
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Deplancke, président du jury
Prof. D. Floreano, Prof. M. Affolter, directeurs de thèse

Prof. E. Hafen, rapporteur
Dr J. J. Rice, rapporteur

Prof. M. Unser, rapporteur

From genes to organisms: Bioinformatics
System Models and Software

THÈSE NO 6081 (2014)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 21 FÉVRIER 2014

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE SYSTÈMES INTELLIGENTS

PROGRAMME DOCTORAL EN BIOTECHNOLOGIE ET GÉNIE BIOLOGIQUE

Suisse
2014

PAR

Thomas SCHAFFTER

Acknowledgements

Although presented as a personal contribution to science, this thesis would not have been

possible without the collaboration and support of many people.

First of all, I would like to thank my thesis directors Prof. Dario Floreano and Prof. Markus

Affolter. Before joining the Laboratory of Intelligent Systems (LIS), I had specialized in robotics

and artificial intelligence for my Master degree. Dario and his collaborators made me discover

another exciting field, computational biology. I wish to express my gratitude to Dario for

providing me with the freedom to develop my research, and for giving me his support and

trust. Moreover, he gave me precious advices on how to organize and expose scientific ideas,

which is invaluable for my professional experience. I also want to thank Markus for having

accepted to co-supervise this thesis and for sharing with me his expertise and never ending

enthusiasm for molecular and developmental biology.

I would like to thank Prof. Bart Deplancke, Prof. Michael Unser, Prof. Ernst Hafen, and Dr John

Jeremy Rice for having accepted to be members of my thesis committee, and for their time

and effort in reviewing this work. Thanks are also due to the Swiss Initiative in Systems Biology

SystemsX.ch for funding the WingX project and my research. I particularly value the unique

opportunity to meet many researchers from different backgrounds (biology, mathematics,

physics, computer sciences, etc.) and research groups all over Switzerland including ETH

Zurich, Universities of Zürich, Bern and Basel, and EPFL.

An important contribution of my PhD is the development and implementation of many meth-

ods and computational tools. This gave me a unique opportunity to learn from many research

fields including computational biology, artificial intelligence, optimization algorithms, graph

and network theory, image analysis, information visualization and human-computer interac-

tion. I was also able to develop extensible and user-friendly computational tools, which are

available today to a broad community of biologists and computer scientists. However, this per-

formance would not have been possible without the contribution of few people. I would like

to thank Dr Daniel Marbach for making me discover the world of computational biology and

for his collaboration on GeneNetWeaver and the DREAM project; Dr Ricard Delgado-Gonzalo

for his expertise on active contour segmentation (also known as snakes) and for his fruitful

collaboration on WingJ ; Dr Fisun Hamaratoglu for having accepted to follow me on the WingJ

project and for providing us with hundreds of confocal fluorescence images of the wings of

iii

Acknowledgements

fruit flies (Drosophila melanogaster); and Dr Aitana Neves da Silva for answering countless

questions about the development of the Drosophila embryo.

My other colleagues at the Laboratory of Intelligent Systems also deserve my gratitude. I would

like to thank Dario once again for creating such a friendly and stimulating atmosphere at his

lab, and for entrusting me with the role of system administrator. Moreover, I want to thank the

members of the Evolutionary group for constructive discussions: Dr Daniel Marbach, Dr Peter

Dürr, Dr Claudio Mattiussi, Dr Pradeep Fernando, Andrea Maesani and Trevis Alleyne. To all

the others, thank you for the great discussions, cooking battles, movie nights, evenings at Sat

and, more generally for the great time we had!

I would like to express my sincere gratitude to Michelle Wälti, Anouk Hein, and Sonja Bodmer

for their availability and efficient work in helping me out with administrative matters. I also

want to thank Claude Waeber from the Audiovisual group for assisting me with the setting of

the multi-point video conferences with Zürich, Bern, and Basel. Also thanks to EPFL to who I

own most of my scientific and engineering education, and for providing me with a dynamic

and creative environment.

I take this opportunity to thank all my friends who supported me through all these years. A

special thanks goes to Yannick Weibel and Severin Leven for making sure I had a social life

besides my PhD, and Léda Gerber for the great time. To all the others, I don’t cite your names

but thank you for the unforgettable memories.

Finally, this work would not have been possible without the support of my family. Thank you to

my parents Danièle and Vital who always encouraged me in my work and provided a nurturing

environment. Thank you also to my brothers Clément and Gautier for their unconditional

support through all these years.

Lausanne, December 2013

iv

Abstract

The expression of genes is controlled by regulatory networks, which perform specific functions

in a cell. Gene networks play a crucial role in the development of multicellular organisms

by precisely coordinating spatial and temporal gene expression patterns during different

developmental stages. Unravelling and modelling these networks is of key importance to

gain eventually a complete understanding of developmental processes and genetically related

diseases. In this thesis, we present a comprehensive framework for reverse engineering

gene regulatory networks, which required the development of many methods in very diverse

research fields. A second important contribution is their implementation as extensible, user-

friendly and open source computational toolsa.

Over the last decade, numerous methods have been developed for inference of regulatory net-

works from gene expression data. However, relatively little effort has been put into evaluating

the performance of those methods due to the difficulty of constructing adequate benchmarks

and the lack of tools for a differentiated analysis of network predictions on such benchmarks.

Here, we describe a novel and comprehensive method for in silico benchmark generation

and performance profiling of network inference methods available to the community as an

open-source software called GeneNetWeaver (GNW). In addition to the generation of detailed

dynamical models of gene regulatory networks to be used as benchmarks, GNW provides a

network motif analysis that reveals systematic prediction errors, thereby indicating potential

ways of improving inference methods. The accuracy of network inference methods is eval-

uated using standard metrics such as precision-recall and receiver operating characteristic

(ROC) curves. Furthermore, we used GNW to provide the international DREAM (Dialogue for

Reverse Engineering Assessments and Methods) competition with three network inference

challenges (DREAM3, DREAM4, and DREAM5). In the context of the DREAM competition, 91

teams submitted about 900 network predictions to evaluate the performance of their methods

on GNW-generated benchmarks. Today, the accuracy of more than 25,000 gene network

reconstructions have been evaluated by GNW users.

Gene regulatory networks are often organized into groups, modules or community of related

genes and proteins carrying out specific biological functions. Here, we also address the ratio-

nal decomposition of (reconstructed) biological networks into function modules. We present

atschaffter.ch

v

http://tschaffter.ch

Abstract

an extensible and modular framework for community structure detection in networks called

Jmod. Jmod implements state-of-the-art community structure detection methods including

Newman’s spectral algorithm and a genetic algorithm-based modularity optimization method

that we developed. The performance of these methods has been evaluated on biological and

in silico networks. The application of these methods is actually not limited to gene regulatory

networks as they can also provide insight into the community structure of neural, social,

and technological networks, for instance. However, modularity optimization methods are

known to be affected by a resolution limit that makes them fail to detect small communities in

large networks. Although several attempts have been proposed to overcome this limitation

of modularity based methods, none of them solves it in a satisfactorily manner. Therefore,

a community voting method was developed and implemented for combining multiple par-

titions obtained using our GA-based method into one partition more robust and reliable

than the individual partitions. We have shown that this approach successfully overcome the

resolution limit. Furthermore, our method is best performer along with another method in

a comparative analysis that profiled the performance of twelve state-of-the-art community

structure detection algorithms.

The reconstruction of a developmental gene network in its spatial context remains a conside-

rable challenge. One of the reason is that this process requires tremendous amount of spatial

and temporal gene expression data, which are usually available in very limited quantities

due to the inherent difficulty in measuring gene expression in an entire organism. Another

contribution of this thesis is the development of an image processing application named

WingJ for unsupervised and systematic quantification of the developing Drosophila wing,

which is a classical model for studying the genetic control of tissue size, shape and patterning.

First, a parametric model of the morphology or structure of the Drosophila wing is inferred

from fluorescence images. The segmentation method is based on the design of multiple image

processing detection modules, each focusing on the extraction of a specific feature of the wing

structure including its orientation. The approach was later extended to the detection of the

Drosophila embryo. The inferred structure model was then used as a convenient coordinate

system for measuring gene and protein expression levels. An important feature of the obtained

expression maps is that they can be used to compare domains of expression in differentiated

systems, for example to visualize the difference in patterns of gene activity between wild

type and mutant wings or in wings imaged at different time points during development.

Moreover, a robust, multiscale quantitative description of the developing wing is obtained by

combining morphological and gene expression information from multiple wings, completed

by the output of an automatic cell nuclei detection method that we have developed. We

have used the above method to automatically generate robust quantitative descriptions of

wild-type and mutant (pent deficient) Drosophila wings imaged at 80, 90, 100, and 110 hours

after egg laying. Furthermore, we have shown that these quantitative descriptions can be used

to unravel the regulatory interactions of a six-gene wing developmental network.

Keywords: gene networks, community detection, data integration, reverse engineering,

Drosophila wing, image segmentation, multiscale models, computational tools

vi

Résumé

L’expression des gènes résulte de leur organisation en réseaux ce qui permet l’exécution

de tâches bien définies dans la cellule. Les réseaux de gènes jouent un rôle crucial dans

le développement des organismes multicellulaires en contrôlant précisément le domaine

d’expression des gènes dans l’espace et au court du temps. L’identification et la modélisation

de ces réseaux est de première importance pour améliorer la compréhension des processus de

développement cellulaire et des maladies génétiques. Dans cette thèse, nous présentons un

environnement permettant la reconstruction de ces réseaux. Cet environnement a nécessité

le développement d’un nombre important de méthodes dans des domaines de recherche très

variés. Une autre contribution importante est leur implémentation en une suite de logicielsb

extensibles et facile d’utilisation.

Un grand nombre de méthodes ont été développées pour reconstruire des réseaux de gènes à

partir de leur niveau d’expression. Cependant, des efforts relativement faibles ont été consen-

tis pour les évaluer, ce qui est principalement dû à la difficulté de générer des scénarios de

test réalistes et du manque d’outils pour évaluer leur performance sur de tels benchmarks.

Nous décrivons ici une nouvelle approche de génération de scenarios de test in silico et l’éva-

luation des performances. Nous avons implémenté cette solution dans un logiciel nommé

GeneNetWeaver (GNW). En plus de la génération de réseaux de gènes « virtuels » pour l’évalua-

tion des méthodes, GNW fournit un outil pour une analyse de motifs de réseaux mettant en

évidence les erreurs systématiques inhérentes à la méthode, donnant ainsi des indications

pour son amélioration. La qualité de la reconstruction est également évaluée en utilisant des

mesures standards telles que les courbes «precision-recall» ou ROC. Par ailleurs, nous avons

utilisé GNW pour générer des réseaux de gènes virtuels pour la compétition internationale

DREAM (Dialog for Reverse Engineering Assessments and Methods) trois années consécutives

(DREAM3, DREAM4 et DREAM5). A cette occasion, 91 équipes ont généré 900 prédictions de

réseaux de gènes que nous avons construits en utilisant GNW. Aujourd’hui, plus de 25’000

reconstructions de réseaux de gènes qui ont été évaluées par des utilisateurs de GNW.

Les réseaux de gènes sont généralement organisés en groupes, modules ou communautés

de gènes réalisant des fonctions biologiques bien spécifiques. Une autre contribution de

cette thèse est l’identification de ces modules dans des réseaux de gènes (précédemment

btschaffter.ch

vii

http://tschaffter.ch

Résumé

reconstruits). Une méthode extensible et modulaire est présentée pour détecter la structure

de communautés de ces réseaux. Cette méthode est inclue dans un logiciel appelé Jmod qui

implémente quelques-uns des meilleurs algorithmes tels que la méthode spectrale de Newman

et une nouvelle méthode basée sur un algorithme génétique que nous avons développée.

Les performances de ces méthodes ont été évaluées en utilisant des réseaux biologiques

et artificiels. Leur application n’est toutefois pas limitée aux réseaux de gènes mais peut

également se révéler utile pour analyser des réseaux sociaux, technologiques ou encore de

neurones. Cependant, les méthodes basées sur l’optimisation d’un critère appelé «modularité»

sont connues pour avoir une résolution limitée qui ne leur permet pas de détecter de petites

communautés dans de grands réseaux. Plusieurs tentatives ont été proposées pour résoudre

ce problème mais aucune d’entre elles n’a permis de résoudre ce problème de manière

satisfaisante. C’est pourquoi nous avons développé une méthode permettant de combiner

plusieurs structures de communautés pour obtenir une seule structure qui soit à la fois plus

robuste et fiable que les structures individuelles. Nous avons montré que cette approche

parvient avec succès à surmonter ce problème de résolution. De plus, notre méthode obtient

la première place ex aequo avec une autre dans une étude comparant la performance de douze

des meilleures algorithmes proposés à ce jour.

La reconstruction de réseaux de gènes impliqués dans le développement d’organismes multi-

cellulaires reste un challenge considérable, puisque ce processus requiert une énorme quantité

de données spatiales et temporelles qui n’est généralement pas disponible du fait de la diffi-

culté à mesurer le niveau d’expression des gènes dans un organisme. Une autre contribution

de cette thèse est le développement d’une application d’analyse d’images appelée WingJ pour

la quantification automatique et systématique de l’aile de la drosophile, qui est un modèle

classique pour l’étude du développement des tissus. Tout d’abord, un modèle paramétrique

de l’aile est construit automatiquement à partir d’une image 3D. La méthode de segmentation

est composée de plusieurs modules de détection, chacun ayant pour tâche d’identifier un

élément différent de la structure de l’aile ainsi que son orientation. Cette approche modulaire

nous a permis d’étendre la méthode de détection à l’embryon de la drosophile. Le modèle de

la morphologie ou structure de l’aile identifié est ensuite utilisé pour mesurer et cartographier

l’expression des gènes. La représentation obtenue permet de comparer les domaines d’activité

des gènes dans des ailes normales et mutantes ou dans des ailes imagées à différents moments

de leur développement. Par ailleurs, une représentation robuste et multi-échelles de l’aile de la

drosophile est générée en combinant les données morphologiques et d’expression des gènes

de plusieurs ailes, complétée par le résultat d’une méthode de détection des noyaux de cellules

également développée dans le cadre de cette thèse. Nous avons utilisé la méthode décrite

ci-dessus pour générer de manière automatique un modèle robuste d’ailes de drosophiles

normales et mutantes imagées à 80, 90, 100, et 110 heures après le dépôt de l’œuf. Finalement,

nous avons montré que ces modèles quantitatifs peuvent être utilisés pour reconstruire un

réseau d’interactions contenant six gènes responsable en partie du développement de l’aile.

Mots-clés : réseaux de gènes, détection de modules, intégration de données, ingénierie inverse,

aile de drosophile, segmentation d’image, modèles multi-échelles, outils informatiques

viii

Contents
Acknowledgements iii

Abstract (English/Français) v

1 Introduction 1

1.1 Motivation and challenges . 2

1.2 State of the art . 3

1.2.1 Benchmark generation for network inference methods 3

1.2.2 Community structure detection in complex networks 4

1.2.3 Quantification of multicellular organisms for gene network inference . . 5

1.3 Introduction to the development of the Drosophila wing 5

1.4 Original contribution . 6

1.5 Organization of the thesis . 11

2 In silico benchmark generation and performance profiling of network inference

methods 15

2.1 Introduction . 16

2.2 Generation of in silico gene networks . 17

2.2.1 Module extraction from global interaction networks 17

2.2.2 Modeling the dynamics of transcriptional gene regulatory networks . . . 21

2.2.3 Synthetic expression datasets . 23

2.3 Performance profiling of network inference methods 23

2.3.1 Evaluation of network inference methods 23

2.3.2 Effect of network structural properties on inference method performance 27

2.3.3 Effect of network size on inference method performance 29

2.3.4 Design of in vivo gene expression experiments 30

2.3.5 DREAM Network Inference Challenges . 31

2.4 Conclusions . 33

3 Extensible and modular community detection in networks 35

3.1 Introduction . 36

3.2 Module detection methods . 37

3.2.1 Newman’s spectral algorithm . 37

3.2.2 Genetic algorithm-based method . 39

ix

Contents

3.2.3 Brute force method . 42

3.3 Refinement methods . 42

3.3.1 Moving vertex method (MVM) . 42

3.3.2 Global moving vertex method (gMVM) . 43

3.4 Evaluation of community structure detection methods 44

3.4.1 Generating Lancichinetti-Fortunato-Radicchi graphs 44

3.4.2 Evaluating the performance of module inference 45

3.4.3 Evaluation of the genetic algorithm parameters 47

3.4.4 Evaluation of the refinement techniques MVM and gMVM 55

3.4.5 Evaluation on LFR benchmark graphs . 57

3.4.6 Resolution limit of modularity optimization methods 61

3.4.7 Community voting method for overcoming the resolution limit 63

3.4.8 Module detection in Drosophila protein interaction map (DPiM) 69

3.5 Conclusions . 70

4 Towards unsupervised and systematic segmentation of biological systems 73

4.1 Introduction . 74

4.2 Unsupervised segmentation of the Drosophila wing pouch 75

4.2.1 Extensible and modular approach . 75

4.2.2 Preliminary detection . 77

4.2.3 Detecting the A/P and D/V compartment boundary intersection 80

4.2.4 Detecting the A/P and D/V compartment boundaries (Part I) 84

4.2.5 Detecting the wing pouch compartments 89

4.2.6 Detecting the outer boundary of the wing pouch 93

4.2.7 Detecting the A/P and D/V compartment boundaries (Part II) 94

4.2.8 Wing pouch structure construction . 96

4.2.9 Inferring the orientation of the wing pouch structure model 97

4.3 Quantification of expression in the Drosophila wing pouch 99

4.3.1 Background subtraction . 99

4.3.2 Mean intensity projection . 99

4.3.3 Definition of the structure coordinate system 100

4.3.4 Generating expression profiles . 100

4.3.5 Generating circular expression maps . 101

4.4 Integration of structure and expression models 105

4.4.1 Integrating structure models . 106

4.4.2 Integrating expression profiles . 110

4.4.3 Integrating circular expression maps . 110

4.4.4 Generating structure and expression aggregated models 112

4.5 Unsupervised cell nuclei detection and segmentation 113

4.6 Drosophila wing pouch model repository . 116

4.7 Inference of the Drosophila wing developmental network 117

4.8 Quantitive description of the developing typeDrosophila wing 122

x

Contents

4.9 Conclusions . 131

5 Discussion and outlook 135

5.1 Main accomplishments . 136

5.2 Future directions . 138

5.2.1 Generating in silico developmental benchmarks 138

5.2.2 Community structure detection in complex networks 139

5.2.3 Unsupervised detection and segmentation of biological organisms . . . 140

5.3 Conclusion . 141

A Supplementary materials 143

B Supplementary notes for Chapter 2 145

B.1 GeneNetWeaver . 145

B.1.1 Topology . 145

B.1.2 Dynamical model . 145

B.1.3 Synthetic expression datasets . 145

B.1.4 Gold standards and network prediction format 146

B.1.5 Evaluation of network inference methods 147

B.2 Network inference methods . 147

B.2.1 Z-score . 147

B.2.2 Pinnal et al. 147

B.2.3 Yip et al. 148

B.2.4 CLR . 148

B.2.5 ARACNE2 . 148

B.2.6 GENIE3 . 148

C Supplementary notes for Chapter 3 151

C.1 Eigendecomposition . 151

C.1.1 Power method . 151

C.1.2 Lanczos algorithm . 154

C.1.3 Evaluation of the power method and Lanczos algorithm 155

C.1.4 GA parameter values . 155

C.2 Pseudocode of MVM . 156

C.3 Pseudocode of gMVM . 157

C.4 Computation time of network module detection methods 159

C.4.1 Improved version of Newman’s algorithm and GA-based method 159

C.4.2 Brute force method . 161

C.5 Detection of the Snap/SNARE in DPiM . 161

D Supplementary notes for Chapter 4 163

D.1 Generation of quantitative datasets . 163

D.1.1 Sample collection . 163

D.1.2 Immunostainings and image acquisition 163

xi

Contents

D.1.3 Antibodies and dad-GFP . 164

D.1.4 Preparation for image processing . 164

D.2 Additional information about the spline-based snake 165

D.3 Unsupervised segmentation of the Drosophila embryo 166

E Numerical integration of SDEs 169

E.1 Introduction . 169

E.1.1 Itô and Stratonovich SDEs . 169

E.1.2 Standard Wiener process . 171

E.1.3 Discretized Brownian motion . 171

E.2 Numerical integration . 171

E.2.1 Iterative methods . 171

E.2.2 Explicit order 0.5 strong Taylor scheme . 172

E.2.3 Explicit order 1.0 strong Taylor scheme . 173

E.2.4 Explicit order 1.5 strong Taylor scheme . 174

E.3 Convergence . 175

E.4 libSDE: Java library for simulating SDEs . 175

E.4.1 Overview . 175

E.4.2 Example . 176

Bibliography 177

Curriculum Vitæ 191

Publications 195

xii

1 Introduction

Here, we describe the problem of gene network reconstruction or reverse engineering. We

then motivate the development and implementation of a comprehensive method for inferring

biological organisms from automatic and systematic quantification of morphological and

expression information to the generation of in silico multiscale models of the organism. We

subsequently describe the state of the art of the different methods considered, which are the

building blocks of this thesis. We also give a brief introduction to the development of the

Drosophila wing which is used as a case study. Finally, we state the main contributions of this

thesis and give an overview of the following chapters.

1

Introduction

1.1 Motivation and challenges

The expression of genes is controlled by regulatory networks, which perform specific functions

in a cell. Gene networks play a crucial role in the development of multicellular organisms by

precisely coordinating spatial and temporal gene expression patterns during developmental

stages. Unravelling and modelling these networks is of key importance to gain eventually a

complete understanding of developmental processes and genetically related diseases.

Over the last decade, high-throughput assays for mRNA expression have opened the door to the

inference of regulatory networks by allowing simultaneous measurements of the expression

levels of thousands of genes. Technologies such as spotted microarrays1 and oligonucleotide

chips2 have enabled genome-wide quantification of differential gene expression profiles and,

more recently, short read sequencing technologies such as RNA-seq3 have provided more pre-

cise quantification of mRNA levels. Since then, a plethora of methods have been proposed to

reverse reverse genetic networks in single cells4. However, accurate and systematic evaluation

of these methods is hampered by the difficulty of constructing adequate benchmarks and the

lack of tools for a differentiated analysis of network predictions on such benchmarks.

The reconstruction of a developmental gene network in its spatial context, by opposition to

single-cell gene networks, remains a considerable challenge. One of the reason is that this

process requires tremendous amount of spatial and temporal gene expression data, which are

usually available in very limited quantities due to the inherent difficulty in measuring gene

expression in an entire organism.

These challenges bring about the main focus of this thesis:

• Evaluation of network inference methods. The challenge addressed is the develop-

ment of methods and computational tools for the generation of biologically plausible

in silico networks to enable the performance profiling of inference methods on such

benchmarks.

• Unsupervised and systematic quantification of biological organisms. This challenge

consists in the development of an automatic detection and segmentation method for

generating quantitative description of biological systems (organ or body systems). These

descriptions should provide reliable information about the morphology of the system as

well as the expression levels of genes of interest in order to provide meaningful targets

to the reverse engineering algorithm.

Another challenge addressed by this thesis is the development and implementation of extensi-

ble and user-friendly computational tools. In particular, the objective is to provide biologists

and computer scientists with tools they can both use to gain insight into their own research

topic.

2

1.2. State of the art

1.2 State of the art

1.2.1 Benchmark generation for network inference methods

Numerous methods have been developed for inference of gene regulatory networks, however

relatively little effort has been put into evaluating the performance of those methods on ade-

quate benchmarks. So far, three main strategies have been proposed to generate benchmark

networks. A first strategy consists in evaluating network predictions made by reverse engineer-

ing algorithms on well studied in vivo pathways from model organisms5,6. However, those

networks are incomplete maps of the physical interactions in the cell that are responsible

for cellular functions and using them as benchmarks imply making error when evaluating

network predictions. Another strategy consists of genetically engineering synthetic in vivo

networks7,8. The main drawback of this strategy is that only a few small networks are available.

Yet another strategy consists in developing in silico gene regulatory networks that can be sim-

ulated to produce artificial gene expression data. The simulation of in silico networks has the

advantages of being fast, easily reproducible, and less expensive than biological experiments.

A few instances of small in silico networks with handcrafted topologies9 have been proposed

as benchmarks for reverse engineering algorithms. More recently, several generators have

been developed to automate the construction of in silico regulatory networks including up to

thousands of genes to be used as benchmark networks for reverse engineering algorithms10–12.

Benchmark generators such as AGN10 aim to produce in silico gene networks exhibiting

topological properties observed in biological networks using Erdös-Renyi, Watts-Strogatz

(small-world), or Albert-Barabási (scale-free) random graph models. However the structures

generated using random graphs capture only few of the structural properties of gene regula-

tory networks11 and do generally not display important properties such as modularity13 or

occurrences of network motifs, which are statistically over-represented regulatory patterns

in biological networks14. Instead of constructing more complex random structures based on

graph theory, which may be difficult to justify10, SynTReN11 and ReTRN15 chose to generate

network structures by extracting parts of known in vivo regulatory network structures. This

approach has the advantage of capturing several structural properties observed in in vivo

network structures11.

In order to produce gene expression data, the generated structures must be endowed with

dynamical models of gene regulation. Systems of non-linear ordinary differential equations

(ODE) are widely used16,17, but other approaches exist12. ODE systems allow to continuously

describe levels of gene products and rates of reactions taking place in the network models

where biological processes that have not been fully characterized yet are abstracted. Because

current high-throughput technologies do not allow the monitoring of protein expression as

microarrays do for RNA12, some benchmark generators consider mRNA as a proxy for protein

expression and thus do not model translation independently of transcription11,15. Protein

expression, however, does not correlate perfectly with mRNA expression in real biological

systems due in part to different degradation rates of mRNA and protein products18. RENCO16,

3

Introduction

GeNGe17, and GRENDEL19 are examples of available benchmark generators considering both

transcription and translation processes in their respective dynamical models.

1.2.2 Community structure detection in complex networks

Biological interaction networks are often organized into groups or modules of related genes

and proteins carrying out specific biological functions. Over the past few years, many methods

have been proposed to rationally decompose these networks into meaningful or functional

modules, yet this challenging problem has not yet been successfully solved.

Many systems can be described as complex networks where nodes represent individual units

connected by edges depending on their relative interaction or relationship. The structure

of a complex network has features that do not occur in random networks but often occur in

real graphs. Examples include metabolic, protein and genetic interaction networks as well

as neural, social and technological networks20–23. In such networks, there are usually groups

of nodes that are more highly connected to each other than to the rest of the network. Such

groups are usually called modules, communities or clusters20,24. In social networks, nodes often

represent people connected by friendship relations and detecting communities (groups of

friends or people with the same interest, family, etc.) have numerous applications20. In protein-

protein interaction (PPI) networks, there are often groups of proteins that interact tightly in

a same complex6,21. Therefore, the identification of these modules is of great importance to

unravel the structural and functional properties of these networks.

The inspiration for developing novel community structure detection methods has been taken

from diverse fields such as physics, biology, applied mathematics, and computer sciences, for

instance25. Most of the existing algorithms are based on the maximization of a quantity called

modularity, which is used to estimate the goodness of a partition of the network into modules

based on the comparison between the partitioned network and a randomized version of this

network that has the same node degree distribution26,27. Different techniques have been

proposed to find partitions that optimize the modularity. Spectral methods usually perform an

eigendecomposition of the adjacency matrix (the matrix that describe the structure of graph)

or Laplacian matrix in order to describe the solution of the problem as a linear combination of

their eigenvectors27–29. Hierarchical algorithms target the decomposition of the network into

a hierarchy of communities13,30 based either on an agglomerative (each node initially belongs

to its own community) or divisive (all nodes initially belong to the same community) approach.

Another technique consists in applying greedy or stochastic optimization algorithms to find

the partition of the network that obtain the maximum modularity value31–34.

So far, one of the best performer method called Infomap has been developed by Rosvall &

Bergstrom. The idea behind this method is to compress optimally the information obtains

from multiples random walks taking place in the network. The size of the modules inferred

are then proportional to the average time a random walker spends on nodes in the module35.

4

1.3. Introduction to the development of the Drosophila wing

This is carried out rather quickly using a deterministic greed search algorithm31. The result is

then refined using a simulated annealing approach32.

1.2.3 Quantification of multicellular organisms for gene network inference

In this thesis, we are interested in the automatic detection and segmentation of multicellular

systems, namely the Drosophila wing pouch (Section 1.3). The process consists in detecting

the system of interest in a stack of confocal fluorescence images before generating a model

that describes morphological and gene expression information. If the detection, tracking and

gene expression quantification of single-cell organisms has been largely addressed36–38, the

problem of generating a quantitative description of multicellular system such as an entire

organism or organ for gene network reverse engineering is relatively recent.

The only work that shares some similarity with the contribution presented in Chapter 4 has

been recently published by Crombach & Wotton39. The method they propose consists first in

detecting the Drosophila embryo at different time points during development. The detection is

performed using gamma adjustment, Sobel edge detection, and filling of holes. The remaining

blobs are then used as masks to extract the embryo from the images. Embryos are then

manually rotated to place them in a canonical orientation. Embryos are then skeletonized to

identify a line that runs along the anterior-posterior axis of the embryo, which is then used

to measure mRNA expression data. A reverse engineering algorithm previously proposed by

Jaeger40 is finally applied to reconstruct the gap gene network41.

1.3 Introduction to the development of the Drosophila wing

The adult appendages of Drosophila such the wings, legs, antennae and halteres (the balancing

organs of the fly) are derived from imaginal discs42. These imaginal discs form in the embryo

as a small cluster of cells43. During the growth phase, the imaginal discs are mainly composed

of a single-layered sheet of columnar cells, which is contiguous to another layer of cells called

the peripodial membrane (Fig. 1.1). There are two discrete stages that metamorphose the

discs during larval development. During growth, patterning of the discs is dependent on

secreted molecules called morphogens. Examples of morphogens include Decapentaplegic

(Dpp) and Wingless (Wg) which are both required for proper development of the wing imaginal

discs44,45. The number of cells increase by approximately a 1000 fold in four days (during the

larval period) to reach nearly 50’000 cells at a stage of development called late third instar43.

The wing disc includes a region called the wing pouch. In the adult wing, the wing pouch gives

rise to the wing blade while the part surrounding it (called hinge) forms a flexible link attaching

the wing blade to the body wall of the fly. The wing pouch is divided by the anterior/posterior

(A/P) and dorsal/ventral (D/V) compartment boundaries into four compartments46. The

relation between these four compartments of the pouch and the adult wing is introduced in

5

Introduction

53 h 73 h 96 h

Nuclear staining
TO-PRO-3

b

b114 h

A Wild type B Cross sections

50 μm

A

D
b-b

wing pouch

Figure 1.1: Visualization of cell nuclei in Drosophila wing disc with TO-PRO marker. (A) In
our experiments, the nuclei of the columnar cells that compose the wing imaginal disc were
stained with TO-PRO-3 for time points between 53 and 114 hours after egg laying (AEL). (B)
The cross section of the wing discs in panel (A) shows that the imaginal disc is single-layered
and flat in the region of the pouch for the time points considered Video S4, and that it is
composed of columnar cells whose nuclei are at different z locations.

Video S4. We use the expression of Wingless (Wg) labelled with antibodies to visualize the

contour of the wing pouch and the D/V boundary (blue channel in Fig. 1.2). In a similar way,

the A/P boundary can be identified via the expression of Patched (Ptc, also visible on the

blue channel). During eversion, the single-cell layered wing pouch everts to give rise to the

double-layered adult wing47. We consider that the Drosophila wing is a model uniquely suited

for a systems biology approach and for studying the genetic program that governs the growth

and shape of an organ45,48,49.

1.4 Original contribution

Methods

The contribution of this thesis is two-fold. The first contribution consists in the development

and evaluation of many methods in various research fields including computational biology,

artificial intelligence, optimization algorithms, graph and network theory, and image analysis.

First, we present a novel and comprehensive method for in silico benchmark generation and

performance profiling of network inference methods (Fig. 1.3A). The structure of inferred

gene networks can then be rationally decomposed into function modules using an extensi-

ble and modular framework for community structure detection in complex networks with

applications to neural, social, and technological networks (Fig. 1.3B). Moreover, we present

a framework for unsupervised detection and segmentation of the morphology of biological

organisms and organs, quantification of gene and protein expression, and detection of cell

nuclei (Fig. 1.3C). Heterogeneous datasets are then combined to produce robust and reliable

6

1.4. Original contribution

A Wild type

B Pent2-5

80 h 90 h 100 h 110 h

80 h 90 h 100 h 110 h

A

D

50 μm

Figure 1.2: Wild type and pent2-5 Drosophila wing imaginal discs. (A) Wild type and (B) pent
deficient discs imaged at 80 and 110 hours AEL (late third instar). The wing pouch structure is
defined by the expression of Wg-Ptc-AB (blue). The expression of Pmad-AB (red) and Brk-AB
(green) are also reported. The images illustrate the effect of the mutation pent2-5 on the Dpp
gradient activity, which has been shown to play a role in the growth and patterning of the
Drosophila wing50. Video S4 illustrates the development of the Drosophila wing with 3D
rendering of confocal fluorescence images and a 3D animation.

quantitative descriptions of the biological system to reverse engineer. Specifically, the main

research contributions of this thesis are

• a method for generating biologically plausible in silico networks for performance profil-

ing of network inference methods (Chapter 2);

• performance profiling of state-of-the-art inference method using standard metrics and

the output of a network motif analysis;

• identification of the most informative type of gene expression data to provide to a given

inference method to achieve the best possible reconstruction from in vivo experiments;

• validation of hundreds of gene network reconstructions generated by 91 teams in the

context of three DREAM challenges (DREAM3, DREAM4, and DREAM5). Today, the

accuracy of more than 25,000 gene network reconstructions have been evaluated by

GNW users;

• an extensible and modular method for identifying the community structure of complex

networks (Chapter 3);

7

Introduction

Performance
pro�ling

Extracted
subnetworks

Biological networks Dynamical models Predicted networks

Time seriesSteady states

Simulated gene expression data

Inference method

C Unsupervised and systematic segmentation of multicellular organisms (Chapter 4)

Body or organ
systems

Robust multiscale
description

Unsupervised detection and segmentation

Morphological
structure models

3D nuclei
segmentation

Spatial gene
expression data

A In silico benchmark generation and performance pro�ling of network inference methods (Chapter 2)

B Network module detection (Chapter 3)

Inferred community
structure

Network structure

Figure 1.3: Comprehensive framework for reverse engineering models of biological organ-
isms. (A) In silico benchmark generation and performance profiling of gene network inference
methods. (B) After reconstructing the network of interactions between genes and transcription
factors from expression data, an additional level of insight is gained by rationally decomposi-
tion the network into function modules. (C) Automatic detection and segmentation algorithms
for generating robust and multiscale quantitative descriptions of biological organisms. These
descriptions then provide meaningful targets for reverse engineering models that account for
the development of multicellular organisms.

• a GA-based modularity optimization method to unravel the community structure of

complex networks;

• validation of several community structure detection methods on real and artificial

networks;

• a community voting method that enables to overcome to some extend the resolution

limit of modularity optimization methods;

8

1.4. Original contribution

• initiation and supervision of an interdisciplinary project between the Laboratory of

Intelligent Systems and Biomedical Imagining Group at EPFL, and the Affolter Lab at

University of Basel (Chapter 4);

• an unsupervised detection and segmentation method to generate parametric models

that describe the morphology or structure of the Drosophila wing pouch and embryo

from stacks of confocal fluorescence images;

• a procedure to measure mRNA and protein concentration levels in a systematic way in

the space. Collected datasets are then used to build a novel representation called gene

expression maps;

• an unsupervised 3D cell nuclei detection and segmentation methods based on a water-

shed algorithm;

• a method to integrate morphological and expression datasets into a single, robust and

reliable quantitative description of biological organisms and organs;

• generation of quantitative descriptions of the Drosophila wing pouch at different time

points during development;

• quantification of the effect of the pent2-5 mutation, which inhibits the growth of the

Drosophila wing, on the wing morphology and domains of activation of several genes.

• reverse engineering of six-gene network that participate to the growth and patterning of

the Drosophila wing using expression datasets collected using the above method;

Software applications

Another important contribution of this thesis is the development, implementation, and im-

mediate availability of several software applications. All the methods that we developed and

introduce in the following chapters can already be used to support the research of other groups.

To achieve this, the following software applications have been designed with always keeping

in mind the objective of making them extensible, user-friendly, well documented, and useful

to a broad community of biologists and computer scientists (Fig. 1.4).

The computational tools developed in the context of this thesis are

• a software application called GeneNetWeaver (GNW) that provides for the first time

tools for in silico benchmark generation and performance profiling of network inference

methods. See tschaffter.ch/projects/gnw;

• a software application called Jmod that implements several state-of-the-art community

structure detection methods. In addition to provide a framework for the development of

additional methods, Jmod provides tools to gain insight into the behavior of community

9

http://tschaffter.ch/projects/gnw

Introduction

Figure 1.4: Extensible and user-friendly computational tools for quantifying and reverse
engineering biological systems. These tools are provided with an extensive documentation
that includes user manuals, video tutorials, APIs (application programming interfaces), and
other supporting data. Source code is also widely documented and available under open
source license, which allows other researchers and engineers to further extend our work.

structure detection methods, thereby indicating potential ways of improving inference

methods. See tschaffter.ch/projects/jmod;

• a software application called WingJ for unsupervised detection and segmentation of

the Drosophila wing pouch and embryo from stacks of confocal images, including cell

nuclei detection and integration of datasets collected from multiple wings, for instance.

See tschaffter.ch/projects/wingj;

• a software application to track the genetic identify of heterogeneous flies walking in a

transparent chamber. This project aims to develop quantitative behavioral methods to

understand brain function and evolution in fruit fly (Drosophila melanogaster). This

work is currently conducted by Dr. Pavan Ramdya. See tschaffter.ch/projects/squid;

• Java library that provides several algorithms to numerically integrate stochastic differen-

tial equations, which we used to simulate molecular noise in the dynamics of in silico

transcriptional gene regulatory networks. See tschaffter.ch/projects/libsde.

Table 1.4 provides a few metrics about the software applications introduced in this thesis. The

number of lines of code gives a relative good idea of the effort spent in the different research

projects considered in this thesis. The source code is also particularly well documented as

indicated by the number of comments per line of code, which makes it easier for researchers

and engineers to further extend our work.

10

http://tschaffter.ch/projects/jmod
http://tschaffter.ch/projects/wingj
http://tschaffter.ch/projects/squid
http://tschaffter.ch/projects/libsde

1.5. Organization of the thesis

Table 1.1: Source metrics of the computational tools developed during the thesis. The met-
rics are the number of physical lines of code (LOC, does not include white and comment lines),
the number of comments, the ratio [Num. comments]/[LOC], the number of classes, and the
number of methods. The metrics have been generated using Google CodePro AnalytiX.

Software application LOC Comments Comment ratio Classes Methods

WingJ 21440 6400 29.8 131 1352
GNW 20204 4573 22.6 124 1603
Jmod 9066 2715 29.9 81 716
sQuid 6086 2130 35 34 548
libSDE 669 301 44.9 7 73

Author contributions

The realization of this thesis benefited from and led to some fruitful collaborations. Regarding

the content of the following chapters, I have developed the methods, designed and performed

the experiments, and designed and implemented the software applications, with the following

exceptions. The comprehensive method for in silico benchmark generation and performance

profiling of network inference methods has been co-developed with Daniel Marbach. Daniel

designed the activation function f (·) used in the dynamics of in silico networks and proposed

the analysis of network motifs. I have implemented GeneNetWeaver with a significant con-

tribution from Daniel. Gilles Roulet and Jonathan Rohrbach also contributed through two

outstanding student projects to the network evaluation part and the implementation of a

multicellular extension for GNW, respectively. I have initiated the collaboration between the

Laboratory of Intelligent Systems and the Biomedical Imaging Group at EPFL, and the Affolter

Lab at University of Basel. Ricard Delgado-Gonzalo provided invaluable expertise for the

development of active contour algorithms (also called snakes) and their formal definition. He

also significantly contributed to the implementation of WingJ. Finally, Fisun Hamaratoglu

provided us with stacks of confocal fluorescence images of the Drosophila wing.

1.5 Organization of the thesis

The dissertation is organized in six chapters, including the introduction (Chapter 1) and the

conclusion (Chapter 5). At the beginning of each chapter, an abstract is given to situate the

chapter in the context of the thesis and summarize its content.

• Chapter 2 In silico benchmark generation and performance profiling of network in-

ference methods. This chapter introduces a novel and comprehensive method for

generating biologically plausible in silico networks and evaluating the performance of

network inference methods available to the community as an open source software

called GeneNetWeaver (GNW). Using GNW, we evaluate the performance of six inference

methods and perform a network motif analysis to identify systematic prediction errors.

11

Introduction

We also show how the performance of those inference methods are affected by the

structural properties and the size of the gene regulatory networks to infer, and how

GNW can help to identify the most informative type of gene expression data to provide

to a given inference method to achieve the best possible reconstruction from in vivo

experiments. Moreover, we have used GNW to evaluate the accuracy of more than 900

network predictions generated by 91 teams that have participated to the international

DREAM3, DREAM4, and DREAM5 challenges.

• Chapter 3 Extensible and modular community structure detection in networks. In

this chapter, we present an extensible and modular method to infer the community

structure of biological networks. This method is implemented as an open source Java

toolkit called Jmod. We introduce an improved version of Newman’s algorithm, a GA-

based modularity optimization method, a brute force approach, and two refinement

techniques called MVM and gMVM. The performance of the methods is evaluated on

real and artificial networks. Moreover, we show that the performance of modularity

optimization algorithms is affected by a resolution limit that makes them fail to identify

small communities in large networks. To overcome this limitation, we have developed a

community voting to combine multiple community structure predictions into a more

reliable and robust prediction. Using the GA-based method, we show that our approach

is best performer in a comparative analysis that profiled the performance of twelve

state-of-the-art community structure detection algorithms.

• Chapter 4 Towards unsupervised and systematic segmentation of biological systems.

We have developed an unsupervised and systematic method to generate quantitative

description of biological organisms, which we applied to the developing Drosophila

wing. First, we present a fully automated detection and segmentation method that

infer a parametric model of the morphology or structure of the wing pouch from stacks

of confocal fluorescence images. This model then provides a coordinate system to

measure mRNA and protein concentration levels in a systematic way in 2D (possibly

3D). The heterogeneous datasets collected for each wing are then integrated using an

automatic procedure to obtain a robust and multiscale quantitative description of the

wing. This description is further extended with the output of an unsupervised cell nuclei

detection and segmentation method that we developed. The above method is available

as an extensible, user-friendly and open source software called WingJ. Using WingJ,

we have quantified the wing pouch at different time points during development. We

also produce experimental data that show how the pent2-5 mutation inhibits the growth

of the wings. Finally, we use the datasets collected using WingJ to reverse engineer a

six-gene regulatory network that participates to the developed of the Drosophila wing.

• Appendices. The first appendix provides the links to the different project websites. It

also lists and summarizes its content of several supplementary videos edited to illustrate

this thesis. Then, three appendices contain supplementary information for Chapter 2,

Chapter 3, and Chapter 4. The following appendix gives a brief introduction to stochas-

tic differential equations (SDEs) which we have used to model molecular noise in the

12

1.5. Organization of the thesis

dynamics of in silico gene networks. The two last appendices include the list of the

publications written during the thesis and my resume.

13

2 In silico benchmark generation and
performance profiling of network
inference methods

Over the last decade, numerous methods have been developed for inference of regulatory

networks from gene expression data. However, accurate and systematic evaluation of these

methods is hampered by the difficulty of constructing adequate benchmarks and the lack of

tools for a differentiated analysis of network predictions on such benchmarks.

Here we describe a novel and comprehensive method for in silico benchmark generation

and performance profiling of network inference methods available to the community as an

open-source software called GeneNetWeaver (GNW)a. In addition to the generation of detailed

dynamical models of gene regulatory networks to be used as benchmarks, GNW provides a net-

work motif analysis that reveals systematic prediction errors, thereby indicating potential ways

of improving inference methods. The accuracy of network inference methods is evaluated

using standard metrics such as precision-recall and receiver operating characteristic (ROC)

curves. We show how GNW can be used to assess the performance and identify the strengths

and weaknesses of six inference methods. Furthermore, we used GNW to provide the inter-

national DREAM (Dialogue for Reverse Engineering Assessments and Methods) competition

with three network inference challenges (DREAM3, DREAM4, and DREAM5).

This chapter is based on the publication GeneNetWeaver: in silico benchmark generation and

performance profiling of network inference methods51.

atschaffter.ch/projects/gnw

15

http://tschaffter.ch/projects/gnw

In silico benchmark generation and performance profiling of network inference methods

2.1 Introduction

A challenging issue in systems biology is the development of computational tools for the

reverse engineering of gene regulatory networks from quantitative experimental data. Over

the last decade, high-throughput assays for mRNA expression have opened the door to the

inference of regulatory networks by allowing simultaneous measurements of the expression

levels of thousands of genes. Technologies such as spotted microarrays1 and oligonucleotide

chips2 have enabled genome-wide quantification of differential gene expression profiles and,

more recently, short read sequencing technologies such as RNA-seq3 have provided more

precise quantification of mRNA levels.

Here we describe a method for in silico benchmark generation and performance profiling of

network inference methods available to the community as an open-source software called

GeneNetWeaver (Fig. 2.1). GNW has an intuitive graphical user interface that makes the gener-

ation and simulation of gene network models as simple as a few clicks. Network topologies are

generated by extracting modules from known in vivo gene regulatory network structures such

as those of E. coli6 and S. cerevisiae52. These structures are then endowed with detailed dynam-

ical models of gene regulation including both transcription and translation processes using a

thermodynamic approach accounting for both independent and synergistic interactions53.

Expression data can be generated either deterministically or stochastically to model molec-

ular noise in the dynamics of the networks, and experimental noise can be added using a

model of noise observed in microarrays54. Different types of in vivo experimental procedures,

such as wild type, knockout (null-mutant), knockdown (heterozygous), and multifactorial

perturbations, can be reproduced by the software. In addition, a unique feature of GNW is the

systematic and comparative evaluation of predictions by different inference methods, which

none of the existing benchmark generators provide. GNW performs an exhaustive network

motif analysis for a set of network predictions, which often reveals systematic prediction errors,

thereby indicating potential ways of network reconstruction improvements. The accuracy of

network inference is also assessed using standard metrics such as precision-recall and receiver

operating characteristic (ROC) curves.

Furthermore, we show how GNW can be used to generate in silico benchmark suites to assess

the performance and identify strengths and weaknesses of six network inference methods.

We also show how the performance of those inference methods are affected by the structural

properties and the size of the gene regulatory networks to infer, and how GNW can help to

identify the most informative type of gene expression data to provide to a given inference

method. Finally, we assess the performance of those six inference methods on the network

inference challenge that we provided to the international DREAM4 competition (Dialogue for

Reverse Engineering Assessments and Methods).b

bthe-dream-project.org

16

http://www.the-dream-project.org

2.2. Generation of in silico gene networks

A Generation of in silico gene networks D Evaluation

Motif analysis
Precision-recall

ROC

Extracted
subnetworks

Biological networks Dynamical models Predicted networks

Inference method

C Reconstruction

B Simulation

Gene expression data

Steady states Time series

Input

Output

Figure 2.1: Benchmarking and performance assessment of network inference methods us-
ing GNW. (A) In silico gene networks are obtained by extracting subnetwork structures from
known transcriptional networks (E. coli, S. cerevisiae, etc.) before being endowed with detailed
dynamical models of gene regulation accounting for both transcription and translation, in-
dependent and synergistic interactions, as well as molecular and measurement noise. (B)
in silico gene networks are simulated to produce steady-state and time-series expression
data for a variety of experiments such as wild-type, knockout, knockdown, and multifactorial
perturbation experiments. (C) Inference methods are asked to predict structures of in silico
benchmark networks from gene expression data. (D) From network prediction files, GNW
performs a network motif analysis which often reveals systematic prediction errors, thereby
indicating potential ways of network reconstruction improvements. It also automatically
generates comprehensive reports including standard metrics such as precision-recall and
receiver operating characteristic (ROC) curves.

2.2 Generation of in silico gene networks

2.2.1 Module extraction from global interaction networks

Instead of using random graph models, which are known to only partly capture the structural

properties of biological networks11, we generate network structures by extracting modules

from known biological interaction networks such as those of E. coli6 and S. cerevisiae52 (the

source networks). Our approach is based on the extraction of modules, that is, groups of genes

that are more highly connected than expected in a random network55. We have shown that

the topological modules extracted using our method correlate with functional modules of the

source networks55. Hence, obtained network structures are meaningful targets for reverse

17

In silico benchmark generation and performance profiling of network inference methods

engineering algorithms because in practice, one typically tries to infer the structure of a set of

functionally related genes.

In the next two sections, we describe two methods for extracting subnetworks that capture the

structural properties of the source network. In Section 2.2.1, the first method called bottom-

up extracts the subnetwork node by node until the desired size is reached55. The second

method uses a top-down approach to partition the source network into functional modules

(Section 2.2.1). The desired module is then selected based on its size, for instance, to provide

the structure of the in silico gene network.

Bottom-up module extraction

The bottom-up method has been developed to generate network structures of any size M

where M ≤ N and N is the size of the source network55. This feature is important for in

silico benchmark generation because network inference methods can not all reconstruct large

networks. For example, algorithms based on correlation56 or mutual information (MI)57,58

can be applied to reconstruct networks including thousands of genes, however ODE-based

methods are limited to the reconstruction of much smaller networks, typically less than a

hundred nodes59,60.

We use a hierarchical, modular and scale-free source network to illustrate the bottom-up

extraction of a M-node subnetwork (Fig. 2.2A). The module extraction starts from a seed

node which is selected either manually or randomly. In Figure 2.2B, the seed node is set to

the central node of the network, which is also the first node of the subnetwork. Initially, we

only consider the neighbors of the seed node as candidates to be included in the subnetwork.

Instead of selecting it randomly as shown in Figure 2.2C, we use the first part of Newman’s

spectral algorithm27 which consists in finding the partition of a group of nodes into two

communities that maximizes a quantity called modularity Q. The modularity Q is defined as

Q =(fraction of edges falling within modules)

- (expected fraction of such edges in randomized graphs)

and takes usually values in [−0.5,1) where values near 1 means that the network is highly mod-

ular (see Section 3.2.1). Here our iterative algorithm always considers two communities: the

subnetwork which is being extracted and the remaining group of nodes of the source network.

Lets assume that the seed node has n′ neighbor nodes. We successively and independently

add one of them to the subnetwork before computing the Q values of the n′ splits of the source

network into the 2-node subnetwork and the group that contains the n −2 remaining nodes.

The first iteration of our algorithm ends after the neighbor node associated to the largest Q

value is effectively added to the subnetwork.

18

2.2. Generation of in silico gene networks

Hierarchical scall-free structure
(Ravasz et al., 2002)

A Source network

Size 10
Q=0.12

Size 25
Q=0.31

B Bottom-up module extraction

Size 10
Q=0.02

Size 25
Q=0.06

C Random subnetwork extraction

Figure 2.2: Bottom-up module extraction from interaction networks. (A) We illustrate the
extraction using a hierarchical, modular and scale-free source network13. This network is
available in GNW and can be used to visualize the effects of the parameters of the module
extraction method. (B) The extraction starts from a seed node either selected manually or
randomly. We use the first part of Newman’s spectral algorithm27 to ensure that the node
added to the subnetwork increase the modularity value Q associated to the organization of
the source network in two communities: the subnetwork and the group that contains the
remaining nodes of the network. At each iteration, all the neighbor nodes that share at least
one connection with the subnetwork are listed before we select the one that maximize Q. (C)
Network structures generated by randomly picking nodes clearly can not capture the structural
properties of the source network.

19

In silico benchmark generation and performance profiling of network inference methods

For the second iteration, all the neighbor nodes that share at least one edge with the 2-node

subnetwork are selected before selecting the one that maximize Q as performed previously.

The algorithm eventually ends when the specified size of the subnetwork has been reached.

We observe in Figure 2.2B that the subnetwork extracted conserves the natural modules of

the source network. We also have shown that the number of different triads (three-node

motifs which can be seen as the building blocks of a network) in the extracted subnetworks

are proportional to the total number of triads found in the source network55, which is not the

case in randomly extract subnetworks (Fig. 2.2C).

It is important to distinguish between the modularity of the subnetwork and the Q value

computed to split the source network in two communities. Assuming that the seed node falls

initially in c-node module or community of the source network, the subnetwork should have

a high modularity value if its size is smaller or equal to c because its structure is one part of a

densely connected group of nodes. However, the structure of the subnetwork would still reflect

the 3-node motifs organization of the source network. Furthermore, we provides parameters

to add some randomness in the extraction process. Instead of selecting systematically the

node that maximize the Q value, we can specify that the algorithm should pick randomly one

of the best 10% nodes, for instance. Another advantage is that this can make the generation of

different network structures much easier depending on the size and structural properties of

the selected source network.

Top-down module extraction

In addition to the above bottom-up algorithm, we propose a second approach for extracting

subnetworks that capture the structural properties of the source network (e.g. known biological

networks). The top-down strategy consists in first identifying the modules or communities

that compose the source network before selecting one of them to provide the structure of

the in silico gene network. The extracted structures are particularly meaningful targets for

reverse engineering algorithms because in practice, one typically aims to infer the structure of

a set of functionally related genes. Figure 2.3 shows the community structure of the E. coli

transcriptional network6. This network corresponds to the TF-gene of RegulonDB release 6.7c.

Therefore, each node represent a transcription factor or gene and the edge the interaction

between two elements.

Chapter 3 is actually dedicated to the detection of the community structure in complex

networks, that is, the inference of the modules or communities that compose the network.

Here we applied a GA-based detection method (Section 3.2.2) to identify the functional

modules of the E. coli network. From the list of identified modules, one of them is picked

based on its size to provide the structure of the in silico gene network. Actually, the bottom-

up method introduced previously can be used to increase but also decrease the size of the

cregulondb.ccg.unam.mx

20

http://regulondb.ccg.unam.mx/

2.2. Generation of in silico gene networks

Figure 2.3: Top-down module extraction from the E. coli transcriptional network. This net-
work includes 1565 transcription factors (TFs) and genes interacting through 3758 connections
(RegulonDB release 6.7). We apply a novel GA-based community structure detection method
to identify the functional modules of E. coli. One of them is then selected to provide the
structure of the in silico network. Smaller or larger structures can be obtained by adding or
removing nodes one by one using the bottom-up extraction method (Section 2.2.1). Much
larger structures can also be generated by merging several neighbor modules. Nodes belong-
ing to different modules are painted in different colors. The visualization of the network is
obtained using a force-directed layout61.

structure in order to achieve the specified size. Moreover, larger structures can be produced

by merging several neighbor modules.

2.2.2 Modeling the dynamics of transcriptional gene regulatory networks

Network topologies are endowed with detailed dynamical models of gene regulation. Both

transcription and translation are modeled using a standard thermodynamic approach53 allow-

ing for both independent ("additive") and synergistic ("multiplicative") regulatory interactions.

For each gene i of a network, the rate of change of mRNA concentration F RN A
i and the rate of

change of protein concentration F Pr ot
i are described by

21

In silico benchmark generation and performance profiling of network inference methods

F RN A
i (x , y) =d xi

d t
= mi · fi (y)−λRN A

i · xi (2.1)

F Pr ot
i (x , y) =d yi

d t
= ri · xi −λPr ot

i · yi (2.2)

where mi is the maximum transcription rate, ri the translation rate, λRNA
i and λProt

i are the

mRNA and protein degradation rates, and x and y are vectors containing all mRNA and protein

concentration levels, respectively. fi (·) is the activation function of gene i , which computes

the relative activation of the gene, which is between 0 (the gene is shut off) and 1 (the gene is

maximally activated), given the protein or transcription-factor (TF) concentrations y . A more

detailed description of the activation function used is given by62. Note that our approach

conserves the nature of the gene interactions (enhancing or inhibitory) of the imported or

extracted network structures.

The integration of the system of equations defined by (2.1) and (2.2) results in noiseless mRNA

and protein concentration levels, respectively xi (t) and yi (t) for gene i (see Appendix B.1.3).

In living cells, molecular noise originates from thermal fluctuations and noisy processes such

as transcription and translation63. Hence, random fluctuations affect concentration levels of

mRNA and protein, whose expression can be viewed as a stochastic process64. Both F RN A
i and

F Pr ot
i are of the form

d X t

d t
=V (X t)−D(X t) (2.3)

where V (X t) is the production and D(X t) the degradation term. The corresponding chemical

Langevin equation (CLE)65 we use to model molecular noise in transcription and translation

processes is

d X t

d t
=V (X t)−D(X t)+ c

(√
V (X t)ηv +

√
D(X t)ηd

)
(2.4)

where ηv and ηd are independent Gaussian white-noise processes65. c is a multiplicative con-

stant to control the amplitude of the molecular noise. For each gene i , we use the Stratonovich

scheme and the Milstein method to integrate two equations of the form of (2.4), one de-

scribing the rate of change of mRNA concentration and one for the rate of change of protein

concentration (see Appendix E).

This model is derived from stochastic kinetics and the underlying assumptions are discussed

by65. Note that, according to this model, a gene that is not activated (V (X t) close to zero) has

a very low level of noise (leakage) and it can not suddenly have a very high transcription rate

due to noise. In contrast, a gene that is activated has a higher level of noise (which may be

interpreted as transcriptional bursts, for instance).

22

2.3. Performance profiling of network inference methods

The measurement noise depends on the technology used to monitor gene expression con-

centrations54 and is modeled here independently of the molecular noise. GNW implements

Gaussian and log-normal models of experimental noise as well as a model of noise observed

in microarrays54.

2.2.3 Synthetic expression datasets

The next step in generating in silico benchmark networks consists in simulating the gener-

ated in silico regulatory networks to produce synthetic gene expression datasets. Available

experiments in GNW are

• Wild type. The steady-state levels of the wild type (the unperturbed network).

• Knockout (null-mutant). Steady-state levels of single-gene knockouts (deletions). An

independent knockout is provided for every gene of the network. A knockout experiment

is simulated by setting the transcription rate of this gene to zero.

• Knockdowns (heterozygous). Steady-state levels of single-gene knockdowns. A knock-

down of every gene of the network is simulated. Knockdowns are obtained by reducing

the transcription rate of the corresponding gene by half.

• Dual knockouts. Dual knockouts consist of simulating a network with two genes

knocked out simultaneously.

• Multifactorial. Steady-state levels of variations of the network, which are obtained by

applying multifactorial perturbations to the network. One may think of each experi-

ment as a gene expression profile from a different patient, for example. We simulate

multifactorial perturbations by increasing or decreasing the basal activation of all genes

of the network simultaneously by different random amounts (Fig. 2.4).

Custom perturbations can also be specified. Experiments can be simulated as steady states

and/or time series with user-defined duration and number of measurement points.

2.3 Performance profiling of network inference methods

2.3.1 Evaluation of network inference methods

We not only provide researchers with a method for generating in silico gene network models

to be used as benchmarks for reverse engineering algorithms, but also tools to facilitate the

evaluation of network predictions. From a set of predictions from one or several inference

methods, GNW automatically generates a comprehensive report including the result of a

network motif analysis, where the performance of inference methods is profiled on local

23

In silico benchmark generation and performance profiling of network inference methods

A 10-gene in silico network B Multifactorial perturbation (without noise)

0

0.5

1

Re
la

te
iv

e
m

RN
A

 c
on

ce
nt

ra
tio

n

0 500 1000Perturbation
applied

Wild type Perturbation
removed

G5

G6

G1

G4

G7

G10

G3G2

G9

G8

Multifactorial perturbation

Figure 2.4: Multifactorial perturbation of a 10-gene in silico network. (A) Structure of the in
silico network extracted from E. coli transcriptional network available in GNW. (B) Simulations
of the dynamics of the network can be performed either deterministically or stochastically
to account for molecular noise. Different types of experiments are also available in GNW
including knockout, knockdown, an multifactorial perturbations to produce steady-state and
time-series gene expression data. Here we display the time series of the mRNA concentrations
when a multifactorial perturbation is applied to the gene G2 and G10. In order to produce
more informative time series, the perturbation is released at the middle of the experiment.

connectivity patterns. The network motif analysis often reveals systematic prediction errors,

thereby indicating potential ways of network reconstruction improvements62. Furthermore,

precision-recall (PR) and receiver operating characteristic (ROC) curves are evaluated for each

network prediction66. The relation between ROC and PR curves is discussed by Davis et al.67.

We assessed the performance of six inference methods to illustrate benchmarking and perfor-

mance profiling of network inference methods using GNW (Table 2.1). We first describe how

to generate suitable network benchmark suites for the testing of various hypotheses. Specifi-

cally, we designed benchmark suites to show how the performance of inference methods is

affected by different sizes and structural properties of regulatory networks. In addition, we

show how GNW can help to identify the most informative type of gene expression data that a

given inference method could use to achieve the best possible reconstruction from in vivo

experiments. Finally, we introduce the DREAM4 Network Inference Challenge we generated,

which has been used to assess the performance of many inference methods68,69.

The intuitive interface of GNW allows to easily evaluate several inference methods at a time to

facilitate the comparison of their relative performance. Evaluation results are always saved in

a text file (XML format). In addition, GNW can generate PDF reports with plots from these

data (an internet connection is required). Without internet connection, the evaluation can

still be run but no PDF report will be created.

24

2.3. Performance profiling of network inference methods

Table 2.1: Gene network inference methods evaluated using GNW. ARACNE2 and CLR are
two of the most widely used inference methods. The following methods have been best-
performer or co-best-performer in at least one DREAM challenge: Yip et al. (DREAM3 in
silico Challenge Size 10, 50, and 100), Pinna et al. (DREAM4 in silico Challenge Size 100), and
Huynh-Thu et al. (DREAM4 in silico Challenge multifactorial).

Inference method Approach

ARACNE257 mutual information (MI)
CLR58 mutual information (MI)
GENIE366 regression
Z-score66 statistical
Pinna et al.70 statistical
Yip et al.71 noise model

Generation of network benchmark suites

We generated several network benchmark suites using the approach described in Methods.

Each benchmark suite is composed of several in silico regulatory networks (the so-called gold

standards or target networks). Figure 2.5 shows one gold standard extracted from a regulatory

network of the yeast S. cerevisiae. The extracted structures have been endowed with stochastic

dynamical models of gene regulation accounting for molecular noise in transcription and

translation processes.

The dynamical models of gene regulation have then been simulated to reproduce wild-type,

knockout, knockdown, and multifactorial perturbation experiments. Figure 2.6 illustrates

the evolution of mRNA concentration levels without noise, when only molecular noise is

introduced, and with both molecular and experimental noise. We generated the following

benchmark suites:

• Benchmark suite A. 40 500-gene networks (20 from E. coli / 20 from yeast). Systematic

knockout experiments were simulated to generate steady-state expression data.

• Benchmark suite B. 20 100-gene networks (10 from E. coli / 10 from yeast), 20 200-gene

networks (10 from E. coli / 10 from yeast), and 20 500-gene networks (10 from E. coli / 10

from yeast). Systematic knockout experiments were simulated to generate steady-state

expression data.

• Benchmark suite C. 20 100-gene networks (10 from E. coli / 10 from yeast). System-

atic knockout and knockdown, and 100 multifactorial perturbation experiments were

simulated to generate steady-state expression data.

At least half of the genes included in each gold standard are regulators, i.e. genes which

regulate the mRNA production of at least one other gene. This is to avoid structures where

25

In silico benchmark generation and performance profiling of network inference methods

Figure 2.5: Fifty-gene in silico regulatory network extracted from the yeast S. cerevisiae
transcriptional network using GNW. The evaluation of the performance of network inference
methods requires the generation of many in silico benchmark networks of different sizes.
Enhancing and inhibitory gene regulations are in blue and red, respectively. GNW also provides
network visualization to quickly gain insight into the structure and dynamics of the network
generated. Different layouts can be selected including Fruchterman-Reingold force-directed
algorithm72 which we use here.

0 500 1000
0

0.5

1

0 500 1000
Time (a.u.)

0 500 1000Re
la

tiv
e

m
RN

A
 c

on
ce

nt
ra

tio
n

Ordinary di�erential equation Langevin equation Langevin + experimental noise

Figure 2.6: Simulation of the dynamics of in silico gene network models. Here we show the
effect of both molecular and measurement noise on gene expression data. (A) The integration
of the ODE model defined in (2.1) and (2.2) leads to noiseless gene expression. (B) Molecular
noise is introduced by replacing equations (2.1) and (2.2) with stochastic differential equations
(SDEs) defined in (2.4). (C) Superposition of both molecular and experimental noise.

26

2.3. Performance profiling of network inference methods

there are many genes that do not regulate any other genes (out-degree = 0). We used the

default parameter values proposed by GNW to simulate the gene expression experiments (see

Appendix B).

2.3.2 Effect of network structural properties on inference method performance

The performance of network inference methods may strongly vary depending on the struc-

tural properties of the target networks. Figure 2.7 shows systematic errors made by each

inference method on four three-node motifs over-represented in the in vivo regulatory net-

work structures of E. coli and yeast14,73, and therefore in the gold standard structures we

generated.

Deviation of motif from
background prediction
con�dence

False positives

≥ 0.30 0.15 ≥ -0.30 0.15

False negatives Statistically not signi�cant
(p-value > 0.01 with Bonferroni correction)

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Fa
n-

O
ut

Fa
n-

In
Ca

sc
ad

e
FF

L

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Z-score Yip et al.Pinna et al.True structure CLR ARACNE2GENIE3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Figure 2.7: Systematic errors made by network inference methods in predicting network
motifs. GNW analyses thirteen configurations of three-node motifs, including fan-out, fan-in,
cascade, and feed-forward loop (FFL) motifs, which are over-represented motifs in E. coli and
yeast regulatory network. The first column displays the network motifs to infer and additional
columns show the systematic errors made by each inference method when trying to infer the
corresponding network motif.

Z-score, Pinna et al., and Yip et al. have different error profiles than CLR, ARACNE2 (both

based on mutual information), and GENIE3, which make systematically false positive errors

between gene 2 and 3 in predicting fan-out motifs. Note that ARACNE2 seems to make less

errors on that particular motif because the gene interactions present in the gold standards

27

In silico benchmark generation and performance profiling of network inference methods

are in general less reliably identified than with CLR or GENIE3, independently of any network

motifs considered. On the other hand, Z-score, Pinna et al., and Yip et al. are strongly affected

by cascade motifs, where these methods systematically predict false positive interactions

between gene 1 and gene 3.

We show that inference methods have changing performance when used to make predictions

about the structure of regulatory networks having specific structural properties. Thus we

evaluated the selected inference methods (Table 2.1) against the benchmark suite A described

in Section 2.3.1. Figure 2.8 shows the AUROC and AUPR values obtained by those methods

when applied to infer E. coli and yeast network structures from knockout expression data.

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

A
U

RO
C

A
U

PR

E. coli E. coli E. coli E. coli E. coli E. coliyeast yeast yeast yeast yeastyeast
ARACNE2 CLR GENIE3 Z-score Pinna et al. Yip et al.

Figure 2.8: Effect of structural properties of target networks on performance of inference
methods. 20 benchmark networks containing 500 genes each have been generated for each
condition using GNW (benchmark suite A, see Section 2.3.1). The inference methods have
been applied to predict the directed structure of each benchmark network from knockout
expression data and the corresponding AUROC and AUPR values have been evaluated. Meth-
ods strongly impeded by the cascade motif (Z-score, Pinna et al., and Yip et al.) as shown in
Figure 2.7 exhibit a performance degradation on yeast because yeast structure is composed
of more cascade motifs than E. coli network structure.

The AUROC and AUPR values obtained by Z-score, Pinna et al., and Yip et al. on yeast

gold standards are significantly lower than on E. coli benchmark networks (Mann-Whitney

U-test, p < 0.01). The performance degradation observed on yeast is due to the fact that

these methods make systematic errors in predicting cascade motifs, and because structures

extracted from yeast contain more cascade motifs than in E. coli structures (data not shown).

We observe a linear correlation between the number of cascade motifs to predict in a regulatory

network and the AUROC and AUPR values obtained for Z-score, Pinna et al., and Yip et al.

(Pearson’s correlation, −0.703 ≤ r ≤−0.552, p < 0.05). ARACNE2, CLR, and GENIE3 are less

affected by the cascade motif (Fig. 2.7).

28

2.3. Performance profiling of network inference methods

Interestingly, Figure 2.7 also shows that Z-score and Pinna et al. exhibit very similar error

profiles. Z-score is one of the simplest inference methods66, yet it has relatively high accuracy

in predicting network structures from knockout steady states. Pinna et al. first performs a

Z-score analysis followed by a refinement stage, which aims to suppress the errors made by

Z-score on cascade motifs70. Figure 2.7 does not show any noticeable difference between

Z-score and Pinna et al. This is confirmed by the fact that AUROC and AUPR values for Z-score

and Pinna et al. are not significantly different (Mann-Whitney U-test, p > 0.05).

2.3.3 Effect of network size on inference method performance

We are interested in showing how the performances of inference methods scale with the size

of the regulatory networks to reconstruct. Using GNW, it is very simple to generate in silico

benchmark network of size N < M , where M is the size of the source network used (e.g. E.

coli or yeast). Here we used the benchmark suite B described in Section 2.3.1, where each

benchmark network has been simulated using the above methodology to produce knockout

gene expression data. Figure 2.9 shows the performance of the inference methods listed in

Table 2.1 when applied to infer regulatory networks containing 100, 200, and 500 genes.

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

100 200 500 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500

AU
PR

AU
RO

C

ARACNE2 CLR GENIE3 Z-score Pinna et al. Yip et al.

Figure 2.9: Performance assessment of inference methods on GNW-generated in silico
benchmark networks of size 100, 200, and 500 genes. 20 benchmark networks have been
generated for each condition (benchmark suite B, see Section 2.3.1). The inference methods
have been applied to predict the directed structures of benchmark networks from knockout
expression data and the corresponding AUROC and AUPR values have been evaluated. We
observed that the performance of inference methods decreases with the size of the regulatory
networks to reconstruct.

CLR has both AUROC and AUPR values significantly higher than those obtained by ARACNE2

for gold standards of size 100, 200, and 500 (Mann-Whitney U-test, p < 0.01). Leaving

29

In silico benchmark generation and performance profiling of network inference methods

ARACNE2 aside, AUROC values of the five remaining methods are comparable. However,

we identified three methods with relatively high AUPR values. They are Z-score, and the

methods developed by Pinna et al. and Yip et al. AUROC and AUPR values obtained by Z-score

and Pinna et al. are significantly higher than those of Yip et al., and this is valid for every

gold standard size (Mann-Whitney U-test, p < 0.05). Also, Z-score, Pinna et al., and Yip et al.

have high AUPR variances because they are strongly affected by cascade motifs (see Fig. 2.7),

which are more frequent in gold standards extracted from yeast than E. coli (each condition in

benchmark suite B is composed of 20 gold standards, half being extracted from E. coli and half

from yeast).

Figure 2.9 shows that the AUPR values of inference methods decreases as the sizes of the gold

standards increase. The reason is that the connectivity density of the regulatory networks is

higher for smaller networks. The higher the connectivity density, the easier it is for each of

the six inference methods to have a high AUPR value (Pearson’s correlation, 0.383 ≤ r ≤ 0.839,

p < 0.01).

2.3.4 Design of in vivo gene expression experiments

A given inference method may require a very specific type of expression data in order to

enable accurate network reconstruction. We show that in silico benchmark networks have also

the ability to support the design of suitable in vivo gene expression experiments, which are

typically time-consuming and expensive19. The benchmark suite C described in Section 2.3.1

is formed of 20 in silico networks consisting of 100 genes each, which we simulated using

GNW to produce steady-state data for systematic knockout and knockdown, as well as 100

multifactorial perturbation experiments. Figure 2.10 shows the AUROC and AUPR values

obtained by the inference methods reviewed here (Table 2.1).

The most accurate network reconstructions are obtained using GENIE3, Z-score, and the

methods developed by Pinna et al. and Yip et al. on knockout data. Knockout experiments are

very informative because they provide network responses to individual and large perturbations

(genes are "deleted"). Knockdown expression data, where the maximum transcription rate

of genes is halved, are less informative than knockout data and thus lead to less accurate

network reconstructions. Figure 2.10 shows that ARACNE2 obtained AUROC and AUPR values

comparable to CLR and GENIE3 when using multifactorial perturbation data. In addition, we

considered providing knockout, knockdown, and multifactorial perturbation data together

to ARACNE2, CLR, and GENIE3. We observed that AUROC and AUPR values obtained were

slightly higher than when providing individually the three expression datasets (data not shown).

We also added successively 100, 200, 300, and 400 additional multifactorial perturbations,

however, the AUROC and AUPR values didn’t improve significantly for all methods (Mann-

Whitney U-test, p < 0.05). Furthermore, it has been shown using GNW and time-series data

that the inference accuracy of inference methods reaches a saturation point after a specific

data size74. This reveals that simply adding more expression data does not necessarily imply

30

2.3. Performance profiling of network inference methods

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

ko kd mf ko kd mf ko kd mf ko kd mf ko kd mf ko kd mf

AU
RO

C
AU

PR

ARACNE2 CLR GENIE3 Z-score Pinna et al. Yip et al.

Figure 2.10: Identification of the most informative type of gene expression data required by
a given inference method using in silico benchmark networks. Knockout (ko), knockdown
(kd), and multifactorial (mf) perturbations were applied on 20 gold standards to generate three
datasets containing each 100 measured steady states (benchmark suite C, see Section 2.3.1).
Note, Z-score, Pinna et al., and Yip et al. are not applicable to the multifactorial data.

performance improvement.

2.3.5 DREAM Network Inference Challenges

We have used GNW to generate the target networks for three international competitions on

gene network reverse engineering: DREAM3 (2008), DREAM4 (2009), and DREAM5 (2010).

Participants of the DREAM4 in silico Challenge were asked to provide network predictions for

two sub-challenges made of networks of size 10 and 100, respectively. Each sub-challenge

was composed of five in silico gene networks (two extracted from E. coli and three from

yeast), which have been simulated to produce steady-state wild-type, knockout, knockdown,

and multifactorial perturbation experiments. In addition, time-series data have been made

available.

For each sub-challenge, network predictions made by participating teams have been evaluated

by computing P-values, which indicate the probability that random lists of genetic interaction

predictions would be of the same or better quality66. The overall score that has been used

for ranking of the methods applied in the DREAM4 in silico Challenge was a negative log-

transformed P-value given by

overall score (OS) =−0.5 · log10(p1p2) (2.5)

31

In silico benchmark generation and performance profiling of network inference methods

where p1 and p2 are respectively the geometric means of AUPR P-values and AUROC P-values

taken over the five networks. Thus, larger scores indicate smaller P-values, hence better

predictions. Figure 2.11 compares the overall scores of the inference methods reviewed here

(Table 2.1) to those obtained by the participating methods applied in the DREAM4 in silico

Size 100 Challenge.

Pinna et al.
Z-score

Yip et al.

CLR
GENIE3

ARACNE2

DREAM4 In Silico Size100 participants
Inference methods reviewed here

0

10

20

30

40

50

60

70

80

90

5 10 15 20 25
Network inference methods

O
ve

ra
ll

sc
or

e
(O

S)

Figure 2.11: Performance assessment of inference methods listed in Table 2.1 on the
DREAM4 In Silico Size 100 Challenge. Methods are ranked according to the geometric means
of AUPR P-values and AUROC P-values taken over five networks. Pinna et al. was best-
performer in that challenge, hence the two first bars correspond both to the overall score
of Pinna et al. Typically, inference methods accept different types of gene expression data
as input. Each method reviewed here has been fed with the maximum amount of accepted
expression data.

The most accurate reconstruction of the five gene networks of size 100 genes was achieved

by70. They participated to the DREAM4 in silico Size 100 Challenge, in which their method was

best-performer (OS = 71.589). Hence, both first bars in Figure 2.11 correspond to the score of

Pinna et al. We have shown in Figure 2.7 that AUROC and AUPR values obtained by Pinna et al.

are not significantly higher than those obtained using the original Z-score method. This can

be explained by the fact that transitive causal effects are almost always weaker than the direct

effects. We expect that if many amplifying cascades occur, the refinement stage introduced

by70 will enable more reliable network predictions as compared to Z-score alone.

It is also interesting to note that the method of Yip et al. has been best-performer on all

DREAM3 in silico Challenges of size 10, 50, and 100 genes we also provided. Yet it would

have been ranked 7th on the DREAM4 size 100 challenge (OS = 57.079). While the original

algorithm is composed of several batches using both steady-state and time-series data, Yip

et al. only used the first batch to build a noise model from knockout steady-state data71.

The achievement of the 7th rank in DREAM4 can be partially explained by the fact that Yip

32

2.4. Conclusions

et al. made a strong and correct assumption on the Gaussian measurement noise we used

in DREAM3, which is no longer valid in DREAM4. Indeed, we modeled molecular noise in

addition to a model of experimental noise observed in microarrays54.

2.4 Conclusions

We propose a comprehensive and powerful framework for in silico benchmark generation and

performance profiling of network inference methods. We implemented this framework as an

open-source tool called GeneNetWeaver (GNW). Biologically plausible network structures

are generated by extracting modules from known biological interaction networks such as

those of E. coli and the yeast S. cerevisiae. Network structures are then endowed with detailed

dynamical models of gene regulation describing both transcription and translation processes.

Transcriptional regulation is modeled using a thermodynamic approach accounting for both

independent ("additive") and synergistic ("multiplicative") interactions. In addition, our

models account for stochastic molecular noise as well as experimental noise observed in

microarrays. The generated in silico benchmark networks can be simulated in GNW to re-

produce wild-type, knockout (null-mutant), knockdown (heterozygous), and multifactorial

perturbation gene expression experiments. As an example of the application, we have used

GNW to generate the target networks for three international competitions on gene network

reverse engineering: DREAM3 (2008), DREAM4 (2009), and DREAM5 (2010). In total, 91 teams

have submitted over 900 network predictions on GNW-generated networks, making GNW one

of the most widely used benchmark generators by the community.

In contrast to previously proposed benchmark generators, GNW also integrates tools for

systematic evaluation of the predictions from inference methods on benchmark networks. A

unique feature of GNW is the ability to perform a network motif analysis from a set of network

predictions and their corresponding benchmark networks. The network motif analysis reveals

systematic prediction errors made by inference method on specific network motifs, thereby

indicating potential ways of network reconstruction improvements. The accuracy of network

inference is assessed using standard metrics such as precision-recall and receiver operating

characteristic (ROC) curves.

We have used GNW to generate in silico benchmark suites to assess the performance and

identify the strengths and weaknesses of six network inference methods. We show that Z-score,

and the inference methods developed by Pinna et al. and Yip et al. make more accurate net-

work predictions than two widely used methods, ARACNE2 and CLR. This good performance

is achieved apparently because those methods target the inference of causal relationships

between genes. Moreover, ARACNE2, CLR, and GENIE3 methods can be applied to infer

regulatory networks even if no systematic knockout or knockdown experiments are provided

(systematic knockout or knockdown experiments are typically not always available in prac-

tice). Furthermore, our results show that at some point simply giving more expression data to

inference methods does not necessarily imply performance improvement. Therefore, the inte-

33

In silico benchmark generation and performance profiling of network inference methods

gration of additional information about the target regulatory networks should be considered,

for instance using prior knowledge about the network structures.

The novelty of GNW is that it additionally provides a unique network motif analysis, which

we used to show that the structural properties of the target regulatory networks affect the

performance of inference methods. We observed that the performances of Z-score, and the

methods developed by Pinna et al. and Yip et al. are impeded by the presence of cascade motifs

in the target networks. Thus, we show that those methods make significantly less accurate

network predictions on the yeast S. cerevisiae, whose structure includes more cascade motifs

than E. coli transcriptional network structure. Finally, we also provide evidence that in silico

benchmark networks can be used to identify the most informative type of gene expression

data that a given inference method could use to achieve the best possible reconstruction from

in vivo experiments.

34

3 Extensible and modular community
detection in networks

Biological interaction networks are often organized into groups or modules of related genes

and proteins carrying out specific biological functions. Over the past few years, many methods

have been proposed to rationally decompose biological networks into functional modules, yet

this challenging problem has not yet been successfully solved.

Here we introduce Jmoda, an extensible and open source software for community structure

detection in complex networks. A detection is first performed by applying one of the state-

of-the-art module detection methods implemented in Jmod including Newman’s spectral

algorithm and a genetic algorithm-based method we developed. The accuracy of the module

inference can then be further improved using one or several refinement methods indepen-

dently of the detection method applied. The principal advantage of this modular framework

is that different module detection methods and refinement techniques can be selected de-

pending on the desired trade-off between speed and inference accuracy. We evaluate the

performance of the module detection methods and refinement algorithms using biological

and in silico networks. Because the methods considered here are based on modularity opti-

mization, we discuss how their performance is affected by the resolution limit which is known

to affect similar methods. Finally, we propose a voting method to combine multiple partitions

generated by our GA-based detection method to overcome the resolution limit and so enable

more robust and reliable network module inference.

atschaffter.ch/projects/jmod

35

http://tschaffter.ch/projects/jmod

Extensible and modular community detection in networks

3.1 Introduction

Many systems can be described as complex networks where nodes represent individual units

connected by edges depending on their relative interaction or relationship. The structure

of a complex network has features that do not occur in random networks but often occur in

real graphs. Examples include metabolic, protein and genetic interaction networks as well as

neural, social and technological networks20–23.

In such networks, there are usually groups of nodes that are more highly connected to each

other than to the rest of the network. Such groups are usually called modules, communities

or clusters20,24. In social networks, nodes often represent people connected by friendship

relations and detecting communities (groups of friends or people with the same interest,

family, etc.) have numerous applications20. In protein-protein interaction (PPI) networks,

there are often groups of proteins that interact tightly in a same complex6,21. Therefore, the

identification of these modules is of great importance to unravel the structural and functional

properties of these networks.

Over the past few years, significant efforts have been made to develop methods for inferring the

community structure of complex networks. Many techniques have been proposed including

modularity optimization, fast greedy algorithms, mathematical programming or simulated

annealing (see 75,76 for reviews). Despite this effort, the detection of modules in networks

remains a very difficult task which has not yet been successfully addressed25.

Here we introduce an extensible and modular method for community structure detection in

interaction networks which we make available as an open source software called Jmodb. The

inference of a network community structure is initially performed using one of the state-of-

the-art module detection methods available in Jmod including Newman’s spectral algorithm

and a genetic algorithm-based method we developed. The obtained partition of a network

into modules can then be improved using one or several refinement techniques which can be

selected independently of the module detection method applied (Fig. 3.1). Here we introduce

two refinement methods, the Moving Vertex Method (MVM) and the global Moving Vertex

Method (gMVM) which we developed. This modular framework for community structure

detection can be extended with additional community structure detection methods and

refinement techniques to further increase its modularity. Moreover, different methods can be

selected to address different speed-accuracy trade-off, hence allowing to target many different

applications.

In Section 3.2, we describe three modularity optimization methods including Newman’s spec-

tral algorithm27, a genetic algorithm-based method, and a brute force method. In Section 3.3,

we introduce the refinement methods MVM and gMVM. In Section 3.4.1, we generate syn-

thetic or in silico benchmark networks where the identity of the communities is known (the

ground truth)25. This benchmark is later used to evaluate the performance of the module

btschaffter.ch/projects/jmod

36

http://tschaffter.ch/projects/jmod

3.2. Module detection methods

Figure 3.1: Extensible and modular community structure detection in networks. The input
is a complex network whose nodes represent individual units connected by edges depending
on their relative interaction or relationship. A first partition of a network into module is
obtained by applying one of the module detection methods implemented in Jmod. The
accuracy of the inference can then be further improved by applying different refinement
methods independently of the module detection method selected. This modular method for
community structure detection is available as an extensible ,open source Java software called
Jmod.

detection methods previously introduced. In Section 3.4.3, we evaluate the effects of the

genetic algorithm parameters on the performance of our module detection method. In the

following sections, we profile the performance of each module detection methods and refine-

ment methods using in silico and real social and biological networks. Finally, we discuss in

Section 3.4.6 the resolution limit77 of the above modularity optimization methods described

in this chapter.

3.2 Module detection methods

3.2.1 Newman’s spectral algorithm

A great challenge in community structure detection is how to determine the performance of a

module inference, that is, how to measure the quality of the partition of a network into modules.

Newman and Girvan addressed this question by defining a quantity called modularity Q

to evaluate the partition of a set of nodes into modules or communities78. Newman later

proposed a slightly different definition of the modularity which can be summarized as

37

Extensible and modular community detection in networks

Q =(fraction of edges falling within modules)

- (expected fraction of such edges in randomized graphs)

Modularity compares the number of edges within each community detected with the ex-

pected number of edges in a random network of the same size and same distribution of node

degrees27. The problem of finding the community structure in complex networks becomes an

optimization problem whose solution corresponds to the partition of a network that maximize

Q. The formal definition of Q given by Newman is

Q = 1

4m
sT Bs (3.1)

where n and m are respectively the total number of nodes and edges in the network and B is

the so-called real symmetric modularity matrix27 whose elements are given by

Bi j = Ai j −
ki k j

2m
(3.2)

Ai j is the number of edges between the nodes i and j whose node degree is ki and k j . As

a reminder, the node degree correspond to the number of edges attached to a given node.

Because undirected structures are here considered, the adjacency matrix A and therefore B

are symmetric.

The remaining term in (3.1) is the so-called split vector s. In Newman’s algorithm, the commu-

nity structure of a network is found by recursively splitting communities in two subcommuni-

ties. The network is initially split in two subnetworks or subcommunities. The split is defined

by the n-by-1 vector s whose elements take the value si = 1 or si = −1 if the node i must

be placed in the first or second subcommunity. The objective of the community structure

detection method is thus to find the vector s that maximizes Q when inserted in (3.1).

Newman’s method is termed as spectral algorithm because the bi-partitioning of a set of nodes

in two subcommunities is obtained from the eigendecomposition of the modularity matrix

B27 so that s is expressed as a linear combination of its eigenvectors vi in

Q = 1

4m

n∑
i=1

(
vT

i s
)2
λi (3.3)

≈ 1

4m

(
vT

1 s
)2
λ1 (3.4)

where λi is the eigenvalue associated to the eigenvector vi and |λi | > |λi+1| for i = 1,2, ...,n −1.

In (3.4), Q is approximated by using only the leading eigenvector v1 associated to the largest

(most positive) eigenvalue λ1
27. Detailed information about how to compute the eigenpair

38

3.2. Module detection methods

(λ1, v1) is given in Appendix C. The split of a community in two subcommunities is then

obtained by selecting s as parallel as possible to the eigenvector v1 so that

si =
 1 if v1,i > 0

−1 otherwise
(3.5)

After splitting the network in two subnetworks, the above spectral method is applied to further

split each subnetwork in two subcommunities and so on (Fig. 3.2). After the first split of the

network, the modularity matrix B is replaced in (3.1) by the generalized modularity matrix

B(g) to compute additional contributions ∆Q later added to the overall modularity Q of the

network. For the second and subsequent splits, (3.1) is replaced by

∆Q = 1

4m
sT B(g)s (3.6)

where the elements of B(g) are adapted from the elements of B as follows

B (g)
i j = Bi j −δi j

∑
k∈g

Bi k (3.7)

δi j is the Kronecker δ-symbol, which takes the value 1 if i = j , otherwise 0. g corresponds to

the group of nodes that are being split in two.

Furthermore, a community is indivisible if splitting it in two does not contribute positively

to the overall modularity Q. Formally, a community is indivisible if there is no split vectors

s for a group of nodes that lead to ∆Q > 0 (or Q > 0 for the first split of the network). It is

interesting to note that Q can be negative when the number of edges within the communities

do not exceeds the number of such edges in randomized graphs. Q and ∆Q can take values in

[−1/2,1) with large positive values of Q corresponding highly modular networks78.

3.2.2 Genetic algorithm-based method

Newman’s spectral algorithm represents the modularity matrix B in terms of its eigenvalues

and eigenvectors27. The vector s, which describes the split of a group of nodes in two subcom-

munities, is then selected to be as parallel as possible to the leading eigenvector v1 according

to (3.5). However, the additional information contained in the remaining eigenvectors of B is

discarded and so only an approximation of Q is computed in (3.4).

Here we introduce a different community structure detection method based on the application

of a genetic algorithm to find the optimal splits of communities in two subcommunities. Our

approach relies on Newman’s definition of the modularity Q27, however we do not perform

the eigendecomposition of B and so s is not selected to be parallel to its leading eigenvector.

39

Extensible and modular community detection in networks

A Zachary's karate club network B Newman’s spectral algorithm

RA (17) RB (17)

Q

= 0.371

∆Q

=

0.017

RAA (11) RAB (6) RBA (12) RBB (5)
∆Q

≤

0 ∆Q

≤

0 ∆Q

≤

0 ∆Q

≤

0

∆Q

=

0.03

R (34 nodes)

Q

= 0.371

Q

= 0.371+0.017+0.03

Q

= 0.419

Figure 3.2: Community structure detection in Zachary’s karate club network using New-
man’s spectral algorithm. (A) This network shows the friendship relations (edges) between
the members of a karate club (nodes)79. An argument between the members eventually oc-
curred, which led to the creation of a second club. As an example, we show that Newman’s
spectral algorithm can be used to predict the factions that would emerge if an argument
between related people occurs. The first split of Zachary’s network actually describes very
accurately the composition of the two emerging clubs and only one person didn’t join the
expected faction79. (B) This dendrogram provides a visual representation of the history of
the recursive community splits performed by Newman’s algorithm. The size of each commu-
nity is shown within parentheses and the leaves of the dendrogram represent the indivisible
communities for which ∆Q is negative or equal to zero.

Instead, we apply a generational genetic algorithm (GA)80,81 to evaluate many split vectors

s before selecting the one that maximizes Q directly in (3.1). Hence, all the information

contained in B is used and so Q is no longer approximated.

Genetic algorithms mimic the process of natural evolution to generate candidate solutions

to optimization problems80,82. Initially, a population of candidate solutions or individuals

is randomly generated. Here an individual represents a split vector s which describes the

partition of a community in two subcommunities. s also corresponds to the phenotype. The

genotype is the genetic representation of an individual which is later decoded to obtain the

phenotype. Because the elements of s only take the values −1 and 1, we use a binary genetic

encoding to represent these elements as 0 and 1 in the genotype of the individuals. Before

40

3.2. Module detection methods

evaluating an individual, its genotype is thus decoded using the mapping 0 →−1 and 1 → 1.

The fitness of an individual is a scalar that indicates how good a solution is to a particular

problem. Here the task is to optimally split a group of nodes in two subcommunities. The

fitness of an individual is obtained by evaluating the expression of the modularity Q given by

(3.1) as a function of s (the so-called objective function to maximize)80.

Based on their fitness, individuals from the population are then selected for reproduction.

The reproduction usually consists in combining the genetic material of two parents using

crossover and mutation operators in order to produce new individuals or offspring, and so

new candidate solutions (Fig. 3.3).

A B C1

1
1

1

1
1

0

0

0

0

0

0

1
0

1

1
1

1

0

0

1

1

Parents

Two-point
crossover

Bit-�ip
mutation

O�spring

1

1

1
1

0

0

0

0

1

0
1

0

1

1
1

1

0

1

1

1

0
0

1

1
0

0
1
0

0

1

1

0
1

0

1

1
1

1

0

1

1

1

1
0

Figure 3.3: Reproduction of two individuals using crossover and mutation operators. (A)
Two individuals are selected from the population for reproduction based on their fitness
using tournament selection83,84, for instance. (B) The crossover operator merges the genetic
material from two parents to generate new individuals. (C) The mutation operator affects
nucleotides under given probability to produce punctual changes in the genotype (in yellow).
The amplitude of the changes depends on the encoding used, that is the relation between
genotype and phenotype. Here a nucleotide corresponds to a single bit in the genotype
which translates to {−1,1} in the phenotype (the split vector s). As s defines the split of a
community in two subcommunities, mutating the nucleotide i results in flipping the sign of si

and therefore in moving the node i from one subcommunity to other (Section 3.2.1).

After evaluation, offspring replace individuals in the main population under specific con-

ditions85. The above algorithm is then repeated over many generations to produce and

evaluate many individuals. Finally, the individual that has the largest fitness value in the

final population is selected. In the present method for community structure detection in

networks, the best split vector s found is applied to split the network in two subnetworks. Each

subnetwork or subcommunity identified is further split in two using an additional GA run

unless dividing one community does not further contribute positively to the overall modularity

Q of the network (Section 3.2.1).

41

Extensible and modular community detection in networks

The performance of a GA depends on the values of several parameters including the size

of the population, the genetic encoding used, the method used to select parents, and the

crossover/mutation methods and rates81,85. The design and values of these methods and

parameters depend on the search space to explore which is defined by the problem to solve

and described by the fitness function. The identification of suitable GA parameters for our

community structure detection method is discussed in Section 3.4.3.

3.2.3 Brute force method

The brute force method consists in evaluating every possible split vectors s ∈Rn before selec-

ting the one that maximizes the modularity Q(s) in (3.1). The total number of ways to split a

n-node graph in two is 2n . However, we observe that the two split vectors

s1 = [−1,−1,−1, 1,−1, 1, 1,−1,−1]

s2 = [1, 1, 1,−1, 1,−1,−1, 1, 1]

actually define the same split so that both s1 and s2 obtain the same modularity value Q

when they are evaluated in (3.1). There are finally 2n/2 = 2n−1 distinct ways to split a n-node

community in two subcommunities.

The advantage of the brute force method is that it guarantees to find the best possible split

of a community in two, that is, to find the split vector s that maximizes the modularity Q(s).

However its application becomes quickly too computationally intensive as the total number

of split vectors to evaluate doubles each time a network larger of one node is considered.

Thus, the application of the brute force method remains limited to relatively small networks,

typically with less than forty nodes (see Appendix C.4).

3.3 Refinement methods

In this section, we describe two algorithms designed to further improve the quality of commu-

nity structures previously inferred using one of the methods described in Section 3.2. Both

algorithms can be applied one after another for successive performance improvement.

3.3.1 Moving vertex method (MVM)

The moving vertex method (MVM) is the first technique used to refine a split vector s found

using one of the community structure detection methods introduced in Section 3.2 or any

other modularity optimization methods35,86.

The inspiration for this technique came from the Kernighan-Lin algorithm87 which has been

42

3.3. Refinement methods

initially proposed as a standalone technique for bi-partitioning graphs. It is important to note

that Newman already used this technique as well as others88,89 to improve the performance of

his spectral algorithm27, however without ever reporting or discussing its contribution to the

modularity Q (see results in Sections 3.4.4 and 3.4.5).

MVM takes as input a split vector s ∈ Rc that describes the split of c-node community in

two subcommunities (Section 3.2.1). At each iteration, MVM generates and evaluates sys-

tematically c independent versions of s that differ by only one element at a time (Fig. 3.4A).

Thus, flipping the sign of an element si translates into moving the node i from one to the

other subcommunity before evaluating the effect of this modification on the Q in (3.1). The

modification that leads to the largest increase in Q is then applied and the next iteration

starts. Finally, the refinement procedure ends when no further modifications of s contributes

positively to the modularity of the network (Fig. 3.4B).

A Moving vertex method (iteration 1) B Moving vertex method (iteration 2)

1

1
-1

1
1

-1

1

1
-1

1
1

1

1

1
-1

-1
1

-1

1

1
-1

1
-1

-1

1

-1
-1

1
1

-1

1

1
1

1
1

-1

-1

1
-1

1
1

-1

1

-1
-1

1
1

-1

1

-1
-1

1
1

1

1

-1
-1

-1
1

-1

1

-1
-1

1
-1

-1

1

1
-1

1
1

-1

1

-1
1

1
1

-1

-1

-1
-1

1
1

-1

Split vector
(intput) Split vector

(output)
Largest increase in Q

No increase in Q

Figure 3.4: Refinement of the split of a community in two using the moving vertex method
(MVM). (A) The split vector s returned by a community structure detection method is refined
by systematically flipping the sign of only one element si , which translates into moving the
node i from one to the other subcommunity. (B) The modified version of s that leads to the
largest increase in Q is then selected and the next iteration starts. This optimization algorithm
ends when there are no more s that improve Q.

The complexity of this refinement procedure has been evaluated to O [(m +n)n] or O
(
n2

)
for

a single split of a sparse graph where n and m are the number of nodes and edges27. Moreover,

the procedure can be parallelized as the c modified versions of s are independent. The details

of an efficient version of MVM as we implemented it in Jmod are given by Algorithm C.2.

3.3.2 Global moving vertex method (gMVM)

The refinement method MVM illustrated in the previous section is a relatively simple proce-

dure that allows to improve the bi-partitioning of networks and subnetworks. However, its

application remains limited to the splits of communities in two, thus localizing its effect to

43

Extensible and modular community detection in networks

only a portion of the network that is partitioned.

Here we introduce a second refinement technique called global moving vertex method

(gMVM). This technique can be applied in addition to MVM as the final stage of any com-

munity structure detection methods to further improve the modularity Q of the network. As

suggested by its name, gMVM takes inspiration from MVM. Instead of moving locally nodes

between two subcommunities as MVM does, gMVM moves successively each node of the

network to each indivisible community (Section 3.2.1). The move that leads to the largest

increase in the overall modularity Q of the network is then applied. The new partition of the

network is used as the starting point of the next iteration. The algorithm is repeated as long as

there is a node move that increases Q. The details of the implementation of gMVM are given

by Algorithm C.3.

Once again, the effect of MVM is limited to a portion of the network. However, gMVM can cor-

rect errors that may have been done all along the different stages of the community structure

detection. gMVM can even redistribute all the nodes contained in a community misidenti-

fied as such among the remaining communities as long as the change improves the overall

modularity Q of the network.

3.4 Evaluation of community structure detection methods

3.4.1 Generating Lancichinetti-Fortunato-Radicchi graphs

The evaluation of the performance of community structure detection methods is achieved

here using benchmark graphs where the identity of the communities that compose them is

known (also called ground truth).

Lancichinetti-Fortunato-Radicchi (LFR) benchmark graphs90 are a generalization of the graphs

proposed by Girvan & Newman26 where all nodes have the same expected degree and all

communities or modules have the same size. The node degrees in LFR graphs are distributed

according to a power law with exponent τ1. The community sizes follow a second power law

distribution with exponent τ2. The most interesting parameter in the generation of these

benchmark graphs is the mixing parameter µ, which expresses the ratio between the external

degree of a node with respect to its community and the total degree of the node90. The formal

definition of µ is given by

µ= kout
i

k i n
i +kout

i

(3.8)

where k i n
i and kout

i are the internal and external degrees of node i with respect to its com-

munity. Expressed differently, k i n
i is the expected number of neighbors of i that belong to

the same community and kout
i the expected number of neighbors of i that belong to other

44

3.4. Evaluation of community structure detection methods

communities. From (3.4.1), a node then shares a fraction µ of its connections with nodes in

other communities and a fraction 1−µ of its connections with other nodes in its community.

Therefore, the modularity of the benchmark graphs is inversely proportional to the value of

the mixing parameter µ.

We follow the procedure described by Lancichinetti et al. to generate undirected and un-

weighted LFR benchmark graphs90. Especially, we generate benchmark graphs that include

n = 1000 nodes with a node degree < k > fixed to 20. The maximum node degree is set to 50.

These parameter values actually match those used by Lancichinetti et al. in their comparative

analysis of the performance of twelve community structure detection methods25.

Moreover, we generate two additional classes of graphs. The first class of graphs is made of

"small" communities including each between cmi n = 10 and cmax = 50 nodes. The second

type of graphs is composed of "big" communities including each between cmi n = 20 and

cmax = 100 nodes. The exponents of the power law distribution of the node degree τ1 and

community size τ2 are set to -2 and -1, respectively25. Finally and for each set of the above

parameters, we produce graphs that have different degrees of modularity by setting the mixing

parameter µ to values in [0.1,0.9] with step size set to 0.05.

Figure 3.5 illustrates the generation of 1000-node LFR benchmark graphs that include small

and big communities for µ= 0.1 and µ= 0.5. By painting the nodes of a few modules, we can

observe that graphs generated for µ= 0.1 are effectively more modular than those generated

for µ= 0.5 where communities are more mixed. According to the definition of given in (3.4.1),

nodes for µ= 0.1 share 9/10 of their connections with other nodes of the same module. This

ratio becomes 1/10 for graphs generated for µ= 0.9.

3.4.2 Evaluating the performance of module inference

Modularity Q

Modularity is the first quantity used to evaluate the quality of the partition of a network whose

community structure is unknown76,91. The introduction of the concept of modularity opened

the door to the development of numerous modularity optimization methods, whose goal is to

find the partition of the network into modules that maximizes Q75,76.

However, it has been demonstrated that modularity-based methods can make errors in pre-

dicting the community structure of networks including small communities. This is known

as the resolution limit of modularity optimization methods77. In Section 3.4.6, we show how

this limit affects the performance of the methods introduced at the beginning of this chap-

ter. Especially, we show that the design of our GA-based module detection method makes it

particularly robust to this resolution limit.

Another method is still required to evaluate the quality of network partitions. We decide to use

45

Extensible and modular community detection in networks

Figure 3.5: Structures of 1000-node Lancichinetti-Fortunato-Radicchi (LFR) benchmark
graphs. These LFR benchmark graphs are composed of (A) small communities (10 to 50
nodes each) and (B) big communities (20 to 100 nodes each). The mixing parameter µ, which
controls the ratio of external and internal node degrees, enables the generation of modular
and less modular graphs25. Painting all the nodes of a few communities shows clearly that
communities are more mixed in graphs generated for µ= 0.5 than for µ= 0.1. The network
representations have been obtained using the Force-Directed Layout of Cytoscape61.

the same quantity as the one used by Lancichinetti et al. in their comparative analysis25 which

makes use of the ground truth provided by their benchmark networks (see Section 3.4.2).

46

3.4. Evaluation of community structure detection methods

This will also allow us to directly compare the performance of our methods to those of other

methods.

Normalized mutual information (NMI)

The similarity between two partitions of the same graph can be quantified by their normalized

mutual information (NMI)75. The normalized mutual information is denoted I (A,B) and is

defined as

N M I (A,B) =
−2

∑cA
i=1

∑cB
j=1 ni j l og (

ni j n
ni ·n· j

)∑cA
i=1 ni ·log (ni ·

n)+∑cB
j=1 n· j log (

n· j
n)

(3.9)

where A is the partition inferred by the community structure detection method and B is

the ground truth partition provided by the benchmark network, cA and cB is the number of

modules in the partition A and B , and n is the number of node which is the same in the two

partitions. ni j is the number of nodes shared by the i th module of A and the j th module of B .

ni · is the total number of nodes in the i th module of A and n· j is the total number of nodes in

the j th module of B . Moreover, the convention 0 · log (0) = 0 is used for the calculation of (3.9).

N M I (A,B) takes values in [0,1], where 0 is obtained when the partitions A and B are totally in-

dependent and 1 when the two partitions that are identical. Several comparative analyses have

alread used this pairwise measure of similarity to compare the performance of community

structure detection methods25,75.

3.4.3 Evaluation of the genetic algorithm parameters

The performance of the GA-based community structure detection method introduced in

Section 3.2.2 depends on several methods and parameters such as the genetic encoding used,

the fitness function to maximize and the genetic operators applied to produce new candidate

solutions81,85. In the following sections, we benchmark the GA parameters to provide insight

into how each of them affect the accuracy of the community structure inference.

Genetic representation and fitness function

We use a binary encoding to represent the GA individuals, which represent split vectors s ∈Rc

where c is the size of the community being split in two subcommunities (Section 3.2.2). The

initial population of the GA is composed of 100 random individuals. The genome of each

individual in the population is then decoded and evaluated using the fitness function Q(s).

For the first split of the network in two, s ∈Rn where n is the size of the network and the fitness

function Q(s) defined by (3.1) is used. For subsequent splits of the communities, the fitness

function evaluated is the additional contribution to modularity ∆Q(s) defined by (3.6)27.

47

Extensible and modular community detection in networks

Selection and reproduction

The selection of parents for reproduction is performed using tournament selection with

tournament size set to two84. The tournament selection picks randomly two individuals from

the population before selecting the one with the largest fitness as parent for reproduction.

Increased selective pressure could be obtained by increasing the size of the tournament

selection, however this would be achieved to the detriment of the population diversity, which

is required to efficiently explore the search space of solutions84.

We enable elitism selection so that the best individual in the current generation is carried over

unaltered to the next generation. The number of elites conserved at each generation is set to

one. As for increasing the size of the tournament selection, using more than one elite would

lead to a decrease in the population diversity81.

The generation of new individuals or offspring is achieved by selecting two parents from

the population using tournament selection before combining their genetic material using

crossover and mutation operators85,92. This reproduction procedure is then repeated to

generate one hundred individuals which then replace worse individuals in the population.

The size of the population remains constant through the generations.

Crossover and mutation operators

The fruitful exploration of the search space by the GA to find the hopefully global optimal split

of a community in two subcomunities relies heavily on the design of suitable genetic operators

such as crossover and mutation operators92. In this section, we report the performance of

different crossover and mutation methods when applied to identify communities in modular

and non-modular LFR benchmark graphs.

The idea behind the crossover operator is that better offspring can be produced by combining

the genetic material of two or more parents93. We consider here three crossover methods

which are one-point, two-point and uniform crossovers81,92. One-point crossover splits the

genome of two parents at a random point before swapping their genetic material. Because

all individuals have the same genome length, which is given by the number of nodes to

partition in two subcommunities, the location of the split point is the same for the two parents.

Two-point crossover does the same but cuts the parents in three segments at two random

points (Fig. 3.3). Unlike one- and two-point crossover, the uniform crossover exchanges

the genetic material of two parents at the nucleotide level rather than at the segment level.

The nucleotides correspond here to the binary elements {0,1} that compose the genome of

the individuals. Moreover, the application of the crossover operator to two parents is not

systematic and depends on the selected crossover rate. In case the crossover operator is not

applied, the genotype of one of the two parent is selected as it is.

The mutation operator is applied after crossover to randomly modify one or several nucleotides

48

3.4. Evaluation of community structure detection methods

of the genome with a given probability93. The bit-flip mutation operator is particularly suitable

for binary representations and consists in flipping the value of a nucleotide (0 → 1 or 1 → 0).

In our application and when splitting a community in two, the value of the nucleotide i of an

individual defines if the node i must be placed in the first or second subcommunity. Thus,

flipping the value of the nucleotide or bit i translates into moving the node i to the other

subcommunity. Similarly to the crossover operator, the mutation rate controls the rate at

which the mutation operator is applied to modify the genotype of an individual. Here we

define the mutation rate as the number of bits mutated in the genome of one individual.

The design of suitable genetic operators is required to efficiently explore the search space of

all possible candidate solutions while enabling at the same time the convergence towards the

hopefully global optimum. In order to identify the right balance between exploration and

convergence, we profile the performance of different crossover and mutation methods and

rates on different LFR benchmark graphs generated in Section 3.4.1.

Here we consider 1000-node graphs with small communities (10-50 nodes each). Moreover,

we select graphs with different degree of modularity which is inversely proportional to the

value of the mixing parameter µ. For each value of µ in {0.1,0.5,0.9}, we select one graph from

the LFR benchmark described in Section 3.4.1 and run the GA twenty times to perform the

first split of the network in two subnetworks. Figure 3.6 shows the average of the maximum

modularity values Q(s) achieved for different crossover and mutation methods over twenty

repetitions.

Figure 3.6 shows that both crossover and mutation operators are required to find optimal

splits of the networks in two. Without mutation, the GA fails to converge towards optimal

solutions (dark vertical stripe on the left of each panel). This can be explain by the lack of

diversity in the genetic material which makes the GA unable to explore the search space

further than the closest local optimum at the time of the first generations. Moreover, the

best performance of the GA is achieved for small amounts of mutation. Typically, one node

mutated per genome allows the GA to find the optimal solutions for each graph, which will

later appear to be the global optima (Section 3.4.5). The performance then decreases rapidly

as the mutation rate increases. This is because large mutation rates prevent the GA to converge

towards an optimum.

The three crossover methods considered achieves very similar performance. A general trend

observed in modular as well as in non-modular graphs is that high crossover rates is required

to achieve convergence before that the GA reaches the maximum number of generations,

which is set here to 3000 generations. High crossover rates usually comes with a higher chance

of premature convergence, which occurs when the GA is trapped on suboptimal solutions

without being able to produce offspring better than their parents81,85. We show later that this

risk is relatively low for networks with high and medium degree of modularity. Nevertheless,

we describe in Section 3.4.3 a strategy that we systematically apply to increase the chance of

the GA to converge towards the optimal solution and thus circumvent the risk of premature

49

Extensible and modular community detection in networks

µ

= 0.1

O
ne

-p
oi

nt

0

0.2

0.4

0.6

0.8

1

Cr
os

so
ve

r r
at

e
Tw

o-
po

in
t

0

0.2

0.4

0.6

0.8

1

U
ni

fo
rm

0

0.2

0.4

0.6

0.8

1

0 10 20 40 60 80 100521

µ

= 0.5 µ

= 0.9

0 10 20 40 60 80 100521 A
ve

ra
ge

 m
ax

 m
od

ul
ar

ity
 Q

0

0.2

0.1

0.4

0.3

0 10 20 40 60 80 100521
Number of nodes mutated

(nodes moved from one subcommunity to the other)

Figure 3.6: Effects of the crossover and mutation methods on the performance of the GA-
based module detection method. We apply the GA-based module detection method de-
scribed in Section 3.2.2 to identify the optimal splits of 1000-node LFR graphs with high,
medium, and low degrees of modularity, which is inversely proportional to the value of the
mixing parameter µ. Here we evaluate the performance of one-point, two-point, and uniform
crossover with rate in [0,1] with step size 0.1. The rate of the bit-flip mutation operator is
defined as the number of nodes mutated in a genome of length c where c the size of the
community to split. For each set of experimental condition, we report the average best fitness
value obtained over twenty repetitions. For now, the GA stops when the maximum number of
generations has been reached which is set to 3000 generations. As expected, we observe that
the modularity Q(s) obtained for splitting graphs with high degree of modularity (µ= 0.1) is
larger than in graphs where communities are more mixed (µ= 0.5 or 0.9). Moreover, the figure
shows that both crossover and mutation operators are required to find optimal split of the
network in two subnetworks.

convergence.

When considering a mutation rate set to one node per genome, no significant difference is

observed between one-point, two-point and uniform crossover for crossover rates taking

values in the range [0.8,1] (Mann-Whitney U-test, p > 0.05 for µ= 0.1, 0.5, and 0.9). Therefore,

we select the uniform crossover method with crossover rate set to 1 in order to achieve

50

3.4. Evaluation of community structure detection methods

convergence within the minimum number of generations (Fig. 3.7). These crossover method

and rate are used in further experiments with the mutation rate set to one bit or node per

genome.

A Di�erence between uniform and two-point crossovers

B E�ects of the crossover rate

Rate 1.0
Rate 0.8

0 500 1000 1500 2000 2500 3000
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

M
od

ul
ar

ity
 Q

Generations

µ

= 0.5

µ

= 0.1

µ

= 0.9

Uniform
Two-point

0 500 1000 1500 2000 2500 3000
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

M
od

ul
ar

ity
 Q

Generations

µ

= 0.5

µ

= 0.1

µ

= 0.9

Figure 3.7: Effects of the GA crossover method and rate on the speed of convergence of the
GA-based network module detection method. We apply the GA-based community struc-
ture detection method described in Section 3.2.2 to identify the optimal splits of 1000-node
LFR graphs high, medium, and low degrees of modularity, which is inversely proportional
to the value of the mixing parameter µ. The main lines show the average maximum modu-
larity Q achieved by the population at each generation over twenty repetitions. Moreover,
the transparent patch represents the 95% confidence interval (CI). (A) We observe that the
speed of convergence of the GA is higher when using uniform rather than two-point crossover
(crossover rate is set to 1). (B) Lower values of the crossover rate reduce the speed of con-
vergence of the GA. Furthermore, no statistical difference is observed between one-point,
two-point and uniform crossover for crossover rates set to values in [0.8,1] (Mann-Whitney
U-test, p > 0.05 for µ= 0.1, 0.5, and 0.9).

51

Extensible and modular community detection in networks

Stopping criteria

There are several criteria that can be used to stop a GA. So far, we set a maximum number

of generations that the GA must complete before it returns the best solution found. Other

approaches which are often considered consist in stopping the GA when a satisfying solution

has been identified or when the convergence has been detected81,85.

For example, a satisfying solution can often be defined in engineering problems. However, the

goal of community structure detection methods is to identify the best partition of a network

into modules. More precisely, the approach we adopted consists in finding the partition of

a network that maximizes the modularity Q27, which makes the definition of a satisfying

solution to stop the GA inapplicable unless the target partition of the network is known, which

is not the case in real applications.

The first stopping criterion used is often to simply wait for the GA to complete a given number

of generations or number of individuals evaluated. The implementation of this criterion is

straightforward but it comes with several drawbacks. The first difficulty is to define a suitable

value for the maximum number of generations. If this number is too small, the GA will not

have the time to converge and will return a suboptimal solution. On the other hand, an

excessively high value increases the chance of the GA to converge at the expense of wasting

computational time. That said, the evaluation of a suitable maximum number of generations

also depends on the problem to solve. The higher the dimension or complexity of the problem

to solve is, the more generations will be required to find an optimal solution. The design of the

fitness function, which provides a quantitative description of the solution space, the choice

of the genetic encoding, selection method and genetic operators also affect the number of

generations required by the GA to converge. Thus, the identification of a suitable value for this

parameter requires to perform preliminary experiments, which must be repeated each time

one of the GA parameter changes.

Yet another drawback of this stopping criterion is that the modular decomposition of a network

using bi-partitioning methods requires to run the GA each time a community is split in two.

If the dimension of the search space for the first split of the network is given by its size n,

subsequent module splits typically require fewer and fewer generations as their sizes decrease.

As an example, we set the maximum number of generations to 3000 generations in previous

experiments to ensure the convergence of the GA for the first split of the networks in two

(Fig. 3.8A). Eventually the GA is applied to split small modules (10-20 nodes) for which running

the GA for 3000 generations does not make much sense. One could think to proportionally

decrease the maximum number of generations according to the sizes of the modules being

split. However, the evaluation of the maximum number of generation for the first split would

still be required, computational time would still be wasted, and the convergence of the GA

would never be guaranteed.

Note that the above method is likely to find the optimal decomposition of a network into

52

3.4. Evaluation of community structure detection methods

modules after an excessively large number of generations. To improve the current efficiency

of our GA-based module detection method, we propose to detect when the convergence of

the GA occurs, thus allowing to stop the optimization process when improvement of the best

solution found is no longer expected. At each generation, we evaluate the diversity of the GA

population using the pairwise Hamming distance94,95

Dh(P) =
N−1∑
j=1

N∑
k= j+1

dh(i j , ik) (3.10)

where dh(i j , ik) is the Hamming distance between the individual genomes. Dh(P) is defined

for a population of size N with genomes of fixed length l . We then multiply Dh(P) by N (N−1)
2

to compute the average Hamming distance between two individuals. Since we use a binary

encoding, the average Hamming distance is the average number of bits that differ between

two genomes and so the average number of nodes that are distributed differently between two

partitions of a community in two subcommunities. Therefore, both genetic and phenotypic

diversities are equal here.

The average Hamming distance is reported in Figure 3.8B for the modular decomposition

of three 1000-node LFR benchmark networks produced for different values of the mixing

parameter µ. Initially, the GA population is composed of random individuals and so the

expected Hamming distance between two individuals is 500 bits. We observe that the diversity

of the population then rapidly decreases as the GA converges. The inset in Figure 3.8B provides

a four times magnification whose bottom left corner matches the origin of the entire plot. We

observe that it takes less generations for the GA to partition modular networks than networks

where communities are more mixed (µ= 0.5 and 0.9).

We want the GA to stop automatically when the diversity goes below a given threshold. After

having observed the evolution of the diversity for networks with different modularity values

(Fig. 3.8B), we decide to make the GA stop when the difference between two individuals is

on average less than one bit. At that stage, we do not expect the solutions found by the GA

to significantly improve because the amplitude of the mutation rate is here relatively small

(one node mutated per genome) at least when splitting large communities. By comparing

the modularity Q of the split vectors s found by the GA using the new stopping criterion with

the modularity of the split vector s found at generations 1000, 1500 and 3000 depending on

the respective µ value of the benchmark networks considered, we conclude that there is no

statistical difference between them (Mann-Whitney U-test, p > 0.05 for µ= 0.1, 0.5, and 0.9).

Figure 3.8C shows at which generations the GA reached the convergence and stopped. This

figure also shows the amount of computational time saved compared to when the GA was

undergoing a fixed number of generations. It is interesting to note that the convergence is

achieved even faster when bi-partitioning smaller communities, which reduces further the

computational time required to partition the network. Finally, the detection of communities

53

Extensible and modular community detection in networks

A Evolution of the partition of 1000-node LFR graphs in two subcommunities

0 500 1000 1500 2000 2500 3000
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

M
od

ul
ar

ity
 Q

Generations

µ

= 0.5

µ

= 0.1

µ

= 0.9

B Population diversity (average Hamming distance between two individuals)

50

500

0 500 1000 1500 2000 2500 3000
Generations

4X

0

100

200

300

400

500

Av
er

ag
e

H
am

m
in

g
di

st
an

ce
 (b

its
)

µ

= 0.1

µ

= 0.9µ

= 0.5

C Detection of the convergence (average Hamming distance < 1 bit)

µ

= 0.5

µ

= 0.1

µ

= 0.9

0 500 1000 1500 2000 2500 3000
Generations

Figure 3.8: Illustration of the diversity-based GA stopping criterion. (A) Evolution of the
modularity Q for the best split vectors s found by the GA for networks with modularity values.
Here the GA stops after a fixed number of generations. (B) We compute the average Hamming
distance as a measurement of the population diversity. (C) The GA stops by itself when
the average Hamming distance is less than one bit, i.e. when the difference between two
individuals is on average lower than one bit. The main lines represent the average maximum
modularity Q found over twenty repetitions of the GA along with the 95% CI.

54

3.4. Evaluation of community structure detection methods

in modular networks is more clearly defined than in networks where modules are more mixed

(µ= 0.5 and 0.9), which results in an increased speed of convergence towards more clearly

identified optima. In networks with lower modularity value, the bi-partitioning task to solve

is more ambiguous because there exist many split vectors s that achieve very similar fitness

values Q(s).

Strategies for preventing premature convergence to local optima

Here we propose two strategies to prevent premature convergences and improve the ability of

the GA to find the optimal partition of the network into modules.

As mentioned previously, there is always a risk that the GA will prematurely converge towards

a local optimum instead of the global optimum. Therefore, we perform several independent

GA runs for each community to split in two communities. We then select the partition that

has the largest modularity value Q or generalized modularity value ∆Q.

The second strategy consists in applying the brute force method introduced in Section 3.2.3 to

split small communities. The maximum number of individuals evaluated by the GA during one

run is given by the product of the maximum number of generations and the population size.

Thus, the brute force method is applied instead of the GA each time the following condition

2c−1 ≤ Maximum number of generations ·Population size (3.11)

is satisfied, where 2c−1 is the total number of split vectors s to evaluate using the brute

force method and c is the size of the community to split in two. Because the number of

candidate solutions to evaluate doubles each time the size of the network is larger by one

node, the application of the brute force method is limited to relatively small communities,

typically smaller than twenty nodes for the identified GA parameters which are summarized

in Appendix C.1.4.

3.4.4 Evaluation of the refinement techniques MVM and gMVM

We perform a first experiment using small social networks to evaluate the respective per-

formance of Newman’s spectral algorithm and the refinement methods MVM and gMVM.

Moreover, the brute force method described in Section 3.2.3 is applied to find the global

optimum of each community split in two subcommunities.

Figure 3.9 shows the structure of small social networks, whose size remains limited to enable

the detection of their community structure using the brute force approach within a reasonable

time (Appendix C.4). The three social networks describes friendship relations between differ-

ent people. The first network has been built to account for the development and resolution of

55

Extensible and modular community detection in networks

a conflict among men working on the surface in a mining operation in Zambia96. The conflict

centered around two persons, P1 and P2. Most of the other workers ended up supporting P1.

This can be explain by the fact that P1 had good relationship with four influent workers who

had themselves good relationship with at least three other workers (Fig. 3.9A).

Q

= 0.278 Q

= 0.422

B O�ce networkA Mine network

P1

P2

Q

= 0.420

C Karate network

Figure 3.9: Community structure detection in social networks using an improved version
of Newman’s algorithm. (A) Data collected in 1969 to account for the development and reso-
lution of a conflict among men working on the surface in a mining operation in Zambia96. The
conflict centered on two persons, P1 and P2. (B) Cognitive social structure of 21 management
personnel in a company to evaluate the effects of a recent management intervention program
(edges show friendship relations)23. (C) Identification of factions emerging after an argument
occurred between the members of a karate club79.

The second network represent data collected from twenty-one managers working in a company

manufacturing high-tech equipment23. Different questions were asked to the managers to

assess the effects of a recent management intervention program. One of them was "Who is

your friend?" and the answers collected were used to build the networks shown in Figure 3.9B.

The modules identified shows that managers belonging to the same department share more

friendship relation with other managers of the same department than with others23.

Figure 3.9C displays the structure of Zachary’s karate club network79, which has been previ-

ously used to illustrate community structure inference using Newman’s spectral algorithm

(Section 3.2.1). At some point, an argument occurred between the 34 members of a karate club

in the US, which then led to the creation of two clubs, each of them taking almost half of the

members. The inferred community structure of this network actually matches accurately the

two main factions (blue+green and yellow+red) that have actually emerged after an argument

between the members79.

We report in Table 3.1 the modularity Q computed for these three social networks using

56

3.4. Evaluation of community structure detection methods

different methods. First, we show the performance of Newman’s spectral algorithm without

refinement, then improved using only MVM, and finally we show the performance of the

improved version of Newman’s algorithm (i.e. Spectral + MVM + gMVM). By selecting s to be

parallel to the leading eigenvector v1 of the modularity matrix B, the Newman method finds

only an approximation of the best partition of the mine and karate networks. When selecting

MVM, each split of communities in two subcommunities is refined and the quality of the

community structure inference matches the quality of the brute force method.

Table 3.1: Community structure detection in social networks. The refinement techniques
MVM and gMVM are successively applied to improve the performance of Newman’s spectral
algorithm. The brute force method is then applied followed by the refinement method gMVM.
The networks show the friendship relations between men working on the surface in a mining
operation in Zambia96, management personnel in a high-tech company23, and the members
of a karate club in the US79.

Modularity Q

Network Nodes Edges Spectral + MVM + gMVM Bf + gMVM

Mine 15 38 0.253 0.256 0.278 0.256 0.278
Office 21 60 0.422 0.422 0.422 0.422 0.422
Karate 34 78 0.393 0.419 0.420 0.419 0.420

Finally, we apply the optimization technique gMVM to further refine the quality of the module

detection performed using Spectral+MVM and the brute force approach. We show here this

last refinement stage still improves the performance of the community structure detection.

This also happens to be the case when gMVM follows the application of the brute force

method. Therefore, we demonstrate that perfectly splitting communities in two in the sense

of maximizing the modularity Q does not lead necessarily to the best partition of the network.

Moreover, we show that the refinement method gMVM can still further improve the partitions

of networks that are obtained after perfectly splitting communities in two.

3.4.5 Evaluation on LFR benchmark graphs

Here we profile the performance of the community structure detection methods implemented

in Jmod on LFR benchmark graphs that we have generated in Section 3.4.1. In these networks,

the identity of the communities to infer is known.

Figure 3.10 reports the performance of Newman’s spectral algorithm refined successively

using the refinement methods MVM and gMVM, and the performance of our GA-based

module detection method. The x-axis represents the mixing parameter µ and the y-axis

the normalized mutual information N M I (A,B) where A is the partition inferred and B is

the effective partition of the network (the so-called ground truth). The perfect score of 1 is

achieved when the partitions A and B are identical (Section 3.4.2). Moreover, each line shows

57

Extensible and modular community detection in networks

the performance of the methods on one of the four types of benchmarks obtained for different

sizes of networks and communities. Each point represents the average normalized mutual

information computed from the community structure detection of twenty networks.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

(N
M

I)

Newman’s spectral algorithm Spectral + MVM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mixing parameter µ

Spectral + MVM + gMVM GA + MVM + gMVM

n=1000 (small communities) n=1000 (big communities)

Figure 3.10: Performance profiling of module detection methods using LFR graphs. The
benchmark introduced in Section 3.4.1 is used to evaluate the absolute and relative perfor-
mance of the methods implemented in Jmod (Sections 3.2 and 3.3). The modularity of LFR
graphs is inversely proportional to the value of the mixing parameter µ. The benchmark
consists of 1000-node graphs composed of small (10-50 nodes) and big (20-100 nodes) com-
munities. Each point represents the average normalized mutual information (NMI) obtained
for twenty module detections performed on different graphs.

The first observation is that the performance of the module inference methods is the highest

on modular graphs (µ≤ 0.5) than on less modular graphs. The number of edges between

nodes that belong to distinct communities increases at the same time µ does. This results in

communities more mixed and harder to identify. For µ= 0.5, a node shares as many edges

with nodes of the same module than with nodes belonging to other modules as defined by

(3.4.1). At that stage, we can wonder if communities are actually well defined in the benchmark

graphs. Lancichinetti et al. mentioned that all the communities of a graph can be assumed to

58

3.4. Evaluation of community structure detection methods

be safely defined when

µ≤ N −nmax
c

N
(3.12)

where nmax
c is the size of the largest community, respectively 50 and 100 nodes in small

and big communities25. In the limit case where n = 1000 and nmax
c = 100, communities are

well defined for µ ≤ 0.9 and so all the graphs considered here at the exception of µ = 0.9

satisfy this condition. It is actually important to note that none of the methods reviewed by

Lancichinetti et al.25 achieved NMI values larger than 0 for µ larger than 0.75, which tells us

that communities are effectively extremely hard to identify past that mu value.

In the top-left panel of Figure 3.10, we observe that applying directly the split vector s de-

fined by the leading eigenvector of the modularity matrix B does not provide usable module

predictions. It is important to note that this method has never been intended to be used

without refinement27. The contribution of MVM to the performance of Newman’s algorithm

is particularly remarkable. MVM is a greedy algorithm89 that locally refines the given split of

a community in two subcommunities similarly. An inherent limitation of greedy algorithms

is that their performance relies heavily on the initial solution and the shape of the search

space. In our experiment, we show that the spectral method provides a suitable initial point to

achieve most of the time the global solution using MVM. Moreover, the application of gMVM

further improves the quality of the network partitions.

The performance of our GA-based community structure detection method with MVM and

gMVM enabled is also shown in Figure 3.10. The best performance is actually achieved by this

method which identifies the true partitions of all LFR graphs with big communities for µ≤ 0.5.

In comparison, the improved version of Newman’s algorithm starts making mistakes in such

graphs for µ= 0.4. This performance can be explained by the ability of the GA to accurately

converge towards (global) optimum for each split when the improved version of Newman’s

algorithm only performs local optimization. Furthermore, the number of nodes moved by

MVM is much lower for partitions inferred using the GA than the spectral method, which also

demonstrates the ability of the GA to reach optimal solutions.

Jmod can be used to export snapshots of the network each time the detection method changes

its community structure. These snapshots provide visual information that can help to under-

stand the behavior of community structure detection methods, and thus can provide insight

into how to improve them. We use this feature to visualize the first split of a 1000-node network

(µ= 0.1, big communities) in two communities identified using the GA-based method. Figu-

re 3.11 shows different partitions of the same network where nodes are painted depending

on which communities they have been found to belong to. Because GAs are stochastic opti-

mization methods, different solutions may always been expected for multiple independent

runs. However, the interesting part is that each partition does not achieve the same Q, yet

we have shown previously that the community structure of all twenty such networks were

59

Extensible and modular community detection in networks

perfectly identified (Fig. 3.10). Therefore, a bi-partitioning method does not have necessarily

to find systematically the split that maximizes Q as long as the two communities identified are

consistent. This is an important result for modularity optimization methods that can always

miss the global optimum.

Q

= 0.447Q

= 0.445Q

= 0.443 Q

= 0.445

Figure 3.11: First split of the same 1000-node graph in two using our GA-based detection
method. We perform four independent runs of the GA to identify the first split of a LFR
network (µ= 0.1, big communities) in two. By evaluating the modularity Q of the partitions
in (3.1), we conclude that the GA does not always find the split that maximizes Q. However,
each of these four GA runs eventually returns the same community structure which matches
perfectly the true partition of the graph.

Furthermore, we compare the modularity Q of the true partitions of the graphs with the

values found using the GA-based method. The evaluation of Q for the known partition of

the LFR graph is achieved through the recursive bi-partitioning of the known communities

in two groups similarly to the process performed by Newman’s spectral algorithm or our

GA-based method (Fig. 3.12). As expected, Q is linearly and inversely proportional to the

mixing parameter µ.

The second plot in Figure 3.12 reports the modularity values of the community structures

identified using the GA-based method successively refined using MVM and gMVM. The first

part matches accurately the values measured for the true partitions of the networks, then

values stop to decrease linearly for µ ≥ 0.6. This indicates that the method find partitions

of the networks into modules that achieves higher Q values than their true partitions. The

main reason is that communities are so weakly defined for µ> 0.7 that almost all community

structure detection methods known25 fail to identify them. Past the value of µ = 0.7, LFR

graphs become very close to random networks, in which detection methods may still detect a

small number of communities due to random fluctuations in their edge distribution.

The issue of finding network partitions that achieve larger modularity Q than the true par-

titions is also known to be due to a resolution limit of modularity optimization methods77.

In the next sections, we discuss how this limit affects the performance of the above methods

and propose a strategy to overcome this limit to some extend using the GA-based module

detection method.

60

3.4. Evaluation of community structure detection methods

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
od

ul
ar

ity
 Q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Known LFR partitions GA + MVM + gMVM

Mixing parameter µ

n=1000 (small communities) n=1000 (big communities)

Figure 3.12: Modularity Q of LFR graphs using their true partitions and the GA-based
method. As expected, Q is linearly and inversely proportional to the mixing parameter µ.
For µ> 0.6, the GA-based method seems to find partitions of the graphs that obtained higher
Q values than the true partitions of the networks. Each point represents the average Q value
computed for twenty community structure detections on different networks.

3.4.6 Resolution limit of modularity optimization methods

Modularity maximization methods have been shown to be likely affected by a resolution limit

that makes them fail to identify communities smaller than a given scale proportional to the

size of the network and to the degree of interconnectedness of the communities77,97. This

effect has been shown to occur even for graphs where the natural partitioning of the graph

into modules is unambiguous97.

In the methods introduced in Section 3.2, communities are recursively split in two subcom-

munities according to the split vector s that maximizes the the modularity Q for the first

split of the network or ∆Q for the subsequent splits. A community is then considered in-

divisible if splitting it further in two would not contribute positively to the modularity Q.

However, Good et al.97 showed using Girvan-Newman’s modularity definition26 that merging

two subcommunities into one results in a positive contribution if

ei j >
di d j

2m
(3.13)

where ei j is the number of edges between a community i and j and di is the total degree of

nodes in community i and m is the total number of edges in the network. Thus, considering

two communities as one is beneficial from the point of view of modularity maximization if the

number of inter-module edges ei j is larger than the quantity di d j /2m independently of the

internal structure of the communities i and j . Evidences of the existence of this resolution

61

Extensible and modular community detection in networks

limit are reported by Lancichinetti et al.90 who observed cases where the modularity of the

natural partition of a graph is lower than the optimal one found by a modularity optimization

method. As a consequence, the number of modules detected is usually smaller than the

effective number of communities.

Hence, Figure 3.13 shows the number of communities in the true partitions of 1000-node LFR

networks including small (10-50 nodes) and big (20-100 nodes) communities and the num-

ber of indivisible communities detected using the GA-based method. The number of small

communities detected is systematically smaller than expected even when modules are clearly

defined (e.g. µ = 0.1). This difference increases as networks becomes less modular, which

correlates with the degradation in performance of the method observed in Figure 3.10 (Pear-

son’s correlation, r = 0.991, p < 0.05). However, the modularity computed by the detection

method is not significantly different from the true modularity for µ ∈ [0.1,0.6] (Mann-Whitney

U-test, p > 0.5). The GA-based method actually finds slightly larger modularity values than

the true partition of the network (the different is on average 2.577 ·10−4). Thus merging two or

more communities can have a positive contribution to the modularity Q. This illustrates a

serious limitation of modularity optimization methods and show that the quantity Q may not

be suitable to infer the community structure of large networks including small communities.

N
um

be
r o

f c
om

m
un

iti
es

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mixing parameter µ

n=1000 (small communities) n=1000 (big communities) Ground truth

GA + MVM + gMVM GA + MVM + gMVM

Figure 3.13: Number of modules detected in 1000-node LFR graphs using the GA-based
method. The inferred partitions of the networks include systematically less modules than in
the true partitions of networks when they are composed of small communities. However, the
modularity Q of the inferred partitions is usually slightly higher than the true partitions, which
indicates that merging one or more communities can have a positive contribution to Q. For
larger modules, the GA-based method always identify the true partitions of the networks for
µ ∈ [0.1,0.5]. Small and big communities include respectively 10-50 and 20-100 nodes. Each
point represents the average number of modules found in twenty different graphs.

For larger communities, Figure 3.13 shows that the detection method accurately identifies

every single module of the networks for µ values in [0.1,0.6]. The number of modules detected

62

3.4. Evaluation of community structure detection methods

then decreases along with the performance as the degree of interconnectedness of the modules

increases. This number reaches a limit for µ> 0.7, which seems to correspond to the number

of modules that most of the methods reviewed by Lancichinetti et al. achieve on randomized

networks25, this indicating that communities are effectively much harder to detect for µ≥ 0.7.

The above results show that the modularity Q fails to quantify the effective community struc-

ture of 1000-node LFR graphs when communities are smaller than twenty nodes (big com-

munities include 20-100 nodes). The degree of interconnectedness of the modules, which

increases with µ, also hinders the ability of modularity optimization methods to infer correctly

the true partition of the networks. However, previous studies have also shown that similar

methods can fail to unravel the effective partition of highly modular networks77,97. Figure 3.14

represents a graph composed of k = 22 cliques (cliques are groups of nodes that are fully

connected) including each c = 5 nodes. The cliques are attached to one another by a single

connection to form a ring network77. The modularity Q achieved by the natural partition of

this graph is 0.864.

We apply Newman’s spectral algorithm to identify the community structure of ring network.

If the network includes less than twenty-two 5-node cliques, the method successfully infer

its true partition where each community are well separated. However, the method starts to

make mistakes in larger ring networks (Fig. 3.14). In this case, the partition of the graph into

modules is not the one where each community consists in a single clique. The modularity Q

computed by Newman’s algorithm is 0.864, which is 5.551 ·10−16 higher than the Q value of the

natural partition of the graph. This example illustrates well the resolution limit of modularity

optimization methods and the inefficiency of the modularity Q to quantify accurately the

community structure of all networks.

3.4.7 Community voting method for overcoming the resolution limit

In the previous section, we have discussed how the resolution limit of modularity optimization

methods affects the accuracy of network module inference. Here we propose a method to

combine multiple partitions of the same network that can overcome to some extend the

resolution limit and produce more robust and reliable network module inference.

In Figure 3.14, we have shown that Newman’s spectral algorithm is unable to accurately

predict the community structure of a ring network composed of twenty-two 5-node cliques.

The predicted and true partitions of the network into modules are different, yet they both

obtain very close Q values. Because Newman’s algorithm is deterministic, independent runs

would always returned the same incorrect partition. Good et al. showed that the modularity

function Q of ring networks but also biological networks does not have a peak on top of which

the optimal partition is clearly located97. Instead, the function Q has a plateau where many

different partitions have close Q values97. Therefore, deterministic methods often get trapped

in a suboptimal solutions.

63

Extensible and modular community detection in networks

Figure 3.14: Illustration of the effect of the resolution limit using a modular clique ring
network. This graph is composed of k = 22 cliques including each c = 5 nodes. Newman’s
spectral algorithm is applied to identify the community structure of this graph, however it
fails to detect each clique as an individual community (ensemble with gray background are
identified as a single community) despite the high modularity value of Q = 0.864 of the graph.
This is due to its resolution limit that comes from the definition of the modularity Q which fails
to quantify accurately the community structure of large graphs including small communities,
for instance. It is actually possible to find the true partition of this graph using the GA-based
method, however the chance of finding it decreases for ring networks that include more
cliques of smaller sizes. It is also interesting to note that the symmetry is here broken, which is
most likely due to numerical noise in the computation of Newman’s algorithm. A more robust
partition inference is obtained by integrating the information of multiple partitions predicted
by the GA (Section 3.4.7).

The GA-based method that we introduced in Section 3.2.2 uses stochastic processes to gener-

ate candidate partitions of the network. We have shown in Figure 3.11 that the GA can find

different ways to split a network in two subcommunities that obtain similar modularity values.

Moreover, the example of the ring network illustrates how the occurrence of the resolution

limit can generate different partitions with very close Q values where one or more individual

communities are identified as a single community (Fig. 3.14). Both observations account well

64

3.4. Evaluation of community structure detection methods

for the presence of plateaux in the modularity function Q. Therefore, an advantage of the

GA-based method over deterministic approaches is that it can be used to sample modularity

plateaux. Each point or partition then provides additional information about the community

structure of the network.

A challenging task remains the integration of the output of many detections into useful

information that would help to unravel the true community structure of the network98,99.

To address this issue, we propose a voting method to combine N partitions of the same

network generated by N independent runs of our GA-based modularity optimization method

(Fig. 3.15). Here we make the assumption that communities are grouped differently by our

method when the resolution limit occurs. First, a list is created to include all the communities

identified in the N partitions (Figs 3.15A and 3.15B). Each community then receives a number

of votes equal to the number of times it appears in the N partitions (Fig. 3.15C). Communities

are then sorted first by their number of votes and then by their size so that communities

with the largest numbers of votes and smallest sizes are placed at the top of the list. Finally,

nodes are removed from communities if they already belong to a community higher in the list

(Figs 3.15D and 3.15E).

It has been shown that modularity optimization methods are affected by a resolution limit

that makes them fail to identify communities smaller than a given scale proportional to the

size of the network and to the degree of interconnectedness of the communities. The reason is

that modularity Q accounts for the former but not the latter, with the consequence that small

communities may simply not be detected in large networks.

To illustrate the advantage of the voting method, we extend the example of the ring network

by generating networks with different different numbers of cliques (k = 10,20, ...,100) which

each includes a different number of nodes (c = 3,5,7,9). Figure 3.16 shows the normalized

mutual information obtained by Newman’s spectral algorithm on these networks. We can

clearly observe when the resolution limit is reached as its occurrence results in a sudden drop

in performance. The difficulty in inferring the true partition of the network increases as the

number of cliques increases and as their size decreases. We note that the method successfully

identifies all cliques as independent communities in the graph that includes twenty 5-node

communities, but largely fails when two cliques are added to the network (Fig. 3.14).

We apply fifty times the GA-based method to each network to produce as many predictions

of its community structure. It is possible that the effective partition of the network is among

the predicted ones, however it can not be identified from its modularity Q or its normalized

mutual information, which is not available in real applications. The community voting method

is then applied to combine the fifty partitions predicted for each network into a single one

before evaluating its NMI. Figure 3.16 that this approach obtains excellent results on the ring

network benchmark. It actually enables the perfect inference of each community in each

network including 5-, 7-, and 9-node cliques, thus overcoming the resolution limit. However,

the resolution limit is not completely overcome for networks composed of 3-node cliques.

65

Extensible and modular community detection in networks

A Predicted partitions
Identi�ed as one community

B Predicted communities

1.
2.

3.

7.

8.

9.

4.

5.

6.

C Ranking by votes and size E Combined partitionD Removing duplicated nodes

2x

1x

1x

1x

1x

2x

1x

1.

2.

3.

4.

2x

1x

1x

1x

1x

2x

1x

Figure 3.15: Community voting method for overcoming the resolution limit that affect
modularity optimization methods. (A) The modularity function Q includes a plateau where
similar Q values are obtained by partitions where one or more communities may have been
mistakenly identified in as one community. We observe that our GA-based community struc-
ture detection method has the ability to sample different partitions from the plateau defined
by Q. (B) List of all the communities that have been identified in multiple partitions. (C)
Duplicated communities are removed and the remaining ones receive a number of votes equal
to the number of times they appeared in the multiple partitions. Moreover, this list in sorted
in descending order first by number of votes and then by size. (D-E) The combine partition
is eventually obtained after removing nodes from communities if they already belong to a
community higher in the list.

The explanation lies in the relative frequency of occurrence of each predicted community

(i.e. the number of votes). In networks including 5-, 7-, and 9-node cliques, we observed in

each predicted partition that the number of cliques successfully identified as communities is

on average more than 70%. For 3-node cliques, less than 30% of the cliques are successfully

identified so most of the predicted communities are an ensemble of one or more cliques.

During the voting process, it is likely than one of this ensemble obtain more votes than a few

individual cliques, which then lead to a normalized mutual information lesser than 1. Yet we

observed that the accuracy of the integrated partition remains higher than the accuracy of

the individual partitions. Moreover, it may be surprising that the accuracy increases with the

66

3.4. Evaluation of community structure detection methods

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Number of cliques

5-node cliques3-node cliques 7-node cliques 9-node cliques

Newman’s spectral algorithm

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

(N
M

I)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
GA + Community voting method

Figure 3.16: Performance of Newman’s algorithm and the GA-based method followed by
the voting method on ring networks. Networks have been generated to include different
numbers of cliques, each of them including a different number of nodes. Newman’s algorithm
is deterministic, so it returns systematically the same partitions of the network, which is
here often incorrect due to the occurrence of the resolution limit. We apply our GA-based
method to generate fifty partitions for each network before combining them using the voting
method. We observe that our approach perfectly identifies the community structure of graph
networks including 5-, 7-, and 9-node cliques, thus successfully overcoming to some extend
the resolution limit that affects the GA-based method.

size of the network for 3-node cliques. The reason is that predicted communities that include

more than one clique are less likely to be find exactly as they are several times in multiple

partitions of larger networks. Such communities would be typically found one or a few more

time in the N partitions and receive accordingly a small number votes, placing them behind

cliques correctly identified as indivisible communities.

We then evaluate the performance obtained by the GA-based method and the community

voting method on the LFR benchmark. The GA-based method is run ten times on each network

to predict then partitions, which are refined using MVM and gMVM. The ten partitions are

then combine into a single one using the community voting method. Figure 3.17 compares

the performance of the GA-based method alone and when its predictions are used to feed

our community voting method. The performance on networks including small communities

(10-50 nodes) and big communities (20-100 nodes) are plotted separated to show more clearly

the contribution of the voting method.

In Section 3.4.6, we have discussed how the resolution limit makes modularity optimization

methods fail to identify communities smaller than a given scale proportional to the size of the

network and to the degree of interconnectedness of the communities77. We have shown that

the decrease in performance on networks that include small communities is caused by this

67

Extensible and modular community detection in networks

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
N

or
m

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n
(N

M
I)

GA + Community voting method GA + Community voting method

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mixing parameter µ

n=1000 (small communities) n=1000 (big communities) GA alone

Figure 3.17: Performance improvement of the community voting method on 1000-node
LFR graphs. The dashed lines represents the performance of the GA-based method evaluated
on the 1000-node LFR benchmark and previously reported in Figure 3.10. We have observed
that the decrease in performance of the method on networks including small communities is
due to the resolution limit which is known to affect all modularity optimization methods77.
Therefore, we proposed a method for robust and reliable module inference that consists in
combining multiple partitions of the same network obtain using our GA-based method by
ranking predicted communities according to the number of time they have been detected. The
performance improvement is clearly visible especially for networks with small communities
where the resolution limit has been successfully overcome.

resolution limit. Even when the GA-based method finds a partition that achieves similar or

slightly higher modularity values that the true partition of the network for values of the mixing

parameter µ< 0.7, the fraction of communities correctly identified decreases as µ increases

(see Figs 3.12 and 3.13). The above results demonstrate the application of the community

voting method successfully overcome the resolution limit that was affecting our GA-based

community structure detection method. Furthermore, the improvement of performance is

less important in networks that include big communities because the resolution limit is met.

Finally, the degradation of the performance after µ> 0.6 is mainly due to the fact that com-

munity structures are extremely weakly defined. None of the twelve methods reviewed by

Lancichinetti et al. actually succeeds in capturing these community structures25. More-

over, we observe that the performance of those methods for µ> 0.7 are not much different

from their performance on random graphs25. This is another indication that the community

structures of these graphs are either not much different from those of random graphs or the

methods applied by Lancichinetti et al., which include state-of-the-art methods32,35, still lack

the sensitivity required to capture such weakly defined community structures.

68

3.4. Evaluation of community structure detection methods

3.4.8 Module detection in Drosophila protein interaction map (DPiM)

Here we apply our GA-based method on the Drosophila protein interaction map (DPiM)21

to detect cluster of proteins. The method identifies fifty-seven modules which are shown

in Figure 3.18. Nodes are painted in different colors depending on the community they

belong to. As a concrete example, all 31 proteins included in the the Snap/SNARE complex

manually labelled by Guruharsha et al.21 are correctly identified using our method. Moreover,

the detection method suggests that two additional proteins CG7133 (FBgn0037150) and Sgt

(FBgn0032640)100 also participate to the Snap/SNARE complex. We give all the names of the

proteins that participate to this complex as as well as their FlyBasec identifier in Appendix C.5.

Snap/SNARE
complex

Steroid metabolic
process

Histone
acetyltransferase

Nucleolus

RNA processing

Mediator
complex

Flotillin complex

Proteasome
complex

Figure 3.18: Application of the GA-based module detection method to identify cluster of
proteins in the Drosophila protein interaction map (DPiM). Graphical representation of the
largest connected component of the Drosophila Protein Interaction Map, which includes 1817
nodes and 10522 interactions21. Here we apply the GA-based method to identify clusters
of proteins that participate to the same complex. The modularity value computed for this
network is Q = 0.751. Finally, a deeper understanding of this network could be achieved
by comparing the predicted modules to clusters of proteins enriched for GO terms, KEGG
pathways or Pfam/InterPro domains21.

cflybase.org

69

http://flybase.org/

Extensible and modular community detection in networks

3.5 Conclusions

We introduce an extensible and modular framework for community structure detection in

complex networks. We implemented this framework as an open-source Java toolkit called

Jmod. Community structure detection is performed by applying not one but several methods.

Jmod initially implements Newman’s spectral algorithm, a genetic algorithm-based method,

and a brute force method. The performance of these methods is further refined using one of

the two refinement techniques called moving vertex method (MVM) and global moving vertex

method (gMVM). We also developed a voting method to combine multiple network partitions

into one reliable and robust partition.

We have profiled the performance of the above methods using real and artificial networks.

First, we have evaluated the respective contribution of Newman’s spectral algorithm, MVM,

and gMVM to the performance of the improved version of Newman’s algorithm (Spectral

+ MVM + gMVM). The spectral algorithm finds an approximation of the split of a group of

nodes in two which can then be extensively improved using the greedy refinement tech-

nique MVM. Using the brute-force method, we have shown that even the partitions found

by optimal bi-partition methods can be further improved, for example using our refinement

technique gMVM. Moreover, we have profiled the performance of the improved version of

Newman’s spectral algorithm and our GA-based modularity optimization method on 1000-

node Lancichinetti-Fortunato-Radicchi (LFR) graphs generated to obtain different modularity

values. Beforehand, we have identified suitable parameters of the GA using LFR graphs. We

have shown that both crossover and mutation operators as well as small mutation rate are re-

quired to optimally split communities in two. We have also defined a stopping criterion based

on the Hamming distance between two genomes. The performance of the GA-based method

implemented in Jmod has then been shown to outperform Newman’s spectral algorithm

including as well as its improved version.

Modularity optimization methods are known to be affected by a resolution limit that makes

them fail to identify communities smaller than a given scale proportional to the size of the

network and to the degree of interconnectedness of the communities. The reason is that the

definition of modularity Q accounts for the former but not the latter. As a consequence, the

modularity function Q can include a plateau where several partitions of the network achieve

very similar Q values. In addition, the natural partition of the network does not necessarily

obtain the highest Q values, which can be associated to other partition where one or more

communities are mistakenly identified in as one community. We have illustrated this by

applying the improved version of Newman’s algorithm and our GA-based method to detect

cliques in ring networks. Depending on the number of cliques in the network and their size,

both methods can fail to identify each clique as an individual community despite obtaining

higher Q values than that of the natural partition of the network. Although several attempts

have been proposed to fix the resolution limit of modularity optimization methods101,102,

which represent the largest number of community detection methods, none of them solves it

in a satisfactorily manner.

70

3.5. Conclusions

An important difference between Newman’s spectral algorithm and our GA-based method

is that the former is deterministic and thus always converge to the same partition of the

network. However, our GA-based method uses stochastic processes to generate different

candidates partitions, each of them providing a piece of information that can be used to

identify the true partition of the network into communities. We have taken advantage of this

feature to sample the plateau of the modularity function Q resulting from the resolution limit,

hence obtaining many partitions of the network. Moreover, an important contribution of this

work is the development of a community voting method for combining multiple partitions

into one robust and reliable partition. By combining the GA-based method with the voting

algorithm, community structures can be accurately reconstructed from partitions that may

include mistakes, thus overcoming to some extend the intrinsic resolution limit of modularity

maximization. Finally, our GA+voting method is best performer along with Infomap35 in a

comparative analysis that profiled the performance of twelve state-of-the-art community

structure detection algorithms25.

71

4 Towards unsupervised and systematic
segmentation of biological systems

The reconstruction of a developmental gene network in its spatial context remains a conside-

rable challenge. One of the reason is that this process requires tremendous amount of spatial

and temporal gene expression data, which are usually available in very limited quantities due

to the inherent difficulty in measuring gene expression in an entire organism.

Another contribution of this thesis is the development of an image processing method for

unsupervised and systematic quantification of the morphology and gene expression of the

developing Drosophila wing, which is a classical model for studying the genetic control of

tissue size, shape and patterning. The method described here has been implemented as an

open-source software application called WingJa. All that is necessary for our method is a

stack of confocal fluorescence images (3D image) of the biological system to quantify. First,

a parametric model of the morphology or structure of the Drosophila wing is inferred from

a fluorescent marker. The segmentation method is based on the design of multiple image

processing detection modules, each focusing on the extraction of a specific feature of the wing

structure including its orientation. We later extended this approach to the detection of the

Drosophila embryo. We then use the inferred structure model as a convenient coordinate

system for measuring gene and protein expression levels. An important feature of the obtained

expression maps is that they can be used to compare domains of expression in differentiated

systems, for example to visualize the difference in patterns of gene activity between wild

type and mutant wings or in wings imaged at different time points during development.

Moreover, a robust, multiscale quantitative description of the developing wing is obtained by

combining morphological and gene expression information from multiple wings, completed

by the output of an automatic cell nuclei detection method that we have developed. We have

used the above method to automatically generate robust quantitative descriptions of wild-type

and pent deficient Drosophila wings imaged at 80, 90, 100, and 110 hours after egg laying.

Furthermore, we have shown that these quantitative descriptions can be used to unravel the

regulatory interactions of a six-gene wing developmental network.

atschaffter.ch/projects/wingj

73

http://tschaffter.ch/projects/wingj

Towards unsupervised and systematic segmentation of biological systems

4.1 Introduction

Over the last decade, high-throughput assays for mRNA expression have opened the door to the

inference of regulatory networks by allowing simultaneous measurements of the expression

levels of thousands of genes. Technologies such as spotted microarrays1 and oligonucleotide

chips2 have enabled genome-wide quantification of differential gene expression profiles and,

more recently, short read sequencing technologies such as RNA-seq3 have provided more

precise quantification of mRNA levels. Since then, a plethora of methods have been proposed

to reverse reverse genetic networks in single cells4.

The reconstruction of a developmental gene network in its spatial context remains a considera-

ble challenge. The goal is not only to find a network model that predicts the mRNA and protein

concentrations observed as performed in single cells but also to unravel the mechanisms

that account for the growth and patterning (cell differentiation) of a multicellular organism

or organ. The first challenge is related to the development of models of the organisms at

a multiscale systems level as determined by the interaction of processes at the molecular,

cellular, and tissue level. Once these models are available, the identification of their parameter

values by the reverse engineering process requires tremendous amount of spatial and temporal

gene expression data, which are usually available in very limited quantities due to the inherent

difficulty in measuring gene expression in an entire organism. Moreover, the generation of

reliable and robust models requires the collection of large datasets from many instances of

the organism to model, which is time consuming and expensive.

We have used as case study the Drosophila wing pouch which later gives rise to the adult wing

(see Section 1.3 for an introduction to the development of the wing). Because the processing

of hundreds to thousands wings may be required to generate a reliable and robust quantitative

description, we have developed a fully automated detection and segmentation method to

generate multiscale quantitative descriptions of multicellular organisms and organs (Fig. 4.1)

available as a user-friendly and open source Java tool called WingJ. This method, which is

also the principal result of this chapter, is the fruit of an interdisciplinary project that we have

initiated between the Laboratory or Intelligent Systems, the Biomedical Imaging Group at

EPFL, and the Affolter Lab at the University of Basel.

First, we infer a parametric model of the morphology or structure of the Drosophila wing

pouch from a stack of confocal fluorescence images (also called 3D image). Wg-Ptc antibody

labelling is used to visualize the contour of the pouch and its anterior/posterior (A/P) and

dorsal/ventral (D/V) boundaries. The orientation of the structure in the space of the image is

also recovered using a priori information about the morphology of the pouch. In addition to

provide a wealth of morphological information, the structure model provides a convenient

non-orthogonal coordinate system to quantify gene and protein expression levels. In order to

obtained a robust description of the wing, an automatic procedure automatically integrates

the morphological and gene expression data collected from individual wings to generate a

single and robust quantitative description of the pouch. This description is further extended

74

4.2. Unsupervised segmentation of the Drosophila wing pouch

with the output of a 3D cell nuclei detection and segmentation algorithm that we developed.

Finally, we present the quantitative descriptions that we have generated using WingJ for wild

type and pent2-5 deficient wings imaged at different time points during development.

Body or organ
systems

Robust multiscale
description

Unsupervised detection and segmentation

Morphological
structure models

3D nuclei
segmentation

Spatial gene
expression data

Figure 4.1: Unsupervised segmentation method for generating multiscale quantitative de-
scription of biological systems (body systems or organ systems). The method requires a
stack of confocal images (also called 3D image) where fluorescent markers are visible. We first
apply a modular segmentation method to infer a model that describes the morphology or
structure of the Drosophila wing pouch. This model is then used to quantify gene and protein
expression. Moreover, the model can be augmented with the output of an automatic cell nuclei
detection method that we also developed. The morphological and expression data collected
from individual wings are then combined to generate a robust and multiscale quantitative
description of the wing pouch.

4.2 Unsupervised segmentation of the Drosophila wing pouch

4.2.1 Extensible and modular approach

The method for unsupervised segmentation and detection of the structure of the Drosophila

wing pouch as delimited by the expression of Wg-Ptc-AB relies on the design of multiple

detection modules. In this context, each detection module is designed to identify a specific

feature from the overall morphological structure to detect (see Fig. 4.2). We give here an

overview of our approach and discuss the benefits of its modularity.

The first benefit of a modular design is that a detection module can be modified independently

of the others as long as it satisfies predefined output specification. A module can be rewritten

to implement a different approach expected to improve the reliability of the identification

of a target feature. This leads to another advantage which is that the performance of each

module can be assessed separately in order to optimize each stage of the overall detection. We

evaluated below the performance of two detection modules whose output reliability is crucial

for the overall detection on a 50-wing benchmark. Moreover, the image processing tools

that we developed (e.g. detection of fluorescent cross-like shapes, detection of a fluorescent

trajectory, detection of compartments delimited by fluorescent boundary, etc.) and integrated

75

Towards unsupervised and systematic segmentation of biological systems

Figure 4.2: Unsupervised detection and segmentation of the Drosophila wing pouch and
embryo available in WingJ. (A) Detection of the structure of the Drosophila wing pouch from
Wg-Ptc antibody staining. We designed several detection modules to extract different features
of the pouch morphology. For example, one module detects the intersection of the A/P and
D/V boundaries, one identifies compartments delimited by a fluorescence expression, etc.
The output of the modules are then integrated to reconstruct a parametric module of the
pouch structure. Generic detection modules can be reused to identify the structure of other
systems. (B) The detection and segmentation of the Drosophila embryo is less complex than
that of the pouch and thus can be performed using a smaller number of modules.

into the detection modules are for the most generic enough to target different applications

such as the detection and segmentation of other systems.

Furthermore, we observed that our approach achieves high robustness due to partial redun-

dancy between the different detection modules and sharing of information. As an example, the

trajectory of the A/P and D/V compartment boundaries inside the wing pouch can be detected

by two modules: a first time using the space between the four compartments detected (second

image in Fig. 4.2A) and a second time by the fluorescent trajectory tracker (fourth image). The

issue with the first approach is that spline-based snakes (Section 4.2.5) may leak outside of

their compartment and explore neighbor compartments when the fluorescence expression

along A/P and D/V is too weak. Nevertheless, our method is robust against this type of error

as the trajectories of the A/P and D/V boundary can still be recovered using the boundary

trackers.

Finally, the above points lead us to suggest that the performance of the detection and seg-

76

4.2. Unsupervised segmentation of the Drosophila wing pouch

mentation method could be further improved by applying multiple detection modules that

aim to identify the same morphological feature (those modules could be applied in parallel

to minimize the total computational time). After evaluating their performance on one or

several benchmarks, each module can be given a confidence level reflecting the quality of

its expected inference. The confidence levels could then be used to select the method to

apply, typically the module that achieves the highest performance on the benchmark. An

alternative approach would consist in using the confidence levels to weight the output of

the different detection modules before integrating them using a consensus or voting method.

We have actuall demonstrated in Chapter 3 that this approach succeeds in performing more

reliable community structure detection in networks by integrating the information contained

in multiple predicted partitions of the same network.

4.2.2 Preliminary detection

The preliminary detection of the structure of the Drosophila wing pouch takes as input a stack

of confocal images where the structure has been made visible using one or more florescent

markers (Appendix D.1). Here, we use Wg-Ptc antibody labelling which is mainly expressed

along the A/P and D/V compartment boundaries, and the contour or outer boundary of the

pouch.

We denote the stack of confocal images f . The standard coordinate system of an image stack

f is defined by the triplet (x, y, z), where x and y are the coordinates of a single image (origin

is traditionally located at the upper-left corner of the image) and z describes the depth of the

image stack. f (x, y, z) is the value or brightness of the pixel located at (x, y, z) within the image

stack. From now on, we consider pixels taking grayscale values in [0,255] (8-bit encoding) as

they were directly provided by the confocal microscope (Appendix D.1.2).

The task here is to extract a preliminary and almost always incomplete version of the pouch

structure from the confocal images. The extracted information will be later used to help

identifying more precisely the A/P, D/V, and outer boundary of the pouch. Because we consider

the Drosophila wing pouch as a 2D system before wing disc eversion (see Fig. 1.1), the 3D

information contained in the image stack is condensed in order to obtain a 2D representation.

This operation enables the later application of existing image processing algorithms optimized

for 2D images which currently discard the third spatial dimension. The 2D image is obtained

by projecting the image stack f along the z-axis. Formally,

MIP
(
x, y

)= max
z

f
(
x, y, z

)
(4.1)

MIP(x, y) describes the dominant expression features independently of their location within

the volume. This method of projection is referred as maximum intensity projection (MIP) and

is often used as a volume rendering method for 3D data which has been first introduced in

the context of nuclear medicine103. Figure 4.3A shows the MIP image computed for a wild

77

Towards unsupervised and systematic segmentation of biological systems

type wing imaginal discs where the expression of Wg-Ptc-AB is labelled to visualize the pouch

structure.

The MIP image is then smoothed using a Gaussian kernel with standard deviation σp pixels

in order to reduce the intrinsic noise of the acquisition process104. This filtering is extremely

important since it will ease the forthcoming task of separating the foreground object from the

background. The choice of the σp value is typically related to the amount of noise present in

the image. A large and inappropriate σp value would lead to a large noise reduction but also

remove useful information. In order to define a suitable value for σp , we define

σp = d

2
p

2 ln2
(4.2)

where d is the full-width-at-half-maximum (FWHM) of the Gaussian kernel105. Here, we set

the value of d to the expected thickness in pixels of the compartment boundaries we want

to detect. Note that the image scale is usually encoded in the image files generated by the

confocal microscope (Appendix D.1.2). Our image processing software WingJ automatically

extracts this information before displaying it on the main interface.

Figure 4.3: Preliminary detection of the Drosophila wing pouch structure. (A) Maximum
intensity projection (MIP) image of a stack of confocal images where the expression of Wg-Ptc-
AB is labelled. (B) A Gaussian kernel is used to smooth the MIP image before thresholding it
through the application of an automatic nonparametric algorithm called Minimum method106.
(C) The binary shapes are then skeletonized107 to extract the relative position of the features
while discarding noisy information about their size. (D) A pruning algorithm is then applied
to remove the smallest filaments of the skeleton.

78

4.2. Unsupervised segmentation of the Drosophila wing pouch

An automatic thresholding technique is applied to separate the pouch structure from the

background. To achieve this, we use a fully automatic nonparametric algorithm called Mini-

mum method106. The algorithm assumes a bimodal histogram and smooths the histogram

iteratively with a running average filter of size three pixels until only two local maxima remain.

Histogram classes are denoted by y0, y1, . . . , y255 where yn is the number of pixels in the image

whose value is equal to n. The threshold T is the unique minimum value in between two

maxima such that

yT−1 > yT ≤ yT+1 (4.3)

Figure 4.3B shows the result obtained after thresholding the MIP image using the Minimum

method. The white foreground object exhibits a complex shape with uneven boundaries. This

comes from the fact that the thresholding is a pixel-wise operation which does not maintain

consistency of the foreground as an unique object. This exaplins the presence of artificial

holes and discontinuities in the foreground object.

We then use a mathematical structure named skeleton to clarify the inherent structure of the

pouch. The skeleton structure is a thin version of the thresholded image that is equidistant

to its boundaries (Fig. 4.3C). The skeleton usually emphasizes geometrical and topological

properties of the shape, such as its connectivity, topology, length, direction and width107–109.

The skeletonization procedure thins a binary image through iteratively removal of pixels107.

The rules that allow a pixel to be removed ensure that the binary topology is preserved by

avoiding the creation of holes and loops. The procedure also takes care of the curve end-points.

Indeed, a rule in the removal process ensures that filaments are preserved instead to be eroded

to a single pixel. Figure 4.3C illustrates the output of the skeletonization algorithm when

applied to Figure 4.3B.

However, the skeletonization method usually produces many unwanted filaments on the

output skeletons that correspond to artifacts generated by the order at which pixels are

removed from the structure110. Thus, a pruning algorithm is often applied to clean the result of

a skeletonization method by removing spurious filaments110–112. At that stage of the detection,

we want to obtain the skeleton of the A/P and D/V compartment boundaries which will then

be used in the next detection module to determine their intersection point. We modified the

pruning algorithm described in110 to introduce a minimum filament length that is used to

discriminate between the filaments to be conserved or removed, thus ensuring that smaller

filaments are removed while longer ones are conserved. The final output of this detection

module is shown in Figure 4.3D.

79

Towards unsupervised and systematic segmentation of biological systems

4.2.3 Detecting the A/P and D/V compartment boundary intersection

The aim of this module is to detect the intersection point of the A/P and D/V compartment

boundaries, which we refer to as the wing pouch center. The present module is applied on the

pruned skeleton of the pouch structure shown in Figure 4.3D.

Here, we assume that the A/P and D/V boundaries are aligned with the frame of the image as

shown in Figure 4.4B. This constraint allows to achieve a simple and fast, yet robust detection

of the wing pouch center. Actually, it does not matter to the algorithm how the cross-like

shape formed by the intersection of the A/P and D/V boundaries is oriented as long as it looks

like a straight plus sign ’+’ on the image. The A/P and D/V orientation of the structure will be

inferred at a later stage of the inference method (Section 4.2.9). We evaluate below the success

rate of this detection module using a 50-wing benchmark including wild type and pent2-5

wings imaged at 80 and 110 hours AEL (a sample of this benchmark is given in Figure 1.2).

We show that the selected approach still achieves a high success rate when a deviation of

±10◦ affects the straight alignment of the ’+’ fluorescent structure. We also observed that

experimenters have typically no difficulties in orienting the wing inside this margin of 20◦.

The skeleton of the pouch structure displayed in Figure 4.3D is projected on the x- and y-axis

of the image (Fig. 4.4A). After normalizing independently the two projections, an arbitrary

threshold set to 0.75 is defined to detect the dominant peaks of each projection. The optimum

of each peak is then identified to generate candidate coordinates of the wing pouch center.

In Figure 4.4B, the projections of the structure generate Nx = 1 coordinate on the x-axis

(projection of the A/P boundary) and Ny = 2 coordinates on the y-axis (projection of the D/V

boundary and an additional segment conserved in the skeleton of the pouch structure). The

different x and y coordinates are then combined to generate a list including Nx ·Ny candidate

points for the wing pouch center.

An iterative optimizer is then applied to refine the center candidates before identifying the

genuine intersection between the A/P and D/V boundaries. The optimizers are applied

in parallel and are initially centered on each center candidates obtained using the above

projection method (Fig. 4.5). The shape of the optimizers is defined by the expected width

of the fluorescent boundaries already specified for the previous detection module. At each

iteration, the optimizer moves using a combination of translation and rotation operators

to place the Wg-Ptc expression inside the inner plus sign of the optimizer (Fig. 4.5B). The

convergence is met when the amplitude of the motion of the optimizer falls below a given

threshold. The center of the optimizer after convergence then gives the refined candidate

point of the wing pouch center.

The second role of the optimizers is to discriminate between the candidate solutions and

identify the one that is most likely to correspond to the intersection of the A/P and D/V

boundaries. Formally, the ratio Ī+/Ībg d is computed for each center candidate where Ī+
and Ībg d are the average pixel intensity inside the inner plus sign of the optimizer and its

80

4.2. Unsupervised segmentation of the Drosophila wing pouch

Figure 4.4: Detection of the intersection of the A/P and D/V compartment boundaries
(wing pouch center). (A) The wing pouch center detection module extracts the important
part of the pouch structure from Wg-Ptc expression while discarding smallest and undesired
elements. Assuming that the A/P and D/V boundaries are aligned with the image frame, the
skeleton of the wing pouch structure is then projected independently on the x- and y-axis
of the image. For each projection, the coordinates of the local optimum of each peaks go-
ing above an arbitrary threshold of 0.75 are identified before being combined to generate
candidate points for the wing pouch center. (B) Projecting the skeleton generate here one
coordinate along the x-axis (projection of the A/P boundary) and two coordinates along the
y-axis (projection of the D/V boundary and an additional segment conserved in the skeleton
of the pouch structure). Two candidate points are then generated from the combination of
the x and y coordinates. The most plausible point after evaluation (based on a metric) is
eventually selected as the effect wing pouch center.

background represented by blue squares (Fig. 4.5B). The center candidate with the largest

ratio value is then selected and considered as the effective center of the wing pouch structure.

Performance profiling

We evaluate the performance of the wing pouch center detection method using a 50-wing

benchmark. The benchmark includes wings imaged at different time points during devel-

opment (80, 90, 100, and 110 hours AEL) for both wild type (Fig. 1.2A) and pent2-5 mutant

experiments (Fig. 1.2B). Note that despite the fact that the pent2-5 mutation prevents the

normal development of the Drosophila wing and leads to smaller wings50, the mutation does

not affect much the structure of the pouch as delimited by the expression of Wg-Ptc. Because

the A/P and D/V boundaries are initially aligned with the frame of the image, the benchmark

81

Towards unsupervised and systematic segmentation of biological systems

Figure 4.5: Refinement of the pouch center candidates using an iterative optimization al-
gorithm. (A) Optimizers are initially centered on each center candidate (Fig. 4.5B). The
optimizers then start to move using a combination of translation and rotation operators to
place the fluorescence expression inside their inner plus sign. The optimization process is
deterministic and center candidates are refined in parallel. (B) After the convergence of an
optimizer, the ratio Ī+/Ībg d is computed for each center candidate. Here, Ī+ is the average
pixel intensity inside its inner plus sign and Ībg d is the average pixel intensity falling inside its
background area (blue squares). The center candidate with the largest ratio value is finally
selected and considered as the effective center of the wing pouch structure.

is extended by rotating each of the fifty wings from −45◦ to 45◦ with a step size of 1◦. More-

over, another important parameter to evaluate is the expected thickness d in pixels of the

fluorescent A/P and D/V boundaries that intersect and form the ’+’ shape inside the pouch.

This parameter as to be specified by the user, therefore we are interested in evaluating its

robustness against wild type and pent2-5 mutant wings image at different time points. The

range of this parameter is set to [1,50] pixels for testing purpose.

Therefore, our benchmark includes 227’500 images (50 wings × 91 angle values × 50 skeleton

thickness values) on which the performance of the detection module is profiled. We manually

labelled the intersection of the A/P and D/V boundaries for the fifty wings before applying

the present detection module to recover this information from each of the 227’500 wings

included in the benchmark. A detection is considered successful if the distance between the

inferred and true wing pouch center is less than 20 pixels, which corresponds to 7.56 µm in

our experiments. The success rate is then defined as the fraction of successful detections over

n wings. Figure 4.6 reports the success rate of the detection module for each experiment.

As expected, we observe that the highest performance is achieved when the A/P and D/V

compartment boundaries are aligned with the frame of the image (zero rotation corresponding

to the wings as they were imaged by the experimenters). The module achieves a relatively

high performance when images are rotated between −10◦ and 10◦. Larger rotation angles then

drastically reduce the performance because projecting the A/P and D/V boundaries on the x-

and y-axis of the image does not make sense any more.

We observe that the pouch center is less reliably detected in the youngest wings. This can

82

4.2. Unsupervised segmentation of the Drosophila wing pouch

Ex
pe

ct
ed

 b
ou

nd
ar

y
th

ic
kn

es
s

(p
x)

80h (wt, n=10) 90h (wt, n=7) 100h (wt, n=6) 110h (wt, n=7)

Su
cc

es
s

ra
te

 o
f w

in
g

po
uc

h
ce

nt
er

 d
et

ec
tio

n

1

0.8

0.6

0.4

0.2

0

80h (pent2-5, n=5) 90h (pent2-5, n=5) 100h (pent2-5, n=5) 110h (pent2-5, n=5)

-45 -35 -25 -15 0-5 5 15 25 35 45 -45 -35 -25 -15 0-5 5 15 25 35 45 -45 -35 -25 -15 0-5 5 15 25 35 45 -45 -35 -25 -15 0-5 5 15 25 35 45

1

50

40
45

30
35

20
25

10
15

5

1

50

40
45

30
35

20
25

10
15

5

Rotation angle (degree)

Figure 4.6: Performance profiling of the wing pouch center detection module. The first
and second row report the performance for wild type and pent2-5 mutant experiments. The
columns report the performance for wings imaged at 80, 90, 100, and 110 hours AEL. The
success rate of the detection module is reported for each class of experiments and is defined as
the fraction of successful detections over n wings. Because we are assuming that the A/P and
D/V boundaries are aligned with the frame of the image, we are interested in evaluating the
robustness of the algorithm by evaluating the effect of rotating each wing from −45◦ to 45◦ (x-
axis). Zero degree corresponds to the original wings as they were imaged by the experimenters.
We also assess the effect of the expected thickness d of the fluorescent boundaries using values
from 1 to 50 pixels (y-axis).

be explain by the fact that the structure of these wings is not yet well defined. The pouch

center is also more difficult to identify in 110 hours wings. This age actually corresponds to

the time of the wing disc eversion, that is, when the 2D pouch system starts to everts in the

third dimension, hence nullifying the assumption that the wing pouch can be interpreted as a

2D system (Video S4). Moreover, the pent2-5 mutation has been shown to inhibit the normal

growth of the wings50. As a consequence, the structure of the pent deficient wings remains

more planar than the one of wild type wings of the same age, making the detection module

work even more reliably on pent2-5 wings than on wild type wings.

To obtain a more general idea of the performance of the proposed detection module, the data

shown in Figure 4.6 are integrated in single plot displayed in Figure 4.7A. This panel reports

the performance that can be expected from our method independently of the type and age

of the wing to process. We observe once more time that despite its relatively simplicity, the

approach is robust to the parameters evaluated and achieves high performance (≥ 90%) for

wings rotated between −10◦ and 10◦. Figure 4.7B shows the effect of the expected boundary

thickness d on the overall performance of the pouch center detection module. A performance

above 90% is achieved when setting d to 20 pixels, which corresponds approximatively to

83

Towards unsupervised and systematic segmentation of biological systems

the effective thickness of the Wg-Ptc expression along the A/P and D/V boundaries. More

generally, we observe that the expected thickness of the A/P and D/V boundaries is particularly

robust, which enables to set it approximatively once and then use it for processing multiple

wings. In our experiments, we actually never had to reevaluate this parameter value.

-45 -35 -25 -15 0-5 5 15 25 35 45
1

50

40
45

30
35

20
25

10
15

5

Bo
un

da
ry

 th
ic

kn
es

s
(p

x)

Rotation angle (degree) Boundary thickness (px)
1 5 10 15 2520 30 35 40 45 50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Su
cc

es
s

ra
te No rotation

Rotations in [-5°,5°]

A B

Figure 4.7: Overall performance profiling of the wing pouch center detection module. (A)
The overall performance of the detection module is obtained by averaging the eight heat maps
from Figure 4.6. (B) Evaluation of the effect of the expected boundary thickness d introduced
in (4.2) on the overall performance of pouch center detection module. The success rate is first
reported for the original images only (in blue) and when averaging the results obtained when
rotating the original images between −5◦ and 5◦ (median and 95% CI in orange). We observe
that this parameter is quite robust and that a performance above 90% is achieved when setting
d to 20 pixels, which corresponds approximatively to the effective thickness of the Wg-Ptc
expression along the A/P and D/V boundaries.

4.2.4 Detecting the A/P and D/V compartment boundaries (Part I)

This detection module takes as input the Wg-Ptc MIP image (Section 4.2.2) and the intersec-

tion of the A/P and D/V boundaries also called wing pouch center (Section 4.2.3) to estimate

the direction of the four half-boundaries. The half-boundaries are defined as line segments

that start from the wing pouch center to go towards the dorsal, ventral, anterior and posterior

sides of the wing following the trajectories of the A/P and D/V boundaries. The half-boundaries

are then used to build a coordinate system within the pouch that will have many applications

including the aggregation of many morphological structure models (Section 4.4.1) and the

systematic quantification of gene expression (Section 4.3).

A simple method for separating objects (here the A/P and D/V boundaries) from a background

is called intensity thresholding.113–115 This involves defining one or several threshold param-

eters whose value can be set manually or derived automatically from the data based on the

intensity histogram113. This approach can be successful only if the structure to segment and

the background are well separated. However, this is not the case in our application since the

fluorescence intensity of the A/P and D/V boundaries is diffused. A more elaborate approach

84

4.2. Unsupervised segmentation of the Drosophila wing pouch

consists in using a predefined intensity profile, also referred to as a template, to be matched

to the image data116,117. This method has been shown to work well as long as the shape

to segment do not change significantly across different experiments116. Here, the shape of

the Drosophila wing can largely vary due to variation in nutrient quantities ingested during

growth, for instance. Also, mutant experiments may sometimes drastically affect the shape

of the wing pouch (we have observed that pent deficient wings do not grow as much as wild

type wings while still conserving a structure similar to the wild type one). A large number

of different templates (one for each type of experiments) would be required, thus making

the application of the method impractical for the design of a flexible algorithm. Moreover,

generating templates would be particularly time consuming and the method computationally

expensive118. Yet another strategy to segment an image is to apply a watershed transform119.

By considering the image as a topographic relief map and by flooding it from its local minima.

This transform subdivides the image into regions (catchment basins) with delimiting contours

(watersheds). However, the basic algorithm has several drawbacks such as sensitivity to noise

and would have a tendency toward oversegmentation in our application120. We actually use a

watershed transform for another application of interest: the 3D detection of cell nuclei which

we will introduce in Section 4.5.

In recent years, there has been an increasing interest in using deformable models or active

contours in segmentation121–124. They can be broadly categorized depending on their shape

representation:

• Parametric active contour models. Also called snakes, their shape is described explic-

itly by some parameters. These parameters can take different forms depending on the

curve parameterization, e.g. control points the snake curve must go through125–127,

Fourier descriptors128, spline coefficients129,130, etc.

• Implicit active contours. The representation of the curve is implicit and described

obtained as the zero level-set φ−1(0) = {(x, y)|φ(x, y) = 0} of a scalar function φ defined

over the image domain131–133.

Snakes are initialized with a generic and/or given shape and iteratively evolve in the image

space to optimize a function called snake energy. This function usually includes image-

dependent and shape-related terms to enable flexible incorporation of image information and

prior knowledge. Snakes have been applied to a wide range of segmentation problems121,122.

The framework is very flexible and can be tailored to each application by designing a specified

energy function and incorporating shape constraints in the geometry134. Therefore, we de-

cided to rely on snakes due to the fact that they require fewer parameters than the level-set

approach and lead to a faster optimization procedure.

85

Towards unsupervised and systematic segmentation of biological systems

Kite snake

We developed a snake parameterized by five control points that exhibits a structure similar to

the one of a a kite, so we naturally called it kite snake (Fig. 4.8). Each branch or segment of the

kite snake is designed to capture a half-boundary of the wing pouch, that is, one half of the

A/P and D/V boundaries. The control points P, Q, R and S define the outer quadrilateral of the

kite snake. The remaining control point C corresponds to the center of the kite snake which

should be aligned on the wing pouch center identified by the previous detection module.

Q’

P’

P

S

R
C’

C

Q

Figure 4.8: Schematic representation of the kite snake model. We developed a segmentation
model to identify the direction of each of the four half-boundaries that start from the wing
pouch center and go toward the anterior, posterior, dorsal, and ventral sides of the wing. The
main feature of the kite snake is that it can be applied to identify cross-like shapes that do not
have right angles between them. This is actually the case since the A/P and D/V boundaries
are curved and do not intersect perpendicularly. The geometry of the kite snake is determined
by the position of its five control points C,P,Q,R,S which are the free parameters of the model.
In particular, the shaded triangle P′Q′C′ is entirely determined by the outer triangle PQC as
defined by (4.5), (4.6), and (4.7).

We consider the four (shaded) outer triangles PQC, QRC, RSC and SPC and the four inner

triangles P′Q′C′, Q′R′C′, R′S′C′ and S′P′C′ (Fig. 4.8). The sides of the outer triangles are con-

structed by connecting the kite snake points P, Q, R, S and C. The sides of the inner triangles

are parallel to their outer counterpart. Namely, the segments CP, PQ and QC are parallel to the

segments C′P′, P′Q′ and Q′C′, respectively. Moreover, the area enclosed by each outer triangle

and the corresponding inner and outer triangle satisfy

α= Area
(
P′Q′C′)

Area(PQC)−Area(P′Q′C′)
(4.4)

whereα ∈ [0,∞) is a parameter that controls the size of the outer region and thus the thickness

of the four segments to capture. When α= 0, the area of the inner triangle P′Q′C′ is zero. On

the other extreme when α =∞, the triangles PQC and P′Q′C′ coincide. Here, we consider

86

4.2. Unsupervised segmentation of the Drosophila wing pouch

α= 1 which leads the area of the inner triangle P′Q′C′ to be half the one of PQC. In that

configuration, the coordinates of the points of the outer triangle are given by

C′ = (1−2δ) C+δ (P+Q) (4.5)

P′ = P+δ (Q−P) (4.6)

Q′ = Q+δ (P−Q) (4.7)

where δ= 1
2

(
1−p

1−α)
.

The kite snake is applied to a smoothed version of the Wg-Ptc MIP image and has its center C

initially centered with the intersection of the A/P and D/V boundaries previously identified

(Fig. 4.9A). Once the active contour algorithm has converged, the four segments of the kite

snake (white regions in Fig. 4.8) should include most of the bright pixels of the A/P and D/V

boundaries while conserving approximately their initial size (Fig. 4.9B). To achieve this, we

define the energy function

Ekite =
−1

Area(Cross)

∫
Cross

MIP
(
x, y

)
dx dy (4.8)

+ (‖p−c‖− l0
)2

+ (‖q−c‖− l0
)2

+ (‖r−c‖− l0)2

+ (‖s−c‖− l0)2

where Cross is the region enclosed by the quadrilateral PQRS excluding the outer triangles, and

l0 is the initial length of the branches of the kite snake. The first term in the energy function

has a high negative value when the fluorescence of the A/P and D/V boundaries falls inside

the inner part of the kite snake. The other terms are quadratic penalties associated to each

control points to enforce the conservation of the length of the four segments.

The position of the control points determine the configuration of the kite snake and are tuned

using a standard unconstrained optimization algorithm while minimizing Ekite
135. This type

of optimization algorithms consider equally all degrees of freedom of the model (here the 2D

coordinates of the control points), and perform a line search within the vector space formed

by the parameters. In the optimization scheme, a direction within the parameter space is

first chosen depending on the partial derivatives of the energy before performing an one-

dimensional minimization along the selected direction. Then, another direction is chosen

using the partial derivatives of the energy function while enforcing the same conjugation

properties. This scheme is repeated until convergence is achieved, i.e. until the variation of

the energy function in between consecutive steps of the algorithm falls below a given precision.

The snake is originally centered on the location of the wing pouch center inferred by the

87

Towards unsupervised and systematic segmentation of biological systems

Figure 4.9: Detection of the direction of the A/P and D/V boundaries using the kite snake
model. (A) The active contour model we developed and named kite snake is initially centered
on the wing pouch center, that is, the intersection point of the A/P and D/V boundaries
previously identified (Section 4.2.3). The kite snake can be used to find the direction of the
four segments of a cross-like shape whose center is approximatively known and even if the
angles between any two neighbor segments are not right. (B) After optimizing the energy
function given by (4.8), the four segments of the kite snake are aligned on the parts of the A/P
and D/V boundaries that start from the pouch center. In WingJ, the ’+’ elements correspond to
the control points C,P,Q,R,S of the kite snake model. These points can be manually dragged-
and-dropped at any time before and after the optimization of energy function.

previous detection module described in Section 4.2.3. The four control points remaining are

then distributed in such a way that the initial configuration of the snake matches the geometry

of a plus sign (Fig. 4.9A). After convergence of the optimization algorithm, the kite snake

model provides an accurate description of the intersection of the A/P and D/V boundaries

(Fig. 4.9B). In our image processing toolkit, the ’+’ elements correspond to the control points

C,P,Q,R,S of the kite snake model. These points can be manually dragged-and-dropped at

any time before and after the optimization of energy function if required.

The kite snake model requires the specification of two parameters. The first parameter δ must

be set with a value roughly equal to half the expected width of the A/P and D/V boundaries

delimited by the expression of Wg-Ptc (δ is set via α). This allows to correctly define the width

of the four inner segments of the kite snake. The second parameter l0 correspond to the initial

length of the four inner segments. The next section shows that l0 is actually robust and can be

used across multiple experiments without requiring to modify its value. In all our experiments,

we used the value l0 = 100 pixels, which is approximatively equal to the length of the smallest

half-boundary observed in the youngest wing discs considered (Fig. 1.2).

Performance profiling of the kite snake

The effect of the parameter l0 is evaluated using the 50-wing benchmark. First, we manually

identify the desired configuration of the kite snake model for each of the fifty wings by moving

its control points so that the inner region of the kite covers the intersection of the A/P and D/V

boundaries (the ground truth). Then, the same detection is performed automatically using

88

4.2. Unsupervised segmentation of the Drosophila wing pouch

the kite snake optimization technique. We test values of the parameter l0 between 5 and 400

pixels with 5-pixel increments. Figure 4.10A illustrates the selection of l0 = 100,200,400 pixels

in a 100-hour-old wing. The detection of the A/P and D/V boundaries by the kite snake model

is considered successful if the difference between the inferred and true angle between any

two neighbor segments of the kite snake is less than 2◦ (a relatively severe constraint). The

success rate of the method is then defined as the fraction of successful detections over the

fifty wings. Figure 4.10B shows that a minimum length l0 ≈ 100 pixels is required to achieve

relatively high performance. We observe that the kite snake model is very robust against any

value l0 ≥ 100 pixels but also for values larger than half the typical length of the A/P and D/V

boundaries.

Figure 4.10: Performance profiling of the detection module inferring the direction of the
A/P and D/V boundaries. (A) Initially, the kite snake model is centered on the wing pouch
center, i.e. the intersection point of the A/P and D/V boundary (Section 4.2.3). Three dashed
circles are drawn around the wing pouch center with a radius equal to 100, 200, and 400 pixels.
(B) Here, we observe that a minimum value of 100 pixels for l0 is required to achieve high
success rate (≥ 95%). In all our experiments, we used l0 = 100 without ever reconsidering this
value.

4.2.5 Detecting the wing pouch compartments

The goal of this module is to infer a parametric model of the four compartments DA, DP, VA,

and VP included in the Drosophila wing pouch. In addition to the usual Wg-Ptc input image,

this module requires information provided by the kite snake model inferred in Section 4.2.4.

To be more specific, the kite snake model is used to obtain a parametric description of the

cross-like shape formed by the A/P and D/V boundaries in the vicinity of their intersection.

Our approach for identifying the four compartments relies on the development of a second

snake model based on B-spline curves136. Compared to the kite snake model which has

been designed to identify cross-like shapes, the spline-based model allows to approximate

closed curve in a plane. One spline-based snake is required to capture each compartment

whose contour is delimited by the A/P and D/V boundaries, and the outer boundary of the

89

Towards unsupervised and systematic segmentation of biological systems

pouch, that is, the contour of the pouch as defined by the expression of the protein Wingless

(Wg). Thus, four spline-based snakes are required to generate a parametric model of the

four compartments. The spline-based snake is initialized with a circle shape and is centered

on a point taken between two neighbor segments of the kite snake (Fig. 4.11A). Similarly to

the kite snake model, an unsupervised optimization algorithm is implemented to iteratively

minimize the energy function defined below. Figure 4.11B shows an example of the typical

configuration of the four spline-based snakes after convergence. In the next paragraphs, we

formally describe the optimization technique we developed for unconstraint identification of

the wing pouch compartments using spline-based snakes.

Figure 4.11: Detection of the wing pouch compartments using spline-based snake models.
(A) The snakes are initialized with a circle shape. The kite snake model described in Sec-
tion 4.2.4 provides the information required to ensure that each spline-based snake is initially
located inside a different compartment. (B) After optimization, the spline-based snakes pro-
vide a parametric description of the shape of the four compartments DA, DP, VA, and VP
delimited by the fluorescence expression of Wg-Ptc. Here, the effective contour of the snakes
is displayed as a solid line enclosing a blue region. The ’+’ elements represent the control
points of the model and their location define the effective contour of the snakes.

Spline-based snakes

A parametric curve in the plane denoted r(t) is described by a pair of Cartesian coordinate

functions x(t) and y(t), where t ∈R is a continuous parameter. We parameterize the one-

dimensional functions x and y by linear combinations of basis functions. Among all possible

bases, we use those derived from a compactly supported function ϕ and its integer shifts

{ϕ(t −k)}k∈Z. These definitions enable the use of fast and stable interpolation algorithms137.

Considering closed curves, the coordinates functions x(t) and y(t) are periodic, and so is the

vector equation r(t). Then, we build the spline closed curve by specifying an M-periodic se-

quence of control points {c[k] = (cx [k],cy [k])T}k∈Z, with c[k] = c[k+M]. The vector parametric

representation of the curve is given by

r(t) =
∞∑

k=−∞
c[k]ϕ(M t −k) (4.9)

90

4.2. Unsupervised segmentation of the Drosophila wing pouch

where the period has been normalized to the unity. M represents the the number of control

points, and determines the degrees of freedom in the model. Small values lead to simpler and

constrained shapes while larger values provide more flexibility and accuracy in the model.

Figure 4.12 shows a curve parameterized by a few control points as well as its corresponding

coordinate functions.

0
0.5

1
1.5

-0.5
-1

-1.5

t

0
0.5

1
1.5

-0.5
-1

-1.5

x(t)

y(t)

0 0.2 0.4 0.6 0.8 1x

y

A B

Figure 4.12: Parametric representation of a closed curve in spline-based snake models. (A)
The parametric model we developed for describing closed curves is given in (4.9) (here, M = 5
control points). The contour of the spline-based snake is shown as a solid line enclosing a
blue region. The control points {c[k]}k∈Z of the snake model are represented by ’+’ elements.
(B) The parametric functions x(t) and y(t) are displayed in solid lines, and the dashed lines
indicate the weighted basis functions.

The choice of the basis function ϕ is crucial when determining the possible shapes that r(t)

can reproduce136 and the overall computational load of the segmentation algorithm134. For

that reason, we use a function that has advantageous properties in terms of computational

load and smoothness130. Moreover, this particular basis function has the property to allow the

snake to perfectly describe ellipses. This property has been shown to be very important when

delineating cross sections of cylindrical-like conduits and blob-like objects130. The explicit

expression is given by

ϕ(t) = 1

1−cos 2π
M


cos 2π |t |

M cos π
M −cos 2π

M 0 ≤ |t | < 1
2

1
2 − 1

2 cos 2π (3/2−|t |)
M

1
2 ≤ |t | < 3

2

0 3
2 ≤ |t |

(4.10)

The energy function is defined such that the curve r(t) is attracted to image regions with

high brightness gradient (here high level of Wg-Ptc expression). One issue is that a lack of

fluorescent protein expression is typically observed along the outer boundary of the pouch

in the region of the VP compartment, see Figure 4.11A for an example. To tackle this issue,

convex configurations of r(t) are preferred during the optimization to prevent snakes to leak

out from the pouch through low-intensity boundaries. Thus, a penalty term rewarding convex

91

Towards unsupervised and systematic segmentation of biological systems

Figure 4.13: Illustration of the effect of λ on the detection of wing pouch compartments.
(A) For λ= 0, the contribution of the shape energy is null and the snake tries to fit accurately
the contour of the compartment. However, there is the risk that the snake would leak out
from the compartment through low-intensity boundaries. (B) With λ= 0.85, convex solutions
are preferred during the optimization, thus preventing the snake to leak out from the com-
partment. The effective contour of the snakes is displayed as a solid line enclosing a blue
region. The ’+’ elements represent the control points of the model and their location define
the effective contour of the snakes.

shapes is added to the snake energy now given by

Esnake = (1−λ)Eedge +λEconvex (4.11)

where 0 ≤λ< 1 is a trade-off parameter that regulates the contribution of the convex penalty

Econvex and the edge-based energy Eedge. Figure 4.13 shows the effect of the parameter λ on

the shape of the snake model after optimization. In addition, the importance of the convex

penalty term Econvex is highlighted while identifying the shape of a wing pouch compartments.

For λ= 0, Econvex is discarded and the snake focus on fitting accurately fluorescent boundaries

(Fig. 4.13A). However in that configuration, there is the risk that the snake would leak outside

of a compartment through low-intensity boundaries, that’s why the convex penalty term has

been introduced. For λ= 0.85, the priority of the snake becomes the conservation of a convex

shape over fitting accurately fluorescent protein expression (Fig. 4.13B). It is important to

note at that stage that the final model of the Drosophila wing pouch structure is reconstructed

from the information provided by multiple detection modules (Section 4.2.8). Therefore it

is definitively acceptable to obtain compartment models that do not match perfectly the

contour of the pouch compartments. This actually provides a very good example of the overall

robustness achieved inherent to the modular design of our unsupervised morphological

structure detection method.

Traditionally, maps with the gradient information derived from the image are used to guide

snakes to the actual contours of the object128,129. Here, we consider an energy that has the

advantage of penalizing situations where the orientation of the curve (clockwise or counter-

clockwise) is inconsistent with the boundary of the object to segment138. This property is very

92

4.2. Unsupervised segmentation of the Drosophila wing pouch

important when the images contain more than one object to segment which is the case in our

application.

As mentioned above, the energy term Esnake favors convex configurations of r(t). We integrate

that information by minimizing the distance of r(t) to an elliptic fit to r(t). Any departures

from a perfect ellipse would have a non-negative contribution to Esnake. Since all ellipses in

the plane are affine transformations of the unit circle, we describe the ellipse rp(t) as an affine

transformation of a reference unit circle denoted by rref(t). Formally, we have

rp(t) = A rref(t)+b (4.12)

where the linear transformation A and the translation vector b of the affine transformation are

determined by the minimization of

∫ 1

0
‖r(t)−A rref(t)−b‖2 dt (4.13)

Assuming that r(t) and rref(t) are described by the same basis function ϕ, we can equivalently

restate the fitting problem using only the control points. This is possible thanks to the fact

that our choice of ϕ guarantees that there exists a sequence of control points {c[k]}k∈Z so that

circles and ellipses can be perfectly reproduced130, and thatϕ generates a Riesz basis136. Thus,

we define

cp[k] = Acref[k]+b (4.14)

and

M−1∑
k=0

‖c[k]−Acref[k]−b‖2 (4.15)

where cp and cref are the control points of rp and rref, respectively. Most of the computational

efficiency of the method lies in this property since the possibility is offered to optimize a given

continuous criterion using a small number of variables (i.e. the control points). More detailed

information about this property is given in Appendix D.2.

4.2.6 Detecting the outer boundary of the wing pouch

This module takes as input the four compartment models inferred in Section 4.2.5 to generate

a parametric model of the outer boundary or contour of the Drosophila wing pouch delimited

by the expression of Wingless.

93

Towards unsupervised and systematic segmentation of biological systems

Figure 4.14: Detection and modeling of the wing pouch outer boundary. (A) Binary repre-
sentation of the four compartments identified in Section 4.2.5 using spline-based snakes. (B)
The four compartments are aggregated to form a single connected component. (C) A standard
boundary tracing algorithm139 is applied to build a polygon enclosing entirely the structure,
which is then convexified140 before obtaining a convex hull. Finally, the contour of the convex
hull is sampled and represented by a spline curve model.

First, we compute a binary image featuring the four spline-based snake models previously

inferred Section 4.2.5 (Fig. 4.14A) before aggregating them to obtain a single connected com-

ponent by drawing a quadrilateral whose vertices are defined as the centers of mass of the

snakes (Fig. 4.14B). A standard boundary tracing algorithm139 is used to build a polygon en-

closing entirely the structure, which is then convexified140 to obtain a convex hull (Fig. 4.14C).

Finally, the contour of the polygon is sampled before being described by the parametric spline

curve model given by (4.9).

4.2.7 Detecting the A/P and D/V compartment boundaries (Part II)

The goal of this module is to infer an accurate model of the trajectory of the A/P and D/V

boundaries. At that stage, useful information is already available from the detection modules

applied previously including the location of the wing pouch center (Section 4.2.3), the direc-

tion of the A/P and D/V boundaries starting from the wing pouch center and given by the kite

snake model (Section 4.2.4), and the outer boundary or contour of the wing pouch structure

(Section 4.2.6).

One approach could have been to compute the equidistant lines between the four compart-

ments previously identified and shown in Fig. 4.14A. However, this method has two main

drawbacks. First, the convex penalty term in (4.11) prevents snakes leaking outside of their

compartment while inhibiting precise fitting of the fluorescent boundaries, which is not an

issue for our detection method as discussed in Section 4.2.5. Thus, computing equidistant

lines from roughly detected compartments would not provide accurate models of the trajec-

tory of the A/P and D/V boundaries. Moreover, this approach can simply not be applied in

case one of the spline-based snakes leaks into another compartment.

94

4.2. Unsupervised segmentation of the Drosophila wing pouch

Fluorescent boundary tracker

The method we propose is a mutli agent-based optimization technique that we developed and

which simulates the behavior of line following robots (Fig. 4.15). The design of the agent model

is similar to the one that we developed for the local optimization of the wing pouch center

(Fig. 4.5). Each agent starts from the wing pouch center and then moves towards one of the

four directions given by the segments of the kite snake model defined in Section 4.2.4. At each

iteration, an agent moves using a predefined step-size and a combination of translation and

rotation operators to align itself on the fluorescent boundary. The fluorescent boundaries of

interest are defined by the expression of Wingless along the A/P and D/V boundaries inside the

wing pouch. The iterative algorithm continues until the wing pouch outer boundary detected

in Section 4.2.6 is met by the agent. Finally, the A/P and D/V trajectories are parameterized

using the samples generated by the agents using a spline curve model.

Figure 4.15: Parametrization of the A/P and D/V boundary trajectories using fluorescent
boundary trackers. To accurately identify the A/P and D/V boundary trajectories, we devel-
oped a model of agents whose behavior is similar to the one of line following robots and is
directly inspired from the local optimizer developed to detect the intersection of the A/P and
D/V boundaries (Fig. 4.5). Here, we also show the trajectories that the agents would follow
outside of the wing pouch to illustrate in more detailed the behavior of such agents. However,
only the trajectory inside the wing pouch is obtained as the tracker automatically stops when
it encounters the outer boundary of the pouch previously identified (Section 4.2.6).

95

Towards unsupervised and systematic segmentation of biological systems

4.2.8 Wing pouch structure construction

The information provided by the precedent detection modules is integrated into a single

parametric model that describes the structure of the Drosophila wing pouch. The model

inferred includes a parametric description of the A/P and D/V compartment boundaries, and

the outer boundary of the pouch.

Figure 4.16A shows the typical output of the proposed structure detection method as we

implemented it in the open-source image processing toolkit that we developed called WingJ for

unsupervised and systematic quantification of biological systems. The ’+’ elements represent

the control points of the inferred model which can still be fine-tuned manually to increase

the accuracy of the parametric description of the morphological structure of the Drosophila

wing pouch (Fig. 4.16B). The number of controls points can be modified before and after the

inference process to achieve a more accurate description of the target structure, for instance.

The independent ’+’ element visible in the top part of Figure 4.16A represents the center of

mass of the Drosophila wing disc directly computed from the Wg-Ptc MIP image. This point is

used in Section 4.2.9 to detect the orientation of the wing, i.e. to infer the anterior, posterior,

dorsal, and ventral sides of the model (APDV orientation).

Figure 4.16: Construction of a parametric model describing the morphological structure
of the Drosophila wing pouch. (A) Information from multiple detection modules are inte-
grated to reconstruct a parametric model of the wing pouch structure. (B) The accuracy of
the model can always be increased by manual fine-tuning. This can be achieved intuitively by
moving around the control points to modify locally the shape of the wing pouch model.

Notes about exporting structure model files from WingJ

The inferred model of the Drosophila wing pouch structure can be exported in XML (Extensible

markup language), for instance for further analysis. XML files are text documents that store

information in a structured way141. Actually, two different XML documents are generated

when exporting a structure dataset using WingJ.

• Structure model. This file includes the parameters (the control points) of the wing

pouch model which are required to reconstruct a structure in WingJ. This allows to easily

96

4.2. Unsupervised segmentation of the Drosophila wing pouch

edit a model and repeat or resume previous experiments.

• Structure measurements. This file includes measurements from the structure model,

for example the length of the A/P and D/V boundaries, the length of each half-boundary

C-A, C-P, C-D and C-V where C represents the pouch center and A, P, D, and V are points

on the contour of the pouch, the perimeter and area of each of the four compartments,

etc. All the measurements are given in µm and µm2. This is possible because WingJ

automatically extracts the information about the image scale from the input image files.

The structure measurement data can further be analysed using the WingJ Matlab Toolbox

which is also part of our image processing toolkit. To be more precise, the Matlab toolbox

provides an intuitively library of predefined functions that can be used to easily generate plots

and statistical tests from datasets exported using WingJ (see Section 4.8).

4.2.9 Inferring the orientation of the wing pouch structure model

In addition to what is shown in Figure 4.16B, the orientation of the pouch model must still be

determined. On other words, it is not known yet which part of the model corresponds to the

anterior, posterior, dorsal, and ventral sides. Here, we propose an algorithm to reliably infer the

orientation of the wing pouch based on morphological features and geometric constructions.

We define the set of points {C,P1,P2,P3,P4} from the parametric wing pouch model (Sec-

tion 4.2.8) where C is the intersection of the A/P and D/V boundaries (wing pouch center),

and P1,P2,P3 and P4 are the intersections of the A/P and D/V boundaries with the outer bound-

ary of the pouch. We also define M as the center of mass of the wing disc which is directly

computed from the Wg-Ptc input image. We then apply Algorithm 4.1 to infer the identity of

each compartments (DA, DP, VA, and VP). Figure 4.17 illustrates the geometric constructions

made by the algorithm.

The closest point to M among P1,P2,P3 and P4 corresponds to the dorsal direction, thus P1 → D

and P3 → V. The keystone of the algorithm comes from the observation that the A/P boundary

(D-V axis) is always curved (even if only slightly) to form an arc whose bottom part points

towards the posterior side of the wing. Three line segments DV (here P1P3), CP2 and CP4 are

then built. If DV intersects CP4 then P4 → A,P3 → P, otherwise P3 → A,P4 → P. This method

as two principal advantages. First, the result of the inference is independent of any rotation

operations that may have been applied to the wing (e.g. during image acquisition) because

the algorithm only relies on the relative information shared by six points in space. Note that

the algorithm still works for very slight curvatures of the A/P and D/V boundaries.

97

Towards unsupervised and systematic segmentation of biological systems

Algorithm 4.1: Inference of the Drosophila wing pouch orientation

Data: Points P1, P2, P3, P4, C (wing pouch center), M (wing disc center of mass)
Result: Points D, V, A, P
begin /* infer A/P boundary (D-V axis) */

D ← Get closest point to M (P1,P2,P3,P4);
V ← Get second boundary extremity point (D);

end
begin /* infer D/V boundary (A-P axis) */

{A,P} ← Get non-attributed points (P1,P2,P3,P4);

CA ← Segment (C,A);

CP ← Segment (C,P);

DV ← Segment (D,V);

if intersection(CP,DV) then
{A,P} ← Swap points (A,P);

end
end

Figure 4.17: Inference of the orientation of the Drosophila wing pouch structure using a
priori knowledge. From the model of the wing pouch structure obtained in Section 4.2.8,
we define the set of points {C,P1,P2,P3,P4} where C is the intersection of the A/P and D/V
boundaries and P1,P2,P3 and P4 are the intersections of the A/P and D/V boundaries with the
outer boundary of the pouch. We also define M as the center of mass of the wing imaginal
disc. Algorithm 4.1 is applied to infer the orientation of the model by matching the points
{P1,P2,P3,P4} to the anterior, posterior, dorsal, and ventral side of the wing. The principal
benefit of the proposed orientation inference method is that it is independent of any rotation
operations that may have been applied to the wing (e.g. during image acquisition) and that
the method works fine even for slight curvatures of the A/P and D/V boundaries.

98

4.3. Quantification of expression in the Drosophila wing pouch

4.3 Quantification of expression in the Drosophila wing pouch

4.3.1 Background subtraction

In fluorescence microscopy, the level of background illumination is often nonuniform in space

because scattered light from the medium or the specimen is typically inhomogeneous142,143.

An a priori background correction can be performed by applying a local background sub-

traction technique, which consists in capturing the background image in the absence of the

specimen before subtracting it from the specimen image142,144. Additional information are

given in the image acquisition protocol described in Appendix D.1.2.

4.3.2 Mean intensity projection

Following Appendix D.1.4, we have at our disposal a collection of stacks of confocal fluores-

cence images, each of them containing information about the expression of a particular gene.

We denote a stack of confocal images f . The standard coordinate system of an image stack f

is defined by the triplet (x, y, z), where x and y are the coordinates of a single image (the origin

of an image is traditionally located at the upper-left corner) and z describes the depth of the

image stack. f (x, y, z) is the value or brightness of the pixel located at (x, y, z) within the image

stack. Here, we consider pixels taking grayscale values in [0,255] (8-bit encoding) as they were

directly provided by the confocal microscope (Appendix D.1.2).

The average intensity projection (AIP) or mean projection is the 2D image computed by

averaging the pixel values along the z-axis in between two slices located at z = zmin and

z = zmax. In opposition to computing the maximum intensity projection of the entire image

stack to get a clear picture of the wing pouch structure before segmentation, we are selecting a

reduced number of slices and performing the mean projection allowed us to reduce the noise

as well as avoid the signal from the peripodial membrane. The selection of image slices to

consider defined by zmin and zmax, and the choice of the projection method are done directly

in WingJ. Formally, the mean projection is defined as

AIP
(
x, y

)= 1

zmax − zmin +1

zmax∑
z=zmin

f
(
x, y, z

)
(4.16)

Note that the expression measurements made below are taken over the continuously-defined

image using a bilinear interpolation model and floating-point resolution for the intensity

values. Namely, expression levels are measured directly from the interpolation model and

quantified using floating-point numbers and not 8-bit integers. Therefore, the benefit of using

an interpolation model is that the resolution of the measurement points is no longer restricted

by the pixel discretization of the images.

99

Towards unsupervised and systematic segmentation of biological systems

4.3.3 Definition of the structure coordinate system

We described in Section 4.2 a method to automatically infer a model of the morphological

structure of the wing pouch. In addition to providing a wealth of morphological information,

this model provides us with a valuable non-orthogonal coordinate system to measure gene and

protein expression. The full potential of the selection of this coordinate system is described in

Section 4.4 where 2D and possibly 3D expression measurements taken from multiple wings

are aggregated to generate a single and reliable quantitative description of the pouch. Here,

we set the center of the coordinate system to the pouch center C previously identified as

the intersection of the A/P and D/V boundaries. In this system, the x-axis follows the D/V

boundary (positive values extending to the posterior side) and the y-axis follows the A/P

boundary (positive values extending to the dorsal side).

4.3.4 Generating expression profiles

Expression profiles are widely used in the literature to report gene or protein expression

levels along a 1D trajectory which actually corresponds to a 2D trajectory in the space of the

image50,145,146. However, the accuracy of the measurements is often impeded by unnecessary

approximations made in the method. For instance, measurement points are often restrained

by the pixel discretization and encoding of the input image. Moreover, filters introduced

to smooth expression profiles easily ignore the shape of the 1D trajectory. The method we

describe here addresses all these issues and allows to generate accurate 1D expression profiles

using our open-source image processing software.

We first compute a bilinear interpolation model from the mean intensity projection as pre-

viously mentioned. The model provides us with a continuous description of the projection

on which expression measurements are made to overcome the limitation relative to the 8-bit

encoding of the image. To give an example, Figure 4.18A shows the structure model identified

for a 100-hour-old wing displayed over the mean intensity projection of Pmad-AB. Information

about Brk-AB is also available for this wing (Fig. 4.18B). We decide to quantify the concentra-

tion level of these two proteins along the D/V boundary. The number of measurement points

along the trajectory can be freely chosen as it is not restricted by the pixel discretization of

the original image thanks to the interpolation model. Moreover, each point of the expression

profile is obtained by averaging several measurements taken along a segment perpendicular to

the trajectory at that point. The measurements are then weighted along this segment using a

Gaussian distribution with standard deviation σ. Figure 4.18C reports the expression profiles

obtained using our method for Pmad-AB and Brk-AB.

Furthermore, trajectories can be generated along translated versions of the A/P and D/V

boundaries. The first image in Figure 4.19A shows the trajectory obtained by translating the

D/V boundary along 90% of the length of the C-D axis (trajectory following the A/P boundary

that starts from the wing pouch center C and ends at the intersection of the A/P boundary

100

4.3. Quantification of expression in the Drosophila wing pouch

Figure 4.18: Quantification of Pmad and Brk expression profiles along the D/V compart-
ment boundary. (A-B) The model of the wing pouch structure identified in Section 4.2 (in
blue) provides a valuable non-orthogonal coordinate system for measuring gene expression
from fluorescence intensity. The blue region along the D/V boundary shows where expression
is measured. (C) Expression level of Pmad (in green) and Brk (in blue). The x-axis of the
coordinate system is defined by the inferred trajectory of the D/V boundary with x = 0 corre-
sponding to the point where the A/P and D/V boundaries intersect (negative values extending
to the anterior side).

and the dorsal part of the wing pouch outer boundary). In a similar way, the first image in

Figure 4.19B shows the trajectory obtained by translating the A/P boundary along 90% of the

length of the C-A axis (trajectory following the D/V boundary that starts from the wing pouch

center C and ends at the intersection of the D/V boundary and the anterior part of the wing

pouch outer boundary). The parts of the trajectories falling outside the wing pouch model are

trimmed.

4.3.5 Generating circular expression maps

We have introduced above a method to accurately quantify expression profiles along 1D spatial

trajectories, which are generated using the coordinate system derived from the parametric

model of the wing pouch structure identified in Section 4.2. The advantage of using a coordi-

nate system that is shared by multiple wings, despite obvious variations in their morphology,

is that it enables the direct comparison of expression measurements taken at the same relative

101

Towards unsupervised and systematic segmentation of biological systems

Figure 4.19: Expression quantification along translated versions of the inferred A/P and
D/V boundary trajectories. The wing pouch structure model identified in Section 4.2 (in
blue) provides a valuable non-othogonal coordinate system for measuring expression levels
at a given relative location in multiple wings. Expression profiles can be measured along 1D
trajectories that are translated instances of the reference boundaries (A) A/P and (B) D/V. For
instance, the top-left image shows the trajectory obtained by translating the detected D/V
boundary along 90% of the length of the half-boundary C-D.

locations in different wings.

While expression profiles already provides valuable information for modeling gene and protein

expression50,145–147, we decided to extend the approach to the generation of 2D expression

maps. We give a formal description of a method we developed for generating expression maps

and thus enable the modeling and study of gene expression in 2D representations of biological

systems (organ system or body system). Note that our approach can be fairly easily extended

to generate 3D expression maps.

Because the morphology of two biological systems will always differ, we sample gene expres-

sion using the wing pouch coordinate systems (Section 4.3.3) before generating a circular

expression map. This representation is scaleless and provide a convenient description enabling

the integration of data from several organisms.

First, we define a coordinate grid based on the wing pouch coordinate systems. As a reminder,

the inferred model of the wing pouch structure provides a parametric description of the A/P

and D/V boundary trajectories, and the trajectory of the pouch outer boundary. The origin of

the coordinate system formed by the A/P and D/V boundaries is defined by their intersection,

which we named the wing pouch center. The grid illustrated Figure 4.20 takes inspiration

from the parameterization of the surface of Earth using parallels and meridians (latitude

and longitude). We define the four cardinal point of the grid as N = (nx ,ny)T, S = (sx , sy)T,

E = (ex ,ey)T, and W = (wx , wy)T. The center of the grid is aligned on the wing pouch center

and is labelled C = (cx ,cy)T.

102

4.3. Quantification of expression in the Drosophila wing pouch

N

E

S

W

W’

E’

C

C’

Figure 4.20: Schematic representation of the coordinate grid defined for producing 2D ex-
pression maps. This grid is inspired from Earth coordinate system grid and is based on the
parametric model of the wing pouch structure identified in Section 4.2. We denote N, S, E,
and W as the four cardinal points. The origin of the grid is aligned on the wing pouch center
C defined as the intersection of the A/P and D/V boundaries. The orientation of the grid
depends on the choice of the A/P or D/V boundary for the equator (here the equator is set
along the D/V compartment boundary). The grid is defined continuously, thus expression
maps can be generated for any arbitrary resolution.

Affine transformations T are applied to the equator (the curve that joins the points W, C, and

E) to construct the parallels of the grid. WC(t) is defined as the parametric curve starting at W

and ending at C, and CE(t) is the curve joining C to E. The new instance of the equator after

transformation is given by

WC′(t) =T {WC(t)} (4.17)

= A WC(t)+b (4.18)

CE′(t) =T {CE(t)} (4.19)

= A CE(t)+b (4.20)

where

A =
(

a11 a12

a21 a22

)
(4.21)

is a 2-by-2 matrix and b is a 2-by-1 vector of the affine transformation T . Because we constrain

the new instance of the equator to interpolate the three points W′, C′, and E′, the affine

transformation T is uniquely determined as long as W, C, and E are not collinear. Formally,

we impose W′ =T {W}, C′ =T {C}, and E′ =T {E}. Thus, the coefficients of the matrix A are

given by

103

Towards unsupervised and systematic segmentation of biological systems

a11 =
(wy −ey) (w ′

x − c ′x)− (wy − cy) (w ′
x −e ′x)

(wy −ey) (wx − cx)− (wx −ex) (wy − cy)

a12 =
(wx − cx) (w ′

x −e ′x)− (wx −ex) (w ′
x − c ′x)

(wy −ey) (wx − cx)− (wx −ex) (wy − cy)

a21 =
(wy −ey) (w ′

y − c ′y)− (wy − cy) (w ′
y −e ′y)

(wy −ey) (wx − cx)− (wx −ex) (wy − cy)

a22 =
(wx − cx) (w ′

y −e ′y)− (wx −ex) (w ′
y − c ′y)

(wy −ey) (wx − cx)− (wx −ex) (wy − cy)

and the vector b is computed as follows:

b = 1

2

(
W′+C′− A (W+C)

)
(4.22)

The points W′, C′ and E′ are selected in such a way that they equally divide the curves running

form the cardinal point N to W, C and E, respectively:

length(W′,N)

length(W,N)
= length(C′,N)

length(C,N)
= length(E′,N)

length(E,N)
(4.23)

In the same way, the affine transformation T defined by (4.21) is applied to compute the

meridians (vertical lines in Fig. 4.20). A parametric grid is then obtained by combining

parallels and meridians together. The nodes of the grid, defined as the intersections of the

parallels and meridians, indicate where expression is measured. It is important to note that

since the grid is parametric, its resolution can be freely chosen.

Two different expression maps are generated when placing the equator along the A/P or D/V

boundary, respectively. Figure 4.21 shows the two different grids obtained as well as the

resulting Wg-Ptc circular expression maps. For example, the grid displayed in Figure 4.21A is

obtained by placing the equator along the A/P boundary. Wg-Ptc expression is then sampled

at each grid node before generating the expression map shown in Figure 4.21C. We observe

in Figure 4.21C that the Wg-Ptc expression along the A/P axis is well conserved, however

remote regions are affected by artifacts. The same phenomenon also affects the maps of Earth.

Namely, the issue comes from the fact that the grid warping produces artifacts on the regions

close to the poles due to oversampling in the grid. Nevertheless, the circular expression map is

only a temporary representation used later to aggregate expression data from multiple wings,

before being wrapped back on a pouch structure model.

104

4.4. Integration of structure and expression models

Figure 4.21: Illustration of the choice of the grid equator for generating circular expression
maps. The wing pouch structure model identified in Section 4.2 and shown here in blue is
derived to define a grid inspired from the parameterization of the surface of Earth. The nodes
of the grid determine where expression measurements will be sampled. Two different grids are
produced depending on the choice of the main boundary (A/P or D/V) along which expression
will be measured and analyzed. Here, the equator of the grid is set along (A) the A/P and (B)
D/V boundary. (C-D) By looking at the Wg-Ptc circular expression maps generated, one can
observe that the expression is mainly conserved along the A/P and D/V boundary.

4.4 Integration of structure and expression models

In Section 4.2, we have formally describe a method for unsupervised detection and modeling

of the Drosophila wing pouch structure from Wg-Ptc confocal fluorescence images. The

principal achievement is the generation of a parametric model that quantitatively describes

the morphological structure of the pouch including the A/P and D/V boundary trajectories,

and the outer boundary of the pouch. We then defined a coordinate system based on the

inferred structure model to quantify gene and protein expression in confocal fluorescence

images (Section 4.3.4). More specifically, we proposed a method for accurate generation of

gene expression profiles along 1D trajectories. Because the information in 1D expression

profiles is rather limited despite being largely used in the literature50,145,146, we developed a

method based on the previously defined coordinate system to measure expression in the entire

space of the inferred structure model. Using this approach, we generated circular, scaleless 2D

expression maps whose strength lies in enabling the relative and comparative analysis of gene

expression in several wings (Section 4.3.5).

In the subsequent sections, we introduce a method to combine several independent models

105

Towards unsupervised and systematic segmentation of biological systems

previously identified for many Drosophila wings. The result is the generation of an aggregated

model that provides a more reliable quantitative description of the morphology of the wing

(Section 4.4.1). We then describe a procedure to aggregate 1D expression profiles and 2D

expression maps (Sections 4.4.2 and 4.4.3). Finally, we integrate both structure and expression

data to generate a single and robust quantitative description of the wing pouch.

4.4.1 Integrating structure models

In the first place, we start by observing that models of the Drosophila wing pouch structure

inferred in Section 4.2 are likely to all have a different orientation in addition to be located to

different areas in each input image. Before being able to integrate them in order to generate a

single, representative model of the wing pouch structure, we need to quantitatively describe

their orientation before applying the operations required to have all of them in the same

orientation.

In Section 4.3.3, we defined a non-orthogonal coordinate system based on the inference of

the A/P and D/V boundary trajectories. We then define the canonical orientation of a structure

model where dorsal and anterior sides are directed towards the top and left sides of the image.

More precisely, the canonical orientation corresponds to a clockwise structure whose segment

CD points vertically upwards and whose points D, P , V , and A appear in clockwise order in

the space of the image. Figure 4.22 illustrates the different orientation configurations that a

structure model can take. The canonical orientation is shown in Figure 4.22A and examples

of clockwise models are given in Figures 4.22A and 4.22D. At first, we require all the models

to be in clockwise orientation but not necessarily in canonical orientation. To achieve this, a

horizontal reflection is applied to Figure 4.22B-like structure models and a vertical reflection

is applied to Figure 4.22C-like models.

Once all the structure models are in clockwise orientation, we pick arbitrarily one of them

to become the reference structure and place it in the canonical orientation. We achieve this

by rotating the selected structure so that its segment CD points vertically upwards. As a

remainder, C is the wing pouch center, which we defined as the intersection of the A/P and

D/V boundaries, and D is the intersection of the A/P boundary with the dorsal part of the

structure outer boundary. The remaining models have then their center of gravity G aligned

on the center of gravity of the reference structure. It is important to note that the center of

gravity does not correspond to the wing pouch center. Before proceeding effectively to the

integration of the structure models, we still need to align the orientation of the models on the

orientation of the reference structure, which translates into the minimization of a function

that takes as input the angles shown in Figure 4.23. Formally, we define

f (θ) = (θGD −θ)2 + (θGP −θ)2 + (θGV −θ)2 + (θG A −θ)2 (4.24)

106

4.4. Integration of structure and expression models

DADA

VAVA
VPVP

DPDP

DA DA

VA VA

VP VP

DP DP

A B

C D

Figure 4.22: Orientation configurations of the wing pouch structure model. (A) The canon-
ical orientation is defined as the orientation of the structure coordinate system described
in Section 4.3.3. Dorsal and anterior sides of the inferred structure model must be directed
towards the top and left sides of the image, respectively. The canonical orientation requires the
points D , P , V , and A to appear in clockwise order in the space of the image. The remaining
possible orientations of inferred structure models are given in (B) counterclockwise (horizon-
tal reflection required to be clockwise), (C) counterclockwise (vertical reflection required to be
clockwise), and (D) clockwise.

θ
GA

θ
GD

θ
GP

θ
GV

G

A

D

Figure 4.23: Optimization of the alignments of two structure models. Averaging structure
models requires first to optimize the respective alignements of the individual structures. One
structure is arbitrarily selected and placed in the canonical orientation (here in black). A
second structure is selected and its center of gravity is aligned on the one of the first structure.
An optimization process is then applied to minimize (4.25) which involves the angles θGD ,
θGP , θGV and θG A , and thus optimize the respective alignment of the two structures. The same
procedure is then applied to the remaining structure models.

before minimizing

d f

dθ
(θ) = 0 (4.25)

107

Towards unsupervised and systematic segmentation of biological systems

where the angles θGD , θGP , θGV , and θG A result from the misalignment of the segments GD,

GP, GV, and GA of two different structure (Fig. 4.23). (4.25) is quadratic, and a closed solution

can be obtained by computing its derivatives and equating it to zero.

In practice, the structure models may have been generated using different numbers of control

points. This depends on the choice of the experimenters as higher numbers of control points

usually allow to describe more accurately the structure of a body or organ system while

increasing its complexity (Section 4.2.8). Here, we require all the structure models to be

described using the same number of control points. Because removing control points often

leads to the deformation of the structure and thus to a loss of information, we increase the

number of control points of each model so that they match the highest number featured by a

model in the set.

Structure n Mean structure

Structure 1 Structure 2

G G

G G

Figure 4.24: Integration of inferred structure models. The aggregation of structure models
requires 1) to place each model in clockwise orientation, 2) to align the center of gravity G
of the models, 3) to optimize their relative alignment by minimizing (4.25), and 4) to set the
number of control points of each structure to the highest number featured by a model of the
set. The aggregated structure is built from the center of gravity G . To compute the aggregated
version of a given control point (black dots), we produce a set of vectors starting each from
the point G of their model and ending at the location of the control point. The corresponding
control point in the aggregated model is then obtained by computing the resultant of the
vector set. We repeat this procedure to every control points before using the new points to
parameterize the aggregated structure model (Sections 4.2.5 and 4.2.8). A concrete example
generated using WingJ is given in Figure 4.25.

Figure 4.24 illustrates the averaging of several structure models parameterized by their control

points (black dots). Note that now the center of gravity G of each model are aligned on the

same point (it does not matter where this point is in the image space). The generation of

108

4.4. Integration of structure and expression models

A B

Figure 4.25: Integration of Drosophila wing pouch structure models in WingJ. (A) Indivi-
dual model of seven Drosophila wing pouches inferred by WingJ (Section 4.2). (B) The indivi-
dual models previously inferred and exported to files are provided to WingJ for generating a
single and reliable quantitative description of the Drosophila wing pouch structure. Note that
the aggregated models are always produced in the canonical orientation.

aggregated structures is based on the aggregation of the control points of individual models,

which entirely define the shape of the structure model (Sections 4.2.5 and 4.2.8). For each

control point, we produce a set of vectors starting from the point G and ending at the locations

of the given control point in the different individual models. The resultant of this set of vectors

then defines the position of the new control point in the aggregated model. This operation

is repeated for every control points (including the control point defining the wing pouch

center C) in order to obtain a complete parameterization of the aggregated model. Figure 4.25

shows a concrete example of the aggregation of several Drosophila wing pouch structure

models using WingJ. Note that the aggregated models are always produced in the canonical

orientation.

We have described a method to generate a single quantitative description representative

of several individual structure models previously inferred. We have shown in Figure 4.25B

the output of this method when applied to the individual models of the structure of seven

Drosophila wings. If the averaged model already provides a more accurate and reliable de-

scription of the morphology of a body or organ system than any individual model taken

separately, there is still an important information that is not included in Figure 4.25B. Namely,

this concerns how much variation or dispersion exists from the mean structure model. When

computing the resultants of the control points defining the mean structure, we measure the

length of the individual vectors associated to a given control points and evaluate their standard

deviation σ. By adding the different σ to the length of their respective resultant, we create

a new set of control points used to generate a closed B-spline curve that follows the outer

boundary of the mean structure model extended by the computed standard deviation. Figu-

re 4.28 shows an example where this curve provides direct visual feedback on the variability

of the individual structure models used to build the mean model.

109

Towards unsupervised and systematic segmentation of biological systems

4.4.2 Integrating expression profiles

We described in Section 4.3.4 an approach to accurately quantify gene and protein expression

levels along a trajectory. Here, we explain how the expression profiles from many individual

experiments can be integrated to generate more representative and meaningful expression

profiles. Similar profiles have been used to reverse engineering the gap gene network re-

sponsible of the Drosophila embryo patterning39,148 or to study scaling in gene expression

domains50.

Individual expression profiles from different experiments are expected to not have the same

length along the spatial axis (x-axis) and their respective number of samples or measurements

points may not match (Fig. 4.26A). Using WingJ, users are free to choose between using a

fixed number of measurement points or defining the distance (e.g. in µm) between two

samples. For each profile, we evaluate the length of the negative and positive parts on the

x-axis, respectively xi ,mi n and xi ,max where i is the index of the profile. From the definition of

the structure coordinate system (Section 4.3.3), the negative part on the x-axis corresponds

to the anterior or ventral side of the structure depending on the reference boundary selected

(A/P or D/V) to generate the trajectory along which expression levels have been measured

(Section 4.3.4). If the trajectory has been chosen parallel to the D/V boundary, x = 0 is where

the A/P boundary intersects the trajectory. The length of the negative and positive parts on

the x-axis of the mean expression profile are given by

x̄mi n = 1

n

n∑
i=1

x̄i ,mi n (4.26)

x̄max = 1

n

n∑
i=1

x̄i ,max (4.27)

where n is the number of individual profiles to integrate. Then, the space defined by [x̄mi n ,x̄max]

is evenly divided before interpolating each profile along these points. Then, sample points are

selected along the x-axis where the expression profiles are averaged. Note that the number

of sample points should usually be smaller than the number of interpolation points. Figu-

re 4.26B reports the mean expression profiles computed from the individual profiles shown in

Figure 4.26A. The error bars correspond to the standard error, the number of interpolation

points is set to 200, and the number of sample points to 50.

4.4.3 Integrating circular expression maps

We have described in Section 4.3.5 how we quantify gene and protein concentration levels

in the space defined by the parametric description of the morphology of the wing pouch or

any other body or organ system considered. To achieve this, we derived the structure model

to formally define a non-orthogonal coordinate system for sampling expression levels in a

meaningful way before combining the measurements to build a circular expression map. We

110

4.4. Integration of structure and expression models

[P
ro

te
in

] (
a.

u.
)

Mean expression pro�le

-100-120 -80 -60 -40 -20 0 20 40 60 80
x (μm)

0

0.05

0.1

0.15

0.2

0.25

0.3

x
min

x
max

[P
ro

te
in

] (
a.

u.
)

Individual expression pro�les

0

0.05

0.1

0.15

0.2

0.25

0.3

-100-120 -80 -60 -40 -20 0 20 40 60 80
x (μm)

A B

Figure 4.26: Integration of individual expression profiles to obtain meaningful and usable
profiles. (A) Individual expression profiles exported from WingJ. (B) The length of the mean
negative and positive distances x̄mi n and x̄max are computed from the x extremities of the
individual profiles. Because each profile may not have been sampled at the same x locations,
the space defined by [x̄mi n ,x̄max] is evenly divided before being used to resample each indi-
vidual profile. Then, the individual profiles have been interpolated along [x̄mi n ,x̄max] using
200 points.

apply this method to quantify the concentration levels of several genes and proteins in many

wings imaged under similar conditions. Here, we describe an approach to integrate multiple

circular expression maps (Fig. 4.27A) into a single and robust mean circular expression map

(Fig. 4.27B), which are later wrapped on mean structure models.

Figure 4.27: Generation of mean expression maps from individual disc-shaped maps. (A)
The quantification of gene expression requires confocal fluorescence images (shown here
for Pmad-AB measured in Drosophila wing) and a parametric model of the structure of the
system considered. A coordinate system is defined based of this model, which is then used to
sample expression and build a circular expression map. (B) The mean intensity projection is
computed from individual maps to generate a reliable mean circular expression map. All the
expression maps generated using WingJ are given in the canonical orientation.

111

Towards unsupervised and systematic segmentation of biological systems

Because the morphology of each wing is different, it would not have been possible initially to

generate a representative and quantitative description of gene expression from many wings.

However, circular expression maps provide a convenient way to process expression data. For

example, we can easily compute an average intensity projection of the individual expression

maps to generate a mean expression map much more reliable and accurate than any single

individual map (Fig. 4.27B). Formally, a point in the mean circular expression map ē(x, y) is

given by

ē(x, y) = 1

n

n∑
i=1

ei (x, y) (4.28)

where ei (x, y) is the ith individual expression map, and x and y the coordinates of a measure-

ment point.

4.4.4 Generating structure and expression aggregated models

A single image of a biological organism or organ is often selected and included in publications

for illustration purposes. However, important information is missing such as the variability in

shape of the system or variability in gene and protein expression level. Therefore, we propose

a method to integrate the morphological and expression data collected from multiple wings

into a single, reliable and robust quantitative description.

Here, the approach consists first in quantifying the structure and expression level in individual

wings. These data are then integrate to obtain a mean structure model and a mean circular

expression map for each gene or gene product available. Information about the variability

of the morphology or gene expression are also computed at the same time as computing the

mean models. The last step consists in wrapping the circular expression map on the mean

structure model. The wrapping is performed in two steps. First, we create a sampling grid

adapted to the mean structure model following the algorithm described in Section 4.3.5. This

grid can be interpreted as a continuous mapping M : R2 → R2 that transforms any point in

the structure p to a point p′ = M (p) on the circle grid associated to the circular expression

map (Fig. 4.21). Then for any grid-point p on the sampling grid, we measure the value of the

expression on M (p) over the mean expression map. This value is put back on the closest pixel

location within the space defined by the mean structure model.

Figure 4.28 illustrates the final representation of the wing pouch obtained. This quantitative

description of the wing has been reconstructed from the morphological and expression in-

formation collected in eight Drosophila wings imaged 90 hours AEL. The three channels of

the image represent the concentration levels of Brk-AB (red), Dad-GFP (green), and Omb-

AB (blue). The dashed line provide information about the standard deviation of the size of

the wing pouch. Finally, we suggest that the use of such quantitative descriptions would be

suitable in research and for illustration purpose in publications. In addition to provide an

112

4.5. Unsupervised cell nuclei detection and segmentation

Figure 4.28: Quantitative description of the Drosophila wing pouch generated from eight
wings using our method. First, structure and expression information is quantified in each
wing available. The collected data are then integrated in order to obtained a mean structure
model of the pouch and mean circular expression maps for each gene and protein expression
available in the stacks of confocal images. Expression maps are then wrapped on the mean
structure model to obtain a single, reliable and robust quantitative description of the wing
pouch. Here, Brk-AB is in red, Dad-GFP in green, and Omb-AB in blue. The dashed line
represents the standard deviation of the size of the pouch. Finally, this result is achieved
through a fully automated process that only requires stacks of confocal fluorescence images.

appealing visual representation, quantitative descriptions generated using our method can be

used directly as input for the reverse engineering of gene network models, for instance.

4.5 Unsupervised cell nuclei detection and segmentation

A very interesting application is the detection and segmentation of cell nuclei either in a

complete organism or only in a part of interest such as an organ. In addition, we want the

process to be fully automated.

In this section, we propose an approach that addresses each of these goals and we illustrate it

by applying the method to our system model of interest, namely the Drosophila wing. As stated

earlier, we consider that the Drosophila wing is a model uniquely suited for a systems biology

approach and for studying the genetic program that governs the growth and shape of an

organ45,48. As a reminder, the wing disc includes a region called the wing pouch (Section 1.3).

In the adult wing, the wing pouch gives rise to the wing blade while the part surrounding

it (called hinge) forms a flexible link attaching the wing blade to the body wall of the fly

(Section 1.3). Many research projects focus on the wing pouch system to study the role of

long-range morphogen in tissue patterning149 and more generally in wing development150,151.

Therefore, we propose to integrate the wing pouch model inferred in an unsupervised way in

Section 4.2 and the automatic cell nuclei detection method described below to segment and

113

Towards unsupervised and systematic segmentation of biological systems

Figure 4.29: Unsupervised 3D cell nuclei detection in the Drosophila wing pouch. The
parametric structure model of the wing pouch previously identified (Section 4.2) is derived
to define a subspace or area of interest inside the wing imaginal disc. The 3D volume inside
which cell nuclei will be segmented is achieved by extruding the 2D wing pouch model along
the z-axis of the image space. Here, cell nuclei were stained with TO-PRO in in a stack of
confocal fluorescence images (Appendix D.1). Several filters are then applied to increase the
ratio signal/noise before obtaining a binary representation of the nuclei. Finally, the watershed
transform152 provided by Matlab is applied to segment the cell nuclei. The last image shows
a section of the 3D image volume where individual nuclei are labelled using different colors.
See Video S7 for a 3D rendering of output of our cell nuclei detection method.

count the number of nuclei solely in the wing pouch. This same approach can be extended to

any subsystems or organs of a given organism.

So far, we have considered the wing pouch as a two-dimensional system because the wing

imaginal disc is single-layered and flat in the region of the pouch (Fig. 1.1). This single-

layered sheet is actually composed of columnar cells whose nuclei are at different z locations

(Fig. 1.1B). Therefore, we extrude the pouch structure model along the z-axis to define a 3D

volume that includes entirely the target columnar cells (Fig. 4.29). Note that more complex

system morphologies identified by their respective structure detection method would be

returned directly as 3D models. We then use the obtained 3D shape to defines a volume of

interest (VOI) to which the cell nuclei detection is constrained.

In our experiments, the cell nuclei were stained with TO-PRO-3 which is a fluorescent dye

we use to make the cell nuclei visible in the wing disc. Note that we could also have used

histone GFP constructs153. Another approach is to label cell membranes before applying a cell

114

4.5. Unsupervised cell nuclei detection and segmentation

boundary detection method. However, cell membranes are sometimes not already formed in

early stages of development as it is the case of the Drosophila embryo154. For the Drosophila

embryo, we recommend to use DAPI-like labellings155.

A review of the literature at the beginning of our project revealed that there were not so many

automatic procedures for cell nuclei detection in 3D microscopy images. Among them, only a

few make their implementation available to the community156,157.b Therefore, we decided

to develop one and to make it available as part of our open-source image processing toolkit.

The method we implemented is based on a watershed transform152 provided by the Image

Processing Toolbox of Matlab. Prior filtering of the confocal fluorescence images is required to

remove noise or local irregularities, which usually lead watershed algorithms to important

over-segmentation. The principle of watershed algorithms is to flood a 3D space (or a 2D image

seen as a topographic relief) from its local minima before building barriers when different

sources are meeting120,152. The barriers are then used to distinguish the volume of individual

cell nuclei.

Common parameters to existing cell nuclei detection methods are an estimation of the diame-

ter of a cell nuclei and an estimation of the minimum distance between nuclei157,158. Here, we

used these parameters to define several filters that we apply to increase the signal-to-noise

ratio in order to increase the accuracy of the watershed transform (Fig. 4.29). To assess the

performance of the selected parameters, we manually defined a volume in a stack of confocal

fluorescence images inside which we manually labeled cell nuclei. We repeated this for wild

type and pent2-5 mutant wings and for different time points between 53 and 114 hours AEL.

Typically, each rectangular volume was defined to cover and fall entirely in one half of the

wing pouch model (the anterior compartment to be precise). We the used the data from the

manual counting to fine-tune the parameters of the cell nuclei detection method.

As a suggestion for improvement, we propose to apply an evolutionary algorithm for optimiz-

ing the parameters of the nuclei detection method. Evolutionary algorithms (EA)159,160 and

particle swarm optimization (PSO)161,162 are both population-based heuristic optimization

techniques that try to iteratively generate better candidate solutions with respect to a quanti-

tative description of quality, also called fitness function93,160. In our application, the fitness

function would be a measure of the distance between the automatic and manual cell nuclei

counting. Evolutionary algorithms spend most of the time evaluating the candidate solutions

(so-called individuals), which corresponds here to run the cell nuclei detection method for

every system sample that composes the benchmark. Of course, a set of optimized parameters

depends on the intrinsic information of the input images, that is, using a different techniques

to mark the cell nuclei would require to run once again the optimization process. The maxi-

mum runtime of the optimization procedure such as a generational genetic algorithm159,160

is given by the maximum number of generations × the number of individual evaluated per

generation × the time spent evaluating the fitness function of the new individuals. If a set of

bSome commercial solutions exist, however, the details of their implementation are not published.

115

Towards unsupervised and systematic segmentation of biological systems

parameters for the cell nuclei detection method is initially available and has been shown to

achieve relatively good segmentation, a CMA-ES163,164 or PSO165 optimization algorithm can

be applied to find parameter values that lead to even better performance.

It is important to note that there are no segmentation techniques that allow to perfectly

identifying every single cell nucleus. This is true at least for the Drosophila wing stacks of

confocal fluorescent images stained with TO-PRO. We also imaged a few wings using an

histone GFP construct166 and we observed that the output is very similar to those obtained

with TO-PRO. The variability in the marker intensity and the diffusion of the fluorescence are

the principal difficulties to overcome when developing an automatic segmentation algorithm.

Even for the human eye it is sometimes difficult to clearly distinguish between two cell nuclei

that are particularly close. However, even if the segmentation method applied to identify

cell nuclei does not lead to a flawless counting, the data collected are still useful to perform

quantitative comparative analyses, for example when considering the relative number of cells

in wild type and mutant Drosophila wings and for wings imaged at different time points.

Finally, we report later in Figure 4.43 the evolution of the number of cell nuclei in both wild

type and pent2-5 deficient Drosophila wings imaged between 70 and 110 hours AEL.

4.6 Drosophila wing pouch model repository

Figure 4.30 shows two quantitative descriptions of the wild type and pent2-5 mutant Drosophila

wing imaged at 80 hours after egg laying. We achieve this result using the unsupervised detec-

tion and modeling of the Drosophila wing pouch structure (Section 4.2), the quantification of

gene and protein expression in two and possibly three spatial dimensions (Section 4.3), and

the method that we developed to integrate structure and expression data into a single and

robust quantitative description of the biological system considered (Section 4.4).

We have then organized the models of the Drosophila wing before making them available

with a web application (tschaffter.ch/projects/wingj) to visualize these descriptions and thus

observe the difference in term of morphology and gene expression level between wild type

and pent2-5 mutants and between wings imaged at different stages of development. The set

of models currently available has been generated from any possible combinations of the

following parameters:

• Genotypes: wild-type and pent2-5 mutant wings

• Time points: 80, 90, 100, and 110 hours AEL

• Fluorescent proteins: Brk-AB, Dad-GFP, Omb-AB, Pmad-AB, and Sal-AB

For each combination of parameters, we have quantified fifteen to thirty wings to generate

robust structure models. The dashed line in Figure 4.30 provides information about the

116

http://tschaffter.ch/projects/wingj

4.7. Inference of the Drosophila wing developmental network

Figure 4.30: Repository of Drosophila wing pouch models. The methods we developed for
unsupervised detection and modeling of the Drosophila wing pouch structure (Section 4.2),
quantification of gene and protein expression in two and possibly three spatial dimensions
(Section 4.3), and automatic detection and segmentation of cell nuclei solely inside the
Drosophila wing pouch (Section 4.5) enable the automatic generation of multiscale and
robust quantitative descriptions of the Drosophila wing. A web application is available on
the project websitec to visualize these descriptions and thus observe the difference in term of
morphology and gene expression level between wild type and pent2-5 mutants and between
wings imaged at different stages of development. The expression of up to three gene products
can be shown at the same time (in red, green, and blue). Here, each structure model have
been generated from fifteen to thirty wings. The dashed line represents the standard deviation
of the structure. Each expression map (Brk, Dad, Omb, Pmad, and Sal) has been averaged
from five to ten wings. We show in panels (A) and (B) the difference in morphology and
expression domains between wild type and pent2-5 mutant 80-hour-old Drosophila wings. The
representations are always given in the canonical orientation (anterior is left, dorsal is top).

standard deviation of the shape of the wing pouch. Moreover, five to ten wings have been

used to compute each expression map. The web interface allows to display up to three gene

products at the same time (in red, green, and blue). Figure 4.30B shows the effect of the

pent2-5 mutation on the morphology and expression domains of the Drosophila wing. Note

that the wing models generated by WingJ are always given in their canonical orientation

(anterior is left, dorsal is top).

We hope to further extend this collection of robust quantitative descriptions with additional

mutations, time points, and fluorescent proteins, but also to include a large variety of biological

systems with the help of the community. We expect that this will become easier as the

number of unsupervised and weakly supervised detection methods implemented in WingJ

will increase.

4.7 Inference of the Drosophila wing developmental network

Researchers have proposed a plethora of methods for reverse engineering the complex network

of interactions between the genes and their RNA and protein products (also called regulatory

program) from spatial and temporal high-throughput gene expression data51,167 (see Chap-

117

Towards unsupervised and systematic segmentation of biological systems

ter 2). Regulatory networks are often represented as directed, signed graphs in which nodes

typically represent genes or transcription factors (TF). In this context, edges correspond to

enhancing or inhibitory regulations that affect gene transcription rates. Network inference

methods rely on various computational approaches such as correlation56, mutual information

(MI)57,58, ordinary differential equations (ODE) models60,168, Bayesian networks169, hybrid

algorithms71, or based on the wisdom of the crowd4.

Reverse engineering methods for regulatory structure and dynamics inference of gene net-

works from non-spatial steady state and time series expression data have been successfully

applied in various biological systems (E. coli6, S. cerevisiae5, S. aureus170,etc.). However, a

challenging issue remains the reconstruction of the structure and non-linear dynamics of

developmental gene networks from spatial and temporal data. A classical example is the

inference of the gap gene network, which is involved in segment determination during early

development of Drosophila melanogaster40,148. The proposed algorithms take as input time

series data (1D expression profiles measured along the D/V compartment boundary of the

embryo and at different time points) and possibly incorporate prior knowledge to infer the

interactions between the morphogens Bicoid (Bcd), Caudal (Cad), and Toll (Tll), and the gap

gene proteins Hunchback (Hb), Krüppel (Kr), Knirps (Kni), and Giant (Gt). In addition to the

higher complexity of the models that have to be apply, a major problem is the generation of

spatial and temporal quantitative datasets (sample collection, immunostainings, and image

acquisition) that require significant amount of time and effort. Note that this is actually where

lies most of our motivation for developing methods that enable the automatic quantification

of biological systems at different scales. The generation of robust, multiscale quantitative

descriptions of these biological systems achieved in Section 4.4 should then provide valuable

quantitative datasets for reverse engineering developmental gene regulatory networks.

Here, we consider expression datasets having more than one spatial dimension and propose a

relatively simple method to infer the structure of developmental networks. We then use if for

the reconstruction of a six-gene network involved in the development of the Drosophila wing.

First, measurements of gene and protein expression levels must be taken in the biological

system of interest. The Drosophila embryo is one of the most comprehensively investigated

system model because its anterior-posterior (A-P) and dorsal-ventral (D-V) patterning systems

are largely independent in the trunk region of the embryo40. Thus, the patterning of the

embryo along the A-P axis provides a convenient one-dimensional system for developing

developmental network inference methods. However, extending expression datasets from one

to two spatial dimensions is not trivial. The main issue is the collection and representation

to give to individual measurements to enable their integration and thus obtain reliable data

that we can use for network inference. For one-dimensional datasets, a simple approach like

the one we describe in Section 4.4.2 can be applied. Starting with two dimensional datasets

(for now we only consider spatial dimensions), the variability in the system morphology

hinders the definition of a representation enabling the integration of individual expression

measurements. In Section 4.3, we formally describe a method that addresses directly this

issue and allows us to generate maps describing gene expression in two spatial dimensions.

118

4.7. Inference of the Drosophila wing developmental network

Figure 4.31: Inference of a six-gene Drosophila wing developmental network. (A) Table of
correlation coefficients r between any pair of mean expression maps. Individual expression
maps are generated from the structure and expression information quantified in Drosophila
wings (Sections 4.2 and 4.3). Mean expression maps are obtained by averaging many individ-
ual maps thanks to the convenient circular representation we gave them. Here, the expression
maps report the domain of expression of six gene products, namely Dad, Pmad, Brk, Sal, Omb,
and Wg in 90-hour-old wild type wings. Positive and negative values are given in blue and
red respectively. (B) Topology of the six-gene network inferred from 2D (possibly 3D) spatial
snapshots of gene and protein expression data. The regulatory network is represented as an
undirected, signed graphs in which nodes represent genes. Blue and red edges correspond to
enhancing (r > 0) and inhibitory (r < 0) regulations that affect gene transcription rates. The
width of the edges is proportional to the absolute value of r and can be interpreted as the
probability to have a direct interaction between two gene products (but not as the affinity
between the protein of a gene A and the promoter of a gene B).

Note that the proposed model can then be fairly easily extended to three spatial dimensions;

the tricky part being the extension from one to two spatial dimension. As a remainder, we use

the parametric model of the system morphology inferred in Section 4.2, which is composed

of a B-spline describing the outer boundary of the system and two A/P and D/V compartment

boundaries, to define a grid used to define where expression measurements should be taken.

We then organize the measurements while normalizing the spatial dimensions to generate disc-

shapes expression maps. Finally, individual expression maps belonging to the same class of

experiments are integrated to obtained mean expression maps (Fig. 4.30), therefore providing

robust and valuable two-dimensional (ultimately three-dimensional) snapshots of the domains

of gene and protein expression required for accurate reconstruction of developmental gene

networks in 3D biological systems (Section 4.4.3).

119

Towards unsupervised and systematic segmentation of biological systems

We propose the following method for the first network inference using 2D spatial expression

maps. To obtained a quick insight into the structure of a gene regulatory network involved in

the development of the Drosophila wing, we compute the 2D correlation coefficient r given in

(4.29) between any pair of mean expression maps available for Dad, Pmad, Brk, Sal, Omb, and

Wg from 90-hour-old wings.

r =
∑
m

∑
n

(
Amn − A

)(
Bmn −B

)
√(∑

m

∑
n

(
Amn − A

)2
)(∑

m

∑
n

(
Bmn −B

)2
) (4.29)

A and B are two individual expression maps similar to the one shown in Figure 4.27B. In

this context, an expression map is a single square image. The expression data themselves are

included in a disc centered on the square image and whose diameter is the width of the image.

The remaining pixels of the image are set to black (Amn=0). Amn represents the pixel value in

the first expression map at the pixel location (m,n) (we only consider pixels that fall inside the

disc of expression) and A is the average of all the pixel values considered.

We use the correlation coefficient r to measure of the strength of linear dependence between

the domain of expression of two proteins. Note that this relation may not be dependent

in practice. Note that there are many different approaches that would be more suitable

for network inference (see short review in the second paragraph of this section). However,

measuring correlation allows to quickly get insight in the structure of the target network. This

first detection may even benefit to more complex algorithms applied successively to refine the

structure or generate dynamical models. The correlation coefficient r takes values between -1

(r (A,−A) where −A is the negative image associated to A) and 1 (r (A, A)). An image correlated

with a rotated version of itself usually results in r < 1. Figure 4.31A reports the correlation

coefficient r between any pair of proteins constituted from Dad, Pmad, Brk, Sal, Omb, and

Wg. Positive and negative r are given in blue and red, respectively. The expression maps are

already optimally aligned because we used the coordinate system described in Section 4.3.3,

which is derived from the inferred model of the morphology or structure of the Drosophila

wing pouch.

Figure 4.31B shows an illustration of the undirected, signed network structure inferred based

on the correlation between 2D expression maps. The nodes represent genes. Blue and red

edges correspond to enhancing (r > 0) and inhibitory (r < 0) regulatory interactions that affect

gene transcription rates. The width of the edges is proportional to the absolute values of r

given in Figure 4.31A. It is important to note that r can not be interpreted as the weight of an

interaction, which traditionally represents the affinity between the protein of a gene A and the

promoter of a gene B56,60. However, a high absolute correlation coefficient value |r | indicates

that it is likely to have a direct interaction between two genes. This information can then be

validated in biological experiments using knockout and/or knockdown perturbations51. Cor-

relation alone is usually not sufficient to identify indirect interactions. Moreover, the inference

120

4.7. Inference of the Drosophila wing developmental network

of directed structures of gene networks can be achieved from temporal expression data or

times series and then look at the causal relationships between two genes, and perturbation

experiments (e.g. knockout experiments). Here, we only have four time points (80, 90, 100,

and 100 hours after egg laying) but only data from 90-hour-old Drosophila wings are displayed

in Figure 4.31.

The method applied succeeds in providing some insight into structure of the six-gene network.

The advantage of network inference methods that relies on correlation56 or mutual informa-

tion (MI)57,58, for instance, is that they can be applied to networks including thousands of gene

and transcription factors. In addition, algorithms have been proposed to reverse engineering

dynamical models of these networks using ordinary differential equations (ODE) or Bayesian

networks60,169. However, the algorithms that propose to infer details dynamical models can

not be applied to genome-wide networks. That’s why relatively simple methods such as

correlation- or MI-based are still in hybrid inference methods to provide a first structure of

the regulatory interactions before endowed with them dynamical models of gene regulation

accounting for both transcription and translation, for instance.

We observe that the six-gene Drosophila wing network is fully connected. This was expected

for mainly two reasons. The first is that any correlation coefficient is different from zero

(Fig. 4.31A), which then lead to the creation of an edge in Figure 4.31B. Assumptions can

be made to define a threshold to apply on r in order to discard edges corresponding to

small values and so obtain a sparser network structure. Moreover, the generation of a list of

predictions sorted in descending order of |r | (see below) can be directly used to choose the

first interactions to assess in vivo experiments. For example:

G861 G496 0.987

G225 G931 -0.856

G813 G477 -0.844

G624 G850 0.816

...

where each line defines an interaction oriented from the first gene to the second gene. The

third element is the correlation coefficient r . Typically, prediction files include in one of their

columns a metric which quantifies the degree of belief that a given interaction is effectively

present in the network to reverse engineer. This confidence level is then used to sort the list of

predictions in descending order so that the interactions that are the most likely to be present

in the target network are at the top of the file51.

The edges between Wg and the other nodes of the six-gene network would not be considered

in a first time for in vivo validation based on the result shown in Figure 4.31B, therefore saving

time and resources for studying the remaining interactions. Finally, the interactions between

Dad, Pmad, Brk, Sal, and Omb have already been extensively studied and it has been shown

121

Towards unsupervised and systematic segmentation of biological systems

that these genes are working tightly together to ensure the growth and proper patterning of

the Drosophila wing45,46.

4.8 Quantitive description of the developing typeDrosophila wing

We present below a collection of datasets related to the developing Drosophila wing. From

stack of confocal fluorescence image, we have applied the detection and segmentation method

described in Section 4.2 to generate a parametric model that describes the morphology of the

wing pouch. This structure includes the A/P and D/V compartment boundaries, and the outer

boundary of the pouch. We have then used this model to quantify gene and protein expression

in a systematic way. Moreover, these heterogeneous datasets have being integrated to generate

robust and reliable quantitative description of the Drosophila wing pouch (Fig. 4.42). It is

important to note that data collection and integration has been performed using WingJ, the

image processing application developed in the frame of this thesis.

The first datasets provide information about the morphology of the wing at different time

points during development (Figs 4.32 to 4.36). Expression profiles (Fig. 4.39) and maps

(Figs 4.40 and 4.41) are also shown for different genes involved in the development of the

wing. We show that the above method can also be used to quantify the effect of a mutation.

Here, we consider pent deficient wings. The pent2-5 mutation has been shown to play a role

in scaling the gradient activity of the morphogen Dpp, which in turn inhibits the growth of

Drosophila wings50. Figure 4.42 illustrates well the quantification of the effect of this mutation

on the domain of expression of several genes and the resulting shape of the wing. Finally,

Figure 4.43 reports the number of nuclei detection in wild type and pent2-5 mutant wings

at different time points. For the sake of simplicity, observations are directly included in the

captions of the following figures.

122

4.8. Quantitive description of the developing typeDrosophila wing

Figure 4.32: Unsupervised detection and segmentation of the Drosophila wing pouch. The
expression of Wg-Ptc is used to label the structure of the wing pouch imaged at (A) 80, (B) 90,
and (C) 100 hours after egg laying (AEL). The second column shows the output of the unsuper-
vised detection and segmentation algorithm available in WingJ. The output is a parametric
model that provides a quantitative description of the morphology of the pouch. Users can
interact with this model to change its shape. This is achieved intuitively by moving control
points (’+’ vertices placed around the structure). After manual fine-tuning, an algorithm is
applied to automatically identify the A/P and D/V orientation of the structure model.

123

Towards unsupervised and systematic segmentation of biological systems

100

150

200

250

300

350

78 h 90 h 99 h 110 h 78 h 90 h 99 h 110 h
Experiments

Co
m

pa
rt

m
en

t b
ou

nd
ar

y
le

ng
th

 (μ
m

)

D/V A/P

Figure 4.33: Length of the A/P and D/V boundaries in wild type Drosophila wings. As ex-
pected, the D/V compartment boundary is systematically longer than the A/P boundary. At
late third instar, the wing pouch starts to evert in the ventral direction. This is described by the
larger increase in the length of the D/V boundary between 99 and 110 hours. Between fifteen
and thirty wings were used for each class of experiments.

0.5

1

1.5

x 104 DA DP

VP

0.5

1

1.5

x 104 VA

78 h 90 h 99 h 110 h 78 h 90 h 99 h 110 h
Experiments

Co
m

pa
rt

m
en

t a
re

a
(μ

m
2)

Figure 4.34: Area of the compartments DA, DP, VA, and VP in wild type Drosophila wings.
In addition to the data shown in Figure 4.33, we observe that the eversion of the wing pouch,
which starts around 110 hours AEL, leads to a large increase in the area of the dorsal compart-
ment (compartments DA and DP). This is consistent with previous observations43,47 reporting
that the wing pouch everts towards the ventral direction. Between fifteen and thirty wings
were used for each class of experiments.

124

4.8. Quantitive description of the developing typeDrosophila wing

x 104 Dorsal Ventral

Posteriorx 104 Anterior

78 h 90 h 99 h 110 h 78 h 90 h 99 h 110 h
Experiments

Co
m

pa
rt

m
en

t a
re

a
(μ

m
2)

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

2.5

3

Figure 4.35: Area of the compartments D, V, A, and P in wild type Drosophila wings. The dor-
sal compartment D is composed of the two compartments DA and VA, for example (Fig. 4.32).
Here, we observe clearly that the dorsal compartment starts to grow significantly faster than
the ventral compartment after 100 hours AEL (Mann-Whitney U-test, P < 0.01), which corre-
sponds to the beginning of the wing eversion process43,47. Between fifteen and thirty wings
were used for each class of experiments.

Experiments

Co
m

pa
rt

m
en

t a
re

a
(μ

m
2)

Drosophila wing pouch

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

78 h 90 h 99 h 110 h

x 104

Figure 4.36: Area of the wing pouch in wild type Drosophila wings. Here, we report the
evolution of the area of the entire wing pouch between 78 and 110 hours. The wing pouch
includes the four compartments DA, DP, VA, and VP whose areas are reported in Figure 4.35.
The eversion process, which starts around 110 hours AEL, clearly affects the overall growth of
the pouch as the difference in size between 99 and 110 hours is significant (Mann-Whitney
U-test, P < 0.01). Between fifteen and thirty wings were used for each class of experiments.

125

Towards unsupervised and systematic segmentation of biological systems

x 104 wt 78 h

Pent2-5 78 h Pent2-5 90 h Pent2-5 99 h Pent2-5 110 h

wt 90 h wt 99 h wt 110 h

x 104

DA DP VA VP DA DP VA VP DA DP VA VP DA DP VA VP

Compartments

Co
m

pa
rt

m
en

t a
re

a
(μ

m
2)

0

0.5

1

1.5

2

0

0.5

1

1.5

2

Figure 4.37: Area of the compartments DA, DP, VA, and VP in wild type and pent2-5 mutant
Drosophila wings. The first line reports the areas of wild type wing pouch imaged between
78 and 110 hours AEL. At 110 hours, the dorsal compartment (DA+DP) is significantly larger
than the anterior compartment (Mann-Whitney U-test, P < 0.01) which shows clearly that the
eversion of the pouch follows the dorsal-ventral axis instead of the anterior-posterior axis. The
area of each compartment is significantly smaller in 110-hour-old pent deficient wings than in
corresponding wild type wings (Mann-Whitney U-test, P < 0.01).

Experiments

Co
m

pa
rt

m
en

t a
re

a
(μ

m
2)

Drosophila wing pouch

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

wt wt wt wtPent2-5 Pent2-5 Pent2-5 Pent2-5

78 h 90 h 99 h 110 h

x 104

Figure 4.38: Area of the wing pouch in wild type and pent2-5 mutant Drosophila wings.
Here, we report the evolution of the area of the entire wing pouch between 78 and 110 hours
in both wild type and pent2-5 mutant wings. The pent2-5 mutation has been shown to play a
role in scaling the gradient activity of the morphogen Dpp, which in turn inhibits the growth
of Drosophila wings50. It appears here that the difference in area is not significantly different
in 78- and 90-hour-old wings (Mann-Whitney U-test, P > 0.05). However, this difference
becomes clearly significant in 99- and 110-hour-old wings (Mann-Whitney U-test, P < 0.01).

126

4.8. Quantitive description of the developing typeDrosophila wing

Wild type Pent2-5
[D

ad
-G

FP
] (

a.
u.

)
[P

m
ad

-A
B]

 (a
.u

.)
[B

rk
-A

B]
 (a

.u
.)

[S
al

-A
B]

 (a
.u

.)
[O

m
b-

A
B]

 (a
.u

.)

D/V boundary (A-P axis) (μm)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150

80 h
90 h

100 h
110 h

PosteriorAnterior

Figure 4.39: Expression profiles of Dad, Pmad, Brk, Sal, and Omb in wild type and pent2-5

mutant wings. We have measured the expression profiles along the D/V boundary (A-P
axis). Expression values initially range from 0 (gene is not expressed) to 255 (gene is fully
expressed) and are given in arbitrary units, which we then normalize (division by 255). The
thick lines represent the mean expression and the bars the standard error. The expression
profiles reported on the right show how the pent2-5 mutation affects the activity gradient of
Dad, Pmad, Brk, Sal, and Omb. We explain this by the fact that Pentagon (Pent) has been
shown to play a role in scaling the Dpp gradient activity50 and because Dpp down-regulates
directly or indirectly the production of each of the other gene products. Between five and ten
wings were used for each class of experiments.

127

Towards unsupervised and systematic segmentation of biological systems

Figure 4.40: Mean expression maps of Dad, Pmad, Brk, Sal, and Omb in wild type and
pent2-5 mutant wings. (A) For each individual wing, we infer a parametric model of the
pouch structure using the unsupervised detection method introduced in Section 4.2. This
model defines a coordinate system (Section 4.3.3) used to quantify mRNA and protein ex-
pression in the space of the model, i.e. inside the wing pouch. The expression data collected
from many wings are then represented as disc-shaped expression maps (Section 4.3.5) before
integrating them into a reliable, mean expression map (Section 4.4.3). Expression values
initially range from 0 (black, gene is not expressed) to 255 (white, gene is fully expressed)
and are given in arbitrary units, which we then normalize (division by 255). (B) We see in
this panel that the pent2-5 mutation affects the activity gradient of Dad, Pmad, Brk, Sal, and
Omb. As mentioned previously, it has been demonstrated that Pentagon (Pent) plays a role in
scaling the Dpp gradient activity50 and because Dpp down-regulates directly or indirectly the
production of each of the other gene products. For instance, the activity gradient of Pmad,
which is a readout of Dpp signalling, forms more compact stripes of Pmad expression along
the A/P boundary in pent deficient than in wild type wings. Between five and ten wings were
used for generating each expression map.

128

4.8. Quantitive description of the developing typeDrosophila wing

Figure 4.41: Standard deviation expression maps of Dad, Pmad, Brk, Sal, and Omb in wild
type and pent2-5 mutant wings. (A-B) These expression maps were generated along with the
mean expression maps shown in Figure 4.40. Reporting the standard deviation provides an
additional tool to ensure that the generation of structure models is consistent across many
experiments (wings). If the structure model inferred for a wing differs from other experiments,
the expression of its gene products would be sampled at different locations and thus regions
with large values of standard deviation would appear on the standard deviation expression
map. If this happens, the collected data can be imported back into WingJ and maybe modify
the shape of the structure model so that it describes more accurately the morphology of the
system. Standard expression values are reported in absolute and arbitrary units ranging from
0 (black) to 255 (white). Note that these expression map look very rugged because we used
nuclear markers. Between five and ten wings were used for generating each expression map.

129

Towards unsupervised and systematic segmentation of biological systems

Figure 4.42: Robust and reliable quantitative descriptions of the Drosophila wing pouch.
(A) The mean expression maps shown in Figure 4.40 are combined with the mean structure
model generated for each type of wings in order to provide a robust and reliable description of
the developing wing. Here, each mean structure model has been computed by integrating the
individual structure model of 15-30 wings. The individual models have been obtained using
the unsupervised detection and segmentation method introduced in Section 4.2. The dashed
line represents the standard deviation of the shape of the pouch. (B) We can precisely observe
in this panel the effect of the pent2-5 mutation on the wing size, shape and patterning which is
known to be regulated by the Dpp gradient activity, here affected by the pent2-5 mutation (the
activity gradient of Pmad provides a readout of Dpp signalling). Both individual and mean
models have been generated using the unsupervised tools that are available in WingJ.

130

4.9. Conclusions

Time points

N
um

be
r o

f n
uc

le
i

Wild type Pent2-5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

73 h 96 h 72 h 100 h114 h 91 h 112 h

x 104

Figure 4.43: Number of cell nuclei detected in the pouch of wild type and pent deficient
Drosophila wings. We apply the method described in Section 4.2 to infer a parametric model
of the morphology or structure of the wing pouch. This model is used to define a volume of
interest in which we detect and segment cell nuclei in stacks of confocal fluorescence images
using the approach introduced in Section 4.5. Here, we used the nuclear marker TO-PRO.
Moreover, both structure and cell nuclei detection methods are fully automated. At 72-73
hours, the number of cell nuclei detected in the pouch is not significantly different in wild type
and pent2-5 mutant wings (Mann-Whitney U-test, P > 0.05). However, the difference becomes
significant already at 96 hours and then at 112-114 hours (Mann-Whitney U-test, P < 0.01).
We observe that these data are effectively and tightly related to the area of the pouch shown in
Figure 4.38. Furthermore, the number of cell nuclei evaluated at different time points can be
used to compute the cell division rates in wild type and pent deficient wings.

4.9 Conclusions

We propose a method for generating quantitative descriptions of the Drosophila wing and

embryo, which are classical models for studying the genetic control of tissue size, shape and

patterning. The wing pouch is the part of the wing disc that gives rise to the adult wing of

the Drosophila (Video S4). A model of the morphology or structure of the wing pouch is ob-

tained by applying a detection and segmentation method that we developed. The parametric

description of its A/P and D/V compartment boundaries, and outer boundary is achieved

through the design and application of multiple image processing detection modules. Each

of them focus on the extraction of a specific feature of the wing structure. For this purpose,

segmentation tools have been developed to enable the detection and parametric description

of features such as cross-like shapes, fluorescence trajectories, and closed regions delimited by

fluorescence. Also, the decomposition of the segmentation method into modules has several

advantages. The performance of each detection module can be evaluated separately, thereby

indicating potential ways of network reconstruction improvements. Different strategies can

131

Towards unsupervised and systematic segmentation of biological systems

also be proposed to identify the same feature of the structure, thus providing many concrete

applications to novel image processing algorithms. Furthermore, the output of several mod-

ules that perform the same task could be combined using a consensus method (also called

wisdom of the crowd) to achieve a more robust and reliable detection than simply applying

the best individual method. The overall model that describes the structure of the wing pouch

is then obtained by integrating the models inferred for each morphological feature. The A/P

and D/V orientation of the model in the space of the image is also recovered.

The parametric model that describes the structure of each wing pouch segmented is used

to define a non-orthogonal coordinate system that allows to link points that share the same

relative positions in different wings. In the wing pouch, the axes of this coordinate system

are defined by the A/P and D/V compartment boundaries. This coordinate system then

enables the systematic quantification of gene and protein expression levels. Expression

profiles that report gene and protein concentration levels along one-dimensional trajectories

have first been generated. This is the most popular representation used today for the study

of mechanisms involved in growth and spatial patterning of biological tissues, which are

often first modelled as one dimensional systems. However, one of the main contributions

of this work is the generation of two-dimensional and eventually three-dimensional spatial

representations of expression levels called expression maps.

Another challenge addressed is the integration of morphological and expression data collected

for multiple wings. The individual structure models inferred for each wing using the unsu-

pervised detection and segmentation method are integrated in a single structure model. The

procedure required information about the orientation of each structure model which has

been previously identified from a priori information about the morphology of the pouch. The

resulting model represents the average shape of the individual models and is always presented

in a canonical orientation (anterior to left, dorsal to top). Moreover, the coordinate systems

derived from the individual structure models enabled the systematic collection of expression

datasets from many wings. The obtained individual expression maps are averaged to produce

a representative expression map. Mean expression maps are then combined with the associ-

ated mean structure model in order to produce a single and robust quantitative description of

the Drosophila wing pouch (Fig. 4.42). This description can then be extended with the output

of an unsupervised cell nuclei detection and segmentation that we have developed (Video S7).

A large amount of effort has been expended to make the above methods fully automated.

We have implemented them as part of an extensible, user-friendly, and open source image

processing toolkit called WingJ. After providing WingJ with the stacks of confocal images, the

quantification of the morphology and expression information of individual Drosophila wings

(Video S5) and Drosophila embryos (Video S6) are achieved with only a few clicks. WingJ

also allows the user to interact with the inferred model, for example if manual fine-tuning

is required. Moreover, the integration of the structure and expression datasets collected in

multiple wings can be performed directly in WingJ. We have applied our method to quantify

hundreds of Drosophila wings imaged at different time points during development. The data

132

4.9. Conclusions

collected have then be used to generate quantitative descriptions of the developing wing.

Furthermore, the generation of these quantitative descriptions provides a powerful tool to

assess the effect of mutations on the morphology and domains of expression of genes. As

an example, we have applied our method to generate quantitative descriptions of wild type

and pent deficient wings, and have shown how the pent2-5 mutation inhibits the growth of

the wings. Finally, we have used the quantitative descriptions generated to reverse engineer a

six-gene regulatory network that participates to the development of the Drosophila wing.

133

5 Discussion and outlook

In this chapter, we summarize the main contributions of this thesis and discuss implications

for future research. In particular, we discuss the generation of multicellular in silico bench-

marks for reverse engineering algorithms capable of predicting the formation of spatial gene

expression patterns. We also suggest possible ways of improvement for community structure

detection in complex networks. Finally, we provide hints for the extension of the framework

that we developed for unsupervised and systematic segmentation of biological organisms. We

expect that our approach will be extensively used in the future for providing the tremendous

amount of data required to enable the reverse engineering of multiscale models.

135

Discussion and outlook

5.1 Main accomplishments

The objective of this thesis was to develop and implement a comprehensive method for reverse

engineering gene networks. Over the last decade, numerous methods have been developed

for inference of regulatory networks from gene expression data, however relatively little effort

has been put into evaluating the performance of those methods on adequate benchmarks.

The first contribution of this thesis is the generation of biologically plausible in silico bench-

marks for performance profiling of network inference methods, and its implementation as a

user-friendly and opens source software called GeneNetWeaver (GNW)a. In addition to the gen-

eration of detailed dynamical models of gene regulatory networks to be used as benchmarks,

GNW provides a network motif analysis that reveals systematic prediction errors, thereby

indicating potential ways of improving inference methods. The accuracy of network inference

methods is evaluated using standard metrics such as precision-recall and receiver operating

characteristic (ROC) curves. We show how GNW can be used to assess the performance and

identify the strengths and weaknesses of six inference methods. Furthermore, we used GNW

to provide the international DREAM (Dialogue for Reverse Engineering Assessments and

Methods) competition with three network inference challenges (DREAM3, DREAM4, and

DREAM5). Today, the accuracy of more than 25,000 gene network reconstructions have been

evaluated by researchers and computer scientists using GNW.

The primary goal of reverse engineering algorithms is to reconstruct the complex network of

interactions between the genes and their RNA and protein products from expression data. In

addition, a fraction of these algorithms enable the inference of an in silico network model that

can be used to predict the response of the network to new perturbations. A second contri-

bution of this thesis is the rational decomposition of the predicted networks into functional

modules, hence providing additional insight into the functions and mechanisms performed

by the network. The detection of these modules, also referred to as community structure detec-

tion, has been largely addressed. However, it has been only recently that suitable benchmarks

have been proposed to reliable evaluate the performance of community structure detection

methods. In particular, it has been shown that the performance of modularity optimization

methods, which is by far the most common approach used, is affected by a resolution limit that

makes them fail to identify small communities in small networks. Here, we have described a

novel GA-based community structure detection algorithm and have evaluated its performance

on real and artificial networks. To overcome the resolution limit that has been shown to affect

modularity-based methods, we have developed a voting method that enable the integration

of multiple community structure predictions into a single and more reliable partition of the

network into modules. In addition to provide a way to potentially overcome the weakness of

many algorithms that are affected by this resolution limit, the GA-based algorithm followed by

the voting method is best performer along with another method in a comparative analysis that

profiled the performance of twelve state-of-the-art community structure detection algorithms.

atschaffter.ch/projects/gnw

136

http://tschaffter.ch/projects/gnw

5.1. Main accomplishments

Another contribution of Chapter 3 is the development and implementation of an extensible

and modular software for community structure detected called Jmodb. Jmod implements state-

of-the-art community structure detection methods including Newman’s spectral algorithm,

the GA-based modularity optimization method that we developed, and a brute force approach.

It also includes two refinement techniques called moving vertex method (MVM) and global

moving vertex method (gMVM). Moreover, the extensible framework implemented in Jmod

supports the development and integration of novel community structure detection methods.

Jmod also provides tools to gain insight into the behavior of these methods, thereby indicating

potential ways of improving them.

So far, only a small number of developmental systems have been reverse engineered171–173.

One of them is the gap gene network41 which is involved in segment determination during

the early development of the Drosophila embryo39,148. Compared to single-cell systems, the

reconstruction of developmental systems requires the development of multiscale models

that account for processes at the molecular, cellular, and tissue level. Another limitation is

that the inference of such models requires tremendous amount of spatial and temporal gene

expression data, which are usually available in very limited quantities due to the inherent

difficulty in measuring gene expression in an entire organism.

The third main contribution of this thesis is the development of an image processing appli-

cation called WingJc for fully automated and systematic quantification of the developing

Drosophila wing, which is a classical model for studying the genetic control of tissue size,

shape and patterning. All that is necessary for our method is a stack of confocal fluores-

cence images (3D image) of the biological system to quantify. First, a parametric model of

the morphology or structure of the Drosophila wing is inferred from a fluorescent marker.

The segmentation method is based on the design of multiple image processing detection

modules, each focusing on the extraction of a specific feature of the wing structure including

its orientation. We later extended this approach to the detection of the Drosophila embryo. We

then use the inferred structure model as a convenient coordinate system for measuring gene

and protein expression levels. An important feature of the obtained expression maps is that

they can be used to compare domains of expression in differentiated systems, for example to

visualize the difference in patterns of gene activity between wild type and mutant wings or in

wings imaged at different time points during development. Moreover, a robust, multiscale

quantitative description of the developing wing is obtained by combining morphological

and gene expression information from multiple wings, completed by the output of an auto-

matic cell nuclei detection method that we have developed. We have used the above method

to automatically generate robust quantitative descriptions of wild-type and pent deficient

Drosophila wings imaged at 80, 90, 100, and 110 hours after egg laying. Finally, we have shown

that these quantitative descriptions can be used to unravel the regulatory interactions of a

six-gene network involved in the development of the Drosophila wing.

btschaffter.ch/projects/jmod
ctschaffter.ch/projects/wingj

137

http://tschaffter.ch/projects/jmod
http://tschaffter.ch/projects/wingj

Discussion and outlook

5.2 Future directions

5.2.1 Generating in silico developmental benchmarks

Using GeneNetWeaver, one can intuitively generate biologically-plausible in silico (or virtual)

gene regulatory network to be used as benchmark to evaluate the performance of its inference

method. Network topologies are generated by extracting modules from known in vivo gene

regulatory network structures such as those of E. coli and S. cerevisiae. These structures are

then endowed with detailed dynamical models of gene regulation including both transcription

and translation processes using a thermodynamic approach accounting for both independent

and synergistic interactions. Expression data can be generated either deterministically or

stochastically to model molecular noise in the dynamics of the networks, and experimen-

tal noise can be added using a model of noise observed in microarrays. Different types of

in vivo experimental procedures, such as wild type, knockout (null-mutant), knockdown

(heterozygous), and multifactorial perturbations, can be reproduced by the software.

Moreover, we have investigated the generation of multicellular benchmarks for assessing the

performance of developmental network inference methods. The model is based on the use

of morphogens, which are transcription factors that diffuse outside of the cells44,172. There

are two types of morphogens: long-range and short-range. Long-range morphogens are

generally produce by a group of cell and diffuse through the whole tissue146,174. Short-range

morphogens are produce at different places and diffuse only in a small region of the tissue175.

Their activity gradients then provide cells with positional information required for cell fate

determination. Depending on the concentration of a morphogen available, cells absorb

different amount of morphogen molecules which then lead to differential gene activation and

cell differentiation.

Most of the small number of inference methods for the reconstruction of developmental gene

networks are for now restrained to one dimensional spatial models. The model that we have

started to investigate is given by145

δc

δt
= D

δ2c

δx2 −λc + s0p(x)+kr Ci −kacN (5.1)

whose terms represent the concentration of the morphogen c(x, t), free diffusion (Fick’s second

law of diffusion), the degradation of morphogen, its production from a source, and the rejec-

tion and absorption of the morphogen by the cells. Moreover, a common assumption made

by developmental network inference methods is that morphogens propagate only through

free diffusion40,148. This is most certainly correct when considering the early development of

the Drosophila as cell membranes have not yet been fully formed. However, different passive

and active mechanisms have been proposed to describe the formation of morphogen activity

gradients. The active transport mechanisms implemented in (5.1) is called transcytosis and

consists in morphogen molecules that move in the tissue through endocytosis (absorption by

138

5.2. Future directions

the cells) and exocytosis (rejection by the cells)176,177. Other models suggest that glypicans

(small hairs on the cells) also play a role in the active transport of morphogen molecules in

addition to protect them from degradation178,179.

Models developed for in silico benchmark generation are in principle more detailed than

those that are reverse engineered. For example, most of the inference methods that attempt

to capture the dynamics of regulatory networks use linear models when many important

biological questions absolutely require the consideration of non-linear systems. The inference

of non-linear models is actually a considerable technical challenges180–182. The principal

reason is that the inference problem is typically underdetermined due to the lack of sufficient

input datasets. As a consequence, a stochastic inference method may predict several network

models that describe the given observation instead of unravelling systematically the true

regulatory network. Therefore, novel methods must imperatively be developed to enable the

collection of large and heterogeneous datasets from the system to reconstruct.

5.2.2 Community structure detection in complex networks

In this thesis, we have developed several community structure detection methods that enable

the inference of the partition of the network into modules. These methods are an improved

version of Newman’s spectral algorithm, a genetic algorithm-based method, and a brute force

approach. These three methods, as well as most of the methods developed by the community,

are based on the optimization of a metric called modularity26,27.

A limitation of these methods is that they usually do not take into account information

provided by the direction and weight of the interactions. Nevertheless, relationship and

interaction networks have often edges with precise direction which must be taken into account

to understand the system as a whole76. The original definition of the modularity Q proposed

by Girvan & Newman is limited to undirected and unweighted graphs26. In this thesis, we have

used a second definition proposed by Newman which models the weights of the interactions27,

but not their directions. The modularity Q has been previously described as

Q =(fraction of edges falling within modules)

- (expected fraction of such edges in randomized graphs)

Here we consider a directed graph and two vertices A and B. A has a high out-degree (number

of edges starting from A) and B has a high in-degree (number of edges arriving to B). When

observing the graph, the probability of finding an edge that runs from B to A should be lower

than the reverse situation. Therefore, the contribution of the edge B → A to the modularity Q

should be larger than that of A → B since "modularity should be high for statistically surprising

configurations"27. An extension of Q has been proposed by Leicht & Newman to integrate the

information included in directed networks183. However, the adaptation to directed networks

139

Discussion and outlook

is not that easy and only a few techniques can use the above extension, including our GA-

based detection method. The adaptation of spectral algorithms, such as the one developed by

Newman, is much more complex as the adjacency matrix that characterizes a directed graph

is now asymmetric.

Moreover, we suggest that the development of ensemble methods is one of the most promising

way to significantly improve the reliability and robustness of community structure detection.

Ensemble methods is an approach that is widely used in the field of machine learning184,185.

However, it has been only recently that these methods have found other domains of application

including the reverse engineering of gene networks4. A similar approach has been applied

by Lancichinetti & Fortunato to the problem of community structure inference102. From

multiple partitions of the network, usually predicted using different methods, they evaluate

for each edge the fraction of time that is has been predicted to fall entirely inside a module

(in opposition to having its two nodes predicted to belong to two different communities). A

consensus matrix is built from these values and represented as a weighted consensus graph,

which is usually full connected. An arbitrary threshold is then applied to remove the weakest

edges. Finally, one of the existing community structure detection algorithms is applied on the

thresholded consensus graph to obtain a new and more reliable partition of the original graph.

This method has two disadvantages. First, useful information is discarded when thresholding

the consensus matrix. The second issue is that the method still relies on a single community

structure detection algorithm to partition the consensus graph. Instead, we propose to use

the community voting method introduced in Chapter 3 to combine multiple partitions of the

same network into a single partition which we have shown to be more reliable and robust than

individual partitions. The principal difference with the previous method is that we consider

nodes rather than edges as the building blocks of the communities. Furthermore, our method

does not require any parameter values to be set.

5.2.3 Unsupervised detection and segmentation of biological organisms

In this thesis, we have developed a novel method for unsupervised and systematic segmen-

tation of biological systems, which we have implemented as an extensible and user-friendly

image processing software. First, we generate a parametric model that accurately describes

the morphology or structure of the system to model (organ or body system). One of the novelty

of the approach is that the quantification of the structure is decomposed into the detection

of simpler morphological features. The model that describes the structure as a whole is then

reconstructed from the segmentation of these features. A great contribution of this modular

approach is that the detection modules developed to segment simple features can be reused

for generating parametric models of the morphological structure of other organisms. Once a

large collection of detection modules has been implemented, the detection of any structure

could potentially become as simple as selecting the different modules to apply.

140

5.3. Conclusion

Using the above approach, we have enabled the generation of quantitative descriptions of the

Drosophila wing pouch, which is a classical model for studying the genetic control of tissue

size, shape and patterning. Early in development, the wing pouch is composed of a single-

layered sheet of columnar cells (Fig. 1.1), hence enabling its description as a two-dimensional

spatial system. It is only later at late third instar (about 110 hours after egg laying) that the

sheet of cells folds to form the double-layered adult wing (Video S4). Thereafter, one of the

natural evolution of our method will pass through the development of three-dimensional

segmentation algorithms. Actually, only very few image processing algorithms that have been

developed for 2D images have been extended to work with 3D images. Nevertheless, we expect

that more and more image processing algorithms will be available for the segmentation of

3D images186. Furthermore, the segmentation of 4D images with temporal information also

holds huge promise. This will be one day possible with the constant improvement brought to

live imagining technologies47,187.

Even unsupervised methods usually relies on suitable parameter settings. For example, the

detection and segmentation of the Drosophila wing pouch required the definition of many

parameters. This enables the fine control of the detection algorithms, which can then be

adapted to different situations. However, this becomes an issue if many parameters must be

constantly updated to ensure the functioning correctly of the algorithm. Another important

feature expected from such algorithms is their ability to perform systematic detection. When

several experiments perform manual labelling, differences can usually be observed in the

data they have collected. Unsupervised methods provide a way to overcome this limitation.

Here, we propose a strategy to improve both the unsupervised and systematic behavior of the

detection and segmentation method. Using the default parameter values of the software, the

user first performs a few detections and correct the output of the detection when required.

This feature is already implemented in WingJ and allows to intuitively fine-tune any identified

parametric structure models. The idea is then to make the software learn the parameter values

that would enable the unsupervised algorithm to return parametric structure models similar

to the one defined by the user. This could be achieved using an optimization algorithm such as

an evolutionary algorithm to minimize a fitness function defined as the difference or distance

between the evolved structure models and the models validated by the user.

5.3 Conclusion

In this thesis we present a comprehensive and efficient framework for reverse engineering

gene networks. The reconstruction starts with the collection of stacks of fluorescence images

(3D images) where the expression of genes is labelled using fluorescent markers. Unsupervised

detection and segmentation methods are then applied to generate a multiscale quantitative

description of the system. This description provides information about the morphology of

the system, the expression of a few genes of interest, and the location of cell nuclei. The

quantitative description is then given as input to a reverse engineering algorithm to produce

an in silico models that explain the observations. In addition, we have developed a method

141

Discussion and outlook

for in silico benchmark generation and performance profiling of network inference methods.

The approach consists in generating biologically plausible models of gene networks before

simulating them to produce datasets similar to the quantitative description generated for the

in vivo system to reconstruct. The performance of the inference methods are then evaluated

using tools we provide before selecting the best method(s) to apply for the effective recon-

struction of the system. Furthermore, an additional layer of reconstruct is applied to rationally

decomposed the gene network into modules, thus providing insight into the information

processing it performs.

One of the main achievements of this thesis is the development of unsupervised methods

and their implementation as modular and user-friendly software applications. Science fiction

novels and movies certainly provided a good deal of inspiration as the result of any detection

or analysis is here systematically obtained in a few clicks. The proposed framework has been

implemented to reverse engineer gene networks, however it has been designed keeping in

mind that it may be used one day to enable the reconstruction of more complex systems.

Furthermore, additional work would be required to propose an integrated solution that would

perform at once quantification of biological systems and their reverse engineering.

142

A Supplementary materials

Project websites

For each project presented in this thesis, we have published a website that provides the

software application, its source code, user manual, videos, and additional supporting data.a

The Java applications GNW, Jmod, and WingJ can be launched with a single click directly from

their websites.

• GeneNetWeaver (tschaffter.ch/projects/gnw)

• Jmod (tschaffter.ch/projects/jmod)

• WingJ (tschaffter.ch/projects/wingj)

• libSDE (tschaffter.ch/projects/libsde)

• sQuid (tschaffter.ch/projects/squid)

Videos

Video S1: GeneNetWeaver: In silico benchmark generation and performance profiling of net-

work inference methods. This video reviews the features of GNW including the extraction

of subnetworks from known transcriptional networks, the generation and simulation of the

dynamics of the in silico network, and the generation of reports for performance profiling of

inference methods.

Video S2: Jmod: An extensible toolkit for community detection in networks. This video il-

lustrates community structure detection in social, biological, and artificial networks using

different methods available in Jmod. The methods illustrated are Newman’s spectral algorithm,

aAlso available at tschaffter.ch/phd/documents.

143

http://tschaffter.ch/projects/gnw
http://tschaffter.ch/projects/jmod
http://tschaffter.ch/projects/wingj
http://tschaffter.ch/projects/libsde
http://tschaffter.ch/projects/squid
http://tschaffter.ch/projects/gnw
http://tschaffter.ch/projects/gnw
http://tschaffter.ch/projects/jmod
http://tschaffter.ch/phd/documents

Supplementary materials

our GA-based modularity optimization method, the brute force approach, and the refinement

technique MVM and gMVM.

Video S3: Development of the Drosophila wing. This video provides a brief introduction to the

development of the Drosophila wing using 3D rendering of confocal fluorescence images and

a 3D animation which shows how the single-cell layered wing imaginal disc everts to give rise

to the double-layered adult wing.

Video S4: WingJ: Towards unsupervised and systematic segmentation of biological systems.

This video features the different algorithms we have developed and implemented in WingJ

for unsupervised segmentation of the Drosophila wing pouch and Drosophila embryo. This

includes automatic segmentation of the morphology of the Drosophila wing and embryo, gene

and protein expression quantification, and unsupervised cell nuclei detection from stacks of

confocal fluorescence images. Additional credits: Ricard Delgado-Gonzalo.

Video S5: Unsupervised detection of the Drosophila wing pouch. This video provides an ex-

ample of the generation of a quantitative description of the Drosophila wing pouch. First,

morphological and gene expression data are collected from multiple wings using the unsuper-

vised method we developed. The datasets are then combined to generate a robust and reliable

quantitative description of the pouch.

Video S6: Unsupervised detection of the Drosophila embryo. In the same way as the previous

video, the present video shows how to use WingJ to generate quantitative description of the

Drosophila embryo.

Video S7: Automatic cell nuclei detection in structure models. This video shows the output of

our fully automated cell nuclei detection method when applied to the Drosophila wing pouch

system. The method is based on a 3D watershed transform and takes as input 1) a stack of

confocal images where nuclei have been labelled with a fluorescent dye and 2) the structure

model of the system previously inferred using WingJ to define the space in which cell nuclei

must be segmented. Thus, the approach can be used either to collect cell nuclei information

in a complete organism or only in a part of interest or organ.

Video S8: sQuid: Observation and interaction in experimental environments. This video shows

how we track the genetic identity of fruit flies walking in a transparent chamber. sQuid is used

to control two FireWire cameras, two LEDs to visualize the expression of different genes, and

several valves that regulate odor flows in the arena to interact with the flies.

144

http://tschaffter.ch/projects/wingj
http://tschaffter.ch/projects/wingj
http://tschaffter.ch/projects/wingj
http://tschaffter.ch/projects/wingj
http://tschaffter.ch/projects/wingj
http://tschaffter.ch/projects/squid

B Supplementary notes for Chapter 2

B.1 GeneNetWeaver

B.1.1 Topology

We generated network structure by extracting modules from the biological interactions net-

works of E. coli6 and S. cerevisiae5 (the source networks). The benchmark suites A, B , and C

contain 100-, 200-, and 500-gene networks. For each network, we set the minimum number of

regulators (nodes with at least one outgoing link in the source network) to half of the size of the

extracted network. The parameter seed has been set to random vertex and neighbor selection

has been set to random among top 50%. Networks with more than one connected component

were discarded.

B.1.2 Dynamical model

Network topologies are endowed with detailed dynamical models of gene regulation. Both

transcription and translation are modeled using a standard thermodynamic approach53

allowing for both independent ("additive") and synergistic ("multiplicative") regulatory in-

teractions. A detailed description of the dynamical model used is given by Marbach et al.62.

First, auto-regulatory interactions were removed from the extracted networks before setting

the dynamical model. The most important parameters are the mRNA and protein half-lives

in minutes sampled from a Gaussian distribution N (27.5,56.25) bounded in the interval

[5,50], the dissociation constants sampled from a uniform distribution [0.01,1], and the Hill

coefficients sampled from a Gaussian distribution N (2,4) bounded in the interval [1,10].

B.1.3 Synthetic expression datasets

The next step in generating in silico benchmark networks consists in simulating the generated

in silico regulatory networks to produce synthetic gene expression datasets. Initially, x and y

145

Supplementary notes for Chapter 2

are set to null vectors in (2.1) and (2.2). They two equations are then simulated until a steady

state is achieved, at which point x and y are measured and saved as initial conditions for

future perturbation experiments. Systematic knockout and knockdown experiments were

simulated to generate steady-state expression data. Also, 100 multifactorial perturbation

experiments were simulated to generate steady-state expression data for each network from

the benchmark suite C . The parameters were set to the same values used to generate the

DREAM4 In Silico Challenge we provided. Those settings also correspond to the default

parameter values provided by GNW. More specifically, we modeled molecular noise with the

coefficient of (molecular) noise term set to 0.0551, in addition to a model of experimental noise

observed in microarrays54.

B.1.4 Gold standards and network prediction format

Performance profiling of network inference methods using GNW requires gold standards and

network predictions files to be provided. The gold standard files can be imported to GNW

using either the format TSV, GML, DOT, or SBMLa. The gold standard files in TSV format must

be formatted as follows

G0 G1 1

G0 G2 1

...

G1 G0 0

...

Each line defines an interaction oriented from the first gene to the second gene. The third

element is 1 if the interaction is present in the gold standard and 0 otherwise. Instead of listing

the absent (0) interactions, they can also simply be omitted. The format for the predictions is

the same as used for the DREAM challenges

G0 G1 0.98

G0 G2 0.8

...

G1 G0 0

...

As in the gold standard file, each line defines an interaction oriented from the first to the

second gene. For each interaction, a confidence level between 0 and 1 is given that indicates

the degree of belief that the interaction is included in the gold standard. The predictions

must be listed in descending order relative to their confidence level (the first prediction in

aIn the current version, only SBML files that have been generated by GNW can be opened.

146

B.2. Network inference methods

the list being the most confident). The confidence levels are only used to verify that the list

of predictions is correctly ordered, they do not affect the PR and ROC curves and the motif

analysis in any other way.

B.1.5 Evaluation of network inference methods

From a set of predictions from one or several inference methods, GNW automatically gen-

erates a comprehensive report including the result of a network motif analysis, where the

performance of inference methods is profiled on local connectivity patterns (network motifs).

The network motif analysis often reveals systematic prediction errors, thereby indicating

potential ways of network reconstruction improvements62. Furthermore, precision-recall (PR)

and receiver operating characteristic (ROC) curves are evaluated for each network prediction66.

The relation between ROC and PR curves is discussed by Davis67. The intuitive interface of

GNW allows to easily evaluate several inference methods at a time to facilitate the comparison

of their relative performance. Evaluation results are always saved in a text file (XML format). In

addition, GNW can generate PDF reports with plots from these data (an internet connection is

required). Without internet connection, the evaluation can still be run but no PDF report will

be created.

B.2 Network inference methods

B.2.1 Z-score

Z-score is one of the simplest inference methods66, yet it has relatively high accuracy in

predicting directed network structures from knockout steady states (see Section 3.2 of the

paper). For each gene of a network, Z-score computes the mean µ and standard deviation σ

of the gene expression level from several experiments. Then for each single-gene knockout

perturbation, a regulatory interaction is identified if the measured expression level of a given

gene is below µ−σ (enhancing regulation) or above µ+σ (inhibitory regulation). The Matlab

implementation of Z-score used is the one provided by Pinna et al.70. Z-score does not require

any parameters to be set.

B.2.2 Pinnal et al.

The algorithm developed by Pinna et al. allows to choose between four possible different

confidence matrices W to obtain the initial predictions70. Here Z-score is applied on the raw

gene expression data to generate the initial predictions (W Z R). Then the method performs

a refinement stage, which aims to suppress the errors made by Z-score on cascade motifs

from knockout steady states. This improvement is achieved by reducing the confidence

initially predicted to unnecessary feed-forward edges70. The parameters used are the default

ones. Especially, the threshold parameter t is set to 2 (t = 0 corresponds to not applying

147

Supplementary notes for Chapter 2

the refinement stage, i.e. Z-score alone), which is also the value70 used to participate to the

DREAM4 In Silico Challenge Size 100. Pinna et al. was best-performer in that challenge.

B.2.3 Yip et al.

The original Java tool developed by Yip et al.71 implements different techniques to infer gene

regulations from both steady-state and time-series data. From steady-state expression data, a

noise model is learnt to distinguish real signals from random fluctuations (Batch 1). Ordinary

differential equations (ODE) are then used to model the change of expression levels of a gene

along the time series due to the regulation of other genes71. Yet, Yip et al. applied their noise

model alone to participate to the DREAM3 In Silico Challenge we provided, and their method

was best-performer in all sub-challenge of size 10, 50, and 100 genes. Here the noise model

was applied alone to predict directed networks from knockout expression data. This part of

the method developed by Yip et al. does not require any parameters to be set.

B.2.4 CLR

The context likelihood of relatedness (CLR) algorithm developed by Faith et al.58 is an unsuper-

vised network inference method using mutual information as a metric of similarity between

the expression profiles of two genes. The method does not require systematic knockout gene

expression data, which are not always available in practice, to infer undirected networks. We

applied CLR 1.2.2 using the provided binary for Linux. All mutual information values were

computed using 5 bins and third order B-splines58.

B.2.5 ARACNE2

Similar to CLR, the inference method developed by Margolin et al.57 also uses mutual informa-

tion as a metric of similarity between the expression profiles of two genes. The method allows

the reconstruction of undirected networks from steady-state expression data, and does not re-

quire systematic knockout or knockdown experiments. The Java implementation of ARACNE2

was used with the provided default settings, that is, the algorithm set to fixed_bandwidth, the

p-value for MI threshold to 1, the DPI tolerance to 1, the gene filter configured with mean and

cv to 0, and the MI threshold to 0.

B.2.6 GENIE3

Huynh et al. decomposes the prediction of a regulatory network between p genes into p

different regression problems188. GENIE3 has the potential ability to predict directed networks,

while methods based on mutual information or correlation can only predict undirected

networks unless additional information is used. The Matlab implementation of GENIE3 was

148

B.2. Network inference methods

used with the Random Forests procedure, the parameter K set to the square root of the number

of input genes, and the number of trees grown in an ensemble set to 1000188.

149

C Supplementary notes for Chapter 3

C.1 Eigendecomposition

In linear algebra, the eigendecomposition of a matrix A consists in representing a matrix

in terms of its eigenvalues λ1,λ2, ...,λn and associated eigenvectors v1, v2, ..., vn . Eigenval-

ues are usually ordered so that |λi | > |λi+1| for i = 1,2, ...,n −1. The eigendecomposition

requires that the matrix to decompose is squared and diagonalizable, that is if there exists

an invertible matrix V such that V −1 AV is a diagonal matrix. Therefore, the objective of the

eigendecomposition is to find the matrices D and V satisfying

A =V −1DV (C.1)

where D is a diagonal matrix containing the eigenvalues of A and where the columns of V are

the associated, linearly independent eigenvectors.

C.1.1 Power method

The power method or power iteration is a simple scheme to approximate the largest eigen-

value (in absolute value) and the associated eigenvector of a real matrix but not necessarily

symmetric189,190. This eigenvalue is usually called the dominant or leading (most positive)

eigenvalue. In many applications, this quantity must be positive for physical reasons. For

example, Google uses the power method to rank the most important web pages191,192.

In Newman’s spectral algorithm, the power method is used for finding the dominant positive

eigenvalue λ1 and associated eigenvector v1 of the real symmetric dense modularity matrix

B (or generalized modularity matrix B(g)). Algorithm C.1 gives the pseudo code of the power

method as implemented in Jmod.

The parameter maxI ter s is the maximum number of iterations and ε is the precision for

151

Supplementary notes for Chapter 3

Algorithm C.1: power method

Data: modularity matrix B, maxI ter s, precision ε
Result: dominant eigenpair (λ1, v1)
q (0) ← random vector ∈Rn

k ← 1
repeat

z(k) ← Bq(k −1)
q (k) ← z(k)/||z(k)||
λ(k) ← [

q (k)
]T

Bq (k)

/* Update convergence criteria */

φ← 0
for i ← 1 to n do

∆← q (k)
i −q (k−1)

i
if ∆>φ then

φ←∆

end
end
k ← k +1

until φ> ε and k < maxI ter s;

λ1 ←λ(k)

v1 ← q (k)

convergence. The maximum number of iterations and the parameter ε must be carefully set.

Ill adapted values can result in premature convergences or spending unnecessary time to

satisfy unreasonable constraints. At that point, it is interesting to note that only the sign of

the elements in the dominant positive eigenvector are used to define the split vector s. This

means that even if the required precision ε is not met yet, the current vector q (k) can already

be used to define the split vector s as long as the sign of its elements does not change.

In order to set suitable values to the maximum number of iterations and the required precision

ε, we first set them respectively to the demanding values 106 and 10−10. Newman’s spectral

algorithm is run using the power method to perform the eigendecomposition of the modularity

matrix B (or the generalized modularity matrix B(g) for further split of a community in two) of

twenty 1000-node LFR graphs with including small communities taken and for three different

values of the mixing parameter µ (see Section 3.4.1). As a reminder, smaller values of µ

lead to more modular graphs. For each split of the graphs, the iteration index k and the

corresponding current precision φ are saved the last time that at least one element of the

vector q (k) sees its sign flipped, that is when one node is moved from one subcommunity to the

other (Section 3.2.1). Figure C.1 shows the number of iterations required to find the "correct"

sign of all the elements in q (k) (as returned once the demanding constraints previously set are

satisfied) against the size of the community split.

The largest number of iterations required is 4.985 ·104 (the maximum was set to 106) over

152

C.1. Eigendecomposition

N
um

be
r o

f i
te

ra
tio

ns

0 500 1000
0

1

2

3

4

5
x 104 µ

= 0.1 µ

= 0.5

Size of the modules split
0 500 1000

µ

= 0.9

0 500 1000

Figure C.1: Evaluation of the power method to determine suitable stopping criteria. New-
man’s spectral algorithm uses the power method189,190 to compute the dominant positive
eigenvector v1 which defines entirely the split vector s that describes the split of a community
in two. We select three 1000-node LFR graphs for different values of the mixing parameter
µ which controls the effective modularity of the LFR graphs (small µ leads to more modular
graphs). Each blue dot corresponds to the number of iterations that the power method reached
the last time an element of the eigenvector v1 has seen its sign flipped. The two plots on the
left may look like the smaller the community to split requires the more iterations of the power
method to converge. This is actually not the case as shown by the second order fits (in orange).
The maximum number of iterations reached over 18’463 community splits is 4.985 ·104. For
the experiments reported in Chapter 3, we decide to set the maximum number of iterations
to 50′000.

18’463 community splits. For µ= 0.1 and µ= 0.5, one may conclude that higher number of

iterations are required to split smaller communities. This is actually not the case and originates

from the fact that there are way many splits of small communities than large communities.

This is confirmed by a second order fit (in orange). In addition, we observe that for µ= 0.9,

i.e. graphs with low modularity, most if not all graphs are first split in two communities that

include each about 500 nodes, before being further divided in smaller communities. Another

evidence of the effect ofµ is that 10’925, 5’035 and 2’503 splits were performed using Newman’s

spectral algorithm for µ set to 0.1, 0.5 and 0.9, respectively.

The obtained values of φ are reported with a median of 0.001 and a 95% confidence interval

(CI) of 1.569 ·10−5 to 1.999. The later boundary, which seems very large, originates from the

fact that the elements of q (k) range from -1 to 1 and so flipping the sign of an element with

absolute value 1 leads to φ= 2.

From the above observations, we choose to set the maximum number of iterations to 5 ·104

and the required precision ε to 10−5 to ensure the converge of almost all runs and at the same

time to prevent against spending unnecessary time in the power method, which already takes

153

Supplementary notes for Chapter 3

most of the computation time required to run Newman’s spectral algorithm.

Note that the dominant eigenvalue computed using the power method is not necessarily

positive, which is a requirement to obtain a positive contribution to the modularity Q. If

the dominant eigenvalue is positive, the eigenvector v1 can be used directly to obtain the

split vector s. If the dominant eigenvalue is negative, a second chance is given to find the

dominant positive eigenvalue using a simple trick and the output of the power method. First,

the shifted matrix (B−λ1I) is computed (I is the identity matrix), which has eigenvalues

λi −λ1 all positives (here λ1 is negative) but conserves the eigenvectors of B. The power

method is then run a second time on (B−λ1I) to hopefully obtain the eigenvector associated

to the dominant positive eigenvalue. If it does not exist or is not found, the community being

currently partitioned is considered as indivisible. More precisely, a property of B is that the

elements of each of its rows and columns sum to zero and so B has always the eigenvector

[111...] with eigenvalue zero.

This power method converges to the leading eigenvector for a running time of O [(m +n)n]

overall (m is the number of edges in the network) or O
(
n2

)
on a sparse graph with m ∝ n27. It

is important to note that this accounts for the split in two of a single community when the

communities of a graph are recursively split in two. As described previously, this running time

can double in cases where the dominant eigenvalue computed is negative. Finally, it has been

shown that the power method converges at a rate that is equal to the ratio of the two largest

eigenvalues
∣∣∣λ2
λ1

∣∣∣ and thus converges slowly if there is an eigenvalue close in magnitude to the

dominant eigenvalue193,194.

C.1.2 Lanczos algorithm

Newman’s spectral algorithm makes originally use of the power method to find the dominant

positive eigenpair (B−λ1I) associated to a modular decomposition27. Here we were inter-

ested in comparing the result of the power method with another approach to approximate

the eigenvalues and eigenvectors of a matrix. The method we retained is the iterative Lanc-

zos algorithm195,196 implemented in COLT, which is a set of open-source libraries for high

performance scientific and technical computing in Java. An implementation of the Lanczos

algorithm is also contained in Matlab and GNU Octave.

The Lanczos algorithm is an adaptation of the power method described in Section C.1.1

and is particularly effective for decomposing very large sparse matrices196. Note that the

Lanczos method as it is implemented in the COLT library approximates all eigenpairs together.

Yet another approach would consist in combining both the power method and the Lanczos

algorithm to only find the dominant eigenpair197. The complexity of the Lanczos method

seems largely dependent on the applications and is difficult to estimate, although hints are

given by Arora et al.198. Nevertheless, we expect the Lanczos algorithm to have a complexity

O
(
n2

)
similar to the complexity of the power method.

154

C.1. Eigendecomposition

C.1.3 Evaluation of the power method and Lanczos algorithm

We evaluated the running time of two eigendecomposition algorithms that can be used in

Newman’s spectral algorithm (Section 3.2.1) to identify the community structure of 1000-

node LFR graphs (Section 3.4.1). The algorithms considered are the power method and the

Lanczos algorithm provided by the COLT librarya which can be used to compute the dominant

eigenvalue λ1 of the modularity matrix B and its associated eigenvector v1.

The benchmark is composed of 1000-node LFR graphs made of small communities generated

for different values of the mixing parameter µ which defines the modularity of the benchmark

graphs. Low value of µ generate highly modular graphs. For each value of µ, we only perform

the first split of one hundred graphs in two communities, that is, we compute only the first

eigendecomposition of the n-by-n modularity matrix B for each graph.

Figure C.2 reports the computation time of the algorithms in milliseconds.b The average

computation time is shown as well as the 95% confidence interval computed for the mean.

The power method requires about half the time that the Lanczos algorithm needs to converge.

Both methods take O
(
n2

)
time, but the power method is here faster because it only computes

the leading eigenpair {λ1, v1}. The Lanczos algorithm takes more time but returns all the

eigenpairs of B, which are not used in Newman’s algorithm.

The power method converges at a rate that is proportional to the ratio of the two largest

eigenvalues
∣∣∣λ2
λ1

∣∣∣ and thus converges slowly if there is an eigenvalue close in magnitude to the

dominant eigenvalue193,194. In modular networks, the first eigenvalue of B is usually quite

different from the second eigenvalue27. However, this difference is expected to decrease when

the modularity of the graphs decreases (i.e. when µ increases). Figure C.2 shows that the

computation time required by the power method increases for µ≥ 0.8, which support the fact

that more time are required to separate the first and second eigenvectors of B in non-modular

networks.

C.1.4 GA parameter values

Here we summarize the methods and parameter values of the genetic algorithm-based module

detection method evaluated in Section 3.4.3. The performance of this algorithm and the other

module detection methods and refinement methods introduced in Sections 3.2 and 3.3 is

evaluated in Section 3.4.4 and following.

• Genetic encoding: Binary

• Population size: 100

• Initialization: Random individuals

aacs.lbl.gov/software/colt
bIntel® Xeon® CPU X5472 @ 3.00GHz

155

http://acs.lbl.gov/software/colt

Supplementary notes for Chapter 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x 105

Mixing parameter µ

Co
m

pu
ta

tio
n

tim
e

(m
s)

Power method

0

0.5
1

1.5

2

2.5

3

3.5

4

4.5

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lanczos algorithm (COLT)

1min

Figure C.2: Computation time of the power method and Lanczos algorithm. These two
methods are applied to compute the leading eigenvector associated to the most positive
eigenvalue of the modularity matrix B of 1000-node LFR graphs generated for different values
of the mixing parameter µ. Low values of µ are used to generate highly modular graphs. Here
we report the mean and the 95% confidence interval (CI) of the running time in milliseconds
required by the power method and the Lanczos algorithm provided by the COLT library to
compute the eigenvector v1. Each point is computed from the application of the methods
to 20 graphs. The results show that the power method requires in general less time than the
Lanczos algorithm to converge on modular graphs.

• Selection: Tournament selection of size 2 (elitism set to 1)

• Crossover: Uniform crossover with rate set to 1

• Mutation: Bit-flip mutation with rate set to 1 bit mutated per genome

• Stopping criterion: GA stops when the population diversity (average Hamming dis-

tance) is less than 1 bit, i.e. when the difference between any pair of individuals is on

average less than one node.

• Maximum number of generations: 3000

• Others: brute force method applied for splitting small communities

C.2 Pseudocode of MVM

The MVM takes as input a split vector s ∈ Rc that defines the split of one community in

two subcommunities as found by a module detection method. c is the size of the current

community to split. The modularity Qc and the modularity matrix B(c) associated to the

current community are also required. If this is the first division of the graph, Qc is Q and B(c) is

the modularity matrix B. Otherwise Qc corresponds to∆Q and B(c) is a generalized modularity

matrix B(g) defined by Newman27.

156

C.3. Pseudocode of gMVM

The idea behind the MVM is that one vertex is moved at a time in the split vector s to refine,

which is the element i that contributes the most to increase Qc . The algorithm then restarts

until there are no more vertex moves improving the modularity. The details of the gMVM is

given by Algorithm C.2.

Algorithm C.2: Moving vertex method (MVM)

Data: community size c, split vector s ∈Rc , community modularity Qc , community
modularity matrix B(c), total number of edge m, threshold θ

Result: refined split vector s, updated community modularity Qc

/* Initialization */

cur r entQc ←Qc

tmpQc ← 0
/* MVM */

repeat
/* Index of the vertex moved */

i ←−1
/* Index of the vertex tested */

for j ← 1 to c do
sum ← 0
for k ← 1 to c do

sum ← sum +B(c)
k j sk s j

end

sum ← sum −B(c)
j j

tmpQc ←Qc − sum/m
if (tmpQc − cur r entQc) > θ then

cur r entQc ← tmpQc

i ← j
end

end
if i > 0 then

si ←−si /* flip -1→1 or 1→-1 */

Qc ← cur r entQc

end
until i > 0;

C.3 Pseudocode of gMVM

Algorithm C.3 gives the procedure of the refinement technique gMVM introduced in Sec-

tion 3.3.2. This method can be applied as the final stage of any modularity optimization

methods.

The gMVM takes individually each node of a graph and place them successively in each indi-

visible community identified, before computing the associated contribution to the modularity

Q for each move. If the contribution is negative, the node is left in its former community.

157

Supplementary notes for Chapter 3

Algorithm C.3: Global moving vertex method (gMVM)

Data: number of nodes n, number of edge m, number of communities c, global split vector
s ∈Rn , modularity Q, modularity matrix B

Result: refined global split vector s, updated modularity Q
/* Initialization */

for i ← 1 to n do
si ← index of the community containing the vertex i

end
newQ ←Q
/* gMVM */

repeat
chang eIndex ←−1
chang eNewCommuni t y ←−1
/* Loop over all vertices */

for i ← 1 to n do
ol dCommuni t y ← si

r owSumi ← 0
for j ← 1 to n do

if si == s j and i != j then
r owSumi ← r owSumi +Bi j

end
end
/* Loop over all communities */

for k ← 1 to c do
if k != oldCommuni t y then

newRowSumi ← 0
for j ← 1 to n do

if k == s j then
newRowSumi ← newRowSumi +Bi j

end
end
tmpNewQ ←Q + (newRowSumi − r owSumi)/m

end
if tmpNewQ > newQ then

newQ ← tmpNewQ
chang eIndex ← i
chang eNewCommuni t y ← k

end
end

end
if chang eIndex > 0 then

schang eIndex ← chang eNewCommuni t y
Q ← newQ

end
until chang eIndex > 0;

158

C.4. Computation time of network module detection methods

Otherwise, the node is moved to the community associated to the largest contribution to the

modularity Q. This operation is then repeated as long as there is a node move that increases

the modularity.

C.4 Computation time of network module detection methods

C.4.1 Improved version of Newman’s algorithm and GA-based method

We compare the computation time required by Newman’s spectral algorithm and the GA-based

method on modular and non-module LFR graphs (Section 3.4.1). Newman’s algorithm is

deterministic and uses the power method to compute the leading eigenvector of the mod-

ularity matrix B, which is then used to obtain the split vector s. The GA-method uses the

parameters given in Section C.1.4. Both methods are run on the same desktop computer

(Intel® Core® i7-3770K CPU @ 3.50GHz). The GA-base method uses 6 cores to speed up the

detection process. The computation time of the method can largely be reduced using more

processors. The implementation of Newman’s algorithm is not parallel so it is possible to

process multiple networks in paralllel in Jmod. However, this does not help if there is only one

network whose community structure must be identified. Figure C.3 shows the computation

times of the two methods successively refined using MVM and gMVM.

Newman’s algorithm is the fastest method as expected. MVM takes usually as much time as

Newman’s algorithm itself because Newman’s method returns a broad approximation of s

which can be largely improved using MVM. The use of MVM is usually not required after the

GA when using the stopping criterion described in Section 3.4.3. Here we observe that MVM

almost never moves a single node in the partition inferred by the GA-based method. Further-

more, the computation time of gMVM depends on the number of indivisible communities

found in the network. Here the maximum number of communities that can be expected is

about twenty, which makes the execution of gMVM very fast.

The computation time of Newman’s spectral algorithm is constant for the different µ values as

we already observed in Section C.1.3 where we evaluated the computational cost of finding

the leading eigenvector v1 of B. Once again, we note a slight increase in the computation

time for µ > 0.8, that is, for non-modular networks. This is because the power method

takes more iterations to converge when the first and second eigenvectors of B are close

to each other (Section C.1.3). Even if the method proposed by Newman does not have a

parallel implementation, Jmod allows to detect the community structure of multiple network

simultaneously.

Six threads were used to speed up as many times the GA-based method. Note that its com-

putation time can be even further decreased when more processors are available (e.g. with

a cluster). The computation time of the GA-based method increases as the modularity of

the network decreases. This results from the fact that communities are less clearly defined

159

Supplementary notes for Chapter 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mixing parameter µ

Co
m

pu
ta

tio
n

tim
e

(s
)

Newman’s spectral algorithm

0

100

50

150

200

250

300

350

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GA-based method

1min

Main method MVM (re�nement) gMVM (re�nement)

Figure C.3: Computation time of the improved version of Newman’s algorithm and GA-
based method on 1000-node LFR graphs. These two methods are applied to identify the
community structures of 1000-node LFR graphs generated for different values of the mixing
parameter µ and to include big communities (20-100 nodes). Newman’s spectral algorithm
and the GA-based method are successively refined using MVM and gMVM, which only takes a
very small amount of time. Newman’s algorithm is faster but has lower accuracy than the GA-
based method. Moreover, the running time of the latter method depends on the modularity of
the network. Low values of µ are used to generate highly modular graphs. Each point is the
mean computation time computed for 20 runs of the methods on different graphs.

in non-modular networks, thus the search space of the fitness function Q would look more

flat. As a consequence, the evaluation of more individuals are required in order to converge

towards the optimal solutions. We also observed that the GA stopping criterion described

in Section 3.4.3 requires more generations (proportionally to the size of the network) to be

met in larger but similar networks (same node degrees and community sizes). Moreover, the

computation time stops to increase after µ≈ 0.6. For these networks, the detection of their

community structure becomes difficult and the accuracy of the module inference starts to

decrease (Fig. 3.10). For µ> 0.7, the method can not capture any more the weak community

structures of the networks and always detects on average the same number of communities

(Fig. 3.13).

Finally, it is interesting to note that the computation time of the GA-based method actually

provides information about the modularity of the network for µ ∈ [0.1,0.6], which may be

possible used online to adapt the behavior of the current community structure detection.

160

C.5. Detection of the Snap/SNARE in DPiM

C.4.2 Brute force method

The brute force method introduced in Section 3.2.3 systematically evaluates the 2n−1 split

vectors s which describe the different ways to split a community in two subcommunities. Here

we evaluate its computation time in order to give an idea of the range of its application.

The main limitation of the brute force method is that it can only be applied to split relatively

small communities. Indeed, the computation time required doubles each time one node is

added to the network. As an example, the running time to split a 30-node network in two is

about 37.54 minutes.c For Zachary’s karate club network79 and its 34 nodes, the method takes

about 644.25 minutes which is about 24 times larger than the computation time required for

the 30-node network. Moreover, the partitioning of a 50-node graph using the brute force

approach would take more than 80 years to be completed.

The above computation times correspond to the time it takes to evaluate sequentially every

split vectors s. In Jmod, the method as been parallelized so that it can use all or a specified

number of available processors (each split vector is independent). This actually does not help

much as the running time remains proportional to 2n−1

T where T is the number of processors

or more precisely the number of threads that the method can run in parallel. Nevertheless,

its main purpose is not to be used in real applications but to provide a ground truth to bi-

partitioning methods. However, we also propose to use the brute force method in exhaustive

optimization methods to partition small communities that it requires less evaluations than

main detection method.

C.5 Detection of the Snap/SNARE in DPiM

Guruharsha et al. identified and manually labelled 31 proteins as part of the Snap/SNARE

complex of the Drosophila protein interaction map (DPiM)21, which the GA-based mod-

ule detection method successfully identified as being part of the same community. The

name of the 31 proteins as well as their FlyBased identifier are AttD (FBgn0038530), Bet1

(FBgn0260857), CG1599 (FBgn0033452), CG2023 (FBgn0037383), CG6208 (FBgn0037789), gam-

maSnap (FBgn0028552), Gos28 (FBgn0044871), koko (FBgn0051232), membrin (FBgn0260856),

Nsf2 (FBgn0013998), n-syb (FBgn0013342), Rme-8 (FBgn0015477), Sec22 (FBgn0260855),

Slh (FBgn0015816), Snap (FBgn0250791), Snap25 (FBgn0011288), Syb (FBgn0003660), Syx1A

(FBgn0013343), Syx4 (FBgn0024980), Syx5 (FBgn0011708), Syx7 (FBgn0086377), Syx8 (FB-

gn0036643), Syx13 (FBgn0036341), Syx16 (FBgn0031106), Syx17 (FBgn0035540), Syx18 (FB-

gn0039212), Snap24 (FBgn0028401), Use1 (FBgn0035965), usnp (FBgn0034913), Vti1 (FBgn-

0260862), Ykt6 (FBgn0260858). Furthermore, the method suggests that two additional proteins

CG7133 (FBgn0037150) and Sgt (FBgn0032640)100 may also participate to the Snap/SNARE

complex.

cIntel® Xeon® CPU X5472 @ 3.00GHz
dflybase.org

161

http://flybase.org/

D Supplementary notes for Chapter 4

D.1 Generation of quantitative datasets

D.1.1 Sample collection

Flies were constantly kept in a 26◦C incubator and the eggs were collected on grape juice

plates. It is known that the females can keep the fertilized eggs for up to 8h, so a freshly laid

egg can be anywhere between minutes to 8h old. We circumvented this problem by treating

flies with CO2 prior to collection, which is thought to relax the muscles and facilitate the

deposition of old eggs. This first collection was discarded and the flies were transferred to

a clean collection chamber. Additionally, as sexual dimorphism exerts itself early on, only

male larvae were included in our analysis where possible. Indeed, male flies are comparatively

smaller than female flies and including both sexes could bias our scaling results during wing

imaginal disc growth. Male larvae were positively selected for by the presence of a clear, oval

genital disc which is clearly visible starting from 80 hours after egg laying (AEL). We observed

that 70 hours AEL corresponds to the beginning of the third instar stage at 26◦C as hatching

larvae were frequently encountered. Dissected larvae were fixed immediately, washed and

stored at 4◦C. Once all time classes were obtained (usually within 2 days), all samples were

processed for antibody staining in parallel using identical solutions.

D.1.2 Immunostainings and image acquisition

Samples were transferred into cold fixative (4% pfa in PBS, pH=7) and fixed for 25 min at

room temperature on a rotator. Following extensive washes in PBT (PBS + 0.03% TritonX), the

discs were blocked in PBTN (PBT + 2% Normal Donkey Serum, Jackson Immuno Research

Laboratories) for 1h at 4◦C on a rotator, and incubated with primary antibodies overnight at

4◦C. The discs were washed several times with cold PBT and incubated in secondary antibodies

for 2h at room temperature on a rotator. After another round of washes with PBT, the excess

fluid was removed and replaced with Vectashield mounting media (Vector Labs). All discs

163

Supplementary notes for Chapter 4

from a data set were mounted on the same slide to reduce potential variation in thickness

between the slide and the coverslip across different samples. Brain discs were used as spacers.

All discs from a dataset were imaged under identical microscopy settings using a Leica SP5

confocal microscope.a

Figure 1.2 shows wild type and pent2-5 wing discs aged between 80 and 110 hours AEL. The

image stacks were acquired using a pixel resolution of 1024 x 1024 and an optical section

thickness of 1 µm. The scale of the wings reported in this document is defined as one pixel

corresponding to 0.378 µm. This value is consistent throughout unless stated otherwise.

D.1.3 Antibodies and dad-GFP

Rb-α-P-Mad (1:1500, Ed Laufer199,200); rb-α-Sal (1:40, Reinhard Schuh201); rb-α-Omb (1:1200,

Gert O. Pflugfelder202); m-α-Wg (a.k.a. 4D4, 1:120, DSHB, University of Iowab); m-α-Ptc

(a.k.a. Apa1, 1:600, DSHB, University of Iowa); gp-α-Brk (1:1000, Gines Morata). All secondary

antibodies were used in 1:1000 dilutions and were from the AlexaFluor series of Invitrogen.

dad-GFP transgenic flies were described in203.

D.1.4 Preparation for image processing

After the image acquisition, we used the open-source image processing toolkit we developed

called WingJ to detect automatically the morphology or structure of the Drosophila wing

pouch (Section 4.2) and quantify gene expression inside it (Section 4.3). We also used a tool

for segmenting and detecting cell nuclei which is introduced in Section 4.5. Different input

images were presented depending on the detection tool applied.

Detection of the pouch structure

Wingless (Wg) antibody labelling was used to visualize the outer boundary (or contour) of the

pouch and the dorsal/ventral (D/V) compartment boundary while labelling the expression

of Patch (Ptc) to delimit the anterior/posterior (A/P) compartment boundary. We removed

manually the image slices corresponding to the peripodial membrane from the each Wg-Ptc-

AB image stacks. This can be done directly in WingJ by setting the first and last slice index

to consider. The detection was then performed on the maximum intensity projection of the

remaining image slices.

aleica-microsystems.com
bdshb.biology.uiowa.edu

164

http://www.leica-microsystems.com
http://dshb.biology.uiowa.edu

D.2. Additional information about the spline-based snake

Expression quantification

We manually selected by visual inspection five consecutive slices above and below the brightest

slice from each stack and performed a mean projection of these eleven slices. Using a reduced

number of slices and performing the mean projection allowed us to reduce the noise as well

as avoid the signal from the peripodial membrane. Indeed, we made sure that these eleven

slices contained signal from the columnar cells of the pouch only.

Detection of cell nuclei

Cell nuclei were stained with TO-PRO-3.c We then removed manually the image slices corre-

sponding to the peripodial membrane. For each wing, the remaining part of the TO-PRO-3

image stack was directly given as input to the 3D nuclei detection tool.

D.2 Additional information about the spline-based snake

Proposition 1 The control points cp can be obtained from the control points c through the

following matrix multiplication.


cp[0]T

...

cp[M −1]T

= Pref


c[0]T

...

c[M −1]T

 (D.1)

where the M ×M matrix Pref is defined as the product

Pref
def= MT

ref (Mref MT
ref)

−1 Mref (D.2)

where

Mref =

 cref
x [0] . . . cref

x [M −1]

cref
y [0] . . . cref

y [M −1]

1 . . . 1

 (D.3)

Note that the matrix Pref can be precomputed since it only depends on the coefficients of the

reference shape. This contributes to significantly speedup the algorithm using lookup tables.

Moreover, the use of homogeneous coordinates within the derivation of Pref makes possible to

represent both the linear transformation and the translation vector as a single multiplication

with the matrix

cproducts.invitrogen.com

165

http://products.invitrogen.com

Supplementary notes for Chapter 4

Ã =
(

A b

0 1

)
(D.4)

which can also be written as

Ã =
(

c[0] . . . c[M −1]

1 . . . 1

)
MT

ref (Mref MT
ref)

−1 (D.5)

Finally, the distance between r and its elliptical fit simplifies to

Eshape =
M−1∑
k=0

‖cp[k]−c[k]‖ (D.6)

In our application, the snakes are initialized with a circle shape of radius R whose center

is given by the center of gravity of one of the four outer (shaded) triangles of the kite snake

(Fig. 4.8). The control points of each spline-based snake are initially placed at

c[k] = R
2

(
1−cos 2π

M

)
cos π

M −cos 3π
M

(
cos 2πk

M

sin 2πk
M

)
+gi (D.7)

where each gi , i = 1. . .4 corresponds to the centroid of one of the four outer triangles of the

kite snake. The initial radius R is chosen so that there is no overlap among the four initial

configurations of the spline-based snakes. We show in Figure 4.11 the configuration of the four

spline-based snakes before and after optimization. Note that the unconstrained optimization

algorithm we defined in Section 4.2.4 for the kite snake is also applied here to minimize the

energy function Esnake of the spline-based snakes defined in (4.11).

D.3 Unsupervised segmentation of the Drosophila embryo

Because the Drosophila embryo is a largely-studied system model, we also implemented a

method for enabling the automatic detection and segmentation of the embryo structure. This

method reuses some of the image-processing detection modules that we have developed

previously to identify the structure of the Drosophila wing pouch.

Here, the detection modules are: 1) detection of the contour of the embryo (using active con-

tours), 2) detection of the dorsal-ventral and anterior-posterior axes, 3) automatic inference

of the embryo orientation and 4) possibility to manually edit the inferred structure model.

We show below two examples of embryo structure quantification using the method that we

implemented in WingJ.

166

D.3. Unsupervised segmentation of the Drosophila embryo

Figure D.1: Unsupervised detection and segmentation of the Drosophila embryo. The
detection of the Drosophila embryo is relatively simple compared to the detection of the
Drosophila wing pouch (Section 4.2). The contour of the embryo is segmented using a snake
model similar to the one that we have developed to identify the contour of the wing pouch
compartment Section 4.2.5. The main difference is that the initial size of the snake covers
almost the entire image and contracts itself to fit the outer boundary of the embryo. After
manual fine-tuning, the orientation of the embryo structure model is inferred based on the
curvature of the A/P and D/V boundary and the non-symmetric expression of a given gene
(e.g. even-skipped).

167

E Numerical integration of SDEs

E.1 Introduction

E.1.1 Itô and Stratonovich SDEs

One-dimensional stochastic differentiable equation (SDE) is given by204,205

d X t

d t
= f (X t , t)d t + g (X t , t)dWt (E.1)

where X t = X (t) is the realization of a stochastic process or random variable. f (X t , t) is

called the drift coefficient, that is the deterministic part of the SDE characterizing the local

trend. g (X t , t) denotes the diffusion coefficient, that is the stochastic part which influences the

average size of the fluctuations of X . The fluctuations themselves originate from the stochastic

process Wt called Wiener process and introduced in Section E.1.2. Interpreted as an integral,

we get

X t = X t0 +
∫ t

t0

f (Xs , s)d s +
∫ t

t0

g (Xs , s)dWs (E.2)

where the first integral is an ordinary Riemann integral. As the sample paths of a Wiener

process are not differentiable, the Japanese mathematician K. Itô defined in 1940s a new type

of integral called Itô stochastic integral. In 1960s, the Russian physicist R. L. Stratonovich

proposed an other type of stochastic integral called Stratonovich stochastic integral and used

the symbol "◦" to distinct it from the former Itô integral. (E.3) and (E.4) are the Stratonovich

equivalents of (E.1) and (E.2)204,206.

d X t

d t
= f (X t , t)d t + g (X t , t)◦dWt (E.3)

X t =X t0 +
∫ t

t0

f (Xs , s)d s +
∫ t

t0

g (Xs , s)◦dWs (E.4)

169

Numerical integration of SDEs

The second integral in (E.2) and (E.4) can be written in a general form as207

∫ t

t0

g (Xs , s)dWs = lim
h→0

m−1∑
k=0

g (Xτk ,τk)(W (tk+1)−W (tk)) (E.5)

where h = (tk+1 − tk) with intermediary points τk = (1−λ)tk −λtk+1, ∀k ∈ {0,1, ...,m − 1},

λ ∈ [0,1]. In the stochastic integral of the Itô SDE given in (E.2), λ = 0 leads to τk = tk and

hence to evaluate the stochastic integral at the left-point of the intervals. In the definition of

the Stratonovich integral, λ= 1/2 and so τk = (tk+1 − tk)/2, what fixes the evaluations of the

second integral in (E.4) at the mid-point of each interval207.

To illustrate the difference between the Itô and Stratonovich calculi, we have a closer look at

the stochastic integral

∫ T

t0

W (s)dWs = lim
m→∞

m−1∑
k=0

W (τk)(W (tk+1)−W (tk)) (E.6)

=W (t)

2
+ (λ− 1

2
)T (E.7)

By combining the result of (E.7) with the respective values of λ discussed above for both

interpretations, we obtain207

∫ T

t0

W (s)dWs =1

2
W (t)− 1

2
T (E.8)∫ T

t0

W (s)◦dWs =1

2
W (t) (E.9)

If we solve (E.2) and (E.4) whose stochastic integrals (E.8) and (E.9) are respectively part of, we

see that the Itô and Stratonovich representations do not converge towards the same solution.

Conversions from Itô to Stratonovich calculus and inversely are possible in order to switch

between the two different calculi. This is achieved by adding a correction term to the drift

coefficients206.

d X t = f (X t)d t + g (X t)dWt (E.10)

d X t = f (X t)d t + g (X t)◦dWt (E.11)

f = f − 1

2
g ′g (E.12)

where g ′ = d g (X t)
d X t

is the first derivative of g . If the relation (E.12) is used (called the Itô-

Stratonovich drift correction formula), the integration of the Stratonovich SDE (E.11) leads

now to the same result as the integration of the Itô SDE (E.10)206.

170

E.2. Numerical integration

Both integrals have their advantages and disadvantages and which one should be used is

more a modelling than mathematical issue. In financial mathematics, the Itô interpretation

is usually used since Itô calculus only takes into account information about the past. The

Stratonovich interpretation is the most frequently used within the physical sciences204. An

excellent discussion of this subject can be found in 208, in particular see Chapter IX, Section 5:

The Itô-Stratonovich dilemma.

E.1.2 Standard Wiener process

A scalar standard Brownian motion, or standard Wiener process, over [t0,T] is a random

variable W (t) that depends continuously on t ∈ [t0,T]. For t0 6 s < t 6 T , the random variable

given by the increment W (t)−W (s) is normally distributed with mean µ = 0 and variance

σ2 = t − s. Equivalently, W (t)−W (s) ∼p
t − sN (0,1) with W (t0 = 0) = 0. The conditions for

the stochastic process W (t) to be a Wiener process are204,209

1. [W (t), t > 0] has stationary independent increments dW

2. W (t) is normally distributed for t > 0

3. 〈W (t)〉 = 0 for t > 0

4. W (0) = 0

E.1.3 Discretized Brownian motion

We take t0 = 0 and divide the interval [0,T] into N steps such as: h = T /N . We also denote

W j =W (t j) with t j = j h209.

W j =W j−1 +dW j W0 = 0 j = 1,2, ..., N (E.13)

where each dW j is an independent random variable of the form
p

hN (0,1).a Figure E.1 shows

the realizations of three independent Wiener processes.

E.2 Numerical integration

E.2.1 Iterative methods

It is difficult to deal with the SDEs analytically because of the highly non-differentiable charac-

ter of the realization of the Wiener process. There are different, iterative methods that can be

used to integrate SDE systems. The most widely-used ones are introduced in the following

sections.

aN (0,h) =p
hN (0,1)

171

Numerical integration of SDEs

-0.5

0

0.5

1

1.5

2

W
(t
)

t
0 0.2 0.4 0.6 0.8 1

Figure E.1: Simulation of one-dimensional Brownian paths. Three discretized, one-
dimensional Brownian paths with T = 1 and N = 500. When t → ∞, the process has an
infinite variance but still an expectation equal to zero.

• Explicit order 0.5 strong Taylor scheme

Euler-Maruyama (EM) and Euler-Heun (EH)

• Explicit order 1.0 strong Taylor scheme

Milstein and derivative-free Milstein (Runge-Kutta approach)

• Explicit order 1.5 strong Taylor scheme

Stochastic Runge-Kutta (SRK)

E.2.2 Explicit order 0.5 strong Taylor scheme

Euler-Maruyama method

The simplest stochastic numerical approximation is the Euler-Maruyama method and requires

the problem to be described using the Itô scheme. For Stratonovich interpretation, use the

Euler-Heun method described in Section E.2.2.

This approximation is a continuous time stochastic process that satisfy the iterative scheme210

Yn+1 =Yn + f (Yn)hn + g (Yn)∆Wn Y0 = x0 n = 0,1, ..., N −1 (E.14)

∆Wn =[Wt+h −Wt] ∼
p

hN (0,1) (E.15)

where Yn = Y (tn), hn = tn+1 − tn is the step size, ∆Wn = W (tn+1)−W (tn) ∼ N (0,hn) with

W (t0) = 0. From now on, we use the following notation: h = hn (fixed step size), fn = f (Yn)

172

E.2. Numerical integration

and gn = g (Yn). (E.14) becomes

Yn+1 = Yn + fnh + gn∆Wn (E.16)

As the order of convergence for the Euler-Maruyama method is low (strong order of conver-

gence 0.5, weak order of convergence 1), the numerical results are inaccurate unless a small

step size is used. In fact, Euler-Maruyama represents the order 0.5 strong Taylor scheme. By

adding one more term from the stochastic Taylor expansion, one obtains a 1.0 strong order of

convergence scheme known as Milstein scheme210.

Euler-Heun method

If a problem is described using the Stratonovich scheme, then the Euler-Heun method has to

be used instead of the Euler-Maruyama method which is only valid for Itô SDEs204,211.

Yn+1 =Yn + fnh + 1

2

[
gn + g (Ȳn)

]
∆Wn (E.17)

Ȳn =Yn + gn∆Wn (E.18)

∆Wn =[Wt+h −Wt] ∼
p

hN (0,1) (E.19)

E.2.3 Explicit order 1.0 strong Taylor scheme

Milstein method

The Milstein scheme is slightly different for the Itô and Stratonovich representations204,205,211.

It can be proved that Milstein scheme converges strongly with order 1 (and weakly with order 1)

to the solution of the SDE. The Milstein scheme represents the order 1.0 strong Taylor scheme.

Yn+1 =Yn + fnh + gn∆Wn + 1

2
gn g ′

n

[
(∆Wn)2 −h

]
(E.20)

Yn+1 =Yn + fnh + gn∆Wn + 1

2
gn g ′

n(∆Wn)2 (E.21)

∆Wn =[Wt+h −Wt] ∼
p

hN (0,1) (E.22)

where g ′
n = d g (Yn)

dYn
is the first derivative of gn . The iterative method defined by (E.20) must

be used with Itô SDEs and (E.21) with Stratonovich SDEs. Note that when additive noise is

used, i.e. when gn is constant and so independent of Yn , then both Itô and Stratonovich

interpretations are equivalent (g ′
n = 0).

173

Numerical integration of SDEs

Derivative-free Milstein method

The drawback of the previous method is that it requires the analytic specification of the

first derivative of g (Yn), analytic expression which can become quickly highly complex. The

following implementation approximates this derivative using a Runge-Kutta approach204.

Yn+1 =Yn + fnh + gn∆Wn + 1

2
p

h

[
g (Ȳn)− gn

][
(∆Wn)2 −h

]
(E.23)

Yn+1 =Yn + fnh + gn∆Wn + 1

2
p

h

[
g (Ȳn)− gn

]
(∆Wn)2 (E.24)

Ȳn =Yn + fnh + gn

p
h (E.25)

∆Wn =[Wt+h −Wt] ∼
p

hN (0,1) (E.26)

where (E.23) and (E.24) must be applied respectively to Itô and Stratonovich SDEs.

E.2.4 Explicit order 1.5 strong Taylor scheme

Definition

By adding more terms from the stochastic Taylor expansion than in Milstein scheme, higher

strong orders can be obtained. A method to generate a strong order 1.5 method is introduced

by Burrage & Platen212,213. For the need of this method, a random variable ∆Zn is introduced.

∆Zn =
∫ τn+1

τn

∫ τs2

τn

dWs1 d s2 (E.27)

which is a Gaussian distributed with mean zero, variance 1
3 h3 and correlation E(∆Wn∆Zn) =

1
2 h2.

Stochastic Runge-Kutta

This implementation allows to achieve a 1.5 strong order of converge. This is the highest

strong order obtained with a Runge-Kutta approach that keeps a "simple" structure. This

implementation makes use of the ∆Zn introduced in (E.27)212,213.

∆Yn+1 = Yn+ fnh + gn∆Wn + 1

2
gn g ′

n

[
(∆Wn)2 −h

]
(E.28)

+ f ′
n gn∆Zn + 1

2

[
fn f ′

n + 1

2
g 2

n f ′′
n

]
h2 (E.29)

+
[

fn g ′
n + 1

2
g 2

n g ′′
n

]
[∆Wnh −∆Zn] (E.30)

174

E.3. Convergence

+1

2
gn

[
gn g ′′

n + (g ′
n)2][

1

3
(∆Wn)2 −h

]
∆Wn (E.31)

E.3 Convergence

An approximation Y converges with strong order γ> 0 if there exists a constant K such that

E (|XT −YN |)6K ·hγ (E.32)

for step sizes h ∈ (0,1), with XT being the true solution at time T and YN the approximation212.

The symbol E stands for expectation. It appears that Euler-Maruyama scheme converges only

with strong order γ = 0.5. Strong approximation is tightly linked to the use of the original

increments of the Wiener process212. However in several applications, it is not needed to

simulate a pathwise approximation of a Wiener process. For instance, one could be only

interested in the moments of the solution of a SDE. A discrete time approximation Y converges

with weak order β> 0 if for any polynomial g (·) there exists a constant Kg such that

|E(g (XT))−E(g (YN))|6Kg ·hβ (E.33)

for step sizes h ∈ (0,1). It turns out that Euler-Maruyama scheme converges with weak order

β= 1.0.

If a numerical method is convergent with order γ and the step size is made k times smaller,

then the approximation error decreases by a factor kγ. For instance, if the order is equal to 1

and we want to decrease the error 100 times, we have to make the step size 100 times smaller.

If the order is equal to 0.5 and we still want to decrease the error 100 times, we have to make

the step size 1002 = 10000 times smaller.

E.4 libSDE: Java library for simulating SDEs

E.4.1 Overview

Stochastic differential equations were initially used in this work to model and simulate molec-

ular noise in the dynamics of gene regulatory networks generated using GNW (Section 2.2.2).

Implementing one integration method such as the derivative-free Mistein method was all

we required. However because there was no other Java library available at the time of this

project, I decided to invest more time to develop an extensible Java library implementing all

the numerical integration methods described above.

libSDE is released under open-source license and can be downloaded from its project webpage

(tschaffter.ch/projects/libsde). Here is a list of possible actions that users can do using libSDE:

175

http://tschaffter.ch/projects/libsde

Numerical integration of SDEs

• Simulate Itô and Stratonovich SDEs

• Select an integration method among Euler-Maruyama, Euler-Heun, derivative-free Mil-

stein, and Stochastic Runge-Kutta (SRK15) solvers

• Set the integration step-size t

• Set the time interval [t0,T]

• Set the number of trajectories (time series) to simulate

• Set the number of time points per time series

• Implement additional integration methods (libSDE provides a factory method pattern)

• Integrate libSDE to third-party computational tools

E.4.2 Example

We generate stochastic simulations of d X = (−3X +1)d t +σdW with X (0) = 1 and σ = 0.2

(Fig. E.2). The expected solution E(X) is equal to 2/3e−3t + 1/3 (in orange). Here Ito and

Stratonovich schemes are equivalent because the drift coefficient is a constant term. dX is

integrated using the SRK15 solver implemented in libSDE.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

t

X

Figure E.2: Example of numerical integration using libSDE. The example code included in
libSDE integrates fifty times the stochastic equation d X = (−3X +1)d t +σdW with X (0) = 1
and σ = 0.2 using the derivative-free Milstein method (in blue). The expected solution is
E (X) = 2/3e−3t +1/3 (in orange). Note that here the Itô and Stratonovich drift terms are equal
because sigma is constant.

176

Bibliography

1. Davis, N., Favero, T., de Hoog, ., et al. Quantitative monitoring of gene expression

patterns with a complementary DNA microarray. Science 270, 467 (1995).

2. Lockhart, D. et al. Expression monitoring by hybridization to high-density oligonu-

cleotide arrays. Nature Biotechnology 14, 1675 (1996).

3. Mortazavi, A., Williams, B., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying

mammalian transcriptomes by RNA-Seq. Nature methods 5, 621–628 (2008).

4. Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nature Methods

(2012).

5. Kim, S., Imoto, S. & Miyano, S. Inferring gene networks from time series microarray data

using dynamic Bayesian networks. Briefings in Bioinformatics 4, 228. ISSN: 1467-5463

(2003).

6. Gama-Castro, S. et al. RegulonDB version 7.0: transcriptional regulation of Escherichia

coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids

Research 39, D98. ISSN: 0305-1048 (2011).

7. Camacho, D. & Collins, J. Systems biology strikes gold. Cell 137, 24. ISSN: 1097-4172

(2009).

8. Cantone, I. et al. A yeast synthetic network for in vivo assessment of reverse-engineering

and modeling approaches. Cell 137, 172–181. ISSN: 0092-8674 (2009).

9. Kremling, A. et al. A benchmark for methods in reverse engineering and model discrim-

ination: problem formulation and solutions. Genome research 14, 1773. ISSN: 1088-9051

(2004).

10. Mendes, P., Sha, W. & Ye, K. Artificial gene networks for objective comparison of analysis

algorithms. Bioinformatics 19. ISSN: 1367-4803 (2003).

11. Den Bulcke, T. V. et al. SynTReN: a generator of synthetic gene expression data for design

and analysis of structure learning algorithms. BMC bioinformatics 7, 43. ISSN: 1471-2105

(2006).

12. Camillo, B. D., Toffolo, G. & Cobelli, C. A gene network simulator to assess reverse

engineering algorithms. Annals of the New York Academy of Sciences 1158, 125–142.

ISSN: 1749-6632 (2009).

177

Bibliography

13. Ravasz, E., Somera, A., Mongru, D., Oltvai, Z. & Barabási, A. Hierarchical organization of

modularity in metabolic networks. Science 297, 1551 (2002).

14. Shen-Orr, S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional

regulation network of Escherichia coli. Nature genetics 31, 64–68 (2002).

15. Li, Y. et al. ReTRN: A retriever of real transcriptional regulatory network and expression

data for evaluating structure learning algorithm. Genomics 94, 349–354. ISSN: 0888-7543

(2009).

16. Roy, S., Werner-Washburne, M. & Lane, T. A system for generating transcription regu-

latory networks with combinatorial control of transcription. Bioinformatics 24, 1318.

ISSN: 1367-4803 (2008).

17. Hache, H., Wierling, C., Lehrach, H. & Herwig, R. GeNGe: systematic generation of gene

regulatory networks. Bioinformatics 25, 1205. ISSN: 1367-4803 (2009).

18. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O’Shea, E. Quantification of protein half-

lives in the budding yeast proteome. Proceedings of the National Academy of Sciences

103, 13004 (2006).

19. Haynes, B. & Brent, M. Benchmarking regulatory network reconstruction with GREN-

DEL. Bioinformatics 25, 801. ISSN: 1367-4803 (2009).

20. Watts, D., Dodds, P. & Newman, M. Identity and search in social networks. Science 296,

1302 (2002).

21. Guruharsha, K. et al. A Protein Complex Network of Drosophila melanogaster. Cell 147,

690–703 (2011).

22. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of struc-

tural and functional systems. Nature Reviews Neuroscience 10, 186–198 (2009).

23. Krackhardt, D. Cognitive social structures. Social Networks 9, 109–134 (1987).

24. Newman, M. Detecting community structure in networks. The European Physical Jour-

nal B-Condensed Matter and Complex Systems 38, 321–330 (2004).

25. Lancichinetti, A. & Fortunato, S. Community detection algorithms: a comparative anal-

ysis. Physical Review E 80, 056117 (2009).

26. Girvan, M. & Newman, M. Community structure in social and biological networks.

Proceedings of the National Academy of Sciences 99, 7821 (2002).

27. Newman, M. Modularity and community structure in networks. Proceedings of the

National Academy of Sciences 103, 8577 (2006).

28. Newman, M. E. Finding community structure in networks using the eigenvectors of

matrices. Physical review E 74, 036104 (2006).

29. Shen, H.-W. & Cheng, X.-Q. Spectral methods for the detection of network commu-

nity structure: a comparative analysis. Journal of Statistical Mechanics: Theory and

Experiment 2010, P10020 (2010).

178

Bibliography

30. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V. & Parisi, D. Defining and identifying

communities in networks. Proceedings of the National Academy of Sciences of the United

States of America 101, 2658 (2004).

31. Clauset, A., Newman, M. & Moore, C. Finding community structure in very large net-

works. Physical review E 70, 066111 (2004).

32. Guimera, R. & Amaral, L. Functional cartography of complex metabolic networks. Na-

ture 433, 895–900 (2005).

33. Medus, A., Acuna, G. & Dorso, C. Detection of community structures in networks via

global optimization. Physica A: Statistical Mechanics and its Applications 358, 593–604

(2005).

34. Massen, C. & Doye, J. Identifying communities within energy landscapes. Physical

Review E 71, 046101 (2005).

35. Rosvall, M. & Bergstrom, C. Maps of random walks on complex networks reveal com-

munity structure. Proceedings of the National Academy of Sciences 105, 1118 (2008).

36. Shen, H. et al. Automatic tracking of biological cells and compartments using particle

filters and active contours. Chemometrics and Intelligent Laboratory Systems 82, 276–

282 (2006).

37. Meijering, E., Dzyubachyk, O., Smal, I. & van Cappellen, W. A. in Seminars in cell &

developmental biology 20 (2009), 894–902.

38. Delgado-Gonzalo, R., Thevenaz, P., Seelamantula, C. S. & Unser, M. Snakes with an

ellipse-reproducing property. Image Processing, IEEE Transactions on 21, 1258–1271

(2012).

39. Crombach, A., Wotton, K. R., Cicin-Sain, D., Ashyraliyev, M. & Jaeger, J. Efficient Reverse-

Engineering of a Developmental Gene Regulatory Network. PLoS Computational Biol-

ogy 8, e1002589 (2012).

40. Jaeger, J. et al. Dynamic control of positional information in the early Drosophila em-

bryo. Nature 430, 368–371 (2004).

41. Jaeger, J. The gap gene network. Cellular and Molecular Life Sciences 68, 243–274 (2011).

42. Morata, G. How Drosophila appendages develop. Nature Reviews Molecular Cell Biology

2, 89–97 (2001).

43. Martín, F., Herrera, S. & Morata, G. Cell competition, growth and size control in the

Drosophila wing imaginal disc. Development 136, 3747–3756 (2009).

44. Lawrence, P. & Struhl, G. Morphogens, compartments, and pattern: lessons from drosophila?

Cell 85, 951 (1996).

45. Affolter, M. & Basler, K. The Decapentaplegic morphogen gradient: from pattern forma-

tion to growth regulation. Nature Reviews Genetics 8, 663–674 (2007).

46. García-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalisation of the

wing disk of Drosophila. Nature 245, 251–253 (1973).

179

Bibliography

47. Aldaz, S., Escudero, L. M. & Freeman, M. Live imaging of Drosophila imaginal disc

development. Proceedings of the National Academy of Sciences 107, 14217–14222 (2010).

48. Wolpert, L. et al. Principles of development (Oxford University Press New York, 2002).

49. Neufeld, T. P., de la Cruz, A. F. A., Johnston, L. A. & Edgar, B. A. Coordination of Growth

and Cell Division in the Drosophila Wing. Cell 93, 1183–1193 (1998).

50. Hamaratoglu, F., de Lachapelle, A., Pyrowolakis, G., Bergmann, S. & Affolter, M. Dpp Sig-

naling Activity Requires Pentagone to Scale with Tissue Size in the Growing Drosophila

Wing Imaginal Disc. PLoS biology 9, e1001182 (2011).

51. Schaffter, T., Marbach, D. & Floreano, D. GeneNetWeaver: in silico benchmark gen-

eration and performance profiling of network inference methods. Bioinformatics 27,

2263–2270 (2011).

52. Balaji, S., Babu, M., Iyer, L., Luscombe, N. & Aravind, L. Comprehensive analysis of

combinatorial regulation using the transcriptional regulatory network of yeast. Journal

of molecular biology 360, 213–227. ISSN: 0022-2836 (2006).

53. Ackers, G., Johnson, A. & Shea, M. Quantitative model for gene regulation by lambda

phage repressor. Proceedings of the National Academy of Sciences of the United States of

America 79, 1129 (1982).

54. Stolovitzky, G. et al. Statistical analysis of MPSS measurements: application to the study

of LPS-activated macrophage gene expression. Proceedings of the National Academy of

Sciences of the United States of America 102, 1402 (2005).

55. Marbach, D., Schaffter, T., Mattiussi, C. & Floreano, D. Generating realistic in silico

gene networks for performance assessment of reverse engineering methods. Journal of

Computational Biology 16, 229–239 (2009).

56. Rice, J., Tu, Y. & Stolovitzky, G. Reconstructing biological networks using conditional

correlation analysis. Bioinformatics 21, 765. ISSN: 1367-4803 (2005).

57. Margolin, A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory

networks in a mammalian cellular context. BMC bioinformatics 7, S7. ISSN: 1471-2105

(2006).

58. Faith, J. et al. Large-scale mapping and validation of Escherichia coli transcriptional

regulation from a compendium of expression profiles. PLoS Biol 5, e8 (2007).

59. Marbach, D., Mattiussi, C. & Floreano, D. Replaying the evolutionary tape: Biomimetic

reverse engineering of gene networks. Annals of the New York Academy of Sciences 1158,

234–245. ISSN: 1749-6632 (2009).

60. Bonneau, R. et al. The Inferelator: an algorithm for learning parsimonious regulatory

networks from systems-biology data sets de novo. Genome biology 7, R36 (2006).

61. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolec-

ular interaction networks. Genome research 13, 2498–2504 (2003).

180

Bibliography

62. Marbach, D. et al. Revealing strengths and weaknesses of methods for gene network

inference. Proceedings of the National Academy of Sciences 107, 6286–6291 (2010).

63. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation.

Nature 405, 590–593. ISSN: 0028-0836 (2000).

64. Gardner, T. & Collins, J. Neutralizing noise in gene networks. Nature 405, 520–1 (2000).

65. Gillespie, D. The chemical Langevin equation. The Journal of Chemical Physics 113, 297

(2000).

66. Prill, R. et al. Towards a rigorous assessment of systems biology models: the DREAM3

challenges. PloS one 5, e9202 (2010).

67. Davis, J. & Goadrich, M. in Proceedings of the 23rd international conference on Machine

learning (2006), 233–240. ISBN: 1595933832.

68. Klamt, S., Flassig, R. & Sundmacher, K. TRANSWESD: inferring cellular networks with

transitive reduction. Bioinformatics 26, 2160. ISSN: 1367-4803 (2010).

69. Menéndez, P., Kourmpetis, Y., Braak, C. T., van Eeuwijk, F. & Isalan, M. Gene Regulatory

Networks from Multifactorial Perturbations Using Graphical Lasso: Application to the

DREAM4 Challenge. PloS one 5, e14147 (2010).

70. Pinna, A., Soranzo, N. & de la Fuente, A. From Knockouts to Networks: Establishing

Direct Cause-Effect Relationships through Graph Analysis. PloS one 5, 218–223. ISSN:

1932-6203 (2010).

71. Yip, K., Alexander, R., Yan, K. & Gerstein, M. Improved reconstruction of in silico gene

regulatory networks by integrating knockout and perturbation data. PloS one 5 (2010).

72. Fruchterman, T. M. & Reingold, E. M. Graph drawing by force-directed placement.

Software: Practice and experience 21, 1129–1164 (1991).

73. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Pro-

ceedings of the National Academy of Sciences of the United States of America 102, 13773–

13778 (2005).

74. Vijender, C., Preetam, G., Edward, P., Ping, G. & Chaoyang, Z. Time lagged information

theoretic approaches to the reverse engineering of gene regulatory networks. BMC

Bioinformatics 11. ISSN: 1471-2105 (2010).

75. Danon, L., Diaz-Guilera, A., Duch, J. & Arenas, A. Comparing community structure

identification. Journal of Statistical Mechanics: Theory and Experiment 2005, P09008

(2005).

76. Fortunato, S. Community detection in graphs. Physics Reports 486, 75–174 (2010).

77. Fortunato, S. & Barthelemy, M. Resolution limit in community detection. Proceedings of

the National Academy of Sciences 104, 36 (2007).

78. Newman, M. & Girvan, M. Finding and evaluating community structure in networks.

Physical review E 69, 026113 (2004).

181

Bibliography

79. Zachary, W. An information flow model for conflict and fission in small groups. Journal

of anthropological research, 452–473 (1977).

80. Goldberg, D. Genetic algorithms in search, optimization, and machine learning (Addison-

wesley, 1989).

81. Floreano, D. & Mattiussi, C. Bio-inspired artificial intelligence: theories, methods, and

technologies (The MIT Press, 2008).

82. Holland, J. H. Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975).

83. Goldberg, D. E. & Deb, K. A comparative analysis of selection schemes used in genetic

algorithms. Urbana 51, 61801–2996 (1991).

84. Miller, B. L. & Goldberg, D. E. Genetic algorithms, selection schemes, and the varying

effects of noise. Evolutionary Computation 4, 113–131 (1996).

85. Back, T., Fogel, D. B. & Michalewicz, Z. Handbook of evolutionary computation (IOP

Publishing Ltd., 1997).

86. Duch, J. & Arenas, A. Community detection in complex networks using extremal opti-

mization. Physical Review E 72, 027104 (2005).

87. Kernighan, B. & Lin, S. An efficient heuristic procedure for partitioning graphs. Bell

System Technical Journal 49, 291–307 (1970).

88. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communi-

ties in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008,

P10008 (2008).

89. Schuetz, P. & Caflisch, A. Efficient modularity optimization by multistep greedy algo-

rithm and vertex mover refinement. Physical Review E 77, 046112 (2008).

90. Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for testing community

detection algorithms. Physical Review E 78, 046110 (2008).

91. Aldecoa, R. & Marín, I. Surprise maximization reveals the community structure of

complex networks. Scientific reports 3 (2013).

92. Mitchell, M. An introduction to genetic algorithms (The MIT press, 1998).

93. Holland, J. H. Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence (MIT press, 1992).

94. Morrison, R. W. & De Jong, K. A. in Artificial Evolution (2002), 31–41.

95. Mattiussi, C., Waibel, M. & Floreano, D. Measures of diversity for populations and

distances between individuals with highly reorganizable genomes. Evolutionary Com-

putation 12, 495–515 (2004).

96. Doreian, P. On the connectivity of social networks†. Journal of Mathematical Sociology

3, 245–258 (1974).

182

Bibliography

97. Good, B., de Montjoye, Y. & Clauset, A. Performance of modularity maximization in

practical contexts. Physical Review E 81, 046106 (2010).

98. Strehl, A. & Ghosh, J. Cluster ensembles—a knowledge reuse framework for combining

multiple partitions. The Journal of Machine Learning Research 3, 583–617 (2003).

99. Fred, A. L. & Jain, A. K. Combining multiple clusterings using evidence accumulation.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 27, 835–850 (2005).

100. Gelbart, W. et al. The FlyBase database of the Drosophila genome projects and commu-

nity literature. Nucleic Acids Research 27 (1999).

101. Arenas, A., Fernandez, A. & Gomez, S. Analysis of the structure of complex networks at

different resolution levels. New Journal of Physics 10, 053039 (2008).

102. Lancichinetti, A. & Fortunato, S. Consensus clustering in complex networks. Scientific

reports 2 (2012).

103. Wallis, J., Miller, T., Lerner, C. & Kleerup, E. Three-dimensional display in nuclear

medicine. IEEE Transactions on Medical Imaging 8, 297–230 (1989).

104. Bovik, A. The Essential Guide to Image Processing (Academic Press, 2009).

105. Scharf, L. L. & Demeure, C. Statistical signal processing: detection, estimation, and time

series analysis (Addison-Wesley Publishing Company, 1991).

106. Prewitt, J. & Mendelsohn, M. The Analysis of Cell Images. Annals of the New York

Academy of Sciences 128, 1035–1053 (1966).

107. Zhang, T. & Suen, C. A Fast Parallel Algorithm for Thinning Digital Patterns. Communi-

cations of the ACM 27, 236–239 (1984).

108. Trier, Ø., Jain, A. & Taxt, T. Feature Extraction Methods for Character Rrecognition - A

Survey. Pattern Recognition 29, 641–662 (1996).

109. Abeysinghe, S. S., Baker, M., Chiu, W. & Ju, T. in Shape Modeling and Applications, 2008.

SMI 2008. IEEE International Conference on (2008), 63–71.

110. Dimitrov, P., Phillips, C. & Siddiqi, K. in Computer Vision and Pattern Recognition, 2000.

Proceedings. IEEE Conference on 1 (2000), 417–423.

111. Ogniewicz, R. & Kübler, O. Hierarchic Voronoi Skeletons. Pattern Recognition 28, 343–

359 (1995).

112. Ju, T., Baker, M. & Chiu, W. Computing a Family of Skeletons of Volumetric Models for

Shape Description. Computer-Aided Design 39, 352–360 (2007).

113. Ghosh, R. & Webb, W. Automated Detection and Tracking of Individual and Clustered

Cell Surface Low Density Lipoprotein Receptor Molecules. Biophysical Journal 66, 1301–

1318 (1994).

114. Harder, N. et al. Automated analysis of the mitotic phases of human cells in 3D fluores-

cence microscopy image sequences. Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2006, 840–848 (2006).

183

Bibliography

115. Wang, M. et al. Novel Cell Segmentation and Online SVM for Cell Cycle Phase Identifica-

tion in Automated Microscopy. Bioinformatics 24, 94–101 (2008).

116. Baron, R. Mechanisms of Human Facial Recognition. International Journal of Man-

Machine Studies 15, 137–178 (1981).

117. Brunelli, R. & Poggio, T. Template Matching: Matched Spatial Filters and Beyond. Pattern

Recognition 30, 751–768 (1997).

118. Chang, K., Bowyer, K. & Flynn, P. Multiple Nose Region Matching for 3D Face Recognition

Under Varying Facial Expression. IEEE Transactions on Pattern Analysis and Machine

Intelligence 28, 1695–1700 (2006).

119. Soille, P. Morphological Image Analysis: Principles and Applications (Springer-Verlag,

2003).

120. Grau, V., Mewes, A. a. A. M., Kikinis, R. & Warfield, S. Improved Watershed Transform for

Medical Image Segmentation Using Prior Information. IEEE Transactions on Medical

Imaging 23, 447–458 (2004).

121. McInerney, T. & Terzopoulos, D. Deformable Models in Medical Image Analysis: A

Survey. Medical Image Analysis 1, 91–108 (1996).

122. Jain, A., Zhong, Y. & Dubuisson-Jolly, M.-P. Deformable Template Models: A Review.

Signal Processing 71, 109–129 (1998).

123. Cootes, T., Edwards, G. & Taylor, C. Active Appearance Models. IEEE Transactions on

Pattern Analysis and Machine Intelligence 23, 681–685 (2001).

124. Zhu, L., Chen, Y. & Yuille, A. Learning a Hierarchical Deformable Template for Rapid

Deformable Object Parsing. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 32, 1029–1043 (2010).

125. Kass, M., Witkin, A. & Terzopoulos, D. Snakes: Active Contour Models. International

Journal of Computer Vision 1, 321–331 (1988).

126. Zimmer, C. & Olivo-Marin, J.-C. Coupled Parametric Active Contours. IEEE Transactions

on Pattern Analysis and Machine Intelligence 27, 1838–1842 (2005).

127. Thévenaz, P., Delgado-Gonzalo, R. & Unser, M. The Ovuscule. IEEE Transactions on

Pattern Analysis and Machine Intelligence 33, 382–393 (2011).

128. Staib, L. & Duncan, J. Boundary Finding with Parametrically Deformable Models. IEEE

Transactions on Pattern Analysis and Machine Intelligence 14, 1061–1075 (1992).

129. Brigger, P., Hoeg, J. & Unser, M. B-Spline Snakes: A Flexible Tool for Parametric Contour

Detection. IEEE Transactions on Image Processing 9, 1484–1496 (2000).

130. Delgado-Gonzalo, R., Thévenaz, P., Seelamantula, C. & Unser, M. Snakes with an Ellipse-

Reproducing Property. IEEE Transactions on Image Processing 21, 1258–1271 (2012).

131. Malladi, R., Sethian, J. & Vemuri, B. Shape Modeling with Front Propagation: A Level Set

Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 158–175

(1995).

184

Bibliography

132. Caselles, V., Kimmel, R. & Sapiro, G. Geodesic Active Contours. International Journal of

Computer Vision 22, 61–79 (1997).

133. Zhang, K., Zhang, L., Song, H. & Zhou, W. Active Contours with Selective Local or Global

Segmentation: A New Formulation and Level Set Method. Image and Vision Computing

28, 668–676 (2010).

134. Jacob, M., Blu, T. & Unser, M. Efficient energies and algorithms for parametric snakes.

Image Processing, IEEE Transactions on 13, 1231–1244 (2004).

135. Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical Recipes: The Art of

Scientific Computing Third edition, 818 p. (Cambridge University Press, Cambridge,

UK, 1986).

136. Delgado-Gonzalo, R., Thévenaz, P. & Unser, M. Exponential splines and minimal-

support bases for curve representation. Computer Aided Geometric Design 29, 109–

128 (2012).

137. Unser, M. Sampling—50 Years After Shannon. Proceedings of the IEEE 88, 569–587

(2000).

138. Jacob, M., Blu, T. & Unser, M. in Proceedings of the 2001 SPIE International Symposium

on Medical Imaging: Image Processing (MI’01) 4322 (San Diego, CA, USA, 2001), 340–

347.

139. Pavlidis, T. Algorithms for Graphics and Image Processing 416 (Computer Science Press,

1982).

140. Melkman, A. On-line Construction of the Convex Hull of a Simple Polyline. Information

Processing Letters 25, 11–12 (1987).

141. Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E. & Yergeau, F. Extensible markup

language (XML). World Wide Web Journal 2, 27–66 (1997).

142. Waters, J. & Swedlow, J. Interpreting fluorescence microscopy images and measure-

ments. Cell Online (2008).

143. Waters, J. Accuracy and precision in quantitative fluorescence microscopy. The Journal

of cell biology 185, 1135–1148 (2009).

144. Gerencser, A., Adam-Vizi, V., et al. Selective, high-resolution fluorescence imaging of

mitochondrial Ca2+ concentration. Cell Calcium 30, 311 (2001).

145. Lachapelle, A. D. & Bergmann, S. Precision and scaling in morphogen gradient read-out.

Molecular systems biology 6 (2010).

146. Schwank, G. et al. Formation of the long range Dpp morphogen gradient. PLoS biology

9, e1001111 (2011).

147. Aegerter-Wilmsen, T., Aegerter, C. & Bisseling, T. Model for the robust establishment of

precise proportions in the early Drosophila embryo. Journal of theoretical biology 234,

13–19 (2005).

185

Bibliography

148. Perkins, T., Jaeger, J., Reinitz, J. & Glass, L. Reverse engineering the gap gene network of

Drosophila melanogaster. PLOS computational biology 2, e51 (2006).

149. Neumann, C. J. & Cohen, S. M. Long-range action of Wingless organizes the dorsal-

ventral axis of the Drosophila wing. Development 124, 871–880 (1997).

150. Brower, D. L. & Jaffe, S. M. Requirement for integrins during Drosophila wing develop-

ment. Nature 342, 285–287 (1989).

151. Johnston, L. A. & Sanders, A. L. Wingless promotes cell survival but constrains growth

during Drosophila wing development. Nature cell biology 5, 827–833 (2003).

152. Meyer, F. Topographic distance and watershed lines. Signal processing 38, 113–125

(1994).

153. Kanda, T., Sullivan, K. & Wahl, G. Histone–GFP fusion protein enables sensitive analysis

of chromosome dynamics in living mammalian cells. Current Biology 8, 377–385 (1998).

154. Campos-Ortega, J. A. & Hartenstein, V. The embryonic development of Drosophila

melanogaster (Springer, 1997).

155. Czermin, B. et al. Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3

Methyltransferase Activity that Marks Chromosomal Polycomb Sites. Cell 111, 185–196

(2002).

156. Al-Kofahi, Y., Lassoued, W., Lee, W. & Roysam, B. Improved automatic detection and

segmentation of cell nuclei in histopathology images. Biomedical Engineering, IEEE

Transactions on 57, 841–852 (2010).

157. Wienert, S. et al. Detection and Segmentation of Cell Nuclei in Virtual Microscopy

Images: A Minimum-Model Approach. Scientific Reports 2 (2012).

158. Bamford, P. & Lovell, B. Unsupervised cell nucleus segmentation with active contours.

Signal Processing 71, 203–213 (1998).

159. Goldberg, D. E. & Holland, J. H. Genetic algorithms and machine learning. Machine

Learning 3, 95–99 (1988).

160. Back, T. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary

programming, genetic algorithms (Oxford University Press, USA, 1996).

161. Kennedy, J. & Eberhart, R. in Neural Networks, 1995. Proceedings., IEEE International

Conference on 4 (1995), 1942–1948.

162. Shi, Y. & Eberhart, R. in Evolutionary Computation Proceedings, 1998. IEEE World

Congress on Computational Intelligence., The 1998 IEEE International Conference on

(1998), 69–73.

163. Hansen, N., Müller, S. D. & Koumoutsakos, P. Reducing the time complexity of the deran-

domized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary

Computation 11, 1–18 (2003).

164. Hansen, N. The CMA evolution strategy: a comparing review. Towards a new evolution-

ary computation, 75–102 (2006).

186

Bibliography

165. Kennedy, J. in Encyclopedia of Machine Learning 760–766 (Springer, 2010).

166. Suzuki, T., Fujikura, K., Higashiyama, T. & Takata, K. DNA staining for fluorescence and

laser confocal microscopy. Journal of Histochemistry & Cytochemistry 45, 49–53 (1997).

167. Bansal, M., Belcastro, V., Ambesi-Impiombato, A. & Di Bernardo, D. How to infer gene

networks from expression profiles. Molecular systems biology 3 (2007).

168. Äijö, T. & Lähdesmäki, H. Learning gene regulatory networks from gene expression

measurements using non-parametric molecular kinetics. Bioinformatics 25, 2937. ISSN:

1367-4803 (2009).

169. Yu, J., Smith, V., Wang, P., Hartemink, A. & Jarvis, E. Advances to Bayesian network infer-

ence for generating causal networks from observational biological data. Bioinformatics.

ISSN: 1367-4803 (2004).

170. Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. Multilocus sequence

typing for characterization of methicillin-resistant and methicillin-susceptible clones

ofStaphylococcus aureus. Journal of clinical microbiology 38, 1008–1015 (2000).

171. Goentoro, L. A. et al. Quantifying the Gurken Morphogen Gradient in< i> Drosophila</i>

Oogenesis. Developmental cell 11, 263–272 (2006).

172. Kanodia, J. S. et al. Dynamics of the Dorsal morphogen gradient. Proceedings of the

National Academy of Sciences 106, 21707–21712 (2009).

173. Dewar, M. A., Kadirkamanathan, V., Opper, M. & Sanguinetti, G. Parameter estimation

and inference for stochastic reaction-diffusion systems: application to morphogenesis

in D. melanogaster. BMC Systems Biology 4, 21 (2010).

174. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP

morphogen gradient. Cell 85, 357–368 (1996).

175. Gritli-Linde, A., Lewis, P., McMahon, A. P. & Linde, A. The whereabouts of a morphogen:

direct evidence for short-and graded long-range activity of hedgehog signaling peptides.

Developmental biology 236, 364–386 (2001).

176. Lander, A. D., Nie, Q. & Wan, F. Y. Do morphogen gradients arise by diffusion? Develop-

mental cell 2, 785–796 (2002).

177. Bollenbach, T, Kruse, K, Pantazis, P, González-Gaitán, M & Jülicher, F. Robust formation

of morphogen gradients. Physical review letters 94, 018103 (2005).

178. Han, C., Yan, D., Belenkaya, T. Y. & Lin, X. Drosophila glypicans Dally and Dally-like

shape the extracellular Wingless morphogen gradient in the wing disc. Development

132, 667–679 (2005).

179. Hufnagel, L., Kreuger, J., Cohen, S. M. & Shraiman, B. I. On the role of glypicans in the

process of morphogen gradient formation. Developmental biology 300, 512–522 (2006).

180. He, F., Balling, R. & Zeng, A.-P. Reverse engineering and verification of gene networks:

principles, assumptions, and limitations of present methods and future perspectives.

Journal of biotechnology 144, 190–203 (2009).

187

Bibliography

181. Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E. & Guthke, R. Gene regulatory

network inference: data integration in dynamic models—a review. Biosystems 96, 86–

103 (2009).

182. Bansal, M., Belcastro, V., Ambesi-Impiombato, A. & Di Bernardo, D. How to infer gene

networks from expression profiles. Molecular systems biology 3 (2007).

183. Leicht, E. A. & Newman, M. E. Community structure in directed networks. Physical

review letters 100, 118703 (2008).

184. Polikar, R. Ensemble based systems in decision making. Circuits and Systems Magazine,

IEEE 6, 21–45 (2006).

185. Rokach, L. Ensemble-based classifiers. Artificial Intelligence Review 33, 1–39 (2010).

186. Delgado-Gonzalo, R., Chenouard, N. & Unser, M. Spline-Based Deforming Ellipsoids

for Interactive 3D Bioimage Segmentation (2013).

187. Keller, P. J. Imaging Morphogenesis: Technological Advances and Biological Insights.

Science 340 (2013).

188. Huynh-Thu, V., Irrthum, A., Wehenkel, L., Geurts, P. & Isalan, M. Inferring Regulatory

Networks from Expression Data Using Tree-Based Methods. PLoS ONE 5, e12776 (2010).

189. Mises, R. & Pollaczek-Geiringer, H. Praktische Verfahren der Gleichungsauflösung.

ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Math-

ematik und Mechanik 9, 58–77 (1929).

190. Golub, G. H. & Van der Vorst, H. A. Eigenvalue computation in the 20th century. Journal

of Computational and Applied Mathematics 123, 35–65 (2000).

191. Franceschet, M. PageRank: Standing on the shoulders of giants. Communications of the

ACM 54, 92–101 (2011).

192. Ipsen, I. & Wills, R. in 7th IMACS international symposium on iterative methods in

scientific computing, Fields Institute, Toronto, Canada 5 (2005).

193. Gubernatis, J. & Booth, T. Multiple extremal eigenpairs by the power method. Journal of

Computational Physics 227, 8508–8522 (2008).

194. Golub, G. H. & Van Loan, C. F. Matrix computations (JHUP, 2012).

195. LaMacchia, B. & Odlyzko, A. Solving large sparse linear systems over finite fields. Ad-

vances in Cryptology-CRYPT0’90, 109–133 (1991).

196. Golub, G. & Loan, C. V. Matrix computations chap. 9 (Johns Hopkins Univ Pr, 1996).

197. Kuczyński, J. & Woźniakowski, H. Estimating the largest eigenvalue by the power and

Lanczos algorithms with a random start. SIAM journal on matrix analysis and applica-

tions 13, 1094 (1992).

198. Arora, S., Hazan, E. & Kale, S. in Foundations of Computer Science, 2005. FOCS 2005.

46th Annual IEEE Symposium on (2005), 339–348.

188

Bibliography

199. Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog Creates a Gradient of DPP

Activity in Drosophila Wing Imaginal Discs. Molecular cell 5, 59–71 (2000).

200. Persson, U. et al. The L45 loop in type I receptors for TGF-β family members is a critical

determinant in specifying Smad isoform activation. FEBS letters 434, 83–87 (1998).

201. Kühnlein, R. et al. spalt encodes an evolutionarily conserved zinc finger protein of novel

structure which provides homeotic gene function in the head and tail region of the

Drosophila embryo. The EMBO journal 13, 168 (1994).

202. Shen, J., Dahmann, C. & Pflugfelder, G. Spatial discontinuity of Optomotor-blind expres-

sion in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes

cell sorting. BMC developmental biology 10, 23 (2010).

203. Ninov, N. et al. Dpp signaling directs cell motility and invasiveness during epithelial

morphogenesis. Current biology 20, 513–520 (2010).

204. Kloeden, P., Platen, E. & Schurz, H. Numerical solution of SDE through computer experi-

ments (Springer, 1994).

205. Lamba, H. Stepsize control for the Milstein scheme using first-exit-times.

206. Abe, K., Shaw, W. & Giles, M. Pricing Exotic Options using Local, Implied and Stochastic

Volatility obtained from Market Data (2004).

207. Panzar, L. & Cipu, E. Using of stochastic Ito and Stratonovich integrals derived security

pricing (2005).

208. Van Kampen, N. Stochastic processes in physics and chemistry (North-Holland, 2007).

209. Higham, D. An algorithmic introduction to numerical simulation of stochastic differen-

tial equations. SIAM review, 525–546 (2001).

210. Picchini, U. SDE Toolbox: Simulation and Estimation of Stochastic Differential Equations

with MATLAB ().

211. Gilsing, H. & Shardlow, T. SDELab: A package for solving stochastic differential equations

in MATLAB. Journal of Computational and Applied Mathematics 205, 1002–1018 (2007).

212. Burrage, P. Runge-Kutta methods for stochastic differential equations (1999).

213. Honeycutt, R. Stochastic runge-kutta algorithms. I. White noise. Physical Review A 45,

600–603 (1992).

189

Thomas Schaffter

Personal Data
Age 28

Nationality Swiss
Email thomas.schaffter@gmail.com

Website tschaffter.ch

Professional Experience
2008–Present Ecole Polytechnique Fédérale de Lausanne (full-time, 4 years 11 months)

Role: Researcher developing methods and computational tools for reverse engineering gene regula-
tory networks. This project is funded by the swiss initiative in systems biology (SystemsX.ch).
Achievements: Developed a novel and comprehensive method for in silico benchmark generation
and performance profiling of network inference methods, and implemented it as an easy-to-use and
open-source software called GeneNetWeaver. In colaboration with MIT, GNW was used to organize
three editions of the DREAM competition, a community-wide network inference challenge.
Website: tschaffter.ch/projects/gnw
Role: Researcher developing algorithms for detecting clusters or modules in networks.
Achievements: Developed and profiled the performance of several modularity detection algorithms,
and released them as an extensible and open-source Java toolkit. The algorithms developed have
been applied to identify functional modules in the fruit fly (Drosophila) protein interaction map.
Website: tschaffter.ch/projects/jmod
Role: Researcher developing methods and computational tools for automatic detection and quan-
tification of biological systems.
Achievements: Initiated and supervised a collaboration between EPFL and the University of Basel.
Designed and implemented an open-source image processing toolbox for unsupervised detection and
segmentation of the Drosophila wing and embryo, quantification of gene and protein expression,
and cell nuclei detection in 3D confocal images. The data collected using this method was used to
provide new insights into the development of the Drosophila wing.
Website: tschaffter.ch/projects/wingj
Role: Researcher developing a system for tracking heterogeneous groups of Drosophila.
Achievements: Developed and implemented a real-time C++/Qt application for helping biologists
to track Drosophila and learn more about their behavior. The system requires two FireWire cameras
and LEDs to track Drosophila and automatically infer their genetic identity.
Website: tschaffter.ch/projects/squid
Role: Teaching assistant in the master level course Bio-Inspired Artificial Intelligence.
Achievements: Prepared and introduced several labs on evolutionary algorithms, artificial neural
networks, and evolutionary robotics. Supervised 10 semester and master student projects, each of
them involving a part of research and the implementation of a software solution. Some projects
were conducted in collaboration with other EPFL labs and universities. 191

Role: System administrator at the Laboratory of Intelligent Systems.
Achievements: Provided support for 40-50 collaborators and students, responsible for purchasing
and maintaining IT equipment.

Education
2008–2013 PhD in Biotechnology and Bioengineering

Laboratory of Intelligent Systems (LIS)
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Specialization: Computational biology, artificial intelligence, optimization algorithms, graph and
network theory, image analysis, information visualization and human-computer interaction.

2003–2008 BSc and MSc in Microengineering
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Specialization: Robotics and autonomous systems.

Awards & Features
Bioinformatics article "GeneNetWeaver: In silico benchmark generation and performance
profiling of network inference methods" has been ranked by Faculty of 1000 among
top 2% articles on biology and medicine.
Received the Best-poster award at the 2008 exhibition of microengineer’s master projects
(>90 graduates).

Skills
Soft Skills Creative, organized, analytical, proactive.

IT Software development (Java, C, C++/Qt, Python), web development (HTML, PHP,
MySQL, jQuery, WebKit), IDEs (Eclipse, Qt Creator, KDevelop), drawing and illustrating
(Adobe Photoshop, Illustrator), 3D modeling and animation (Blender, Pro/ENGINEER),
video editing (Adobe Premiere, After Effects, VirtualDub), data analysis and simulation
(Matlab, R, Matematica), collaborative tools (SVN, Git, Redmine), NX, office suites
(Microsoft Office, LibreOffice), LaTeX, Bibtex, broad experience in Linux, Windows, and
Mac OS, hardware skills.

Languages
French Native proficiency
English Full professional proficiency (C1)
German Elementary proficiency (A2)

Publications
Journal papers
T. Schaffter, R. Degado-Gonzalo, F. Hamaratoglu, M. Unser, M. Affolter, D. Floreano.
Towards unsupervised and systematic quantification of biological systems, In preparation.
P. Ramdya, T. Schaffter, R. Benton, D. Floreano. Fluorescence Behavioral Imaging (FBI)
tracks identity in heterogeneous groups of Drosophila, PLOS ONE 7(11), e48381, 2012.
T. Schaffter, D. Marbach, D. Floreano. GeneNetWeaver:In silico benchmark generation
and performance profiling of network inference methods, Bioinformatics 27(16), 2263-2270,
2011. Featured by Faculty of 1000.
D. Marbach, R.J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, G. Stolovitzky. Revealing
strengths and weaknesses of methods for gene network inference, Proceedings of the
National Academy of Sciences USA 107(14), 6286-6291, 2010.192

D. Marbach, T. Schaffter, C. Mattiussi, D. Floreano. Generating realistic in silico
gene networks for performance assessment of reverse engineering methods, Journal of
Computational Biology 16(2), 229-239, 2009.
Theses
T. Schaffter. Reverse engineering of the Drosophila wing gene regulatory network, PhD
Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2013 (expected).
T. Schaffter. Scalable Reverse Engineering of Nonlinear Gene Networks, Master Thesis,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2008. Received the
Best-poster award at the exhibition of microengineer’s master projects.

Other Activities
Sports Badminton and snowshoeing.
Other Japanese culture, 3D modeling and animation, robotics.

2005–2007 President of the Association Lausannoise des Universitaires Jurassiens (ALUJ).

193

Publications

Journal papers

T. Schaffter, R. Degado-Gonzalo, F. Hamaratoglu, M. Unser, M. Affolter, D. Floreano. Towards

unsupervised and systematic segmentation of biological systems, In preparation.

P. Ramdya, T. Schaffter, R. Benton, D. Floreano. Fluorescence Behavioral Imaging (FBI) tracks

identity in heterogeneous groups of Drosophila, PLOS ONE 7(11), e48381, 2012.

T. Schaffter, D. Marbach, D. Floreano. GeneNetWeaver:in silico benchmark generation and

performance profiling of network inference methods, Bioinformatics 27(16), 2263-2270, 2011.

Featured by Faculty of 1000.

D. Marbach, R.J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, G. Stolovitzky. Revealing strengths

and weaknesses of methods for gene network inference, Proceedings of the National Academy

of Sciences USA 107(14), 6286-6291, 2010.

D. Marbach, T. Schaffter, C. Mattiussi, D. Floreano. Generating realistic in silico gene net-

works for performance assessment of reverse engineering methods, Journal of Computational

Biology 16(2), 229-239, 2009.

Theses

T. Schaffter. Scalable Reverse Engineering of Nonlinear Gene Networks, Master Thesis, Ecole

Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2008. Received the Best-poster

award at the exhibition of microengineer’s master projects.

195

	Cover page

	Acknowledgements
	Abstract (English/Français)
	Introduction
	Motivation and challenges
	State of the art
	Benchmark generation for network inference methods
	Community structure detection in complex networks
	Quantification of multicellular organisms for gene network inference

	Introduction to the development of the Drosophila wing
	Original contribution
	Organization of the thesis

	In silico benchmark generation and performance profiling of network inferencemethods
	Introduction
	Generation of in silico gene networks
	Module extraction from global interaction networks
	Modeling the dynamics of transcriptional gene regulatory networks
	Synthetic expression datasets

	Performance profiling of network inference methods
	Evaluation of network inference methods
	Effect of network structural properties on inference method performance
	Effect of network size on inference method performance
	Design of in vivo gene expression experiments
	DREAM Network Inference Challenges

	Conclusions

	Extensible and modular community detection in networks
	Introduction
	Module detection methods
	Newman's spectral algorithm
	Genetic algorithm-based method
	Brute force method

	Refinement methods
	Moving vertex method (MVM)
	Global moving vertex method (gMVM)

	Evaluation of community structure detection methods
	Generating Lancichinetti-Fortunato-Radicchi graphs
	Evaluating the performance of module inference
	Evaluation of the genetic algorithm parameters
	Evaluation of the refinement techniques MVM and gMVM
	Evaluation on LFR benchmark graphs
	Resolution limit of modularity optimization methods
	Community voting method for overcoming the resolution limit
	Module detection in Drosophila protein interaction map (DPiM)

	Conclusions

	Towards unsupervised and systematic segmentation of biological systems
	Introduction
	Unsupervised segmentation of the Drosophila wing pouch
	Extensible and modular approach
	Preliminary detection
	Detecting the A/P and D/V compartment boundary intersection
	Detecting the A/P and D/V compartment boundaries (Part I)
	Detecting the wing pouch compartments
	Detecting the outer boundary of the wing pouch
	Detecting the A/P and D/V compartment boundaries (Part II)
	Wing pouch structure construction
	Inferring the orientation of the wing pouch structure model

	Quantification of expression in the Drosophila wing pouch
	Background subtraction
	Mean intensity projection
	Definition of the structure coordinate system
	Generating expression profiles
	Generating circular expression maps

	Integration of structure and expression models
	Integrating structure models
	Integrating expression profiles
	Integrating circular expression maps
	Generating structure and expression aggregated models

	Unsupervised cell nuclei detection and segmentation
	Drosophila wing pouch model repository
	Inference of the Drosophila wing developmental network
	Quantitive description of the developing typeDrosophila wing
	Conclusions

	Discussion and outlook
	Main accomplishments
	Future directions
	Generating in silico developmental benchmarks
	Community structure detection in complex networks
	Unsupervised detection and segmentation of biological organisms

	Conclusion

	Supplementary materials
	Supplementary notes for Chapter 2
	GeneNetWeaver
	Topology
	Dynamical model
	Synthetic expression datasets
	Gold standards and network prediction format
	Evaluation of network inference methods

	Network inference methods
	Z-score
	Pinnal et al.
	Yip et al.
	CLR
	ARACNE2
	GENIE3

	Supplementary notes for Chapter 3
	Eigendecomposition
	Power method
	Lanczos algorithm
	Evaluation of the power method and Lanczos algorithm
	GA parameter values

	Pseudocode of MVM
	Pseudocode of gMVM
	Computation time of network module detection methods
	Improved version of Newman's algorithm and GA-based method
	Brute force method

	Detection of the Snap/SNARE in DPiM

	Supplementary notes for Chapter 4
	Generation of quantitative datasets
	Sample collection
	Immunostainings and image acquisition
	Antibodies and dad-GFP
	Preparation for image processing

	Additional information about the spline-based snake
	Unsupervised segmentation of the Drosophila embryo

	Numerical integration of SDEs
	Introduction
	Itô and Stratonovich SDEs
	Standard Wiener process
	Discretized Brownian motion

	Numerical integration
	Iterative methods
	Explicit order 0.5 strong Taylor scheme
	Explicit order 1.0 strong Taylor scheme
	Explicit order 1.5 strong Taylor scheme

	Convergence
	libSDE: Java library for simulating SDEs
	Overview
	Example

	Bibliography

	Curriculum Vitæ
	Publications

