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The propagation of blobs, structures of localized enhanced plasma pressure, is studied in global

three-dimensional simulations of a simple magnetized torus. In particular, we carry out single-seeded

blob simulations to explore the dependence of the blob velocity with respect to its size. It is found that

the velocity scaling for two-dimensional blobs is satisfied in the parameter space where polarization

currents are the dominant damping mechanism. On the other hand, three-dimensional blobs propagate

faster than their two-dimensional counterparts in the parallel current damping regime. A detailed

analysis of the charge and current balance reveals that, in fact, the difference in speed is due to an

overestimation of the strength of the sheath current term in the two-dimensional model compared to the

self-consistent three-dimensional model. [http://dx.doi.org/10.1063/1.4864324]

I. INTRODUCTION

Turbulence at the edge of many laboratory plasmas is

characterized by the presence of blobs, structures of

enhanced plasma pressure compared to the background,

localized in the plane perpendicular to the magnetic field and

extended along it.1–3 Blobs can move across the magnetic

field and travel as individual entities over a distance of sev-

eral times their size, thus leading to intermittent transport of

particles and energy. Their generation and motion have been

extensively studied because of their importance in burning

plasma experiments and future fusion reactors. An extensive

review of blob physics is presented in Refs. 3 and 4.

The propagation of blobs can be understood as follows.

Magnetic field curvature and gradients due to the blob spatial

inhomogeneity induce charge-dependent drifts leading to

charge accumulation. The resulting electric field gives rise to

an E�B drift, responsible for the blob motion, whose ampli-

tude depends on the available current path to damp charge

accumulation.

The mechanisms for the damping of charge accumula-

tion have been studied by using a two-dimensional model,

based on the quasi-neutrality equation, typically assuming

homogeneous plasma along the magnetic field lines and

sheath current given by Bohm’s condition at the field line

ends. A detailed discussion of the different damping mecha-

nisms can be found in Ref. 4. The most basic model shows

that two damping mechanisms are active, depending on a?,

the blob size along the direction perpendicular to both B and

rB, normalized to a0 ¼ ½4ðL2
c=R2ÞðR=qsÞ�1=5qs (here Lc is

the magnetic field connection length, qs is the ion sound

Larmor radius, and R is the curvature and typical variation

scale length of the magnetic field.). If a?�1, charge accumu-

lation is damped by cross-field polarization current and the

blob velocity is proportional to
ffiffiffiffiffiffi
a?
p

. On the other hand, if

a?�1, charge accumulation is damped by parallel currents

that flow to the vessel, through the plasma sheath, and the

blob velocity is proportional to 1=a2
?. The two regimes have

been unified into a general scaling law that has been com-

pared with experimental measurements of blob velocity

taken on the TORPEX simple magnetized torus (SMT),5,6

showing good agreement.7 The scaling has also been verified

against non-linear two-dimensional simulations carried out

in the plane perpendicular to the magnetic field.8

As a matter of fact, while most of the blob, theoretical

studies have been carried out with two-dimensional models,

recently the study of blob dynamics has been approached by

using three-dimensional numerical simulations,9,10 mainly

focusing on the stability of blobs with respect to three-

dimensional instabilities, like drift-waves.

The goal of the present paper is to use three-dimensional

simulations to study the dependence of the blob velocity on

the plasma parameters, in particular, by exploring the differ-

ent regimes of charge damping. We compare the blob veloc-

ity with the scaling based on the two-dimensional model and

we explain the discrepancy through a detailed analysis of

the three-dimensional simulation results. It is found that

the two-dimensional scaling is well followed by the three-

dimensional simulations in the regime where charge damp-

ing is provided by the polarization current, while blobs move

at a velocity that is higher than the two-dimensional predic-

tion in the regime of parallel currents damping. This is due

to the density drop observed in proximity of the sheath

entrance, and the related decrease of the damping rate of the

charge accumulation that is due to parallel currents.

The three-dimensional simulations are carried out with

the GBS code.11 GBS solves the drift-reduced Braginskii

equations (see, e.g., Ref. 11), with proper boundary condi-

tions derived from first-principle analysis of the plasma

sheath dynamics.12 GBS has been developed to simulate

plasma dynamics in basic plasma physics devices, like linear

machines and SMTs,13–16 and has been recently ported to the
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scrape-off layer (SOL) tokamak geometry.17–19 GBS is used

here to simulate blob dynamics in the SMT geometry. In this

toroidal magnetic configuration, characterized by helical

field lines terminating on the vessel walls and resulting from

the superposition of a small vertical magnetic field on the to-

roidal component, the main elements of blob dynamics are

present in a simplified setting with respect to the tokamak

SOL. In fact, the SMT features open field lines with oblique

incidence at the vessel walls, with curvature and gradient of

the magnetic field that are constant along a magnetic field

line. Because of its relatively simplicity, the SMT constitutes

an ideal test-bed where accurate measurements of blob ve-

locity have been carried out spanning a large parameter

range.7,8 We consider seeded blob simulations, i.e., we fol-

low the dynamics of a single blob that constitutes the initial

condition for the simulations.

This paper is organized as follows. After introducing

our model in Sec. II, in Sec. III, we briefly review blob dy-

namics, developing an analytical expression describing blob

speed as a function of blob size. Sec. IV describes the three-

dimensional seeded blob simulations, focusing on under-

standing the mechanics of blob propagation and its relation

to the analytical theory. The findings of our study are sum-

marized in Sec. V.

II. DRIFT-REDUCED BRAGINSKII EQUATIONS

The plasma blob dynamics is studied using the drift-

reduced Braginskii model (see, e.g., Ref. 11). The model is able

to describe plasma dynamics in open field configurations,

where the high collision rate due to the low temperature tends

to establish a local thermodynamic equilibrium. The drift-

reduced Braginskii equations can be deduced from the

Braginskii fluid equations20 adopting the orderings d=dt� xci

(xci ¼ eB=mi is the ion gyrofrequency) and k? � kk.
In the electrostatic, Ti � Te limit, the drift-reduced

Braginskii equations derived in Ref. 11 are the continuity

equation for the plasma density n, the equation for the vortic-

ity x, the Ohm’s law that determines the parallel electron ve-

locity vke, the equation for the parallel ion velocity vki, and

the equation for the electron temperature, Te

@n
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¼ �R /; n½ � � rk nvkeð Þ þ 2 Ĉ peð Þ � nĈ /ð Þ

h i
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where the Poisson equation x ¼ r2
?/ relates the vorticity

with the electrostatic potential, jk ¼ n vki � vkeð Þ is the parallel

current, R is here the torus major radius normalized to qs, and

� ¼ e2nR=ðmirkcsÞ is the normalized Spitzer resistivity. The

Ge and Gi terms represent the gyroviscous part of the pressure

tensor (see Ref. 11 for their explicit expressions). Small per-

pendicular diffusion terms of the form Dfr2
?f are added for

numerical reasons. In addition, f ; g½ � ¼ b � rf �rg½ � is the

Poisson bracket, Ĉ fð Þ ¼ B=2½r � ðb=BÞ� � rf is the curva-

ture operator, and rk ¼ b � r is the gradient in the direction

parallel to the magnetic field. In addition, the Boussinesq

approximation r � ðnr?/Þ � nr2
?/ has been used to sim-

plify the divergence of the polarization current (see, e.g., Refs.

21–23 for a discussion of the Boussinesq approximation).

We note that in Eqs. (1)–(5), as well as in the remainder

of the present paper, n is normalized to a reference value n0,

Te to a reference value Te0, / to Te0/e, vke and vki to

cs0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
, and t to R/cs0. Perpendicular and parallel

lengths are normalized, respectively, to qs0 ¼ cs0=Xci and R.

In the present study, we consider the SMT geometry, in

which a vertical magnetic field Bv, superimposed on a toroidal

field Bu, creates helicoidal field lines with both ends terminat-

ing on the torus vessel. The number of field line turns in the

torus is therefore N ¼ Lv=D, being D ¼ 2pRBv=Bu the return

distance of a field line in the poloidal plane. We denote the per-

pendicular coordinates with x and y, being x (0 	 x 	 Lx) the

radial coordinate, and y (0 	 y 	 Ly) the coordinate perpendic-

ular to both x and the magnetic field. In the limit of Bv � Bu,

considered herein, y tends to correspond to the vertical direc-

tion. We use u for the periodic toroidal direction, 0 	 u < 2p.

In the SMT geometry, the expression for the operators assumes

a relatively simple form: r2
? ¼ @2

x þ @2
y ; ½f ; g� ¼ @xg@yf �

@xf@yg; Ĉ ¼ @y andrk ¼ @u þ D=ð2pRÞ@y.

In Ref. 12, a set of boundary conditions is derived to

describe the interface with the magnetic sheath interface,

where the ion drift approximation, d=dt� xci, breaks down.

The boundary conditions, used here at the top and bottom

ends of the vertical domain, are

vki ¼ 6cs; (6)

vke ¼ 6cs exp K� /=Teð Þ; (7)

@n

@y
¼ 7

n

cs

@vki
@y

; (8)

x ¼ �cos2 D
2pR
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@y

	 
2

6cs

@2vki
@y2

" #
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@/
@y
¼ 7cs

@vki
@y

; (10)
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@Te

@y
¼ 0; (11)

where K� 3.

We note that the SMT magnetic configuration can also be

visualized as a flux tube that wraps around the torus N times,

with vertical extensions D and length in the parallel direction

2pN. As a matter of fact, as blobs are structures aligned to the

magnetic field, in order to describe more conveniently

their dynamics, we also introduce a flux tube coordinate sys-

tem, (v, n, f): v coincides with the radial coordinate x; n
matches the vertical direction and extends over the vertical

extension of the flux tube, �D=2 	 n < D=2; and f is a coor-

dinate parallel to the magnetic field, defined such that its ori-

gin, f¼ 0, is at the position for which u ¼ 0 that is closest to

the field line midpoint.

The drift-reduced equations were implemented in

GBS,11 a turbulence code that was first developed to study

plasma turbulence in basic plasma physics devices, in partic-

ular, in linear devices such as LAPD24 and in the SMT ge-

ometry such as TORPEX,13–16 and it has now been ported to

the tokamak SOL geometry.17–19 A validation exercise of

GBS results has been performed against experimental data

from the TORPEX device.16,25 In GBS, spatial derivatives

are expressed using second-order finite difference scheme,

except for the Poisson bracket terms that are described with

the Arakawa scheme.26 Time advance is performed with a

standard fourth order Runge-Kutta solver. The detailed

description of the algorithm used by GBS is presented in

Ref. 11.

III. BLOB VELOCITY SCALING WITH SIZE

It is useful, in order to aid the interpretation of the three-

dimensional blob simulations, to briefly review the physical

effects governing blob propagation. We develop a blob ve-

locity scaling as a function of the blob size, which can then

be compared against our simulation results. We first note

that, by neglecting gyroviscous effects, the vorticity equation

in the drift-reduced model, Eq. (2), can be written as

r � j? þr � jk þ r � jpol

� �
=n ¼ 0, i.e., it involves the sum of

the divergence of the diamagnetic, parallel, and ion polariza-

tion currents. This form of the vorticity equation highlights

the principal driving and damping mechanisms for blob

motion. The diamagnetic flow is almost incompressible, and

only a term associated to magnetic field curvature enters the

dynamics, the so-called interchange drive, r � j? ¼ 2ĈðpeÞ.
This term drives a dipole structure and constitutes the driving

mechanism for blob propagation. The parallel current flows

along the magnetic field lines, weakening the curvature-

driven dipole and damping the blob motion. The remaining

charge must then be compensated by the flow of the polariza-

tion current, which eventually gives rise to secondary insta-

bility. The polarization current contribution is expressed as

r � jpol=n ¼ @txþ R /;x½ � � vkirkx.

In order to evaluate the contribution of the parallel current

term, r � jk, we assume a weak dependence of the plasma

properties in the direction parallel to the magnetic field lines,

and we integrate the vorticity equation in this direction. The

parallel current contribution to the vorticity is integrated along

the field line, reducing to the contribution of the sheath currents,

j6k ¼ 6rncs½1� expðK� /=TeÞ�. Here, ncs refers to the den-

sity and sound speed at the center of the blob and r denotes the

ncs drop from the center of the blob to the sheath entrance (it is

typically assumed r ’ 1/2). This yields jk � 2rncs
~/, having

assumed relatively small perturbation from the equilibrium

state, i.e., ½1� expðK� /=TeÞ� 
 /� KTe ¼ ~/, where ~/ is

the floating potential. The resulting model is as follows:

@x
@t
þ R /;x½ � ¼ 2

p

@p

@y
� 2

rncs

Lc

~/: (12)

The density and temperature equations are combined, obtain-

ing an equation for the pressure, which can help estimating

the magnitude of the diamagnetic currents. The leading order

terms yield

@p

@t
þ R /; p½ � ¼ 0: (13)

The derivation of the scaling of the blob velocity now

closely follows Ref. 7. We assume that the blob is a pressure

monopole associated to a potential dipole. Since E�B drifts

propel the blob motion, it can be inferred that ~/ 
 /

 v?a?. The terms of Eq. (12) are now approximated at the

maximum positive potential of the dipole using the following

expressions: @p=@y 
 �pb=a?; r?/ ¼ 0; x 
 �/=a2
?, and

@t þ R /;½ � 
 cint (pb is the blob peak pressure in excess of

the background pressure p0 and cint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2R=a?

p
is the refer-

ence interchange growth rate). Defining v0 ¼ 2Lc=R2
� �1=5

and using a0 ¼ 4L2
cR

� �1=5
, we recover the expression

v? ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a?=a0

p
1þ 2

ffiffiffi
2
p

r a?=a0ð Þ5=2

" #
pb

p0 þ pb
: (14)

It is readily verifiable, from Eq. (14), that v? 

ffiffiffiffiffiffi
a?
p

in the

limit a? � 1 and, conversely, that v? 
 1=a2
? in the limit

a? � 1. The size of the fastest moving blobs can be found

by optimizing v? with respect to a?=a0, which gives

a?=a0 ¼ 18r2ð Þ�1=5 � 1.

IV. THREE-DIMENSIONAL SIMULATIONS OF SEEDED
BLOBS

We carry out simulations of a seeded blob structure

localized in the perpendicular plane and elongated in the par-

allel direction. The initial condition for the density and tem-

perature profiles is given by

n ¼ n0 þ nbfb (15)

and

T ¼ T0 þ Tbfb; (16)

where

fbðv; n; fÞ ¼ exp �log 2
ðv� v0Þ2 þ n2

a2
?

þ f2

a2
k

" #( )
(17)
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and n0, nb, T0, and Tb are the background and blob densities and

temperatures, respectively. The blob is initially centered at the

radial position v¼ v0, and a? and ak define the initial perpen-

dicular and parallel blob sizes. The initial condition is defined in

such a way that the blob density drops to n ¼ n0 þ nb=2 at the

contour where ½ðv� v0Þ2 þ n2�=a2
? þ f2=a2

k ¼ 1. Therefore,

the blob sizes a? and ak indicate the half-width of the

half-maximum density or temperature of the blob in the perpen-

dicular and parallel directions.

The electric potential is initialized such that a vertical

dipole structure is created around the blob. A small, radial,

outward E�B velocity localized at the center of the blob

results upon initialization. The initial potential is given by

the expression

/ ¼ � @n

@y
: (18)

We have carried out a sensitivity study to evaluate the choice

of initial condition for /, finding no discernible effect in the

dynamics after t ¼ 0:01R=cs due to the strength of the initial

dipole. Since in TORPEX geometry, we expect that blobs

originate from an interchange instability, which is character-

ized by a dipole potential structure, we did not attempt initial

FIG. 1. Perpendicular plane snapshots of n (left), / (center), and jk (right) are plotted (top to bottom) at t¼ 0, 0.24, 0.48, and 0:72R=cs at the poloidal plane

defined by f¼ 0. The blob is initialized with a? ¼ a0; ak ¼ Lc=4.
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conditions such as / ¼ 0 or / / n. The initial conditions for

the parallel velocities are obtained by requiring a balance

between the leading order terms in Ohm’s law, Eq. (3), that

also satisfies Bohm’s condition at the boundaries. The paral-

lel velocities are initialized as follows:

vki ¼ cs
2y

Lv
� 1

	 

; (19)

vke ¼ vki �
1

�n
rk/�

Te

n
rn� 1:71rkTe

� �
; (20)

where cs is here the sound speed at the magnetic presheath

entrance, as given by the initial temperature profile, Eq. (16).

Equations (15)–(20) together with the Poisson equation x ¼
r2
?/ define all the initial conditions required to carry out

three-dimensional simulations of blob dynamics.

The following parameters are used herein to simulate

SMT blob dynamics: R¼ 500, Lv ¼ Lx ¼ 200, N¼ 2, �¼ 0.1,

which give approximately n0 � 1017m�3 and T0� 1 eV. The

grid resolution is nz¼ 64 in the toroidal direction and

nv¼ nx¼ 256 in the perpendicular plane, which results in 32

toroidal modes and a vertical and horizontal resolution of

0.78qs0. The time step used for Runge-Kutta integration is

Dt ¼ 10�4. The initial blob position is v0¼ 40,

n0¼T0¼ 0.67, nb¼ Tb¼ 2, and we consider the following

perpendicular sizes: a? ¼ 0:2; 0:4; 0:6; 0:8; 1; 1:2; 1:4; 1:6;f
1:8; 2ga0, where a0 ¼ 4L2

cR
� �1=5 � 13 is the reference blob

size, the connection length for this SMT configuration being

given by Lc ¼ 2pN ¼ 4p. For each a?, three different longi-

tudinal sizes have been considered, ak ¼ 1=4; 1; 5f gLc,

respectively, corresponding to detached, connected, and

flute-like initial conditions.

As an example, we discuss the propagation of a blob

with a? ¼ a0 and ak ¼ Lc=4, which is typically the most

structurally stable size. Snapshots of n (left), / (center), and

jk (right) are shown in Fig. 1. Starting from its initial posi-

tion, the blob propagates in the direction of the outer wall of

the SMT, propelled by an E�B drift resulting from a poten-

tial dipole structure. As the blob accelerates, it rapidly

deforms into a mushroom-shaped structure due to the verti-

cal variation of the dipole strength, which results in a higher

velocity at the center of the structure. Following this phase

of the dynamics, turbulent structures form, leading to the

FIG. 2. Parallel plane snapshots of n (left), / (center), and jk (right) are plotted (top to bottom) at t¼ 0, 0.24, 0.48, and 0:72R=cs. The blob is initialized with

a? ¼ a0; ak ¼ Lc=4.
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break-up of the blob. During this time, the blob can travel a

significant portion of the radial extension of the vessel.

There is an upward motion of the blob structures that is

more noticeable in cases with ak ¼ Lc=4. We also note that

all turbulent structures appear to remain approximately field

aligned, i.e., the presence of drift wave instability is not eas-

ily identifiable. In contrast with Refs. 9 and 10, here the blob

propagation and stability appear to be only moderately

affected by 3D effects such as drift waves or the Boltzmann

rotation effect.

The typical dipole structure of the potential remains dur-

ing the blob propagation, although an asymmetry in /
between the upper and lower lobe forms. The parallel current

associated with the blob, plotted on the right column of

Fig. 1, becomes very small where the blob density peaks. In

fact, most of the current seems to be driven near the sheath

entrance.

In order to illustrate the parallel dynamics, we plot n, /,

and jk in Fig. 2 on the plane parallel to the peak blob density.

These snapshots show the blob winding around the torus

with periodicity N¼ 2. The potential dipole is strongest close

to where the density peaks, about Lc/2 away from the sheath.

The parallel current appears to drive a closed circuit

exchanging charge between the sheaths and the blob, with jk
being negligible near the blob density peak.

We focus our analysis on the blob radial velocity, which

is calculated as the time rate of change of the blob front posi-

tion. The latter is defined as the horizontal point of maximum

@vn within the vertical range �2a? < n < 2a?. For simplic-

ity, we have considered the motion in the poloidal plane

defined by u ¼ 0. Figure 3 shows the instantaneous blob

speed as a function of time for simulations with a? ¼ f0:6;
1; 1:4ga0 (left, center, right), which allows us to make some

observations concerning blob propagation. There is an initial

maximum in the speed, which is mainly due to the displace-

ment of the blob peak towards the front. Occasionally, there

are additional peaks which can result from mass ejections or

even a splitting of the blob. The blob with a? ¼ 0:6 propa-

gates for roughly 0:7R=cs before it is destroyed by secondary

instability, while the larger blobs are able to propagate for lon-

ger times.

Figure 4 shows the mean blob velocity, vb, as a function

of the initial sizes a? and ak. Obtaining vb involves a time

average that avoids the initial acceleration stage and the final

stage when the blobs become unstable and break up. As

expected from Eq. (14), vb peaks around a? ¼ a0. The prop-

agation of the blob is damped at small sizes by the polariza-

tion current and at larger sizes by the parallel current.

The predictions of Eq. (14) are superimposed in Fig. 4.

Note that, since the simulations are carried out using a global

three-dimensional model, the sheath currents evolve self-

consistently with the plasma dynamics, leading to r< 1/2.

For blobs with ak� Lc, we observe r � 1/8 and pb=ðpb þ
p0Þ � 0:93, while blobs with ak ¼ Lc=4 we observe r � 1/6

and pb=ðpb þ p0Þ � 0:89. The analytical scaling, Eq. (14),

matches the simulation data very well, especially for

ak� Lc. In addition, we have plotted the analytical scaling

obtained using the commonly used approximation r¼ 1/2,

finding that v? is underestimated by a factor of 4 for large

a?=a0. In fact, the parallel current damping term in our simu-

lations is much weaker than expected from the previous two-

dimensional simulations,8 where an analytical form for the

sheath current with r¼ 1/2 is imposed in the vorticity

equation.

In order to gain further insight into our simulation

results, we have reconstructed Eq. (2) by applying finite

difference formulas on the simulation data to reconstruct

r � j?=n and r � jk=n. The time derivative of the vorticity,

which represents the divergence of the polarization current,

is obtained from r� jpol=n¼�r� j?þ jk
� �

=n. (Additionally,

FIG. 3. Instantaneous blob front velocity as a function of time is shown for simulations with initial blob sizes a? ¼ 0:6; 1:0, and 1.4a0 (left, center, and right

panels, respectively). In each case, the velocity is plotted for ak ¼ Lc=4;Lc; 5Lc (blue, red, and green lines, respectively).

FIG. 4. Mean velocities obtained from GBS seeded blob simulations with

a? ¼ 0:2� 2:0a0; ak ¼ Lc=4; Lc; 5Lc (blue diamonds, red squares, and

green circles, respectively) are compared against the predictions stemming

from Eq. (14) using: r¼ 1/8 with pb/(pbþ p0)¼ 0.93 (solid line); r¼ 1/6

with pb/(pbþ p0)¼ 0.89 (dashed line); and finally, r¼ 1/2 with

pb/(pbþ p0)¼ 0.93 (dotted line).
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we have verified that the diffusion term Dxr2
?x is negligible

with respect to the divergence of the considered currents.)

This procedure allows us to evaluate the different compo-

nents of the vorticity equation.

As an example, in Fig. 5, we plot separately the curva-

ture, parallel damping, and polarization terms (left, center,

and right columns) for blobs with a? ¼ 0:6a0; 1:0a0; 1:8a0

(top, center, and bottom rows) and ak ¼ Lc at t¼ 0.16. We

choose the perpendicular plane defined by u ¼ 5p=3 in order

to show one portion of the blob near its peak alongside

another part of the blob near the sheath. The curvature drive

(left column) is balanced by the sum of parallel damping and

FIG. 6. Parallel current (toroidal plane view at x¼ 82) is plotted as a vector field at t¼ 0.48 for blobs of size ab¼ 1.8, ak ¼ Lc=4 (left) and ak ¼ Lc (right). The

color indicates the magnitude of ncs.

FIG. 5. Balance between the divergence of diamagnetic, parallel, and polarization currents (left, center, and right columns) is plotted for simulations with

a? ¼ 0:6a0; 1:0a0; 1:8a0 (top, center, and bottom rows) and ak ¼ Lc at t¼ 0.16, u ¼ 5=3p.

022305-7 Halpern et al. Phys. Plasmas 21, 022305 (2014)



polarization terms (center and right rows). First, we note an

asymmetry of the damping mechanisms between the upper

and lower lobes near the blob peak. In the upper lobe, the

curvature term is balanced almost completely by the polar-

ization current, while on the lower lobe there is a similar

contribution from both damping mechanisms. Second, we

observe that as the blob size increases, the parallel current

damping term becomes larger. It is estimated that about 60%

of the curvature drive is balanced by parallel currents,

although the polarization effect remains significant. Notably,

it is observed that polarization currents remain important

even at large blob sizes, a symptom of the decreased impor-

tance of the parallel current damping observed in our

simulations.

Finally, the flow of parallel currents along the blob

structure is plotted in Fig. 6 at x¼ 82. The background color

represents ncs, while the arrows indicate the magnitude and

direction of the current. The parallel current attains a large

magnitude near the sheath and a significant drop of ncs is

observed. The density losses are stronger at the lower sheath,

with r� 1/8. Using the plotted quantities, we have evaluated

rkj as well as the linearized expression for the sheath cur-

rent term rkjk 
 ncs/� KTe. Both of these results are con-

sistent with the use of r � 1/8 in Eq. (14).

V. CONCLUSIONS

The propagation of single-seeded blobs in the SMT

geometry has been studied using global three-dimensional

non-linear simulations (Eqs. (1)–(5)). We have carried out a

simulation scan in order to understand the scaling of the blob

velocity respect to blob size.

By considering the blob sizes a? ¼ 0:2� 2:0a0 and

ak ¼ Lc=4; Lc; 5Lc, we find that the blob propagation mech-

anisms in three-dimensional simulations are akin to their

two-dimensional counterparts: the interchange drive creates

and sustains an electric dipole that propels the blob for-

ward. The dipole is then partially compensated by parallel

and polarization currents, which regulate the maximum

attainable speed. As we would expect from the analytical

theory, blobs are fastest when a? � a0, and in this case

v? 
 v0.

In particular, a generalization of the v? scaling given in

Ref. 7, derived for arbitrary ncs losses at the sheath, is com-

pared to the simulation results. In order to derive this scaling,

the vorticity equation is integrated along the magnetic field

lines, paying special attention to the parallel current damping

term. In principle, it is sufficient to use the typical sheath

current estimate rkjk � 2rncs/=Lc, provided that a good

estimate of r is available. The dimensionless scaling arising

from this model, Eq. (14), matches the simulation data very

well, provided that the value of r found in the non-linear

simulations is used. We have found, however, that the com-

mon assumption r¼ 1/2 is in fact not fulfilled in our simula-

tions. This approximation gives rise to a large overestimate

of the parallel current damping at large blob sizes.

A detailed balance of the divergence of the currents has

been shown. As expected, polarization currents play an im-

portant role when a? < a0, while parallel currents become

more important when a?�1. However, we have found that

the effect of parallel currents is weaker than in the two-

dimensional case, where the sheath current is imposed as a

damping term in the vorticity equation. In our simulations,

on the other hand, the density and the parallel current evolve

self-consistently. The result is that a current circuit forms

between the sheaths and the blob, carrying much of the

plasma towards the plasma facing components and causing

parallel density losses far surpassing the r¼ 1/2 assumption.

As a consequence, the interchange drive is reduced near the

sheath, and parallel currents in this region are partially bal-

anced by polarization currents. The polarization current

drives secondary instability, reinforcing the density losses.

In fact, the blob is almost immediately destroyed near the

sheath, and the initial ak plays essentially no role in the dy-

namics provided that ak�Lc. Altogether, these effects result

in a considerably faster blob motion in three-dimensional

simulations, when compared with previous two-dimensional

work.
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