one among these values is an initial value of a correct process.

Therefore, condition (ii) ensures that selected value is greater or equal to at least one initial

value of correct process (??). From (?) and (??) it follows that the decision value is between

the initial values of correct processes.

As in in Section 6.4.4, the time complexity of Algorithm 6.2 is expressed in terms of maximum

execution time of binary consensus τC
bi n and the maximum communication delay δ. We have

the following result:
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Theorem 6.4. The reduction given by Algorithm 6.2 has a time complexity τRV
k ≤ 2τC

bi n +3δ.

Proof. We show that an execution of every instance k of range validity consensus takes at most

2τC
bi n+3δ time i.e., τRV

k = eRV
k −sRV

k ≤ 2τC
bi n+3δ for any range validity consensus instance (sRV

k

being time when the last input event of a correct process for range validity consensus instance

k occurs, while eRV
k is the time where the last output event of a correct process occurs). In

the proof we assume that reliable unique broadcast is implemented as in [ADGFT06] and

therefore has time complexity of 3δ.

By definition of sRV
k , at time sRV

k + 3δ, all messages rubcast by correct processes at line 4

are rubdelivered by all correct processes (see line 6). By definition of τC
bi n , the next n binary

consensus instances are started at line 12 the latest at time sRV
k +3δ+τC

bi n . Since at this time, all

correct processes have received messages from all correct processes, they will propose 1 for all

consensus instances (r −1) ·n + i , for all correct processes i . By the validity property of binary

consensus, all these instances will decide 1. Since there are at least n −b correct processes, at

least n −b consensus instances will return 1 and the condition at line 16 evaluates to true at

all correct processes. Therefore, they all decide at line 20 the latest at time sRV
k +3δ+2τC

bi n .

Therefore, the execution time of any range validity consensus instance k is τRV
k ≤ 2τC

bi n +3δ,

and Algorithm 6.2 has a constant time complexity with respect to both binary consensus and

communication.

6.5.2 Solving range validity consensus in the partially synchronous system model

Range validity consensus is easy to solve in the partially synchronous model [DLS88]. For

example, this is achievable by modifying one single line of the CL consensus algorithm that

solves strong unanimity consensus (Algorithm 3.6) from Section 3.5.3. The condition at

the line 23 of Algorithm 3.6 ensures that a value considered for a decision satisfies strong

unanimity constraint. More precisely, according to this rule, the most frequent initial value is

chosen. This ensures that in case all correct processes have the same initial value v , the value

v is selected. If instead of this condition, we use the one from the line 19 of Algorithm 6.2, we

obtain the consensus algorithm that solves range validity consensus. As already explained

above, the condition at line 19 of Algorithm 6.2 ensures the selected value v is in the range

of initial values of correct processes, i.e., there exist values v1 and v2 that are initial values of

correct processes such that v1 ≤ v ≤ v2.

6.6 Reducing total-order broadcast to binary consensus

If we use Algorithm 6.1 with |V | = 2, we get a reduction of total-order broadcast to binary

consensus. Unfortunately, this reduction does not have constant time complexity. For a finite

domain, in particular for |V | = {0,1}, the reduction shown by Algorithm 6.1 has a constant time

complexity only if the number of to-broadcast invocation by a correct process is bounded:
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Algorithm 6.1 can order at most |V | messages per round and process. Since every round takes

at least the execution time of consensus, ordering n|V | requests requires O(n) time.

Constant time complexity can be obtained by combining Algorithm 6.1 with Algorithm 6.2

(to implement range validity consensus). This leads to a reduction of total-order broadcast to

binary consensus with constant time complexity. From Theorem 6.1 and Theorem 6.2 follow:

Corollary 6.2. The total-order broadcast reduction to binary consensus, obtained by combining

Algorithm 6.1 (with |V | =∞) with Algorithm 6.2, has a time complexity τTO
m ≤ 2(2τC

bi n +3δ)+3δ.

6.7 Related Work

Total-order broadcast Algorithms for total-order broadcast have attracted a lot of attention,

both for the benign and for the Byzantine fault model. In this chapter, we focus on algorithms

that solve total-order broadcast by reduction to consensus.

In [CT96a], Chandra and Toueg solve total-order broadcast by reduction to consensus for

benign faults. The reduction has constant time complexity with respect to consensus. The

authors also mention that total-order broadcast is reducible to consensus in the Byzantine

fault model, but no reduction is given.

In [CNV06, MNCV11a], Correira et al. give reductions of total-order broadcast to consensus in

the Byzantine fault model. They give two reductions, the first to abortable consensus and the

second to binary consensus. However, as we point out below, there is some confusion between

the use of reliable broadcast and reliable unique broadcast in the reduction. Moreover, the

reductions do not have constant time complexity with respect to consensus, a property of

our reduction. Indeed, the reduction to abortable consensus has a time complexity τTO
m ≤

(b +1)τC +6δ, while the time complexity of the reduction to binary consensus is τTO
m ≤ (b +

1)(τC
bi n +6δ)+6δ.

In [CKPS01], Cachin et al. give a modular total-order broadcast algorithm for Byzantine faults

with authentication. As an intermediate module in this algorithm, they use multi-valued

Byzantine agreement with external validity. External validity allows an application that re-

quests agreement to specify the decision values that are acceptable. Although this algorithm

is an interesting solution for total-order broadcast, strictly speaking it is not a reduction to

consensus (since consensus depends here on the application by the external validity prop-

erty). Nevertheless, the reduction algorithm has a constant time complexity with respect to

multi-valued Byzantine agreement with external validity. The approach also relies on the

use of cryptographic tools, which is not the case for our reduction. The approach was later

followed in several papers [KS01, RC05, DRS07].

Total-order broadcast is part of several Byzantine-tolerant group communication systems,

where the implementation is either monolithic [MMS99] or it uses view synchrony [Rei94a,

KMMS01, RPCS08]. All these protocols rely on the use of signatures, which is not the case for
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our reduction.

Although total-order broadcast can be used to implement state machine replication, several

algorithms directly implement Byzantine state machine replication, e.g., [CL02, KAD+07,

ACKL08]. The algorithm in [ACKL08] proceeds in two phases, pre-agreement and agreement

phase, and in the agreement phase, similarly to our Algorithm 6.1, processes agree on message

IDs instead on full messages. This idea of agreeing on message IDs was discussed by Ekwall

and Schiper in [ES06], where the authors give a reduction of total-order broadcast to consensus

in the benign fault model.

Reliable broadcast vs Reliable unique broadcast We have pointed out the difference be-

tween reliable broadcast and reliable unique broadcast, and the need to consider the latter

in the reduction of total-order broadcast to consensus. It is not sure that this was clear for

the authors of [CNV06, MNCV11a]. Indeed, in [CNV06] the authors use a primitive whose

specification corresponds to reliable unique broadcast, but cite papers that refer to reliable

broadcast [Bra84, HT94]. Moreover in [MNCV11a], where the authors refer to their protocol

stack of [CNV06], they incorrectly refer to the reliable broadcast protocol of [Bra84]. Indeed, it

can be shown (as done in Section 6.4.3) that the use of reliable broadcast instead of reliable

unique broadcast in the reductions in [CNV06, MNCV11a] leads both to safety issues (violation

of agreement and total-order) and liveness issues (violation of termination).

Validity property of consensus Besides the validity properties discussed in the chapter,

other validity properties have been proposed. In [FG03], differential consensus is defined

by introducing δ-differential validity, which requires that the decision value is of a certain

plurality among the correct processes. It is not clear that such a validity property helps in the

reduction of total-order broadcast.

Several papers have considered the vector consensus problem [DS97] as an intermediate step

in solving total-order broadcast [CNV06, DS97]. Contrary to the consensus problem, in vector

consensus the type of the decision differs from the type of the initial values (initial values of

type T, decision of type vector of T). As noted in [CNV06], vector consensus is an adaptation

for asynchronous systems of interactive consistency, defined for synchronous systems [PSL80].

A similar approach is taken by [DGG00b] where total-order broadcast is solved by reduction

to an abstraction called WIConsistency, a weaker variant of interactive consistency, which is

itself implemented using the abstraction of muteness failure detectors [DS97].

An interesting observation is that range validity can be seen as a special case of the validity con-

dition in approximate agreement [DLP+86]. We can think about range validity consensus as a

“perfect” approximate agreement problem with ε= 0 where ε defines allowed difference among

decision values. Interestingly in SIFT, a fault tolerant system for aircraft control [WLG+78],

range validity consensus would naturally fit in the algorithms for clock synchronization, stabi-

lization of input from sensors, and agreement on results of diagnostic tests, where interactive
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consistency was used.

Consensus Reductions In [TC84], Turpin and Coan give an algorithm that reduces abortable

or strong unanimity multi-valued consensus to binary consensus. By this algorithm, processes

decide on a “default” value if correct processes do not have the same initial value. Therefore, it

cannot be used to reduce multi-valued range validity consensus to binary consensus.

6.8 Conclusion

The chapter has discussed the relation between total-order broadcast and different variants of

consensus in systems with Byzantine faults. It has shown that consensus with weak unanimity

is not sufficient to solve total-order broadcast, while consensus with strong validity is harder

than total-order broadcast. Furthermore, the chapter has shown that total-order broadcast

is equivalent to consensus with strong unanimity, consensus with abortable validity, and

consensus with range validity.

The chapter has also given a reduction of total-order broadcast to range validity consensus

with constant time complexity with respect to consensus. Range validity consensus has been

then reduced to binary consensus, also with constant time complexity. Together, this leads

to a reduction of total-order broadcast to binary consensus, with constant time complexity

with respect to binary consensus. To the best of our knowledge, these are the first total-

order broadcast reductions to consensus with the constant time complexity with respect to

consensus in the Byzantine fault model.
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7 Bounded Delay in Byzantine-Tolerant
State Machine Replication

The chapter proposes a new state machine replication protocol for the partially synchronous

system model with Byzantine faults. The algorithm, called BFT-Mencius, guarantees that the

latency of updates initiated by correct processes is eventually upper-bounded, even in the

presence of Byzantine processes. BFT-Mencius is based on a new communication primitive,

Abortable Timely Announced Broadcast (ATAB), and does not use signatures. We evaluate the

performance of BFT-Mencius in the cluster settings, and show that it performs comparably to

the state-of-the-art algorithms such as PBFT and Spinning in fault-free configurations, and

outperforms these algorithms under performance attacks by Byzantine processes.

Publication: Zarko Milosevic, Martin Biely and André Schiper. Bounded Delay in Byzantine-

Tolerant State Machine Replication. In 32th International Symposium On Reliable Distributed

Systems (SRDS 2013), Braga, Portugal, September 30 - October 2, 2013.

7.1 Introduction

As explained in Section 2.3, state machine replication (SMR) is a general approach for replicat-

ing services that can be modeled as a deterministic state machine [Lam78, Sch90]. The key

idea of this approach is to guarantee that all replicas start in the same state and then apply

requests from clients in the same order, thereby guaranteeing that the replicas’ state will not

diverge.

Current deployments of SMR in industry handle benign faults only, with all major play-

ers employing some sort of replication in their infrastructure (e.g., Zookeeper [HKJR10],

Chubby [Bur06], Dynamo [DHJ+07]). However, SMR protocols that tolerate arbitrary failures

(Byzantine faults) have started to be considered as a viable option for ensuring continuous

operation of critical infrastructure control systems for electricity distribution, water treatment

and traffic control [KGAS11].

Although Byzantine faults have already been introduced in 1980 [PSL80], Byzantine fault
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tolerant (BFT) replication protocols were considered too expensive to be practical [Rei94b].

This changed when Castro and Liskov introduced “Practical Byzantine faulty tolerance” (PBFT)

[CL02]. They showed that in the fault-free settings BFT replication protocols can achieve per-

formance that is close to that of non-replicated systems. The key observation that made PBFT

practical was using MACs instead of signatures, which was the main performance bottleneck

in previous systems [CL02]. Indeed, while our implementation of PBFT (cf. Section 7.7 for

details) achieves peak throughput of 52K requests per second with average client-latency of

4.5 ms, once we introduced RSA [RSA78] signatures to PBFT, peak throughput drops to 6K

requests per second with 20ms latency.

After PBFT, several similar approaches continued to improve performance in the fault-free

case (e.g., Q/U [AEMGG+05], HQ [CML+06], Zyzzyva [KAD+07], Aliph [GKQV10] and Zzyzx

[HSGR10]). However, like PBFT, most of these protocols are fixed sequencer protocols [DSU04],

i.e., a single server has a special role, namely to propose the order of requests. As already

said in Chapter 1, Amir et al. showed in [ACKL11] that this class of protocols is vulnerable to

performance attacks. The key observation is that a malicious sequencer can delay the ordering

of requests, causing a considerable increase in latency and a great reduction in throughput.

More precisely, a Byzantine server exhibiting performance failures sends messages according

to the protocol, but delayed—typically just in time to avoid triggering protocol timeouts

that will get them demoted. This makes it very hard to detect a faulty server and apply

some kind of reconfiguration mechanism, in order to reduce the impact on the protocol.

Bounding the service response time (or having other performance guarantees) is not only of

theoretical interest. For instance, in Amazon’s Dynamo [DHJ+07], there is a formal Service

Level Agreement (SLA) where a client and a service agree on the client’s expected request rate

distribution and the expected service latency under those conditions.

In order to design algorithms that tolerate performance attacks, Amir et al. [ACKL11] proposed

a new performance criterion, called bounded-delay (see Chapter 1). Ensuring bounded-delay

could be considered as capturing what one would informally describe as tolerating perfor-

mance attacks. Unfortunately, this is not entirely true, because the definition of bounded-delay

(see Chapter 1) does not tell us how big the upper-bound should be. Consider for example pro-

tocols that continuously rotate the leader, such as Aardvark [CWA+09] or Spinning [VCBL09]

(which do not consider bounded-delay as a criterion). It can be easily seen that such protocols

are able to guarantee an upper-bound of b ·T , where b is the number of faulty servers and

T is a protocol timeout whose expiration triggers reconfiguration mechanism such as view

change. The intuition behind such claim is simple: in the worst case, from the time a correct

server p has a request to propose (e.g., because it received it from a client) until it can propose

the request, the server needs to wait until n −1 instances of other servers have terminated.

If a process forwards the request to other processes when its not its turn, then it could be

proposed faster by some other process (it does not need to wait n −1 instances before the

request is proposed). However, even in this case, in the worst case, the next b instances may

be coordinated by faulty servers, so the request will be proposed the earliest after b instances

(owned by faulty processes) terminate. As the timeout values are normally chosen rather
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conservatively1, the guaranteed bound that is roughly b ·T can be significantly higher than the

latency in the failure-free case. Thus, providing such bound does not necessarily match the

intuition one has for tolerating performance attacks. One would rather expect that algorithms

that tolerate performance attacks achieve the same order of performance as in the failure-free

case, where latency is in the order of the communication delay among correct servers.

Apart from defining new performance criteria, Amir et al. also proposed in [ACKL11] a new BFT

algorithm called Prime. Note that what Prime provides is in accordance with our arguments

above, as its upper bound on latency is in the order of the communication delay among correct

processes. Prime is derived from PBFT. Besides heavily relying on signatures, Prime adds a

pre-agreement phase to PBFT. That is, servers exchange requests using a reliable broadcast

protocol before the requests are actually ordered by what is essentially PBFT. While increasing

the protocol complexity and the number of communication steps on the critical path, having

this pre-agreement phase allows servers to compute a threshold of acceptable performance.

The computed threshold is then used to judge if the sequencer is faulty. More precisely,

executing reliable broadcast allows correct servers to come to a consistent view of what the

current sequencer should do, for example, when the next instance should start and what

requests should be proposed in the next instance. Without pre-agreement phase, i.e., in PBFT

and similar protocols, this knowledge is only available at the sequencer.2 Therefore, it is very

hard (if not impossible) for a correct server to determine a bound that defines an acceptable

level of performance in such centralized protocols. In a sense, adding a pre-agreement phase

makes Prime a less centralized protocol, as in the pre-agreement phase all servers have the

same role. So although still based on the fixed-sequencer scheme, being more decentralized

allows Prime to reduce the impact a faulty sequencer can have on the protocol, by demoting

the sequencer if it does not provide the acceptable level of performance. When comparing

Prime with PBFT we see that ensuring the stronger performance criteria comes at a price:

use of signatures makes it costly for cluster settings, and adding the pre-agreement phase

increases protocol complexity and strongly affects performance in the failure-free case.

In this chapter, we propose a new BFT SMR protocol, BFT-Mencius, that ensures bounded-

delay in the order of communication delay among correct servers, but does not incur ad-

ditional costs (as Prime). The key to do so is to go one step further: Instead of adding a

decentralized pre-agreement phase to PBFT as in Prime, BFT-Mencius is a fully decentralized

protocol where all servers concurrently propose in different instances of a sub-protocol called

ATAB (explained below). Because these instances are tightly coupled, servers can use their

own progress in proposing requests to estimate the progress others should make.

In more detail, BFT-Mencius is inspired by Mencius [MJM08], an efficient multi-leader SMR

protocol that tolerates (only) benign faults, originally designed for WAN settings. Mencius uses

an (infinite) sequence of instances of a subprotocol referred to as simple consensus, where

1For example, the timeout in Aardvark is set to 40ms, which is order of magnitude bigger than a duration of a
single instance during synchronous period.

2Note that rotating the sequencer is of no help as a correct server has a complete picture only while being the
sequencer.
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only a pre-determined initial leader can propose any value; the others can only propose a

special no-op value. A basic idea of Mencius is to partition the sequence of instances among

the servers such that each server is the coordinator in an infinite number of instances. For

instance, servers can take the role of coordinating instances in a round-robin fashion. The

difficult part of Mencius is (i) preventing servers that do not have requests to propose from

blocking the protocol and (ii) dealing with instances where the coordinator is a faulty server.

While the latter is handled inside simple consensus, the former is handled by servers allowing

to skip their turns by proposing a special no-op request. The key to Mencius’ performance

is that simple consensus allows servers to skip their turns without having to execute the full

agreement protocol, thereby requiring to wait for messages from a majority of servers. In fact,

Mencius even allows servers to skip implicitly by participating in higher numbered instances

started by “faster” servers.

As Mao et al. [MJM08] pointed out, such mechanism does not work in the Byzantine tol-

erant systems, because not all decisions are communicated through a quorum. Therefore,

we designed BFT-Mencius using an abstraction that we call Abortable Timely Announced

Broadcast (ATAB). ATAB is a new broadcast primitive, that is similar to Timely Announced

Broadcast [ABH+11] and Terminating Reliable Broadcast (TRB). In contrast to these two, it is

specified such that it can be implemented in the partially synchronous system model. Like

these two primitives (owing to the fact that it is a broadcast abstraction) each instance of ATAB

has a dedicated sender. BFT-Mencius let servers skip their turns by proposing no-op requests,

and relies on ATAB to terminate instances with faulty dedicated sender within bounded time.

Furthermore, ATAB allows to tie the start time of different instances together. This enables

correct servers to compute (during the synchronous period) a threshold for "acceptable speed"

with which servers should start and terminate their ATAB instances. This knowledge is used in

the blacklisting mechanism, which ensures that faulty servers behave according to this bound

(otherwise they get blacklisted and their subsequent ATAB instances ignored).

As we mentioned before, although BFT-Mencius provides strong performance guarantees,

this does not penalize performance in the failure-free case, where the latency and throughput

are comparable to state-of-the-art algorithms such as PBFT and Spinning [VCBL09]. We

implemented a prototype of BFT-Mencius and evaluated its performance in cluster settings.

We show that it achieves good performance, both in fault-free configurations and under

performance attacks by Byzantine servers. For example, BFT-Mencius achieves a throughput

of 45K requests (20B of payload) per second with latency always below 5ms even under

performance attacks.

Contribution

We propose a new BFT state machine replication protocol, BFT-Mencius, that guarantees

a bounded-delay in the order of PBFT’s latency in the failure-free case. Thus it tolerates

performance attacks. Key to achieving this is by concurrently running multiple instances of

a new broadcast-abstraction called ATAB, which does not use signatures. This makes BFT-
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Mencius a modular protocol, which, we think, makes it simpler to understand, implement

and test than other BFT SMR protocols (which are in general monolithic and often rather

complex).

Roadmap The remainder of the chapter is as follows: We discuss related work in Section 7.2.

Section 7.3 defines the system model considered. ATAB is introduced in Section 7.4, and the

total-order broadcast algorithm based on ATAB in Section 7.5. The complete BFT-Mencius

algorithm is given in Section 7.6. We evaluate the performance of BFT-Mencius in Section 7.7

and conclude in Section 7.8.

7.2 Related work

As already noted in Section 7.1, BFT-Mencius is inspired by Mencius [MJM08]. In a recent

position paper [MJM09], the same authors discuss the design of RAM, which is a variant of

Mencius that tolerates Byzantine faults by relying on trusted components. However, the paper

does not consider performance attacks and does not ensure bounded-delay. Since tolerating

performance attacks is central to achieving bounded delay, in the following we focus on work

that considers performance attacks.

Amir et al. [ACKL11] showed that malicious processes can significantly reduce throughput

and increase the service latency in previous BFT protocols, by sending valid messages but as

slow as possible without triggering timeouts. Moreover, they also introduced a protocol called

Prime that ensures bounded delay. We have already discussed Prime in Section 7.1 in detail.

Although Prime is the only protocol (before BFT-Mencius) that considers bounded-delay,

it is not the only work that considers performance attacks by Byzantine processes. In a

similar spirit, Clement et al. [CWA+09] have advocated what they called robust BFT. That is,

they propose to shift the focus from algorithms that optimize only best case performance

to algorithms that can offer predictable performance under the broadest possible set of

circumstances—including when faults occur. To this end they propose a set of mechanisms

to increase robustness of PBFT, in a system called Aardvark. Aardvark decreases the impact

of slow leader by constantly monitoring the throughput sustained in the current view and

by regularly performing view-changes. The idea of always rotating the sequencer was also

used in BAR-B [AAC+05], but with a different purpose. BAR-B is a cooperative backup system

designed for the Byzantine-Altruistic-Rational model, where the leader is always changed so

all nodes have equal opportunity to submit proposals to the system. Continuously changing

the leader is also used in Spinning [VCBL09], with the goal to reduce the effect of performance

attacks by Byzantine processes. In Spinning, the leader is changed after it defines the order of

a single batch of requests, making leader change more efficient under performance attacks

than with Aardvark, since there is no need for a complex view change protocol3. Spinning

3The equivalent of the view change protocol in Spinning is called merge and it is executed when a sufficient
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is also more efficient than BAR-B because it does not use signatures and ordering a request

takes three communication steps compared to six with BAR-B. In order to prevent a faulty

process from periodically impairing the protocol performance by requiring merge phases,

Spinning introduces a blacklisting mechanism. Processes that are in the blacklist loose the

privilege to propose, i.e., instances where they are primary are skipped. After a successful

merge phase in view v , the primary of the view v −1 is added to the blacklist. As the merge

phase is triggered once the timeout expires in view v −1, this blacklisting mechanism is still

vulnerable to performance attacks. BFT-Mencius also contains a blacklisting mechanism, but

it uses a different detection mechanism that makes it very effective in detecting processes

exhibiting performance attacks.

The common property of all three protocols, Aardvark, BAR-B and Spinning, is that all servers

are allowed to propose requests only once it is their turn. As already explained in Section 7.1,

these algorithms ensure bounded-delay, but with an upper-bound in the order of b ·T . As we

show in Section 7.6, BFT-Mencius does not have such limitation: its latency does not depend

on number of faulty processes, and is in the order of the actual communication delay among

correct processes.

More recently, Aublin et al. proposed a new approach called RBFT (Redundant-BFT) [ABQ13]

where b +1 instances of the same BFT-SMR protocol (in their case PBFT) are executed in

parallel, each with a primary executed on a different server. Although all these instances order

requests, only requests ordered by one instance (called master instance) are executed. The

other instances are used only to monitor whether the master instance provides adequate

performance. In order to be able to monitor performance of the master instance, the load

on all servers need to be the same. Therefore, RBFT adds a dissemination phase (called

PROPAGATE phase) to the underlying BFT-SMR protocol, in which a server, upon receiving

some client request for the first time, forwards it to all servers. This ensures that a request

received by a correct server is eventually received by all correct servers. RBFT is more robust to

performance failures than Prime, Aardvark and Spinning, and performs comparably to these

algorithms in the failure-free case. Compared to BFT-Mencius, RBFT uses more hardware

resources as the underlying BFT-SMR protocol is executed b +1 times in parallel 4, and it

adds the PROPAGATE phase, increasing therefore latency (even during failure-free runs) and

protocol complexity of the underlying BFT-SMR protocol.

As mentioned above, performance attacks exploit the fact that there is a process with a special

role (leader, coordinator, sequencer). So in order to reduce the impact of performance attacks,

one approach is to make the protocol decentralized (i.e., leader-free). We are aware of only one

deterministic BFT protocols for partially synchronous systems that has this property [BS10].

However, the algorithm terminates only in the order of b ·T even in the failure-free case. The

same applies to protocols for synchronous systems like [PSL80].

number of correct processes suspect the current leader as faulty.
4The experiments shown in [ABQ13] are for cluster settings where nodes have two quad-core CPUs with ten

network interfaces. It is not clear what performance can be expected from RBFT in more "standard" cluster settings
where nodes have only one or two network interfaces.
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Contrary to deterministic BFT protocols, most randomized BFT protocols (e.g., [CKPS01,

MNCV11b]) are decentralized (there are no processes with a special role) and work in the

asynchronous systems. Therefore faulty processes cannot prevent correct processes from

moving forward by delaying messages. However, these protocols are normally more costly in

the failure-free case than deterministic protocols, due to a higher number of communication

steps.

7.3 Definitions

7.3.1 Model

We consider a system composed of n server processes Π = {1, . . . ,n} and a finite number of

clients processes connected by point-to-point channels. Servers and clients can be correct or

faulty, where correct servers and clients follow the algorithm and the faulty one may behave

in an arbitrary way, i.e., we consider Byzantine faults. We assume than any number of clients

can be faulty, but the number of faulty servers is limited to b.

We assume integrity of channels, that is if a process p received a message m from process

q , then q sent message m to p before. We consider a partially synchronous system model:

in all executions of the system, there is a bound ∆ and an instant GST (Global Stabilization

Time) such that all communication among correct processes after GST is reliable and ∆-

timely, i.e., if a correct process p sends message m at time t ≥GST to some correct process

q , then q receives m before t +∆. We do not make any assumption (on the communication

among correct processes) before GST . For example, messages among correct processes can

be delayed, dropped or duplicated before GST . Spoofing/impersonation attacks are assumed

to be impossible also before GST .

We assume that process steps (which might include sending and receiving messages) take

zero time. Processes are equipped with clocks able to measure local timeouts.

7.4 Abortable Timely Announced Broadcast

In this section we introduce a new broadcast primitive called abortable timely announced

broadcast (ATAB), that we will use later to solve Total-Order broadcast. ATAB is defined in

terms of four primitives: atab-cast(m), atab-abort, atab-announce, atab-deliver(m). The first

two primitives are invoked by processes, while the latter two are triggered by the protocol

that implements ATAB. Moreover, each ATAB instance has a dedicated sending process5 s

and no correct process p 6= s executes atab-cast for that instance. When a process delivers a

message m it executes atab-deliver(m). Like with timely announced broadcast (TAB) [ABH+11]

a process is notified of an ongoing broadcast by atab-announce before a message is actually

delivered. In contrast to TAB we require all correct processes to eventually execute atab-deliver,

5If a correct process has a message m to broadcast, it executes atab-cast(m).
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much like terminating reliable broadcast (TRB). Like TRB we also allow delivery of a special

value ⊥. Unlike TRB which is designed for synchronous systems6 and benign faults, ATAB can

be solved in the partially synchronous system model with Byzantine faults. Therefore, we allow

⊥ to be delivered only if some correct process aborts the broadcast by invoking atab-abort.

Typically, this occurs when the sending process s is suspected of being faulty. It is known that

in the presence of Byzantine faults failure detection requires application knowledge [DS98].

The idea of atab-abort is to make this knowledge explicit, and the idea of atab-announce is to

help with failure detection.

An algorithm solves ATAB with parameters d1 and d2, such that d1 ≥ d2, if the following

properties hold:

• ATAB-Agreement: If a correct process executes atab-deliver(m), then every correct pro-

cess eventually executes atab-deliver(m).

• ATAB-Integrity: A correct process executes atab-deliver(m) at most once. Furthermore,

if s is a correct process and s executed atab-cast(b) then m ∈ {⊥,b}.

• ATAB-Termination: If all correct processes execute either atab-cast, or atab-announce,

or atab-abort then every correct process eventually executes atab-deliver.

• ATAB-Validity: If a correct process s executes atab-cast(m) at time T ≥ GST then all

correct processes execute atab-deliver(m) before T +d1, unless atab-abort has been

executed before by a correct process.

• ATAB-Announcement: If a correct process p executes atab-deliver at time T , then it

executed atab-announce before T . Furthermore, if at time T , p executes atab-deliver or

atab-cast, then every correct process executes atab-announce before max{T,GST }+d2.

7.4.1 Solving ATAB

Algorithms that solve ATAB have similarities with algorithms that solve consensus. The sender

process execute atab-cast(m) where it would execute pr opose(m) in the consensus protocol,

while atab-deliver(m) is triggered at the point the consensus protocol invokes deci de(m).

The main difference is adding the atab-announce up-call and reacting upon the atab-abort

down-call. As consensus protocols normally proceeds in a sequence of views (sometime also

called rounds, ballots or phases), the protocol would normally react on atab-abort call by

changing the view.

We now informally explain the algorithm that solves ATAB, which is close to the CL consensus

algorithm, Algorithm 3.5 (itself inspired by the PBFT SMR algorithm by Castro and Liskov). We

call it CL-ATAB, and it requires n ≥ 3b +1 processes to tolerate at most b Byzantine faults. The

full algorithm and description (with proofs and timing analysis) is given in Appendix A.

6TRB has been shown to require synchronous systems or an asynchronous system with a perfect failure detector.
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p1

p2

p3

p4

PRE-PREPARE PREPARE COMMIT

Figure 7.1: Solving ATAB: message pattern of initial view of the protocol. Process p1 is the
(correct) sender; its sending event (atab-cast) is indicated by the circle. Delivery of messages
(atab-deliver) is indicated by triangles, while diamonds indicate atab-announce events. n = 4,
b = 1.

Contrary to PBFT which solves SMR (multiple instances problem), CL-ATAB solves a single

instance problem ATAB.7 The algorithm proceeds in views, such that in every view there is

a single process that is the coordinator (of the view). The assignment scheme of views to

coordinators is known to all processes. The sender s is the coordinator of the initial view. The

initial view of the protocol is very similar to the "normal case" protocol of PBFT with addition

of atab-announce upcalls as shown in Figure 7.1. A process executes atab-announce once it

receives the PRE-PREPARE message from the sender, or once it receives COMMIT messages from

b +1 processes. The latter is related to ATAB-Announcement. It ensures that once a correct

process executes atab-deliver, all correct processes eventually execute atab-announce. The

reason is the following: Once a correct process executes atab-deliver, it received a COMMIT

message from a quorum of processes (in case n = 3b +1, the size of quorum is 2b +1). Since

we assume that n ≥ 3b +1, at least b +1 correct processes sent COMMIT to all. In CL-ATAB, we

assume that messages sent by correct processes are periodically retransmitted, so all correct

processes eventually receive b +1 COMMIT and execute atab-announce.

The protocol of all subsequent views of CL-ATAB is very similar to the "view change protocol"

of PBFT, with the difference that CL-ATAB deals only with a single instance problem. A process

p advances from view v to view v +1 for a number of reasons:

• p leaves the initial view v = 1 upon execution of atab-abort.

• p enters view v +1 after the timeout expires, and it has not yet learned what message

should be delivered. The timeout is triggered by the execution of atab-announce, or

when p receives VIEWCHANGE for view v from quorum of processes.

• Finally, p moves to view v +1 if it receives VIEWCHANGE from a correct process that is in

view v +1.

7Thus, the relation between ATAB and PBFT can be considered similar to that of the Synod and Parliament
protocols of [Lam98].
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The following result is proven in Appendix A:

Theorem 7.1. If n ≥ 3b+1, then the CL-ATAB algorithm solves ATAB in the partially synchronous

system model with known ∆, d1 = 3∆ and d2 = 2∆.

7.5 Solving Total-Order Broadcast with ATAB

In this section, we present the central part of our BFT SMR protocol, which solves total-order

broadcast, see Algorithm 7.1. It is inspired by Mencius [MJM08], an efficient multi-leader SMR.

The algorithm relies on the ATAB primitive for sending messages and refers to the parameters

d1 and d2.

7.5.1 Basic idea

Algorithm 7.1 runs an infinite sequence of ATAB instances. We add a number i to ATAB calls to

refer to ATAB instance i , e.g., atab-cast(i ,m). These instances are evenly partitioned among

the servers. Function owner (i ), known to all processes, returns the sender for instance i .

For every process p, i ndexp is the next ATAB instance in which p is the sender. In order to

to-broadcast a message m a process p executes atab-cast(i ndexp ,m) in the ATAB instance

i ndexp (line 9) and then updates i ndexp (line 10).

Once a process p learns that ATAB instance i terminated (execution of atab-deliver(i ,m), line

11), it executes the following steps:

• If (i) p was the sender in instance i , i.e., owner (i ) = p, (ii) p has sent m and (iii) p learns

that m′ 6= m is delivered (necessarily m′ =⊥), then p to-broadcasts m again (line 17).

• Process p executes the C heckCommi t procedure (lines 24–30), which uses the expectedp

variable to keep track of the lowest yet undecided ATAB instance. Inside C heckCommi t ,

p increases expectedp as far as possible, executing to-deliver for all messages that are

not noop.

Note that according to the C heckCommi t procedure, p executes to-deliver(m) in the order

of ATAB instances. Therefore the message delivered in instance i cannot be adelivered before

all instances j < i have terminated. Since processes might to-broadcast at different rates, we

need a mechanism to allow processes to fill the gaps so that the message delivered by ATAB

instance i is not delayed because another process has nothing to broadcast in instance j < i .

This is discussed in the two next paragraphs.
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7.5.2 Process p skipping its own instances

In order to fill these gaps, a correct process will skip its instance j by broadcasting a special

message noop. A process could execute atab-cast( j ,noop) when it sees that there is a decision

in some instance i > j . However, skipping instance only once a higher number instance i

terminates is unnecessarily late as processes know that instance i is in progress already before

decision. More precisely, in case a correct process p sees that some other process, say q ,

broadcasted in instance i > i ndexp (by executing atab-announce in instance i , line 20), then

p skips all instances j with i ndexp ≤ j < i where p is the sender (lines 21-23). Here, the other

correct processes handle instance j like any other instance owned by p. This is not the case in

the next paragraph.

7.5.3 Process p skipping instances of other processes

The skipping mechanism of the previous paragraph is able to fill only those gaps caused by

correct processes not broadcasting. Indeed, we cannot require a (Byzantine) faulty process

to skip its instances. Therefore, a different mechanism is needed for the instances owned

by a faulty process. Put differently, correct processes need a means to ensure that instances

owned by faulty processes will terminate. ATAB provides the atab-abort primitive to this

end. However, executing atab-abort too early might lead to deliver ⊥ in ATAB instances

owned by correct processes. This can be avoided during a synchronous period, i.e., after

GST, with a timeout of d2 +d1, see lines 6 and 19. Consider some process p that terminates

instance i at time T . By ATAB-Announcement, all correct processes execute atab-announce

for instance i at latest at T +d2. By line 22, these processes execute atab-cast in all instances

j < i for which they are sender (if they did not already atab-cast). By ATAB-Validity, these

instances will all terminate within d1, that is before T ′ = T +d2 +d1. Since process p does

not execute atab-abortp ( j ) for the yet undecided instances j before T ′, instances owned by

correct processes are indeed not aborted too early after GST (see lines 19 and 31–33).

7.5.4 Correctness proof

Lemma 7.1. Assume a correct process s calls atab-cast(i ,m) (in line 9) at timeσ. Ifσ>GST +d2

then no correct process aborts instance i .

Proof. Assume by contradiction that some correct processes aborted before deciding and

let q be the first to abort at time tq (line 33). Since the process q aborted in instance i , this

means that q decided in some instance j > i at time tq − t i meout . By ATAB-Announcement,

all correct processes (including s) announced in instance j > i the latest at time max{tq −
t i meout ,GST }+d2. When s executes atab-announce( j ) (lines 20ff.) it updates its i ndex

until it reaches some k > j (lines 21 and 23). If tq − t i meout < GST , then s announced at

GST +d2, which means that at time σ > GST +d2 it i ndexs is at least k, such that i ≥ k >
j > i . A contradiction. Otherwise, we have two cases, either s announced before executing
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Algorithm 7.1 Total Order Broadcast with ATAB

1: Initialization:
2: pr oposedp [] :=⊥ /* initially, for all i , pr oposedp [i ] =⊥ */
3: deci dedp [] :=⊥ /* initially, for all i , deci dedp [i ] =⊥ */
4: expectedp := 0 /* lowest undecided ATAB instance */
5: i ndexp := mi n

{
i : owner (i ) = p

}
/* next instance owned by p */

6: t i meoutp := d1 +d2

7: upon to-broadcast(m) do
8: pr oposedp [i ndexp ] = m
9: atab-cast(i ndexp ,m)
10: i ndexp ← mi n

{
i : owner (i ) = p ∧ i > i ndexp

}
11: upon atab-deliver(i ,m) do
12: if m 6= ⊥∧owner (i ) = sender (m) then
13: deci dedp [i ] ← m
14: else
15: deci dedp [i ] ← noop
16: if p = owner (i )∧pr oposedp [i ] 6∈ {m,noop} then
17: to-broadcast(pr oposedp [i ])
18: C heckCommi t
19: after t i meoutp execute OnT i meout (i )

20: upon atab-announce(i ) do
21: while i ndexp ≤ i do
22: atab-cast(i ndexp ,noop)
23: i ndexp ← mi n

{
i : owner (i ,1) = p ∧ i > i ndexp

}
24: Procedure C heckCommi t :
25: while deci dedp [expectedp ] 6= ⊥ do
26: m ← deci dedp [expectedp ]
27: o ← owner (expectedp )
28: if m 6∈ {noop}∪{

deci dedp [i ] : i < expectedp
}

then
29: to-deliver(m)
30: expectedp ← expectedp +1

31: Procedure OnT i meout (i ) :
32: for each k ∈ {

j ∈ [expectedp , i ] : deci dedp [ j ] =⊥∧owner ( j ) 6= p
}

do
33: atab-abortp (k)

atab-cast(i ,m), then i ≥ k > j > i as above and we have reached a contradiction again; or s

announced after executing atab-cast(i ,m), then as s announced before tq − t i meout +d2 =
tq −d1, it also called atab-cast(i ,m) before this point in time, i.e., σ < tq −d1 Since q is the

first to abort no process aborts before tq , that is no process aborts before σ+d1. Therefore by

ATAB-Validity all correct processes decide before tq . Also a contradiction.

Lemma 7.2. If a correct process s calls to-broadcast(m), then all correct processes eventually

to-deliver m.

Proof. When s calls to-broadcast(m), it executes atab-cast(i ,m) for some i . If it does so after

GST +d2, then from Lemma 7.1 it follows that instance i will not be aborted, and there-

fore ATAB-Validity, ensures that all processes will execute atab-deliver(i ,m) and thus set

deci ded[i ] ← m. Eventually, all instances j < i will terminate as well, so processes will

execute C heckCommi t with deci ded [ j ] 6= ⊥ for all j ≤ i , and will thus to-deliver m.

Otherwise, if s calls atab-cast(i ,m) before GST +d2, instance i might get aborted and ⊥ may

be delivered. If this is the case, processes will set deci ded[i ] ← noop. Upon doing so, s will
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by line 17,re-call to-broadcast(m) implying some i ′ > i for which s executes atab-cast(i ′,m).

What, therefore, remains to be shown is that there is some k such that s executes atab-cast(k,m)

and atab-deliver(k,m). (ATAB-Agreement implies that all others will also execute atab-deliver(k,m).)

We show this by contradiction and assume that there is no k such that s executes atab-deliver(k,m).

Then line 17 entails that there is an infinite sequence of instances that all decide ⊥ although m

was proposed. Clearly, one of them must start at some timeσ>GST +d2, which by Lemma 7.1

implies that s will atab-deliver within d1. A contradiction.

Proposition 7.1. Algorithm 7.1 reduces Total-Order Broadcast to ATAB.

Proof. TO-Validity follows from Lemma A.12.

From the ATAB-Agreement and ATAB-Integrity properties it follows that if p executes 13 for

some i and v ∈ M then so will any correct q , and both will do so exactly once. Since these

non-⊥ values of deci dedp determine for which messages m and processes s that p executes

to-deliverp (m) for, TO-Agreementfollows.

We now turn to the first part of TO-Integrity: The while-loop of C heckCommi t ensures

that p executes to-deliver(m) for every value of expected at most once. The condition of

line 28 then entails that m was not adelivered for a previous value of expected . Thus every

to-deliverp (m) is executed exactly once. Since we have already shown TO-Agreement, it suffices

to show for the second part of TO-Integrity, that the correct process s = sender (m) will

only to-delivers(m) if it previously executed to-broadcasts(m). Since s executes to-deliver(m)

with m = deci deds[expected ] it follows that m 6= noop. Further, since deci deds[i ] with

i = expected can have been set to a non-noop message only in line 13 it follows that s

executed atab-deliver(i ,m) such that owner (i ) = s before. Since s is correct and m 6= noop,

it follows from ATAB-Integrityof that s executed atab-cast(i ,m), which it must have done in

line 9, that is in a call of to-broadcast(m).

TO-Order follows from the fact that if p executes to-deliverp (m, s) before to-deliverp (m′, s′)
then there are j and j ′ such that j < j ′, deci dedp [ j ] = m, deci ded[ j ′] = m′, s = owner ( j )

and s′ = owner ( j ′). Now when q executes to-deliverq (m′, s′) it does so when expected = j ′,
since j < j ′ it follows that it executed line 29 with expected = j before. From the argu-

ment on TO-Agreement above, it is clear that at this point deci dedp [ j ] = m, thus q executed

to-deliverq (m, s) before. Now TO-Order follows from TO-Integrity.

7.6 BFT-Mencius

In this section we describe the complete BFT-Mencius protocol for SMR that is based on the

total-order broadcast algorithm 7.1.
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7.6.1 Generalities

In BFT-Mencius clients send requests to servers (details below), which use total-order broad-

cast to order requests. After a request is executed by some server, the server sends the reply

to the corresponding client. A client accepts a response only once it received b +1 identical

responses from b +1 servers.

In Byzantine fault tolerant state machine replication only requests proposed by clients should

be executed. This requirement is trivially ensured by using cryptographic signatures to sign

client requests. Request authentication can also be achieved using MACs [CL02, AABC08a].

Although BFT-Mencius would in principle also work with other ways of request authentication,

we assume in this chapter that request authentication is done using MACs as in [CL02] and

other protocols that will be compared experimentally with BFT-Mencius.

In BFT-Mencius each server is able to propose requests, thus different variants of load bal-

ancing of client requests can be used. However, finding the optimal load balancing scheme is

outside the scope of this chapter. For simplicity, we assume here a static assignment of client

to servers based on their id. Servers propose requests they receive from clients assigned by

this scheme.

7.6.2 Dealing with faulty servers

In the presence of faulty servers some clients are assigned to faulty servers. In order to ensure

that requests from such clients will be ordered and executed, an additional mechanism is

necessary: clients send each request to all servers,8 and servers keep track of requests not

assigned to them. They propose any requests that are not executed within some time. For

instance, if a server finds a request r eq that is not executed after the server has terminated

k of its own ATAB instances, the server proposes r eq .9 In our experiments we have set k = 3.

Thus faulty servers cannot starve clients by ignoring their requests.

Moreover, since we use a (numbered) sequence of instances we have to prevent a faulty server

from exhausting the space of sequence numbers by starting ATAB instance with a very large

instance number. To this end, every server can have at most one outstanding non-decided

instance. Put differently, a server will not react on messages received for some instance j

owned by a process q if it has not terminated in all instance k < j owned by q .

7.6.3 Dealing with slow servers

The mechanism presented in the previous section addresses the problem of requests sent by

clients assigned to faulty servers. Here we address the problem of faulty servers slowing down

the ordering of requests assigned to correct servers. In the total-order broadcast algorithm

8Since messages might be lost before GST , we actually assume clients periodically retransmit.
9In fact it is sufficient if requests assigned to a certain server are tracked only by b other servers (instead of all).
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Algorithm 7.2 Blacklisting mechanism

1: Initialization:
2: bl ackl i stp :=;
3: ∀q ∈Π : suspect s[q]p :=;
4: /* see also Algorithm 7.1 */

5: upon suspect (q) do
6: if q 6∈ bl ackl i stp then
7: abcast (〈SUSPECT, q〉)
8: Procedure C heckCommi t :
9: while deci dedp [expectedp ] 6= ⊥ or owner (expectedp ) ∈ bl ackl i stp do
10: m ← deci dedp [expectedp ]
11: o ← owner (expectedp )
12: if m = 〈SUSPECT, q〉 then
13: Upd ateBl ackLi st (q,o)
14: else if m 6∈ {noop}∪{

deci ded [i ] : i < expectedp
}

then
15: adel i ver (m,owner (expectedp ))
16: expectedp ← expectedp +1

17: Procedure Upd ateBl ackLi st (q,o) :
18: if q 6∈ bl ackl i stp then
19: add o to suspect sp [q]
20: if |bl ackl i stp [q]| ≥ b +1 then
21: add q to bl ackl i stp
22: suspect sp [q] ←;

(Algorithm 7.1) a faulty server can do a performance attack by delaying its own instances.

This is because the message of ATAB instance i is not delivered until all instances j < i have

terminated. We address this issue by introducing a blacklisting mechanism used as follows (we

discuss when to suspect servers in Section 7.6.4): ATAB instance i waits for the termination of

only those instances j < i that are not owned by servers on the blacklist. That is, instances

whose owners are in the blacklist are skipped, i.e., the effect is equivalent to the case where

noop was decided. Therefore, it is important that the blacklist is kept consistent among all

servers. Because the blacklist may be seen as a state machine, we can use our SMR protocol to

ensure consistency (similar to how reconfiguration in benign systems can be done [Lam98]).

The blacklist is implemented as a circular buffer of size b, thus adding the (b +1)-st server will

rehabilitate the server that is longest in the list. In order for server p to consistently inform

other servers that it suspects q to be faulty, p to-broadcasts the special request 〈SUSPECT, q〉.
According to Algorithm 7.2, this request is then broadcasted using p’s next ATAB instance,

and finally stored in all correct servers deci ded list at the same position. Note that SUSPECT

messages are actually piggy-backed on the normal messages or noop messages that are

to-broadcast. A server p adds a server q to its (server of the) blacklist once b + 1 servers

suspected q .

The blacklisting mechanism is part of Algorithm 7.2. It includes: (i) the suspect (q) function,

used by server p to locally trigger the blacklisting mechanism once it suspects some server

q , (ii) a modified version of the C heckCommi t function of Algorithm 7.1, and (iii) function

Upd ateBl ackLi st(q,o) called by C heckCommi t . The function Upd ateBl ackLi st(q,o)

(line 17) maintains the blacklist at server p: it is executed whenever p learns that server o

suspects server q . The function first checks if q is not already in the blacklist. If not, o is
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added to suspect s[q]. If at this point there are b+1 different servers that suspect q , server q is

added to the bl ackl i st and suspect s[q] is cleared. Note that, since Upd ateBl ackl i st (q,o)

is called by C heckCommi t when 〈SUSPECT, q〉 is decided, the correct servers always have a

consistent view of the blacklist. That is, for each value of expected , the blacklist is the same

at all servers.

Since ATAB instances of server p are ignored while p is on the blacklist, messages to-broadcast
by p cannot be delivered. Thus once p is added to the blacklist, p’s clients are reassigned to

servers not in the blacklist. At this point all requests from reassigned clients not executed will

be proposed by the newly assigned server.10

7.6.4 Ensuring Bounded Delay

The blacklisting mechanism is very general, i.e., it can be used to report any suspicious

behaviour. As we are interested in ensuring bounded delay, we use it to report when a server is

slow. To do so we rely on the properties of ATAB that hold during a synchronous period, i.e.,

after GST. More precisely, once a correct server executes atab-cast(i ,m) at time t in line 9 of

Algorithm 7.1, by the ATAB-Announcement property we know that all correct servers execute

atab-announce(i ) the latest at time t +d2. Therefore, all correct servers start their instances j ,

with j < i , the latest at time t +d2. By ATAB-Validity all such instances terminate the latest at

time t +d2 +d1. Therefore, if at time t ′ > t +d2 +d1, some instance j < i has not terminated,

the owner of instance j is suspected and suspect(owner ( j )) is executed. The owner of

some instance i is also suspected if a server executes atab-abort for instance i (line 33 of

Algorithm 7.1). This solution guarantees bounded delay that does not depend on the number

of faulty servers.

7.6.5 Improving the Delay Bound

However, d1 and d2 are worst case bounds. For blacklisting,11 we would like to replace the

d1 +d2 timeout by a smaller value, that is in the order of the real communication delay. To

do so, similarly to Prime [ACKL11], we assume that network eventually meets certain stability

conditions. More precisely, we assume that after GST the duration of ATAB instances running

concurrently do not differ substantially between owning servers. Let dAT AB be the duration

of ATAB instances measured by some server. This leads us to estimate the “actual value” of

d1 in the run as dAT AB , and since d2 < d1, we (conservatively) also estimate d2 as dAT AB . This

leads us to use 2 ·Kl at ·dAT AB as a timeout to suspect servers, where Kl at is a system parameter

that accounts for variability in latencies on the network. As we will show in Section 7.7, in the

cluster settings, Kl at = 1 is sufficient to reliably detect a faulty server doing a performance

10This mechanism is different from the delayed re-proposing of requests mentioned at the beginning of Sec-
tion 7.6: the reassignment mentioned here causes instantaneous re-proposing when a server is added to the
blacklist.

11Note that we only change the timeout for suspecting processes in the blacklisting mechanism. The timeout in
Algorithm 7.1 is not modified.
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attack. In less homogeneous settings, it could be preferable to use a more complex way

to determine this timeout, for example by taking the median of recent durations of ATAB

instances owned by different servers, by adding additional weight factors, or just by using a

bigger value for Kl at .

In addition to suspecting servers based on latency, it is possible to use additional strategies for

detecting faulty servers. For example, one could measure the number of requests executed

in the last n instances owned by each server, and suspect servers whose number is less than

50 percent of the average number of requests executed by servers. Aardvark [CWA+09] uses

a similar idea to suspect the current leader. While this and other techniques of suspecting

the current leader based on performance or fairness criteria easily carry over from Aardvark

and other protocols, we did not consider them for BFT-Mencius, because our main goal is

the ability to ensure bounded delay. In any case, if the suspicion mechanism used leads to

frequent changes of the blacklist, this can only lead to requests being proposed by multiple

servers thereby causing performance degradation.

7.6.6 Blacklisting cannot impair liveness

In this section we show that the blacklisting mechanism, even with a suspect timeout of 0

(meaning that correct processes are continuously being suspected by other correct processes),

cannot prevent the progress of our SMR algorithm. Let n = 3b+1, and assume by contradiction

that there is a request r eq which is never executed. Then after the re-propose timeout (see

beginning of the Section 7.6) expired at all correct processes, every correct process will propose

r eq in it’s next ATAB instances. Let us assume that at time t all re-propose timeouts for r eq

have expired at all correct processes. As the request r eq is never executed, all instances started

after time t are either skipped or owned by a faulty process. As there are at most b processes

in the blacklist, but 2b +1 correct processes, which have to be in the blacklist whenever their

instances would be decided, the blacklist needs to be continuously updated after time t

(otherwise r eq would be delivered by the first instance started after t and owned by a correct

process).

So each correct process q is repeatedly added to the blacklist. Since suspected [q] is reset

when q is added to the blacklist, in order for q to be added again later, it is necessary that

b +1 processes suspect q , i.e., b +1 ATAB instances owned by different processes need to

deliver 〈SUSPECT, q〉 without being skipped (see Algorithm 7.2). As there are at most b faulty

processes, this means a correct process p has to suspect q in a successful instance i started

after t . But then p also proposed r eq in that instance, and r eq is executed. A contradiction.

7.7 Evaluation

We have implemented a prototype of BFT-Mencius in Scala using the Distal framework [BDMS13].

Distal is a new framework that allows writing code in a domain specific language (DSL) that
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request pre-prepare prepare commit reply

Figure 7.2: Communication pattern of the normal case of PBFT. When the primary receives
a client request, it starts the three-round protocol to assign the sequence number for the
received request. The order is defined at the end of "commit" round; at this point the request
is executed and the reply is sent to the client. The client accepts a reply only once it received
b +1 identical replies from b +1 servers.

is close to the protocol description. Therefore, it leads to implementations that matches the

protocol specification on paper. It also leads to efficient implementations. As Distal currently

does not provide authenticated channels, we extended the Distal’s messaging layer to support

message authentication based on SHA-1 HMACs.

In order to compare BFT-Mencius with the state-of-the-art protocols based on the same code

base, we have also implemented the normal case of PBFT (see Figure 7.2) and Spinning using

Distal. We have chosen PBFT as it is often considered to be the baseline for BFT algorithms,

while Spinning is one of the most efficient existing algorithm designed to tolerate performance

attacks. Furthermore, these protocols are interesting to compare with BFT-Mencius as they

have different core mechanisms. PBFT has a single primary process that is responsible for

proposing an order for client requests; the primary is changed only if enough processes suspect

it. With Spinning the primary role rotates among processes, while with BFT-Mencius we have

multiple primaries (as each process is primary in ATAB instances it owns).

We implemented the variant of Spinning denoted Spinning(LS) [VCBL09], where LS stands for

Lock Step. With Spinning(LS) at most one agreement instance is initiated by the current leader.

The communication pattern of the Spinning(LS) during the normal case is similar to the PBFT

pattern shown on Figure 7.2 with the difference that once the current primary defines the

order for some request12 (at the end of COMMIT round), the next server becomes the primary

for the next instance. There is also a variant in which the current primary can initiate multiple

instances in parallel (without waiting that already started instances terminate); however,

12As will be explained below, in fact, the ordering is defined for a batch of requests.
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[VCBL09] shows that this variant is less resilient to performance attacks (although it achieves

slightly better performance than Spinning(LS) in the failure-free case). We implemented

request batching13 in all algorithms as it is known to be an essential optimization. PBFT and

BFT-Mencius also allow multiple protocol instances to be run in parallel, i.e., a primary in

PBFT (or any server in BFT-Mencius) can start a protocol instance (e.g., upon receiving a client

request) before already started instances terminate. Running multiple instances in parallel

might lead to better performance.

We do not experimentally compare BFT-Mencius with Prime because—as mentioned in

Section 7.1—adding signatures to PBFT has already lead to a significant drop in performance

even without adding the pre-agreement phase.

We make the following two points with the experimental evaluation. First, we show that the

modular BFT-Mencius protocol has performance comparable to PBFT and Spinning in the

failure-free case. Second, we show that BFT-Mencius is able to sustain good performance

(similar to the failure-free case) even under performance attack.

7.7.1 Experimental setup and methodology

The experiments were run in the Suno cluster of the Grid5000 testbed. This cluster consists of

nodes with dual 2.26GHz Intel Xeon E5520 processors, 32GB of memory, and 1Gb/s Ethernet

connections. Nodes were running Linux, kernel version 2.6.32-5, and Oracle’s Java 64-Bit

Server VM version 1.6.0_26.

The workload was generated by nodes located in the same cluster as the servers. Clients send

requests in a closed loop, waiting for the answer to the current request before sending the next

one. The clients are evenly distributed over 15 nodes. We consider a setup with n = 4 servers

that can tolerate one faulty server (b = 1), as we believe this to be a typical deployment setting.

Each experiment was run for 3 minutes, with the first minute ignored in the calculation of the

results. The service is a simple (stateless) echoing service that sends back the request as the

response.

We use as metrics (i) the throughput in requests per second and (ii) the client response time.

The client response time is the time from the point the client sends a request until it receives

the corresponding reply from b +1 servers. Note that the client response time includes delays

incurred by queuing of requests at servers. As mentioned in Section 7.1, guarantees for client

latency assume a maximum client load.

13Instead of running protocol instance for a single request, multiple requests are packed in a batch, and then an
instance is run for a batch. Request batching reduces the protocol overhead and leads to significant performance
improvements.
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Figure 7.3: Throughput and latency of BFT-Mencius, PBFT and Spinning for different client
load in the failure-free case for small requests (20B payload).

7.7.2 Failure-free executions

In the failure-free executions, we are interested in the maximum throughput and the corre-

sponding response time under different load (number of clients). We run experiments for two

sizes of requests: (i) 20B of payload and (ii) 8KB of payload. In case (i) at the point algorithms

achieves maximum performance, the CPU is the bottleneck, while in case (ii) the network is

the bottleneck. The number of concurrent protocol instances was set to 4 for PBFT, and to 1

for BFT-Mencius and Spinning. These values led to the best results.

As we can see on Figure 7.3, in case of small requests (20B payload), BFT-Mencius has slightly

lower throughput and higher latency until 120 clients. This is due to the batching policy used,

as the number of clients is not enough to fill the batch. We set the batch size to 1350B so that

the size of the frame matches the natural limits of the underlying Ethernet network. The server

timeout for proposing the batch was set to 3ms. The same batching policy is used with PBFT,

while for Spinning we used the adaptive batching strategy used also in the original Spinning

implementation [VCBL09]14. With BFT-Mencius 120 clients or less is not enough to fill the

batch, i.e., the latency is dominated by the batch timeout (3ms). With more than 120 clients,

BFT-Mencius performs comparably to PBFT and Spinning.

In case of big requests (see Figure 7.4), we set the batch size to 60KB, and server timeout for

proposing the batch to 3ms. These values led to the best results. BFT-Mencius performs very

similarly to PBFT. On the other hand, Spinning legs behind. We believe that the reason is the

fact that Spinning executes only one instance at a time, while with PBFT and BFT-Mencius

there are multiple instances taking place in parallel. Executing multiple instances in parallel

would be possible with Spinning, but this would require using a different batching strategy; we

have not experimented with this option. Note that latency with big requests is higher than the

14Using adaptive batching with BFT-Mencius and PBFT led to similar results.

138



7.7. Evaluation

20 40 60 80 100

2000

4000

6000

8000

10000

#clients

T
hr

ou
gh

pu
t (

re
q/

se
co

nd
)

 

 

bft−mencius
pbft
spinning

20 40 60 80 100
0

20

40

60

80

100

#clients

La
te

nc
y 

(m
s)

 

 

bft−mencius
pbft
spinning

Figure 7.4: Throughput and latency of BFT-Mencius, PBFT and Spinning for different client
load in the failure-free case for big requests (8KB payload).

latency with small requests (compare Figure 7.3 with Figure 7.4). We believe that the difference

comes from the cost of calculating MACs, which depends on the message size.

7.7.3 Executions with performance attacks by faulty servers

In order to measure the performance of BFT-Mencius under performance attacks, we run

experiments where the faulty server delays starting ATAB instances it owns. Similarly, for

Spinning and PBFT, the faulty server delays starting protocol instances (sending PRE-PREPARE

message) whenever it is coordinator. Otherwise, the server normally participates in all algo-

rithms. The number of clients for these experiments was set to 200 for experiments with small

requests, and 60 for big requests, for all algorithms. We have chosen the number of clients

based on the failure-free case where performance started to level off for all algorithms. For

BFT-Mencius, we set Kl at (see Section 7.6.4) to 1. Thus we use 2 ·dAT AB as timeout.

We have measured the performance of the three protocols by varying values for the attack

delay. As we can observe on Figure 7.5 (for small requests) and Figure 7.6 (for big requests),

the performance of PBFT and Spinning, compared to the failure-free case, can be significantly

degraded in the presence of performance attack. We can also observe that always rotating the

primary makes Spinning more robust to performance attacks than PBFT: its average latency is

significantly better, albeit still dependent on the attack delay.

On the other hand, once the attack delay is above the suspicion timeout, the blacklisting

mechanism of BFT-Mencius allows us to skip instances of blacklisted servers. Setting the

suspicion timeout as explained in Section 7.6.5, faulty servers are blacklisted already with

an attack-delay of 3ms for small requests and above 5ms with big requests. This allows BFT-

Mencius to achieve latency similar to the failure-free case, and throughput close to the peak

throughput achieved in the failure-free case.
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Figure 7.5: Throughput and latency of BFT-Mencius, PBFT and Spinning under performance
attacks with small requests (20B of payload).
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Figure 7.6: Throughput and latency of BFT-Mencius, PBFT and Spinning under performance
attacks with big requests (8KB of payload).
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7.8. Conclusion

7.8 Conclusion

We have proposed a new state machine replication protocol for the partially synchronous sys-

tem model with Byzantine faults. The algorithm, called BFT-Mencius, is a modular, signature-

free SMR protocol that ensures bounded-delay, i.e., eventual bounded latency during periods

of synchrony, even in the presence of Byzantine processes. BFT-Mencius is based on a new

communication primitive, Abortable Timely Announced Broadcast (ATAB). In cluster settings,

BFT-Mencius performs comparably to state-of-the-art algorithms such as PBFT and Spinning

in fault-free configurations. Contrary to these protocols, BFT-Mencius is able to maintain the

same performance under performance attacks.

Acknowledgement Experiments presented in this chapter were carried out using the Grid’5000

experimental testbed, being developed under the INRIA ALADDIN development action with

support from CNRS, RENATER and several Universities as well as other funding bodies (see

https://www.grid5000.fr).
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8 Concluding Remarks

The thesis has proposed several abstractions that allows us to express consensus algorithms

that tolerate arbitrary faults in a concise and modular way. A number of existing and several

novel consensus algorithms are expressed using these abstractions. The thesis also clarifies

relations among total-ordered broadcast and consensus in the presence of Byzantine faults.

Finally, the thesis proposes a modular BFT state machine replication algorithm that performs

well even under performance attacks by Byzantine processes. We summarize each of these

contributions and discuss directions for future research.

Weak Interactive Consistency. Consensus protocols that assume Byzantine faults (without

authentication) are harder to develop and prove correct [ST87] than algorithms that consider

authenticated Byzantine faults, even when they are based on the same idea. We have intro-

duced an abstraction called weak interactive consistency (or WIC), that allows us to design a

consensus algorithm that can be instantiated into an algorithm for authenticated Byzantine

faults (signed messages) and an algorithm for Byzantine faults, i.e., WIC unifies Byzantine

consensus algorithms with and without signatures. This has been illustrated on two seminal

Byzantine consensus algorithm, namely on the FaB Paxos algorithm (signatures) and on the

PBFT algorithm (no signatures). In both cases this leads to a very concise algorithm. We

presented in thesis two leader-based implementations of WIC, one that requires signatures

and needs two rounds of communication and the other that does not use signatures but needs

three rounds of communication. The message complexity of the two implementations is also

different, namely O(n) for the former and O(n2) for the latter. Furthermore, there exists a

leader-free implementation of WIC [BS10] that needs b +1 rounds (where b is a maximum

number of faulty processes) and has O(n2) message complexity. Although some work analyti-

cally compare different WIC implementations in the round-based model [BHS12], it would

be worth doing an experimental study of different WIC implementations in various settings:

different network setup (LAN and WAN), different number of processes and different message

sizes.
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Tolerating Permanent and Transient Value Faults. Transmission faults allow us to reason

about permanent and transient faults in a uniform way. However, all existing solutions to

consensus in this model assume either the synchronous system, or require strong conditions

for termination that exclude the case where all messages of a process can be corrupted. Using

the WIC abstraction, we propose a consensus algorithm for the transmission fault model

that does not have these limitations. The algorithm considers a system parameterized with

α and f . In every round each process can receive up to α corrupted messages; eventually

rounds are synchronous and the messages sent by at most f processes are corrupted. Before

these synchronous rounds, any number of benign faults is tolerated. The thesis proposes

a leader-based simulation of weak interactive consistency in this system model, which is

compatible with permanent and transient faults. Depending on the nature and number of

permanent and transient transmission faults, we obtain different conditions on n (number of

processes) for solving consensus. Our work opens several research directions:

• The consensus algorithm presented requires for termination that eventually messages of

at most f processes are corrupted. Is it possible solving consensus if we further weaken

this condition?

• Is there a way to adapt the leader-free implementation of WIC [BS10] for this system

model?

• Can we solve other problems, such as total-order broadcast or state machine replication

in this model?

Generic Consensus Algorithm for Benign and Byzantine Faults. Numerous consensus al-

gorithms have been published, with different features and for different fault models. We have

presented a generic consensus algorithm that highlights the core mechanisms of various con-

sensus algorithms for benign and Byzantine faults. The generic algorithm has four parameters:

TD, FLAG, Validator and FLV . Instantiation of these parameters led us to distinguish three

classes of consensus algorithms into which well-known algorithms fit. It allowed us also to

identify the new MQB algorithm that requires n > 4b, in-between the requirement n > 5b of

FaB Paxos and n > 3b of PBFT (b is the maximum number of Byzantine processes). We be-

lieve that a generic algorithm allows people familiar with a particular consensus algorithm to

more easily expend their knowledge to other consensus algorithms. As the generic algorithm

focuses (only) on deterministic algorithms for the partially synchronous system model, an

interesting research direction could be considering also randomized consensus algorithms

and algorithms designed for synchronous and semi-synchronous system models.

On the Reduction of Total-Order Broadcast to Consensus with Byzantine Faults. The rela-

tion of consensus and total order broadcast, including the reduction of total order broadcast to

consensus, is well understood in the case of crash faults [CT96a]. We have studied the relation

between total order broadcast and different variants of consensus in systems with Byzantine
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faults. We have shown that consensus with weak unanimity is not sufficient to solve total

order broadcast, while consensus with strong validity is harder than total order broadcast.

Furthermore, we have shown that total order broadcast is equivalent to consensus with strong

unanimity, consensus with abortable validity, and consensus with range validity. We have also

proposed a reduction of total order broadcast to range validity consensus with constant time

complexity with respect to consensus. To the best of our knowledge, this is the first total order

broadcast reductions to consensus with constant time complexity with respect to consensus

in the Byzantine fault model.

The total-order broadcast algorithm presented separates message dissemination (done using

reliable unique broadcast) from defining the order of messages (done using instances of

range validity consensus). Furthermore, range validity consensus instances operate only

on integers that corresponds to message ids. The same architecture is used by the S-Paxos

SMR algorithm [BMSS12] for benign faults. S-Paxos achieves between 2 and 3 times better

throughput than Paxos, and the difference further increases for higher number of replicas. It

would be interesting to experimentally evaluate whether the total-order broadcast algorithm

presented could have similar performance gains for the Byzantine model when compared

to the classical approaches (e.g., PBFT or BFT-Mencius), where request dissemination and

ordering are not separated.

Bounded Delay in Byzantine Tolerant State Machine Replication. Recent studies have

shown that most BFT-SMR systems do not actually perform well under performance attacks

by Byzantine processes. This led to the definition of a new performance criterion, called

bounded-delay, which requires that the latency of updates initiated by correct processes is

eventually upper-bounded, even under performance attacks by Byzantine processes. We have

proposed a new state machine replication protocol for partially synchronous systems with

Byzantine faults. The algorithm, called BFT-Mencius, is a modular, signature-free SMR proto-

col that ensures bounded-delay, i.e., eventual bounded latency during periods of synchrony,

even under performance attacks by Byzantine processes. BFT-Mencius is based on a new

communication primitive, Abortable Timely Announced Broadcast (ATAB). In cluster settings,

BFT-Mencius performs comparably to state-of-the-art algorithms such as PBFT and Spinning

in the fault-free case. Contrary to these protocols, BFT-Mencius is able to maintain the same

performance under performance attacks.

We have evaluated BFT-Mencius in cluster settings, as this is the most common context where

state machine replication is used. However, BFT-Mencius also works in a WAN, as it does

not depend on any cluster-specific functionality. Many of the techniques that allow BFT-

Mencius to perform well in a cluster should work equally well in a WAN; nevertheless it is

worth investigating this question. Furthermore, it would be possible to consider different

options for some mechanisms used by BFT-Mencius that might be more suitable for a WAN:

different mechanisms for suspecting, different client load balancing schema or different

request authentication schema. Finally, it would be interesting considering BFT-Mencius with
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different ATAB implementations, for example one based on FaB Paxos.

146



A CL-ATAB

In this chapter we present the CL-ATAB algorithm that solves ATAB in the partially synchronous

system model with Byzantine faults. The algorithm requires n ≥ 3b +1 processes to tolerate

at most b Byzantine faults. The code of the algorithm is given as Algorithms A.1 and A.2.

The upon rules of Algorithm A.1 and Algorithm A.2 are executed atomically. Since we allow

message loss before GST, we use the p-broadcast primitive which denotes periodic send to all

processes with ∆ as an interval between two broadcast events.

As already said in Section 7.4.1, the algorithm proceeds in views, such that in every view there

is a single process that is the coordinator (of the view). The assignment scheme of views

to coordinators is known to all processes and is given as a function coord(v) returning the

coordinator for view v . The sender s is the coordinator of the initial view (vi ew = 1).

A.1 Normal case

We now explain the protocol in the initial view v = 1 (Algorithm A.1); the procedure for

changing view is discussed for Section A.2.

Once a process p wants to broadcast a message m using ATAB, it executes atab-cast(m) (line 10

of Algorithm A.1). Upon atab-cast(m), a process sends message 〈INIT,1,m〉 to all processes

(line 11 of Algorithm A.1). Once a process receives 〈INIT,1,m〉 from the sender for the first

time, and it is in the view v = 1, it sends 〈ECHO,1,m〉 to all processes (line 14).

Once a process p receives 〈ECHO,1,m〉 from d(n+b+1)/2e processes, and it is in the view v = 1,

it updates votep and t sp (lines 17-18) and sends 〈COMMIT,1,m〉 to all processes (line 19).

A process receiving 〈COMMIT,1,m〉 from d(n +b +1)/2e processes, while being in the view

v = 1, it executes atab-deliver(m) (line 23). A process can also atab-deliver(m) by receiving

b +1 messages 〈DEC,m〉 (line 20).

The algorithm also needs to execute atab-announce such that the ATAB-Announcement prop-
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erty of ATAB is fulfilled. A correct process always executes atab-announce before it executes

atab-deliver (line 21). Furthermore, the algorithm needs to ensure that once a correct process

executes atab-deliver, all correct processes will eventually execute atab-announce. This is

ensured by the second part of line 24. Once a correct process executes atab-deliver (line 23),

then at least one correct process received 〈COMMIT, v,m〉 from d(n + b + 1)/2e processes.

Since messages are sent using p-broadcast, and n ≥ 3b+1, at least b+1 correct processes sent

〈COMMIT, v,m〉 to all. Therefore, all correct processes eventually also receive this messages

and execute atab-announce at line 24.

Algorithm A.1 CL-ATAB (part A)

1: Initialization:
2: votep := noop
3: t sp := 0
4: hi stor yp :=;
5: vi ewp := 1
6: st atep ∈ {

i ni t = 1,echoed = 2,chang i ngV i ew = 3
}
, initially i ni t

7: deci si onp = null
8: t i meout1 := 3∆
9: t i meout2 := 6∆

10: upon atab-cast(m) do
11: p-broadcast 〈INIT,1,m〉
12: upon receiving 〈INIT, vi ewp ,m〉 from coord(1) while st atep = i ni t do
13: hi stor yp ← {

(m, vi ewp )
}

14: p-broadcast 〈ECHO, vi ewp ,m〉
15: st atep ← echoed

16: upon receiving 〈ECHO, vi ewp ,m〉 from d(n +b +1)/2e processes while st atep ≤ echoed do
17: votep ← m
18: t sp ← vi ewp
19: p-broadcast 〈COMMIT, vi ewp ,m〉
20: upon receiving (〈COMMIT, vi ew,m〉 from d(n +b +1)/2e processes or 〈DEC,m〉 from b +1 processes) while

deci si onp 6= null do
21: Announce()
22: deci si onp ← m
23: atab-deliver(m)

24: upon receiving 〈INIT,1, v〉 from coord(1) or 〈COMMIT, v,m〉 from b +1 processes do
25: Announce()

26: upon receiving any message 6= 〈DEC,−〉 from q while deci si onp 6= null do
27: send 〈DEC,deci si onp 〉 to q

28: Procedure Announce :
29: atab-announce()
30: if vi ewp = 1 then
31: after t i meout1 execute OnT i meout (1)

32: Procedure OnT i meout (v) :
33: if deci si onp =⊥ then
34: Pr og r essToV i ew(v +1)

A.2 Changing view

In this section we explain the part of the protocol that processes execute when changing

view. The protocol is given as Algorithm A.2. As mentioned in Section 7.4.1 changing the

view is handled in a similar way as in PBFT. The processes exchange their state by broad-
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casting 〈VC, v, vote, t s,hi stor y〉 upon entering view v (line 59). When a process p receives

〈VC, vi ewp ,−,−,−〉 from a process q for the first time, it acknowledges reception by send-

ing 〈VC-ACK,−, q〉 to all (lines 41-44). The coordinator of the new view considers only

〈VC, vi ewp ,−,−,−〉 messages for which it is received acknowledgments by at least 2b +1 pro-

cesses. This ensures that at least b+1 correct processes received the same 〈VC, vi ewp ,−,−,−〉
message from some process q (that could be Byzantine). The array of messages that satisfies

this condition is passed to the F LV function (line 83) which is responsible for selecting a value

that the new coordinator will propose, ensuring that the ATAB-Agreement and ATAB-Integrity

properties are not violated.

The FLV function ensures that in case some correct process has executed atab-deliver(m) in

the previous views, it can only select m or null . The value null is returned to indicate that not

enough information was provided to the FLV function. As processes receive more information,

i.e., more view-change messages, they will retry to obtain a previous decision value by calling

FLV again. If there was a decision, FLV is guaranteed to eventually return the value decided. In

case no correct process decided in the previous views, FLV returns ⊥.

Once the FLV function returns a non null value, the coordinator of the new view sends

〈VC-INIT,−,−,−〉 to all processes (line 69). The other processes verify if 〈VC-INIT,−,−,−〉
sent by the new coordinator is valid using the i sV al i d function (line 75). This mechanism is

needed because the new coordinator can be a faulty process. In case i sV al i d function returns

true, the process sends 〈ECHO,−,−〉 to all (line 70) and the protocol continues as in view

v = 1.

A.3 Proof of correctness

Lemma A.1. Let vm be the highest view entered by some correct process up to time t . If n ≥ 3b+1,

then at at time t at least b +1 correct processes are either in view v or in view v −1.

Proof. Let denote with p a first correct process that started view vm . There are two cases

to consider: (i) vm = 2 or (ii) vm > 2. In case (i), the lemma trivially follows since all correct

processes are in at least view 1. In case (ii), since vm is the highest view started by some correct

process, the process p entered view vm upon timeout expiration. Since vm > 2, the timeout is

set at line 40. By line 39, p received 〈VC, vm −1,−,−,−〉 from d(n +b +1)/2e processes. Since

n ≥ 3b+1, d(n+b+1)/2e > b. Therefore at least b+1 correct processes sent 〈VC, vm−1,−,−,−〉
message, i.e., at least b +1 correct processes are at least in the view vm −1 at time t .

Lemma A.2. Let t >GST be such that at time t b +1 correct processes have started view v ≥ 2,

and no correct process has started view v ′ > v and owner (v) is a correct process. If n ≥ 3b +1

then all correct processes decide in view v the latest at time t +6∆.

Proof. Let denote with C f the set of b +1 correct processes that start view v , and let assume
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that p is the last among correct processes from C f that starts view v . Furthermore, let assume

that it starts view v at time t >GST . Then the latest at time t +∆ all correct processes receive

〈VC, v,−,−,−〉 message from processes C f . Because of rule at line 37, all correct processes then

start view v at time t +∆, and send 〈VC, v,−,−,−〉 message. Note that process start timeout

for view v once it receives 〈VC, v,−,−,−〉 messages from d(n +b +1)/2e processes (line 39).

Therefore, the earliest time when timeout for view v is started at some correct process is t .

At time t +2∆, all correct processes are in view v and receive 〈VC, v,−,−,−〉 message from all

correct processes. Upon receipt of 〈VC, v,−,−,−〉 message, 〈VC-ACK,−,−〉 message is sent

(line 44). Therefore, at time t +2∆ all correct processes acknowledge receipt of 〈VC, v,−,−,−〉
messages from correct processes by sending the corresponding 〈VC-ACK,−,−〉 message. This

mean that owner (v) send 〈VC-INIT, v,m,−〉 message before t +3∆ (line 69) and all correct

processes receive it and have the condition at line 71 of Algorithm A.2 evaluates to true at

latest at t+4∆ (at processes that are not owner (v)). Then they send 〈ECHO, v,m〉message (see

line 73 of Algorithm A.2) that is received before t +5∆. Since n ≥ 3b +1, n −b ≥ d(n +b +1)/2e,

so once a correct process receives 〈ECHO, v,m〉 message from all correct processes, it sends

〈COMMIT, v,m〉 message (line 19). All correct processes then decide before t +6∆. Since the

value of t i meout is 6∆, no correct process will leave view v before t +6∆ and therefore all

correct processes will decide in view v .

Lemma A.3. If up to time T , all correct processes have executed either atab-announce or

atab-abort, then all correct processes are in view v ≥ 2 the latest at time T +3∆.

Proof. The correct process that executed atab-abort move in view 2 the latest at time T

(line 36). After correct process executes atab-announce, the timer is started (line 31). Once

timeout expires, the process move in view 2 (if it is not already in view higher than 1). Therefore,

all correct processes are in view 2 the latest at time T +3∆.

Lemma A.4. If at least b +1 correct processes are in view v ≥ 2 at time t >GST , then ∃t ′ ≥ t ,

t ′ ≤ t +16∆, such that all correct processes are in view v ′ ≥ v at time t ′.

Proof. Let denote with p the correct process that is in the highest view vm at time t . We have

two cases to consider: (i) there are at most b −1 other correct processes p in view v at time t

or (ii) there are more than b other correct processes in view v at time t .

In case (i), at time t +∆ (due to retransmission that takes place every ∆ time) all correct pro-

cesses resend their 〈VC,−,−,−,−〉 messages, so all correct processes receive those messages

before t +2∆. Because of rule at line 37, all correct processes enter at least view v −1 at time

t +2∆ and send their 〈VC,−,−,−,−〉 messages for view v −1 at that point. They start timer for

view v −1 at time t +3∆ (line 39). Therefore, they will enter view v the latest at time t +9∆

since timeout value is 6∆. Note however, that at time t +ε a correct process from view v −1 can

move to view v . Therefore, it can happen that some correct process receives 〈VC, v,−,−,−〉
message from d(n +b +1)/2e processes at time t +ε and start timer for view v . Therefore, at
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time t +6∆ he will leave view v and start view v +1. Therefore, we need to calculate the point

in time when other correct processes will start view v +1. Since all correct processes start

view v the latest at time t +9∆, they will receive 〈VC, v,−,−,−〉 message from d(n +b +1)/2e
processes before time t +10∆. Therefore, they will start timer for view v the latest at t +10∆,

and therefore start view v +1 the latest at time t +16∆.

In case (ii), at time t +∆ (due to retransmission that takes place every ∆ time) b +1 correct

processes resend their 〈VC, v,−,−,−〉 messages, so all correct processes will receive them

before time t +2∆ and enter view v . They start timer for view v the latest at time t +3∆. Since

at any time after t there can be correct process that leaves view v and start view v +1 we need

to calculate what is the latest point when other correct processes will enter view v +1. Since

they start timer for view v the latest at time t +3∆, they will start view v +1 the latest at time

t +9∆.

Therefore, all correct processes will start the same view v ′, such that no correct process is in

the higher view, the latest at time t +16∆.

Lemma A.5. If at least b +1 correct processes are in view v ≥ 2 at time t >GST , then all correct

processes decide the latest at time t +16∆+b ·7∆+6∆.

Proof. By Lemma A.4, all correct processes start the same view v , such that no process is in

the higher view, the latest at time t +16∆. If owner (v) is a correct process, then by Lemma A.2

all correct processes decide the latest at time t +16∆+6∆. In case owner (v) is a faulty process,

then all correct processes will start timeout for view v the latest at time t +17∆. Therefore, they

will start the view v +1 the latest at t +17∆+6∆. Since we apply rotating coordinator strategy

for owner (v) function, we will have correct process being owner of the view v +b. The correct

processes start view v +b the latest at time t +16∆+b ·7∆. According to Lemma A.2, all correct

processes decide in the view v +b the latest at time t +16∆+b ·7∆+6∆.

Lemma A.6. For all b ≥ 0, any two sets of size d(n +b +1)/2e have at least one correct process in

common.

Proof. We have 2d(n +b +1)/2e ≥ n +b +1. This means that the intersection of two sets of size

d(n +b +1)/2e contains at least b +1 processes, i.e., at least one correct process. The result

follows directly from this.

Lemma A.7. If m 6= null is the only value that can be returned by F LV function at correct

processes in view v, then in view v a correct process p can set votep only to m.

Proof. If m is the only not-null value that can be that can returned by F LV function at correct

processes in view v , then if a correct process sends 〈ECHO, v, value〉, value = m. Because

there are at most b Byzantine processes, and b < d(n +b +1)/2e, for all correct processes holds
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that if exists some value that satisfies the condition at line 16, then it must be m. So if a correct

process p set votep in view v , it set it to m.

Lemma A.8. If some correct process q executes atab-deliver(m) in view v0, then in all views

v > v0, F LV returns either m or null at all correct processes.

Proof. We prove the result by induction on v .

Base step v = v0 + 1 : Assume by contradiction that p is some correct process where FLV

function returns m′ 6= m ∧m′ 6= null in view v0 +1. This implies that either (i) line 87 or (ii)

line 89 was executed by p in phase v0 +1.

For (ii), the condition of line 88 has to be true. If the condition of line 88 is true, this implies

that either (i) |cor r ectV otesp | > 1 or (ii) there are at least d(n +b +1)/2e messages with t s = 0

in the array V . Since q has decided in view v0, by LemmaX at least one correct process received

at least d(n +b +1)/2e messages 〈COMMIT, v0,m〉 at line 20. All correct processes c who sent

a message 〈COMMIT, v0,m〉 have set votec = v and t sc = v0 in view v0. Let us denote this set

of correct processes with Qc . By Lemma A.6 the intersection of two sets of size d(n +b +1)/2e
contains at least one correct process. Therefore, in the d(n +b +1)/2e messages received there

is at least one message sent by process from Qc , i.e., the second part of the condition at line 88

cannot be true. So the case (i) was executed by p.

For (i), the condition at line 86 have to be true, i.e., the |cor r ectV otesp | > 0, there exists a

(m′, t s′,hi stor y ′) such that m′ is in cor r ectV otesp and because of line 85 (m′, t s′,hi stor y ′)
in possi bl eV otesp . We now show that if (m′, t s′,hi stor y ′) ∈ possi bl eV otesp , then m′ does

not satisfy the condition at line 85 to be added to the cor r ectV otesp . This establishes the

contradiction.

Since the parameter passed to the F LV function consists of 〈VC,−,−,−〉messages, by Lemma A.6,

the array V contains at least one message 〈VC, v0 +1,m, v0,−〉 sent by a process in Qc . So the

(m′, t s′,hi stor y ′) can only be added to the set possi bl eV otesp if t s′ > v0.

In order to have m′ in the set cor r ectV otesp it is necessary to have at least b +1 messages

〈VC, v0+1,−,−,hi stor y〉 in V such that ∃(m′, t s′) ∈ hi stor y , i.e., that there is a correct process

c1 that sends such a message. A contradiction with the assumption that c1 is a correct process.

Induction step from φ to φ+1: Lemma A.7 and the arguments similar to the base step can be

used to prove the induction step.

Lemma A.9. If n ≥ 3b +1, Algorithm A.1 ensures ATAB-Agreement.

Proof. Let view v0 be the first view in which some correct process p executes atab-deliver(m).

By Lemma A.14, there exists a correct process c that received 〈COMMIT, v,m〉 message from

d(n+b+1)/2e processes in some view v ≤ v0. Since n ≥ 3b+1, d(n+b+1)/2e > b, so at least one

correct process c1 sent 〈COMMIT, v,m〉 message in the view v . Therefore c1 received at least
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d(n+b+1)/2e messages 〈ECHO, v,m〉 (*). We prove now that if some correct process q executes

atab-deliver(m′) in some view v ≥ v0, then m = m′. In case v = v0, by Lemma A.14, there exists

a correct process c ′ that that received 〈COMMIT, v,m′〉 message from d(n+b+1)/2e processes.

Since n ≥ 3b + 1, d(n +b + 1)/2e > b, so at least one correct process sent 〈COMMIT, v,m′〉
message in the view v . Therefore it received least d(n +b +1)/2e messages 〈ECHO, v,m′〉. By

Lemma A.6, any two sets of messages of size d(n +b + 1)/2e, contains at least one correct

process in intersection. Therefore, there exists a correct process c1 that sends 〈ECHO, v,m〉
and 〈ECHO, v,m′〉 message. A contradiction with the assumption that c1 is a correct process

and the rule at line 12 and lines 73-74.

In case v > v0, by Lemma A.8 and Lemma A.7, all correct processes can only set vote to m in

views bigger than v0. Since n ≥ 3b +1, b < d(n +b +1)/2e, so the first part of the condition at

line 20 can be true only for m. This is in contradiction with Lemma A.14, so correct process q

cannot atab-deliver message different than m.

Lemma A.10. If s is a correct process and s executes atab-cast(m), then later the F LV function

at all correct processes can return only b such that b ∈ {m,⊥,null }.

Proof. Assume by contradiction that view v is the first view where F LV function at a correct

process q returns m′ such that m′ 6∈ {m,⊥,null }. This implies that line 87 is executed by q .

By assumption we have that for all messages 〈VC, v,−,−,hi stor y〉 sent by correct processes,

hi stor y = {(v, t ) : v = m ∨ v =⊥} or hi stor y =;.

In order to have the condition at line 86 to be true, i.e., the |cor r ectV otesq | > 0, there exists

m′ in cor r ectV otesq .

In order to have m′ in the set cor r ectV otesp it is necessary to have at least b +1 messages

〈VC, v,−,−,hi stor y〉 in V such that ∃(m′, t s′) ∈ hi stor y , i.e., that there is a correct process c1

that sends such a message, i.e., F LV returns m′ at c1 in the view v ′ < v . A contradiction.

Lemma A.11. If n ≥ 3b +1, Algorithm A.1 ensures ATAB-Integrity.

Proof. A correct process p executes atab-deliver only once because the rule in which atab-deliver

is executed is triggered only if deci si onp = null (line 20). After process p executes line

atab-deliver for the first time, deci si onp is set to some value m 6= null .

Now assume that s is a correct process and executes atab-cast(m) and there is a correct

process q that executes atab-deliver(m′) such that m′ 6∈ {m,⊥}. By Lemma A.14, there is a

correct process c that received 〈COMMIT, v ′,m′〉 messages from d(n +b +1)/2e in some view

v ′ when vi ewc = v ′. Since n ≥ 3b +1, d(n +b +1)/2e > b, there is at least one correct process

c1 that sends 〈COMMIT, v ′,m′〉 message in view v ′. Therefore, c1 received d(n +b +1)/2e > b

messages 〈ECHO, v ′,m′〉. Since n ≥ 3b+1, d(n+b+1)/2e > b, i.e., there is at least single correct

process c2 that sent 〈ECHO, v ′,m′〉 in the view v ′. There are two cases to consider: (i) v ′ = 1

and (ii) v ′ > 1. In case (i), the process c2 received 〈INIT, v ′,m′〉 message from s. A contradiction
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with the assumption that s is a correct process that executed atab-cast(m). In case (ii), the

process c2 received 〈VC-INIT, v ′,m′,−〉 from some process that is owner (v ′).

Since process c2 sent 〈ECHO, v ′,m′〉 after receiving 〈VC-INIT, v ′,m′,−〉, this implies that the

function i sV al i d at process c2 returns true for message 〈VC-INIT, v ′,m′,−〉 (line 73). By

line 79, the function F LV returns m′ at process c2 in view v ′. A contradiction with Lemma A.10.

Lemma A.12. If n ≥ 3b +1, Algorithm A.1 ensures ATAB-Validity with d1 = 3∆.

Proof. If s executes atab-cast(m) at time T , it sends 〈INIT,1,m〉 message to all (line 11), and

all correct processes receive it before time T +∆. Since no correct process calls atab-abort

before T +3∆, st ate variable at all correct processes is i ni t and vi ew = 1, so the condition

at line 12 evaluates to true, and all correct processes send 〈ECHO,1,m〉 to all (line 14 and

set st ate to echoed (line 15). Before time T +2∆, all correct processes receive 〈ECHO,1,m〉
message from all correct processes. Since n ≥ 3b +1 and no correct process atab-abort before

T +3∆, all correct processes receive 〈COMMIT,1,m〉 message from d(n +b +1)/2e processes,

so the condition at line 16 evaluates to true, and every correct process sends 〈COMMIT,1,m〉
message to all (line 19) the latest at time T +2∆. If a correct process has not decided up to

time T +3∆, it will decide upon receiving 〈COMMIT,1,m〉 message from all correct processes

since the condition at line 20 evaluates to true. Therefore, if no correct process atab-abort

before time T +3∆, all correct processes will atab-deliver(m) the latest at time T +3∆.

Lemma A.13. Algorithm A.1 ensures ATAB-Termination.

Proof. If all correct processes execute atab-announce or atab-abort up to time T , by Lemma A.3

all correct processes enter view 2 the latest at time T +3∆. By Lemma A.5 all correct processes

will decide the latest at time max{T +3∆,GST }+16∆+b ·7∆+6∆.

Lemma A.14. If a correct process p executes atab-deliver(m) at time T , then at least one correct

process q received 〈COMMIT, v,m〉 from d(n +b +1)/2e processes in view v at time t ≤ T .

Proof. Assume by contradiction that a correct process p executes atab-deliver(m) at time T ,

and that no correct process received 〈COMMIT, v,m〉 message from d(n +b +1)/2e processes

at time t ≤ T . Furthermore, assume that a process p is a first correct process that executed

atab-deliver(m). This implies that a correct process that executes atab-deliver(m) execute it

after time T .

Since a correct process p executes atab-deliver(m) at time T , this mean that the condition at

line 20 evaluates to true. There are two cases to consider: (i) p received 〈COMMIT, vi ewp ,m〉
message from d(n +b +1)/2e processes, or (ii) p received 〈DEC,m〉 message from b +1 pro-

cesses.
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In case (ii), p received 〈DEC,m〉 message from b +1 processes. This mean that there is at least

one correct process c that sent 〈DEC,m〉 message before time T . A contradiction with the

assumption that p is the first correct process that executed atab-deliver(m). Therefore by (i),

p received 〈COMMIT, vi ewp ,m〉 message from d(n+b+1)/2e processes. A contradiction.

Lemma A.15. If n ≥ 3b +1, Algorithm A.1 ensures ATAB-Announcement with d2 = 2∆.

Proof. The first part of ATAB-Announcement property is trivially ensured by lines 21 and 23.

We now prove the second part, i.e., (i) if a correct process p executes atab-deliver(m) at time T

or (ii) a correct process s executes atab-cast(m′) at time T , then every correct process executes

atab-announce before max{T,GST }+d2, where d2 = 2∆.

In case (i), if a correct process p executes atab-deliver(m) at time T , then by Lemma A.14,

there is at least one correct process c that received 〈COMMIT, vi ewc ,m〉 message from d(n +
b +1)/2e processes at time t ≤ T . Since n ≥ 3b +1, d(n +b +1)/2e−b > b, therefore at least

b +1 correct processes sent 〈COMMIT, vi ewc ,m〉 message. Since messages are sent using p-

broadcastprimitive (and therefore resent every ∆ time units), all correct processes will receive

〈COMMIT, vi ewc ,m〉 message from at least b +1 process the latest at time max{T,GST }+2∆,

and atab-announce because of the rule at line 24).

In case (ii), a correct process s executes atab-cast(m′) at time T . By line 11, s sends 〈INIT,1,m′〉
message to all at time T . Since the message is sent using p-broadcastprimitive, it is retrans-

mitted every ∆ time units, so all correct processes receive 〈INIT,1,m′〉 the latest at time

max{T,GST }+2∆. By line 24 all correct processes execute atab-announce the latest at time

max{T,GST }+2∆.

Theorem A.1. If n ≥ 3b + 1, then the CL-ATAB algorithm solves ATAB in the partially syn-

chronous system model with known ∆, d1 = 3∆ and d2 = 2∆.

Proof. Follows from Lemma A.9, Lemma A.11, Lemma A.13, Lemma A.12 and Lemma A.15.
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Algorithm A.2 CL-ATAB (part B) — Changing view

35: upon atab-abort() do
36: Pr og r essToV i ew(2)

37: upon receiving 〈VC, vi ew,−,−,−〉 with vi ew > vi ewp from b +1 processes do
38: Pr og r essToV i ew(vi ew)

39: upon receiving 〈VC, vi ewp ,−,−,−〉 from d(n +b +1)/2e processes do
40: after t i meout2 execute OnT i meout (vi ewp )

41: upon receiving 〈VC, vi ewp , v, t s,hi stor y〉 from q do
42: if vi ewC hang ep [q] =⊥ then
43: vi ewC hang e[q] ← (vi ewp , v, t s,hi stor y)
44: p-broadcast 〈VC-ACK, vi ewC hang e[q], q〉
45: C heckF LV

46: upon receiving 〈VC-ACK, vi ewp , v, t s,hi stor y, q〉 from r do
47: if vi ewC hang e Ackp [q][r ] =⊥ then
48: vi ewC hang e Ack[q][r ] ← (vi ew, v, t s,hi stor y)
49: C heckF LV

50: upon receiving 〈VC-INIT, vi ewp , v,V C []〉 from coord(vi ewp ) do
51: if st atep = chang i ngV i ew ∧newPr ePr epar ep =⊥ then
52: newPr ePr epar ep ← (vi ewp , v,V C [])
53: C heckF LV

54: Procedure Pr og r essToV i ew(v) :
55: if vi ewp < v then
56: vi ewp ← v
57: vi ewC hang e[] :=⊥; V C [] :=⊥; vi ewC hang e Ack[][] :=⊥; newPr ePr epar ep :=⊥
58: st atep ← chang i ngV i ew
59: p-broadcast 〈VC, vi ewp , vp , t sp ,hi stor yp 〉
60: Procedure C heckF LV :
61: for i = 1 to n do
62: if |{ j : vi ewC hang e Ack[i ][ j ] = vi ewC hang e[i ]

} | > 2b +1 then
63: V C [i ] = vi ewC hang e[i ]
64: if p = coord(vi ewp ) then
65: sel ect ← F LV (V C [])
66: if sel ect 6= null then
67: hi stor yp ← hi stor yp ∪{

(sel ect , vi ewp )
}

68: st atep ← pr ePr epar ed
69: p-broadcast 〈VC-INIT, vi ewp , sel ect ,V C []〉
70: p-broadcast 〈ECHO, vi ewp , sel ect〉
71: else if newPr epar ep 6= ⊥ and i sV al i d(newPr epar ep ) then
72: hi stor yp ← hi stor yp ∪{

(newPr epar ep , vi ewp )
}

73: p-broadcast 〈ECHO, vi ewp ,newPr epar ep 〉
74: st atep ← echoed

75: Procedure i sV al i d(m) :
76: for i = 1 to n do
77: if m.V C [i ] 6= ⊥∧ 6= vi ewC hang ep [i ] or |{q : vi ewC hang e Ack[i ][q] = m.V C [i ]

} | < b +1 then
78: return false

79: if F LV (m.V C ) = m.v then
80: return true

81: else
82: return false

83: Procedure F LV (V []) :
84: possi bl eV otesp ← { (vote, t s,−) ∈V :

|{(vote′, t s′,−) ∈V : vote = vote′∨ t s > t s′}| ≥ d(n +b +1)/2e
85: cor r ectV otesp ← {v : (v, t s,−) ∈ possi bl eV otesp ∧

|{(vote′, t s′,hi stor y ′) ∈V : (v, t s) ∈ hi stor y ′}| > b }

86: if |cor r ectV otesp | > 0 then
87: return min{v s.t . (v,−,−) ∈ cor r ectV otesp }
88: else if | {(vote, t s,−) ∈V : t s = 0} | ≥ d(n +b +1)/2e then
89: return ⊥
90: else
91: return null
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