High-Throughput Maps on Message-Passing Manycore
Architectures:
Partitioning versus Replication

Omid Shahmirzadi, Thomas Ropars, André Schiper
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
firstname.lastname @epfl.ch

Abstract

The advent of manycore architectures raises new scalability challenges for concurrent applications.
Implementing scalable data structures is one of them. Several manycore architectures provide hardware
message passing as a means to efficiently exchange data between cores. In this paper, we study the
implementation of high-throughput concurrent maps in message-passing manycores. Partitioning and
replication are the two approaches to achieve high throughput in a message-passing system. Our paper
presents and compares different strongly-consistent map algorithms based on partitioning and replica-
tion. To assess the performance of these algorithms independently of architecture-specific features, we
propose a communication model of message-passing manycores to express the throughput of each algo-
rithm. The model is validated through experiments on a 36-core TILE-Gx8036 processor. Evaluations
show that replication outperforms partitioning only in a narrow domain.

Keywords: High-throughput Map, Message-Passing Manycore Architecture, Replication, Partitioning

1 Introduction

Manycore architectures, featuring tens if not hundreds of cores, are becoming available. Taking advantage
of the high degree of parallelism provided by such architectures is challenging and raises questions about
the programming model to be used [26, 19]. Most existing architectures are still based on cache-coherent
shared memory but some provide message passing, through a highly efficient network-on-chip (NoC), as a
basic means to communicate between cores [17, 5, 2]. Designing a scalable concurrent algorithm for cache-
coherent architectures is a difficult task because it requires understanding the subtleties of the underlying
cache coherence protocol [10]. On the other hand, message passing looks appealing because it provides
the programmer with explicit control of the communication between cores. However, compared to the
vast literature on concurrent programming in shared-memory systems [16], programming message-passing
processors is not yet a mature research topic.

Implementing scalable data structures is one of the basic problems in concurrent programming. To
increase the throughput of data structures in shared memory architectures, several well-known techniques
can be used including fine-grained locking, optimistic synchronization and lazy synchronization [16]. In the
case of message-passing systems, partitioning and replication are the two main approaches to improve the
throughput of concurrent data structures [13]. Using partitioning, a data structure is partitioned among a set
of servers that answer clients requests. Using replication, each client has a local copy of data structure in
its private memory. Both have been considered in recent work on message-passing manycores [7, 29, 9],
but performance comparisons are lacking. In this paper we present a performance comparison of these two
approaches for the implementation of high-throughput concurrent objects in message-passing manycores,
considering the case of a linearizable map. Note that existing studies made in distributed message-passing
systems are only of little help because the high performance of NoCs provides a completely different ratio
between computation and communication costs compared to large scale distributed systems.

Maps are used in many systems ranging from operating systems [7, 29] to key-value stores [9]. Their
performance is often crucial to the systems using them. A map is an interesting case study because it is a
good candidate to apply both partitioning and replication techniques. Since operations on different keys are
independent, maps are easily partitionable [9]. Because a large majority of operations are usually lookup
operations [6], replication can help handling a large number of local lookup requests concurrently.

Since message-passing manycores are a new technology, only few algorithms targeting this kind of
architectures are available. Thus, to compare partitioning and replication in this context, we devise simple
map algorithms that have been chosen to be representative of the design space. To compare our algorithms,
we present a model of the communication in message-passing manycores, and express the throughput of our
algorithms in this model. Using a performance model allows us to compare the algorithms independently
of platform-specific features and to cover a large scope of manycore architectures. We use a 36-core Tilera
TILE-Gx8036 processor to validate our model. Evaluations on the TILE-Gx shows an extremely poor
performance for replication compare to partitioning. However some limitations of this platform, i.e. costly
interrupt handling and lack of broadcast service, can be blamed for the poor performance of replication.
Our model allows us to come up with a hypothetical platform based on the TILE-Gx, which does not suffer
form its limitations. Our evaluations on this ideal platform show that even in the best setting in favor of
replication, i.e. having highly efficient interrupt handling and hardware-based broadcast service, replication
can outperform partitioning only when update operations are rare and replicas are located in the cache
system of the cores.

This paper is organized as follows. Section 3 specifies the underlying assumptions and goal of the study.
Section 4 presents the algorithms, modeling methodology and its validation on the TILE-Gx processor.
Section 5 studies performance of the algorithms on different architectures. Related work and conclusion are
presented in Sections 6 and 7.

S -

0 1 2

w

Processor
6 7 8

R /2|] 13]]] 14
Cache /

L1-D (32K) | | L1-1(32K) 18 20
12 (256 K) /

M

©

[
v

N
[
N

w N~
w ~
4(
~ N = =
— S [
N = [

S—

Figure 1: TILE-Gx8036 architecture

2 The Tilera TILE-Gx8036

The TILE-Gx8036 is a general-purpose manycore developed by TILERA Corporation [5]. We use this
platform as the baseline architecture for our studies. In this section we describe the high level TILE-Gx8036
architecture and inter-core communication.

2.1 Architecture

The cores and the NoC of the TILE-Gx8036 are depicted in Figure 1. There are 36 full-fledged 1.2 Ghz,
64-bit processor cores with local cache, connected through a 2D mesh NoC. Each tile is connected to a
router. The NoC uses high-throughput, low-latency links as well as deterministic X-Y routing. Cores and
mesh operate at the same frequency.

Memory components are divided into (i) L1 data and instruction cache (32 KB each), (ii) 256 KB of
L2 cache, and (iii) off-chip global memory. There is full hardware cache coherence among the L1 and
L2 caches of different cores. Each core has access to the off-chip global memory through one of the two
memory controllers, denoted by M C' in Figure 1. Regions of the global memory can be declared private or
shared (a page is a unit of granularity). We see this platform as a pure message-passing manycore, where
each thread binds to a specific core and has its own private memory space.

2.2 Inter-core communication

Each core has a dedicated hardware message buffer, capable of storing up to 118 64-bit words. The message
buffer of each core is 4-way multiplexed, which means that every per-core buffer can host up to four inde-
pendent hardware FIFO queues, containing incoming messages. The User Dynamic Network (UDN) allows
applications to exchange messages directly through the mesh interconnect, without OS intervention, using
special instructions. When a thread wants to exchange messages, it must be pinned to a core and registered
to use the UDN (but it can unregister and freely migrate afterwards). When a message is sent from core
A to core B, it is stored in the specified hardware queue of core B. The send operation is asynchronous
and does not block, except in the following case. Since messages are never dropped, if a hardware queue is
full, subsequent incoming messages back up into the network and may cause the sender to block. It is the

programmer’s responsibility to avoid deadlocks that can occur in such situations. When a core executes the
receive instruction on one of the four local queues, the first message from the queue is returned. If there are
no messages, the core blocks. The user can send and receive messages consisting of one or multiple words.
Moreover a core upon receipt of a new message in either of its incoming buffers, has the option of being
notified by an inter core interrupt followed by executing an interrupt handler routine.

3 Assumptions and Goal

The study assumes a fault-free manycore architecture where a large set of single-threaded cores are con-
nected through a network on chip. We assume that each core executes a single thread and that threads do not
migrate between cores. Cores have their own private memory and can only communicate through message
passing. Communication channels are asynchronous and FIFO. Messages are composed of a set of words
and can have various size.

Three operations are available to send messages: send, broadcast and multicast. Operation send(m, i)
sends message m to thread i. Operation broadcast(m) sends m to all threads. Operation multicast(m, list)
sends m to all threads in list. Messages can be received using a synchronous receive function. Operation
receive(m) blocks until message m can be received. Alternatively, threads can be interrupted when a new
message is available.

This chapter studies the implementation of a concurrent map with strong consistency criteria, i.e. lin-
earizability and sequential consistency. A map is a set of items indexed by unique keys that provides lookup,
update and delete operations. Operation update(key, val) associates key with the value val. Operation
lookup(key) returns the last value associated with key (or null if no value is associated with key). We
assume that delete(key) is implemented using update(key, null).

4 Algorithms and Analytical Modeling

This section describes the algorithms studied in this chapter and presents their performance model. We
start by describing our methodology for performance modeling followed by describing and modeling the
linearizable and sequential consistent map algorithms. The main reason to use an analytical model is to be
able to compare replication and partitioning in a general case so that the final conclusions are not biased
towards features of an existing platforms, e.g. TILE-Gx. However, as we will see in Section 5, analytical
modeling also helps us to concretely understand the performance bottlenecks and to be able to assess the al-
gorithms under different architectures, configurations and load distributions. Moreover it can help manycore
programmers to decide about their implementation choice on different platforms.

4.1 Performance modeling

Manycore processors are usually provided with a highly efficient NoC. Therefore, we assume that the
throughput of the algorithms presented in this section is limited by the performance of the cores. This
assumption is validated by the experimental results presented in Section 5.2. Hence, to obtain the maximum
obtainable throughput of one algorithm executed on a given number of cores, we need to compute 77,, and
T'upd- the total number of CPU cycles! required to execute a lookup and an update operation respectively.
All algorithms make the difference between cores that execute as clients, i.e., cores executing the user
code and issuing operations on the concurrent map, and servers, i.e., cores that are earmarked to execute
map-related and/or protocol code. Depending on the number c of cores that execute the client code and the

! Obtaining a duration in seconds from a number of CPU cycles simply introduces a constant factor 1/C PU_Freq.

parameter description

c number of clients
s number of servers
Osend overhead of send(m)
Obeast overhead of broadcast(m)
Omeast overhead of multicast(m, list)
Orcu overhead of a synchronous receive
Oarcv overhead of an asynchronous receive
T+t (s_op,r_op) | round-trip time with s_op and r_op
Opre computation done before a map access
Olup access to the data structure for a lookup
Oupd access to the data structure for an update
Osel server selection overhead
P probability of a lookup operation

Table 1: Model parameters

number s of cores that execute as server, clients or servers can be the bottleneck for the system throughput.
Thus, for each operation op, we actually have to compute the number of CPU cycles it takes on the client
(T5,) and on the server (7};,). Considering a load where the probability of having a lookup operation is p,
and assuming that the load is evenly distributed among clients, the maximum throughput .7¢ achievable by
clients is:

C

e Tg, t(A-p) It

lup upd

yc

(C))

An equivalent formula applies to servers. Hence, the maximum throughput .7 of an algorithm is:

T =min(T°, T*) 2)

Table 1 lists the parameters that we use to describe the performance of our algorithms. To model the op-
erations on the map, we consider a generic map implementation defined by three parameters oy, 05, and
Oupd- The underlying data structure used to implement the map is not the focus of the study. Parameter 0.,
corresponds to the computation that a client has to do before accessing the map, e.g., executing a hash func-
tion if a hash table is used to implement the map. Parameters o;,,;, and 0, are the overheads corresponding
to accessing the underlying data structure during a lookup and an update operation respectively.

We associate an overhead (i.e., duration) in CPU cycles with each of the communication primitives
introduced in Section 3. Additionally, we introduce the parameter 7,4, representing round-trip time. More
precisely, T,.4+(send_op, rcv_op) is the round-trip time for messages sent with the send_op operation (i.e.,
send, broadcast or multicast) and received with the rcv_op operation (i.e., rcv or arcv)?. If the round
trip is initiated with broadcast or multicast, it finishes when the answer from all destinations have been
received.

Finally, in a configuration that uses multiple servers, a client needs to decide which server to contact
for a given operation. In all our algorithms, the server selection depends on the key the operation applies
to. Typically, it is based on a modulo operation that can have a non-negligible cost. Thus, o,; stands for
the server selection overhead. We assume that all other computational costs related to the execution of the
algorithms are negligible.

In the following, we describe the different algorithms studied in this chapter, considering linearizable
maps and sequential consistent maps respectively. For each algorithm, we provide a figure describing the

The answer is always sent using send and received using rcv.

communication patterns where all CPU overheads appear. We deduce the performance models directly from
these figures.

4.2 Linearizable map

Our goal is to propose linearizable map algorithms that are representative of the design space in a message-
passing manycore. Hence, as a basic solution based on partitioning, we consider the approach proposed
in [9]: the map is partitioned among a set of servers that clients access for every requests. A typical im-
provement of such a client/server approach is to introduce cache on client side [27]. We study a second
algorithm based on this solution. Regarding replication, the solutions used in distributed systems cannot
be directly applied to message-passing manycore: In a distributed system, a server is typically replicated to
reduce the latency observed by clients by placing the replicas closer to the clients. In a manycore chip, the
NoC provides very low latency between cores. Creating a few replicas of a server hosting a map is not an
interesting approach. The only advantage it provides is to allow processing multiple lookup operations in
parallel. However, this cannot make replication attractive compared to partitioning since partitioning pro-
vides the same advantage without the complexity of ensuring replica consistency during update. Thus, the
only way for replication to provide benefits in the context of manycores, is to have a replica of the map on
each core, so that clients can lookup the keys locally. We study three replication algorithms based on this
idea. The first is based on the traditional approach consisting in using atomic broadcast to implement update
operations. With such a solution, lookups require remote synchronization to ensure linearizability. Hence,
one can argue that the goal of replication is not achieved. That is why we propose a second algorithm where
lookups do not require any remote synchronization. In this case, update operations have to be made more
complex to ensure linearizability. However both of the former replication solutions, need sequencer servers
to provide total order. To come up with a server-less protocol, we bring a variant of two phase commit
protocol in which the lookups are purely local without any remote synchronization. However getting rid of
the servers, comes up with a price: the issuer of the update needs to abort the operation and issue it again in
case of another conflicting update.

We describe now the five algorithms and model their throughput. We present first the simple partitioning
algorithm, then the three replication ones, and finally the one based on partitioning with caching. They are
presented is this order to gradually introduce the techniques we use to model their throughput.

4.2.1 Partitioned map (PART_SIMPLE)

In this approach called PART_SIMPLE, each server handles a subset of the keys. In this algorithm each
client contacts a corresponding server to perform lookup and update on a key. Both operations block until
the client receives a response from the server, which trivially ensures linearizability. The pseudocode of this
algorithm is given in Figure 33. The communication pattern is described in Figure 2. It is the same for a
lookup and an update operation. The only difference is that applying the update can be removed from the
critical path of the client (see Figure 2(a)). Computing Tosp (where op is upd or lup), lep and Tspd based
on Figure 2 is trivial:

Tosp = Orco + Oop + Osend (3)
Tfup = Opre + Osel + T’rtt(send, TC'U) + Otup (4)
Tipd = Opre + 0set + Tret(send, rev) (5)

3For simplicity, we present the algorithms only for a single given key.

Update(key,val)
Lookup(key)

(a) Update (b) Lookup

Figure 2: Simple partitioning

Algorithm 1 PART_SIMPLE (code for client c)

Global Variables: 6: return(val)
1: S {total number of server cores}
7: update (key, val)
2: lookup (key) 8: myServer < key%S
3 myServer < key%S 9: send(UPD, key, val) to myServer
4 send(LU P, key) to myServer 10: wait until ACK is received from myServer
5 wait until val is received from myServer
Algorithm 2 PART_SIMPLE (code for server s)
Local Variables: 4: map.update(key, val)
1: map {map partition } 5: send(ACK) to ¢
6: else
2: upon rev (command, key, val) from client ¢ 7: val = map.lookup(key)
3: if command = UPD then 8: send(val) 1o ¢

Figure 3: Linearizable partitioned map without caching

4.2.2 Replicated map — Lookups with remote synchronization (REP_REMOTE)

In replication approaches, lookups should be synchronized with updates to avoid violating linearizability as
illustrated by Figure 4, where lookups return locally with no synchronization. Moreover all updates should
be applied in total order in all replicas. The first two replication solutions provide total order among updates
using atomic broadcast while the third solution ensures it using a variant of two phase commit protocol.
In the first replication algorithm, called REP_REMOTE, lookups are totally ordered with respect to update
operations.

Before detailing the algorithm, we need to discuss the atomic broadcast (abcast) implementation. To
choose among the five classes of atomic broadcast algorithms presented in [12], we use three criteria. First,
the number of messages exchanged during abcast should be minimized to limit the CPU cycles used for
communication. This implies that solutions relying on multiple calls to broadcast should be avoided. Sec-
ond, the solution should allow to increase the throughput by instantiating multiple instances of the abcast
algorithm. Indeed, to obtain a linearizable map, only the operations on the same key have to be ordered.
Thus, if abcast is the bottleneck, being able to use multiple instances of abcast, each associated with a subset
of the keys, can increase the system throughput. Finally, the performance of the algorithm should not be
impacted if some processes do not have messages to broadcast. Indeed, if multiple instances of abcast are
used, we cannot assume that all processes will always have requests to abcast for each subset of keys. Only

update(key,newval)
c (| O F—
to

A"l._:'lbokup_(_key) - newval

Y

t1 L
lookup(key) > oldval

t2

Figure 4: Non-linearizable execution with a replicated map

fixed-sequencer-based algorithms meet all the criteria.

In a fixed sequencer atomic broadcast algorithm, one process (called server in the following) is in charge
of assigning sequence numbers to messages. After contacting the sequencer, the thread calling abcast can
broadcast the message and the sequence number. The communication pattern of REP_REMOTE for an update
issued by client c is shown in Figure 5(a). For each lookup, the client has to contact the server in charge of
the key to know the sequence number sn of the last update ordered by this server (see Figure 5(b)). Then,
the lookup terminates once the client has delivered the update with sequence number sn. Pseudecode of this
algorithm is given in Figure 6 and its correctness trivially follows. Note that in this algorithms delegating
the task of broadcast to the server could lead to violation of linearizability: if an update on a key finishes on
the issuing client before the corresponding value on the server is updated, a later lookup could still return
the old value.

In this algorithm, interrupts are used to notify a client that it has a new update message to deliver.
An alternative to avoid interrupts would be to buffer updates until the client tries to execute an operation
on the map. At this time the client would deliver all pending updates before executing its own operation.
However, such a solution would potentially require large hardware buffers to store pending updates. Relying
on interrupts avoids this issue. Moreover receiving a batch of messages instead of one, upon raising an
interrupt, could be translated into lower cost for asynchronous receives.

Computing the throughput of clients in this algorithm is complex because clients can be interrupted to
deliver updates. But handling the interrupts is not always on the critical path of the clients. Indeed, one can
notice that clients are idle during an operation while waiting for an answer from the server. An interrupt
handled during this period would not be on the critical path. We define ¢ as the maximum amount of
time spent in interrupts handling that can be removed from the critical path of clients execution and update
formula 57 in the following way:

C

T = . (6)
p- T, + (1 —p)- TSy —0°
We deduce the cost of an update and a lookup operation from Figure 5.
ij = Orcv + Osend (7)
ﬂcup = Opre + Osel + Olup + TTtt (send, T'CU) (8)
T::pd = Opre + Osel + Oupd + Tt (Send7 TCU) + Obcast + (C - 1) . (Oarcv + Oupd))

0° depends on T}, the idle time on a client during one operation, 1,4, the average number of idle
periods per operation, 7;,,;, the time required to handle an interrupt (green-border rectangles in Figure 5(a)),

Update(key, val) \ ‘
Lookup(key)
@ arcv m
(a) Update (b) Lookup

Figure 5: Replication with remote synchronization for lookups

and n;y, the average number of asynchronous requests per operation:

Tiate = Trie(send, rcv) — Osend — Orew (10
Nigle = 1 (11
Tint = Oarco + Oupd (12)
Nnine = (c—1) - (1 —p) (13)

We compute € in three steps. We first compute the number of asynchronous requests that can be fully
handled during one idle period (k), then the number of interrupts that can be fully overlapped with idle time
on one client (2 f,), and finally, the number of interrupts that can be partially overlapped with idle time on
one client (Npartial)-

Tidie
k=] T | (14)
Npunr = min(k - Nidie, Nint) (15)
Npartial = MIN(Nint — N full, Nidle) (16)
O° =1y Tint + npartial - (Tidgie — k + Tint) (17)

4.2.3 Replicated map — Lookups without remote synchronization (REP_LOCAL)

In REP_LOCAL, lookups do not require any remote synchronization (Figure 7(b)) but updates are more
complex than in REP_REMOTE (Figure 7(a)). To provide linearizability, this algorithm ensures that during
an update, no lookup can return the new value if a lookup by another client can return an older value. To
do so, the update operation includes two phases of communication as shown in Figure 7(a). When client ¢
runs an update, it first atomically broadcasts the update message to all clients. Then it waits until all clients
acknowledge the reception of this message. Finally, it broadcasts a second message to validate the update.
If a client tries to lookup the key after it has received the update message, the lookup cannot return until
the validation has been received. This way a lookup that returns the new value always finishes after all
clients have received the update message, which is enough to ensure linearizability *. The pseudocode of
this algorithm is given in Figure 8. Theorem 4.1 proves the correctness of this algorithm.

Theorem 4.1 Algorithm 8 ensures linearizability with respect to the map operations.

*Update messages can be also received synchronously. In this case the time between sending the ACK back to the issuer and
receiving the update from the issuer cannot be used to perform some other useful task, while on the positive side it avoids the cost
of asynchronous receive. Our evaluations show that this trade-off is not in favor of the algorithm throughput, especially at scale.
The main reason is that the length of waiting periods increases linearly with the increase in the number of replicas.

Algorithm 3 REP_REMOTE (code for replica c)

Global Variables: 9: return(val)
1: S {total number of servers}
Local Variables: 10: update (key, val)
2: map {map replica } 11: myServer < key%S
3: maxsn {keeps the sequence number of the latest update for the key 12: send(INC, key) to myServer
} 13: wait until sn is received from myServer
14: beast(UPD, key,val, sn)
4: lookup (key)
5: myServer < key%S 15: upon adel(U PD, key, val, sn) from some replica ¢’
6: send(SNREQ, key) to myServer 16: map.update(key, val) {asynchronous total order delivery}
7 wait until sn is received from myServer and maxsn > sn 17: maxsn < mazxsn + 1
8 val < map.lookup(key)

Algorithm 4 REP_REMOTE (code for server s)

Local Variables:
1: abCtr {counter to assign total order sequence numbers }

send(abCtr) to ¢
else

abC'tr < abCtr + 1

send(abCtr) to ¢

AR A

2: upon rev (command, key) from replica ¢
3: if command = SNREQ then

Figure 6: Linearizable replicated map with local lookups with remote synchronization

Proof. If we prove that a map with only a single key is linearizable, due to the composability of linearizabil-
ity, the whole map, which is composed of a set of independent key entries, is linearizable too. Considering
only one key, the total order of updates is trivially ensured. Moreover if two updates on a key are exe-
cuted with no timing overlap, in the global history of updates the second update is placed after the first
one, since the first one is assigned with a smaller sequence number. Considering lookups, we show that the
two following scenarios are not possible: (1) having two non-overlapping lookups, where the former one
returns the new value and the latter one returns the old value, as it is shown in Figure 9(a); and (2) having
a non-overlapping update and lookup, where the update happens before the lookup and lookup returns the
old value, as it is shown in Figure 9(b). Apart from these two cases, all other scenarios, with respect to the
relative position of two operations, are safe with respect to linearizability, i.e. a linearizable history can be
made.

Case (1): suppose this scenario happens according to Figure 9(a). In this case, we assume replica c;
updates the new value. Assume ¢; and t5 are the beginning and the end of the lookup operation on c3 and 3
and t4 are the beginning and the end of the lookup operation on c3 and ¢; > t4. Replica c3 should receive
the ACK ALL for this update at some point before ¢4, called A (execution of line 18). However replica c;
should have sent this update to the replica co at some point after ¢, called B (execution of line 13). Note
that B is not necessarily before ¢5. This means that B — A since replica ¢y should have sent the ACK
message to the replica ¢; (execution of line 23), before replica c¢; could send the AC K ALL message to
replica c3 (execution of line 16). Thereforety - B, B — A, A — t4, and so t; — t4. This means that
t1 < t4, a contradiction.

Case (2): Suppose this scenario happens according to Figure 9(b). Assume ¢; and ¢» are the beginning
and the end of the lookup operation on cy and ¢3 and ¢4 are the beginning and the end of the update operation
on c; and ¢; > t4. It means that replica ¢, receives the update from replica c; at some point after ¢, called
A (execution of line 13). Moreover it means that replica c; receives the ACK for this update from replica cy

idle

o [bcos R v | rov [ocont] >
\ / 6 ol ———

Lookup(key)

Lookup cannot return

(a) Update (b) Lookup
Figure 7: Replication with no remote synchronization for lookups
at some point before t4, called B (execution of line 15). Therefore we havet; - A, A — B, B — t4, and
so t; — t4. This means t1 < t4, a contradiction. O O

Since this algorithm introduces idle time on clients and uses interrupts, computing the throughput of
clients is based on Formula 6. But it can be noticed that update operations introduce two idle periods with
different durations as well as two different costs for handling interrupts:

Tidie 1 = Trit(send, rcv) — Osend — Orcw (18)
Tidie 2 = max (Tnt(bcast, arcv) — Opeast — (¢ — 1) * Orcv — Oupd, 0) (19)
Nidle 1 = Nidle 2 = 1 — P (20)
Tint 1 = Oarcy + Osend 2D
Tint_2 = Oarco + Oupd (22)
Nint_1 = Nint 2 = (c— 1) - (1 = p) (23)

Here int_1 and int_2 correspond to the delivery of the first and second broadcast message respectively.
Note that T4 2 needs to consider the maximum between the actual computation and 0 to account for the
fact that if 0,4 is large, there might not be any idle time.

Computing the exact value of ¢ in this case is a complex problem. Instead, we approximate this value
using Formulas 14-17 with weighted averages for 7;4;. and T;,:. For instance, here are the values we use
for nigre and Tjge:

Nidle = Nidle_1 + Nidle_2 (24)
Tidte_1 - Nidie_1 + Tidie_2 - Nidie_2
Tidgie = = = = = (25)
Nidle

Finally, we deduce the cost of lookups and updates from Figure 7:

Tipd = Orcv + Osend (20
Tipd = Opre + 0set + Tree(send, rev) + maz (T7'tt(bca3t7 arcv), Ovcast + Oupd + (¢ — 1) - 0"6’”) T Obeast

+ (¢ = 1)+ (2 0arcv + 0send + Oupa) @7
Tfup = Opre + Otup 9

4.2.4 Replicated map — Based on two phase commit (REP_2PC)

Previous replicated solutions rely on some dedicated servers to assign the sequence numbers to the messages,
in order to ensure total order delivery of updates. However one might save these dedicated servers, by

10

Algorithm 5 REP_LOCAL (code for replica c)

Global Variables: 12: send(SNREQ, key) to myServer
1: C {total number of replicas} 13: wait until sn is received from myServer
2: S {total number of sequencer servers} 14: beast(UPD, key,val, sn)
Local Variables: 15: wait until rcv(ACK, key) from all
3: map {map replica } 16: beast(ACK ALL, key)
4: mazsn {keeps sequence number of the latest update for the key}
5: flag[C] {set of C local flags} 17: upon arcv(ACK ALL, key) from some replica ¢’
18: flag[c] + nil
6: lookup (key)
7: wait until %i | flag[i] = key 19: upon adel(U PD, key, val, sn) from some replica ¢’
8: wal < map.lookup(key) 20: map.update(key, val) {asynchronous total order delivery}
9: return(val) 21: mazsn < mazsn + 1
22: flaglc'] < key
10: update (key, val) 23: send(ACK, key) to

11: myServer < key%S

Algorithm 6 REP_LOCAL (code for server s)

Local Variables: 2: upon rev (SN REQ), key) from some replica ¢

1: abCtr {counter to assign total order sequence numbers } 3: abC'tr < abCtr + 1
4: send(abCtr)toc

Figure 8: Linearizable replicated map with local lookups with no remote synchronization

applying an atomic commit protocol. In this way the solution does not rely on any sequencer, but upon
detecting another update on the same key the current update should be aborted. Therefore in REP_2PC,
lookups do not require any remote synchronization (Figure 10(b)), but updates are more complex compared
to REP_LOCAL (Figure 10(a)).

Two phase commit provides total order of updates since as far as an update on a key is executing, other
conflicting updates on that key will abort. To be more precise, upon issuing an update, a V RE() message is
broadcasted to all the replicas and the issuer is blocked until it receives a vote from all. A Y ES vote from
replica c means that another update on that key is executing on replica c. In this case, the issuer broadcasts an
ABORT message to all replicas to abort the current update and returns unsuccessfully. Otherwise it sends
a commit message to all other replicas, meaning that it is safe for them to apply the update on that key. Each
replica after applying the update sends an AC' K back. Upon receiving the AC' K from all, the issuing replica
terminates the update successfully. However lookups still need to use a similar synchronization technique
which is used in REP_LOCAL to ensure linearizability: as far as flag is not equal to —1, meaning that an
update is pending on a key, the lookup is not allowed to return the value of that key. The pseudocode of
this algorithm is given in Figure 11. Correctness of this algorithm can be proved similarly to the proof of
Theorem 4.1.

The parameters needed to obtain the maximum throughput of this algorithm are computed using Fig-
ure 10. Note that in this algorithm there is no notion of server, and so server selection cost. The calculation

11

update(key,newval)

cl -
update(key,newval)
lookup(key) = oldval cl —O0— >
c2 — O > t3 B t4
t1 B 12 lookup(key) = oldval

lookup(key) = newval c2 — -

c3 — » t1 A t2
t3 A t4
(a) Case 1 (b) Case 2

Figure 9: Scenarios used to prove the Theorem 4.1

RN ol
idle 1 . idle 2 Lttt -

@t [o Lo [oenlid @
\ \ A pre | lup—>
\ / Upda1e(key,val)\ A
@ arcv |sendf[—— arcv |sendffpd —m—m—— oo
____________________ Lookup(key)

Lookup cannot return
o

Lookup cannot return

(a) Update with no conflicts (b) Lookup

Figure 10: Replication using two phase commit

methods are similar to those of REP_LOCAL:

Tidie 1 = max (Trtt(bcast, arcv) — opeast — (¢ — 1) + Oreo, 0)

Tidie 2 = max (Trtt(bcast, arcv) — Opeast — (¢ — 1) * Orcv — Oupd, 0)

Nidle 1 = Nidle 2 = 1 —p

Tint 1 = Oarcv + Osend

Tint_2 = Oarco + Osend + Oupd

Nint_1 = Nint_2 = (¢ — 1) - (1 — p)

wpd = Opre + Trit(beast, arcv) + maa:(TTtt(bcast, arcv), Opeast + Oupd + (¢ — 1) - orw)
+(c—1)- (2 0arev + 2 0send + 2 - Orcv + Oupd)

c
,I'lup = Opre + Olup

4.2.5 Partitioned map - With local caches (PART_CACHING)

(29)
(30)
€2y}
(32)
(33)
(34)

(35)
(36)

The PART_CACHING algorithm extends PART_SIMPLE to introduce caching on client side. If a lookup hits
the cache, the pattern is the same as the one in Figure 7(b). Otherwise, the communication pattern is shown
in Figure 12(b). It includes a first local lookup that fails and an update of the local cache once the value has

been retrieved from the server.

When a key is updated, local copies of the associated value need to be invalidated. As shown in Fig-
ure 12(a), the server invalidates local copies using multicast. Once the server has received an acknowledg-
ment from all clients involved, the operation can terminate. This algorithm could also be viewed as a hybrid
solution between partitioning and replication, since the local caches are replicated on different clients and

12

Algorithm 7 REP_2PC (code for replica c)

Global Variables: 15: else
1: C {total number of clients} 16: becast(ABORT, key)
Local Variables: 17: return(1) {conflict}

2: map {map replica }
3: flag {local flags to synchronize lookups on key to ensure lineariz- 18: upon arev(command, key, val) from some replica ¢’

ability } 19: if command = VREQ then

20: if flag = —1 then

4: lookup (key) 21: send(Y ES) to ¢

5: wait until flag = —1 22: flag < ¢

6: wal < map.lookup(key) 23: else

7 return(val) 24: send(NO) to
25: ifcommand = COMMIT then

8: update (key, val) 26: map.update(key, val)

9: beast(VREQ, key) 27: flag + —1

10: wait until vote is received from all 28: send(ACK) to

11: ifall votes are YES then 29: if command = ABORT then

12: beast(COMMIT, key, val) 30: if flag = ¢’ then

13: wait until ACK is received from all 31: flag = —1

14: return(0) {no conflict}

Figure 11: Linearizable replicated map with local lookups using two phase commit

Lookup(key)

(a) Update with invalidation of local caches (b) Lookup with cache miss

Figure 12: Partitioning with local caches

need to remain consistent among each other using invalidations. The pseudocode of this algorithm is given
in Figure 13. Theorem 4.2 proves the correctness of this algorithm.

Theorem 4.2 Algorithm 13 ensures linearizability with respect to the map operations.

Proof. Similarly to the proof of Theorem 4.1, we consider the two cases of Figures 14(a) and 14(b), and
show that they cannot happen:

Case (1): Suppose that the scenario of Figure 14(a) happens. Assume ¢; and ¢5 are the beginning and
the end of lookup operation on c; and t3 and ¢4 are the beginning and the end of lookup operation on ¢ and
t1 > t4. There are four different subcases considering these two lookup operations. (i) Both lookups are
remote: in this case the mentioned scenario in Figure 14(a) is not possible clearly since the second lookup
returns a value which is not older than the newwval. (ii) The first lookup is remote and the second lookup
is local: this means that client c; receives the invalidation at some point after ¢;, called B (not necessarily
before t5). Moreover assume that update of the new value at server s finished at point C' (execution of line 6
of the server code). We will have C' — t4, , B — C and t; — B, which means t; — t4, a contradiction.

13

Algorithm 8 PART_CACHING (code for client c)

Global Variables: 10: wait until val is received from myServer
1: S {total number of servers} 11: map.update(key, val)
Local Variables: 12: return(val)

2: map {map local cache }
13: update (key, val)

3: lookup (key) 14: myServer + key%S

4 val < map.lookup(key) 15: send(UPD, key) to myServer

5 if key is in the local cache then 16: wait until (ACK) is received from myServer
6: return(val)

7 else 17: upon rev (INV, key, c') from some server s’

8 myServer < key%S 18: map.update(key, nil)

9 send(LU P, key) to myServer 19: send(ACKINV)to s

Algorithm 9 PART_CACHING (code for server s)

map.update(key, val)
send(ACK) to ¢

else
val = map.lookup(key)
add c to invalidation set of key
send(val) 1o ¢

Local Variables:
1: map {map partition}

2: upon rev (command, key, val) from client c
3: if command = UPD then
4
5

—oYv e

beast(INV, key, c) to invalidation set of key
wait until rev(ACKINYV) from all clients in invalidation
set of key

Figure 13: Linearizable partitioned map with caching

(iii) The first lookup is local and the second lookup is remote: this means that client co updates its local
value to the newwval at some point before ¢4 which is called A (execution of line 11 of the client code).
Assume server s sends the new value to client ¢o at point C' (execution of line 11 of the server code) and B
is the point when the client ¢; executes line 9 of the client code. This means that C' — A, where point A is
the time when the client ¢y receives the new value from the server. Therefore we have t; — B, B — C
,C — Aand A — t4 which implies t; — %4, a contradiction. (iv) Both lookups are local: assume C' and
C' are the times on the server when it sends to the clients ¢; and ¢z the old and the new values respectively
by execution of line 11 of the server code. Clearly C' should be before C’. Therefore we have C' — t4 and
ty — C, and so t;{ — t4 , a contradiction.

Case (2): Suppose this scenario happens according to Figure 14(b), where client c; issues an update with
new value and client ¢y issues a lookup which returns the old value. Assume ¢; and ¢, are the beginning and
the end of lookup operation on ¢y and ¢3 and ¢4 are the beginning and the end of the update operation on c;
and t; > t4. Assume that client co returns the lookup value at time A. In this case the invalidation will be
received after point A on client co. Therefore t; — A and A — 4, and so t; — t4, a contradiction. O

O

To model the performance of this algorithm, we need to introduce two additional parameters: py; is

the probability that a lookup hits the local cache; n;,, is the average number of copies that needs to be
invalidated when a key is updated. Note that the two parameters are correlated:

Niny = P (1—pu) 37
p

S O O

\

update(key,newval)

C (o4 Cl — -
lookup(key) = oldval t3 t4
cl O > lookup(key) = oldval
tnBw c2 — >
lookup(key) = newval t1 A t2

c2 — >

t3 A t4

(a) Case 1 (b) Case 2

Figure 14: Scenarios used to prove the Theorem 4.2

Indeed, the number of lookups on a key that requires an access to the server correspond to the number of
copies that will have to be invalidated during the next update of that key. Thus, n;,, is equal to the average
number of lookups between two updates (1%) multiplied by the probability for lookups to require accessing
the server.

The probability that a lookup hits the cache depends on the distribution of the accesses to one key among
the clients: If some clients access a key much more often than others, the number of cache hits will be high.
For a given probability distribution, we can use its probability mass function pm fie, (c) to compute py;. For a
cache hit to occur, a client should lookup a key two times and the key should not be updated in the meantime.
Thus, we compute the probability that a lookup on key by client k is preceded by a sequence of ¢ consecutive
lookups made by other clients and by one lookup made by k, that is p - pm frey (k) - (p - (1 — pm frey (k)))"
To obtain p;;, we need then to consider all possible values of 7 and to compute a weighted average among
all clients:

c—1

Pu= " pm ey (k) - S pmficy (k) - (p- (1= pm iy (k))’ (38)

k=0 =0

For a uniform distribution of the key accesses, i.e. all the clients have the same probability of accessing
a given key (pm fey (k) = %), the general formula simplifies as follows:

P p(C=1)i P
P”_;C(¢) Trroasy 39

Since the communication patterns for this algorithm includes two idle periods of different duration, we
apply Formula 24-25 to compute & with:

Tidie.1 = Otup + Triz(send, rcv) — 0send — Orew (40)
Nidle1 =D (1 —pu) 41
Tidte 2 = max (0, Tret(send, 7cv) — 0send — Orev + Trat(mceast, arcv) — oupa) 42)
Nidle 2 = 1 —p (43)
Tint = Oarcv + Osend + Oupd (44)
Nint = (1 = D) - Ninw (45)

Note that the formula for 7T} o assumes that the cost of T, (mcast, arcv) depends on np,. If 14, = 0,
then T}y (mcast, arcv) = 0.

The cost of a lookup depends whether there is a cache hit or a cache miss. The cost of a cache hit is the
same as a lookup with REP_LOCAL (Formula 56). Otherwise, the cost is given by Figure 12(b). Together

15

\4

@ [l
3 \ 7 @— pre | lup ——>

Update(key,val) \ A
@ - 0 e

Lookup(key)
@ arcv m
(a) Update (b) Lookup
Figure 15: Sequential consistent replication
we get:
nchp =pu - (Op'rc + Olup) + (1 - pll) . (Opre +2- Olup + Osel + Trtt(send7 7'CU) + Oupd) (46)
j_‘ﬁup = (1 - pll) . (Orcv + Opup + Osend) (47)

The cost of updates is computed based on Figure 12(a). To compute the cost on the server, we do not
consider the time it waits for acknowledgments of the invalidation messages as idle time. We assume that
the server would always have requests from other clients to handle during this time:

Typa = Opre + 0sel + maz (oupd + Osend + Orev, Trie(send, rev) + True(mceast, arcv))
+ Ninw - (Oarcv + Osend + Oupd) (48)
T’prd = (ninv + 1) * Orcy + Omecast + Osend + Oupd (49)

4.3 Sequential consistent map

To be able to assess the affect of consistency criteria on the relative performance of different algorithms, we
consider a weaker consistency criteria. Sequential consistency is weaker than linearizability since providing
a global history of operations as well as keeping the local order of operations are enough to provide sequen-
tial consistency. Weaker consistency criteria such as fifo consistency and eventual consistency could also
be useful, however they come up with a much broader design space for the algorithms, which is out of the
scope of this chapter. In this subsection, we try to exploit sequential consistency in favor of our linearizable
algorithms.

4.3.1 Replicated map

Considering replication, providing a total order of updates is enough to satisfy sequential consistency.
Lookups can return immediately with no synchronization, and they can be freely placed in the global his-
tory of update operations to create a global history. Therefore replication algorithms which used a fixed
sequencer to create a total order of updates, i.e. REP_REMOTE and REP_LOCAL, can be weakened to the
algorithm depicted in the Figure 16 (We call this algorithm REP_SC for short). In this algorithm, updates are
propagated using atomic broadcast (based on fixed sequencer) and lookups return local values immediately.
The communication pattern of this algorithm only includes one idle time, as is shown in Figure 15(a). The

16

Algorithm 10 REP_SC (code for replica c)

Global Variables: 7: update (key, val)

1: S {total number of sequencer servers} 8: myServer < key%S
Local Variables: 9: send(SNREQ, key) to myServer

2: map {map replica } 10: wait until sn is received from myServer

3: maxsn {keeps sequence number of the latest update for the key} 11: beast(UPD, key,val, sn)

4: lookup (key) 12: upon adel(U PD, key, val, sn) from some replica ¢’
5: val < map.lookup(key) 13: map.update(key, val) {asynchronous total order delivery}
6: return(val) 14: mazsn < mazsn + 1

Algorithm 11 REP_SC (code for server s)

: upon rcv (SN REQ, key) from some replica ¢
abCtr < abCtr +1
send(abCtr) to ¢

Local Variables:
1: abCtr {counter to assign total order sequence numbers }

bl N

Figure 16: Sequential consistent replicated map

parameters of this algorithm are calculated as follows:

Tidgre = maaz(Tmt(send, TCV) — Osend — Orcv — Oupd, 0) (50)
Nidle = 1 —p D
Tint = Oarco + Oupd (52)
Mo = (e —1)- (1 - p) o)
qupd = Orcv + Osend (54)
Typa = Opre + 0set + maz (Tree(send, 7cv), 0send + Orcv + Oupd) + Obeast + (¢ = 1)+ (Oares + Oupd) (55)
Tlcup = Opre + Olup (56)

The replication algorithm based on two phase commit cannot exploit the sequential consistency for
update operations: still a two phase commit protocol is needed to avoid conflicts and to provide a total
order among updates. However lookups can return immediately. Since in our analysis, we are interested in
the maximum throughput of each algorithm, the variant of replication based on two phase commit cannot
provide better throughput compared to the linearizable one. Therefore we ignore sequentially consistent
variant of this protocol.

4.3.2 Partitioned map

To exploit sequential consistency for partitioning solutions, one can think of two optimizations: (1) To
make the clients return immediately after sending the update message to the server (which applies to both
PART_SIMPLE and PART_CACHING), and (2) to make the server to return immediately after broadcasting
invalidation messages to the invalidation set of a key (which only applies to PART_CACHING). In case of
having only one server, both optimizations can be applied and resulting algorithms are sequentially consis-
tent. However since sequential consistency is not compositional, having more than one server can break
sequential consistency in both cases as they are shown in Figures 17(a) and 17(b). In the first case, consider

17

sl

s2 % s2 \]\\
a / /\ \ / \ =)]\ M/ \
update(key2,newval) update(key2,newval)
update(keyl,newval) update(key1,newval)
c2 [! [! . c2 f Y r) »

| -

sl

Y
Y

\
\

\

lookup(key1) = newval lookup(key1) = newval
lookup(key2) = oldval lookup(key2) = oldval

(a) Case 1 (b) Case 2

Figure 17: Impossibility of exploiting sequential consistency for partitioning algorithms

the PART_SIMPLE or PART_CACHING in a scenario mentioned in Figure 17(a). The issued update by client
c1 on keys arrives to the corresponding server after a long delay. After returning from the first update, it
issues another update on key; to server so. Afterwards client co issues a lookup on key;, which arrives at
so after updating the local value of key; to newVal, as well as a lookup on keyo which arrives at s; before
updating the local value of keyy to newVal. Since the first lookup on key; returns newwval and the second
lookup on keys returns oldval, it is not possible to create a global history of operations complying with
the returned values. In the second case, consider PART_CACHING in a scenario mentioned in Figure 17(b).
Assume server sg needs to invalidate client co upon receiving an update message on keyo from c;. Suppose
it takes a long time for this invalidation message to arrive at cp. Client c; issues another update after the
first one, which updates the value of key; on server s; to newwval. Later client ¢y issues a lookup on key;
to server s1, which returns newwal, while the second lookup on keys is done from the local cache, since ¢
has not yet received the invalidation message from server so. In this case also it is not possible to create a
valid global history of these operations.

To apply those optimizations to the partitioning algorithms with more than one server, one might come
up with solutions which need extra communication, the case we want to avoid. Therefore these two opti-
mizations can be applied only in the case of having one server. Even in the case of having only one server,
these optimizations in practice require some flow control mechanisms to avoid buffers to overflow when
updates and invalidations are sent repeatedly to the servers and the clients. Implementing a flow control
mechanism to avoid buffer overflow can decrease the anticipated performance. We conclude that there is
no way to exploit sequential consistency for partitioning solutions to obtain a better maximum throughput
compared to their linearizable counterparts.

5 Evaluation

In this section, we first model the communication performance of a Tilera TILE-Gx processor. Then we
validate the model of our map algorithms on this platform. Finally, using this model, we conduct a detailed
study of the performance of the partitioning and replication algorithms in a message-passing manycore.
Throughout this section, we consider a map implemented using a hash table. This is representative of most
map implementations [9, 18].

5.1 Modeling TILE-Gx8036

We run experiments on a Tilera TILE-Gx8036 processor. We use it as a representative of current message-
passing manycore architectures [5]. Experiments are run with version 2.6.40.38-MDE-4.1.0.148119 of

18

po Nlo NIy p1

Figure 18: Point-to-point communication on the TILE-Gx for a 2-word message m (/N I: network interface)

Tilera’s custom Linux kernel. Applications are compiled using GCC 4.4.6 with O3 flag. To implement
our algorithms, we use the User Dynamic Network (UDN). In our experiments, we dedicate one queue to
asynchronous messages: An interrupt in generated each time a new message is available in this queue. Note
that the TILE-Gx8036 processor does not provide support for collective operations. Hence, we implement
broadcast and multicast as a set of send operations.

Figure 18 describes how we model a point-to-point communication on the TILE-Gx processor. The
figure illustrates the case of a 2-word message transmission using send and recv. This model is solely
based on our evaluations of the communication performance and is only valid for small-sized messages. We
do not claim that Figure 18 describes the way communication are actually implemented in the processor.

The overhead o4 of a message of n words includes a fix cost of 8 cycles associated with issuing a
header packet, plus a variable cost of 1 cycles per word. The overhead o, is equal to 2 cycles per word.
The header packet is not received at the application level. The transmission delay L between the sender and
the receiver includes some fix overhead at the network engines on both the sender and the receiver, plus the
latency [associated with network traversal. The fix overhead is 10 cycles in total. The latency [depends
on the number of routers on the path from the source to the destination: 1 cycle per router. However, on
a 36-core mesh the distance between processes has little impact on the performance. Thus, to simplify the
study we assume that [is constant and is equal to the average distance between cores, i.e., | = 6. Finally,
note that there is no gap between two consecutive messages sent by the same core.

The first column of Table 2 details the value of the model parameters for the TILE-Gx processor. Our
measurements show that the cost of invoking an interrupt handler and restoring the previous context account
for 138 cycles. As previously mentioned, we implement broadcast and multicast operations as a sequence
of send operations. When the round-trip time is initiated with a collective operation, its duration corresponds
to the time required to send all messages plus the time to receive the answer to the last message sent. Finally,
we implement the server selection operation using the modulo operation. Its cost o4 varies depending
whether the number of server is 2% (in this case modulo is implemented with a bit-wise AN D) or not.

5.2 Model validation

To validate our model, we run our algorithms on the TILE-Gx processor and compare the achieved through-
put to the one predicted by the model. The experiment considers a hash table with keys of 36 bytes and
values of 8 bytes. The DJB hash function, which generates 4 bytes long hash-keys, is used: oy, = 156
cycles. The processes manipulate 100 keys, and so, we assume that the hash table fits into the L1 cache of
the cores. Also, in all experiments we assume a collision free scenario. Thus, assuming that an access to the
L1 cache is negligible, we have 0;,;, = 0ypq = 0.

Threads are pinned to cores in ascending order: thread ¢; is pinned to core i. Note that the size of the
messages depends on the algorithms specification. For instance, in PART_SIMPLE, update requests sent to a

19

Platform TILE-Gx [Intermediate [Ideal

Osend 8+ ‘m‘ - -
Orcv 2 - |m| - -
Oarcv 138 + 0rco 4+ orcw 4+ orcow
Obcast C* Osend - Osend
Omcast |l’53t| * Osend - Osend

Tret(send, rev) 2 (0send + Orev + L) - -
Tr¢t(send, arcv) 2 - (0send + Oarco + L) - -
Obcast + Oarcot

Tt (beast, arcv) Oserg o+ Oven + 2+ L - -

Trst (mcast ach) Omcast + Oarcv+ _ _
" ’ Osend + Orco +2- L
Ogel 17 if s = 2%, 90 otherwise - -

L 16 - -

Table 2: Parameters value in cycles (A "-" means that the value is the same as on TILE-Gx)

200 T 3 T 200 T. T 5 I T T T
Part-simple (mode) Part-simp (mod) —+—
Part-simple (exp) + Part-simp (exp) ---+---
Rep-rem (mod)
~ = 150 | Rep-rem (exp) i
8 150 8 150 Rep-loc (mod) —=—
z k) Rep-loc (exp) ---%---
g 53 Rep-2pc (mod)
=3 2 Rep-2pc (exp) |
= 100 = 100 [Rep-sc (mod)
o o
< <
[o)) [o))
> =}
o o
F 50 SN P = o e B
O 1 1 1 I O
1 10 20 30 3t 4 8 12 16 20 24 28 32 3¢
Number of servers Number of cores
(a) Part-simple on 36 cores (b) Algorithms performance

Figure 19: Model validation on Tilera TILE-Gx processor (90% of lookup operations)

server include 4 words: the ¢d of the sender, the operation ¢d, the hash-key, and the value. The answer is a
one-word message containing simply the acknowledgment. The messages size is taken into account for the
modeling.

The results presented in Figure 19 assume a load of 90% of lookups (p = 0.9). Each point is the
average throughput of 6 runs, where in each run every core issues 10000 operations repeatedly on the
map. Client threads randomly choose the next operation to execute with a uniform distribution. Keys are
distributed among the servers uniformly. Similarly, clients randomly select the key for the next operation
with a uniform distribution, i.e., pm fi., (k) = 1/c. Figure 19(a) shows the variation of the throughput with
PART_SIMPLE when the total number of threads is 36 and when the number of server threads varies from 1
to 35. It compares the performance obtained through experiments (dots) and predicted by the model (line).
It first shows that the model manages to precisely estimate the performance of the algorithm. The hiccups
that can be observed are due to the cost of the modulo function used for server selection, and correspond
to cases where the number of servers is 2°. Both the experiments and the model show that the optimal
configuration in this case is with 2 servers.

Figure 19(b) presents the maximum throughput of the different algorithms when varying the total num-

20

ber of threads. To obtain this graph, for each case we run the same test as described by Figure 19(a), and we
take the best configuration. This figure shows that we manage to correctly model the performance trends of
the algorithms executing on the TILE-Gx processor. Also, it shows that the throughput obtained with the
model is always higher than the experimental one. This is expected since the model ignores some computa-
tional costs (e.g., operations on private variables) related to the implementation of the algorithms. Addition-
ally, the model considers the maximum overlapping ¢ between idle periods and interrupts handling, which
is most probably less during experiments. Hence, the model provides an upper bound on the performance
of the algorithms, which is at the same time not far from the actual performance. PART_CACHING is the
algorithm for which the difference between the model and the experiments is the highest. But even in this
case, the difference is at most 12%. Finally, note that in this experiment PART_SIMPLE always outperforms
the other solutions. This might be due to the high cost of interrupt handling as well as non-efficient broadcast
service which penalizes the other algorithms. Hence these results could not be generalized.

5.3 Analysis of the map algorithms

Analytical modeling helps us to do the comparative study of different algorithms under different settings
and loads, e.g. where the target platform has different architectural features or the load distributions are not
uniform. Moreover it helps us to concretely understand the performance bottlenecks of different algorithms.
Using our model, we analyze the performance of partitioning and replication algorithms under different set-
tings. To assess the performance on current and future platforms, we consider two features, not provided by
the TILE-Gx processor, that can be blamed for the poor performance of applying the replication paradigm.

The first feature is non-efficient broadcast service on Tile-Gx. Due to the lack of a hardware-based
broadcast service on this platform, broadcasting to n participants consumes cpu time of n sends and n
receives. Note that even the most efficient software implementation of broadcast on top of send and receive
primitives, leads to the consumption of the mentioned amount of cpu time °. Some recent architectures
implement the broadcast service in hardware, e.g. Kalray MPPA [2], Adapteva Epiphany [1] and Picochip
DSP [4]. To model this feature on these platforms, we assume that the overhead of broadcast and multicast
is the same as the overhead of a send, which would be the ideal case. Second, even if interrupt handling
on the TILE-Gx is rather efficient, its overhead remains high compared to other cpu costs. Solutions have
been proposed to save and restore an execution context very efficiently using different architectural and
compilation techniques [23, 30, 14, 25]: More specifically in [23], a solution with a constant 4 cycles cost
is presented. Hence the second feature we consider is efficient interrupt handling with a cost of 4 cycles.

In order to assess the affect of the mentioned features on the comparative performance of different
algorithms, we incrementally define two platforms which do not suffer from them. First we define an
intermediate platform that has the same characteristics as the TILE-Gx processor but provides efficient
asynchronous receives (see Table 2, intermediate platform). Second we define an ideal platform that has the
same characteristics as the intermediate platform but also provides hardware-based broadcast service (see
Table 2, ideal platform).

Considering a hash table implementation of a map, we compare the algorithms on the mentioned three
platforms for different ratio of lookup operations. We assume a collision free scenario in order to not to deal
with other orthogonal issues. First under the same consistency criteria, i.e. linearizability, we compare the
performance of different algorithms on the three platforms for a given use case, i.e., we fix the cost of the
hash function and the cost of accessing the hash table. Second, we study how the cost of the hash function
and of the hash table accesses impact the performance. Third, we focus on the PART_CACHING algorithm
and analyze how the probability distribution of client access to the keys affects its performance. Fourth,
we study how weakening the consistency criteria to sequential consistency could be in favor of replication.

SWhen broadcast is implemented using asynchronous communication, the throughput of the system is independent from the
broadcast algorithm [22].

21

1200 F'art-éimble' T 1 200 r—T—T—T1 T 717 200 771717 71
8 1000 |-Rep-remote 4 8 1000 | 8 1000
7 Rep-local -------- 7 7
S 800 - Rep-2pc T S 800 S 800
=3 Part-caching =3 =3
< 600 [. 5 600 [= 600
o o o
S 400 . S 400 S 400
3 3 3
£ 200 B £ 200 ., £ 200
~ = b =
e S e e S T o J S T Y T o L S T T
16 32 48 64 80 96112128 16 32 48 64 80 96112128 16 32 48 64 80 96 112128
Number of cores Number of cores Number of cores
(a) TILE-GX, 90% of lookups (b) Intermediate, 90% of lookups (c) Ideal, 90% of lookups
1200 T T T T T T T 1600 T T T T T T __l.--’ 2500 T T T T T T T
- 2 1400 -] -~
1000 L -
2 %ﬁy 1200 A %ﬁ: 2000 i
S 800 - 53 &
g S 1000 - S 1500 - 7
= 600 | = 800 =
=) =} =}
= 3 2 1000 |-
g w0l S i
o Rty o S 500 |
s 200 [= & o
£ 207, £ 200 £
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
16 32 48 64 80 96112128 16 32 48 64 80 96 112128 16 32 48 64 80 96 112128
Number of cores Number of cores Number of cores
(d) TILE-GX, 99% of lookups (e) Intrmediate, 99% of lookups (f) Ideal, 99% of lookups

Figure 20: Performance on the three platforms (opre = 12, 0op = 11)

Fifth, we assess the effects of collocating clients and servers on the same core on the performance of the
algorithms. Finally we calculate how non-uniform load distribution on the servers can impair the maximum
obtainable throughput.

5.3.1 Comparison of the three platforms

Figure 20 shows the performance of different linearizable algorithms as a function of the total number of
cores when the percentage of lookups is 90% and 99%, representative loads of many map use-cases [16, 6].
The assumptions made in this evaluation are: i) keys are integers and a simple shift-add hash function is
used, i.e., 0pre = 12; ii) the hash table is small enough to fit into the L2 cache of one core, i.e., we assume
that accesses to the hash table cost one L2 access (0., = 11); iii) clients randomly select the key for the
next operation with a uniform distribution, i.e., pm fie, (k) = 1/c. Note that the uniform distribution can
be considered as a worst case for PART_CACHING since it implies that the probability that one core issues
many lookups on the same key is low. Later we see that a non-uniform key access distribution can improve
the performance of PART_CACHING. The two first assumptions are representative of the use of maps in an
operating system [18].

Three conclusions that can be drawn from Figure 20. First, if the ratio of lookups is not very high, then
partitioning approaches outperforms replication at scale on all platforms (see Figures 20(a) to 20(c)). On
the ideal platform, REP_LOCAL provides the best performance for 128 cores with 99% of lookups, but the
minimum ratio of lookups for REP_LOCAL to be the most efficient in this case is actually 98%. However
its throughput reaches a plateau if the total number of cores increases indefinitely. Second, on the TILE-Gx
processor, partitioning outperforms replication even if the ratio of lookups is very high (see Figures 20(a)

SWe prefer assuming L2 rather than L1, due to its bigger size.

22

800 P'&\rt-é! mdl e T T T T 500 T T T T T T T
§ 700 _Rep-remote . 1 § 400 | _
g 600 - Rep-local -------- LT o T
o | Rep-2pc <}
= %90 Iart-caching S 300
£ 300 . 2200
2 00]l 7z
g g 100
= 100 E =

0 ~ 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1
16 32 48 64 80 96 112128 16 32 48 64 80 96 112128
Number of cores Number of cores
(a) opre = 156, 0pp = 11 (b) opre = 156, 0op = 88

Figure 21: Impact of the computational costs (ideal platform, 99% of lookups)

and 20(d)). Replication can outperform partitioning on TILE-Gx only if the lookups are less than 0.1% of the
total number of operations. Third, the affect of having broadcast in hardware in comparative performance
of different algorithms is much less than providing efficient asynchronous receives. Additional experiments
(not presented here) show that these three results remain valid for other values of 0, and o0,.

We explain now the shape of the curves with the partitioning algorithms. One can see plateau in the
throughput of PART_SIMPLE. This is due to the variable cost of the modulo function used to select a
server. At the beginning of a plateau, the optimal configuration requires 2% servers. Then servers become
the system bottleneck, and so, the number of servers should be increased. However, adding one server
dramatically increases the cost of the modulo function and makes clients again the bottleneck. Hence, the
maximum throughput remains constant despite the increase of the number of cores because the number of
servers remains 2” as long as there are not enough clients to afford having a more costly modulo function.
The same phenomenon exists with PART_CACHING, but in this case it is even worse because adding more
clients increase the cost of updates on the server (more invalidation messages are needed on average), leading
to a performance decrease.

5.3.2 Impact of the computational costs

One might wonder if the results displayed in Figure 20 depend on the assumptions made on the map. Fig-
ure 21 shows the performance of the linearizable algorithms for other values of oy, and o,,. To better assess
the impact of these changes, we consider the ideal platform because the relative cost of these parameters is
then higher compared to the communication costs. Additionally, we assume a load with 99% of lookups.

Figure 21(a) presents the performance when the hash function cost is 156 cycles, which is a typical
cost for a hash function operating on strings. A comparison with Figure 20(f) shows that the maximum
throughput of all algorithms decreases but that their relative performance does not change. Figure 21(b)
presents the performance when the cost of the operations on the hash table is also increased to 88 cycles.
It corresponds to the cost of an access to the main memory. This setting is representative of an in-memory
key-value store [3]. In this case, the algorithms based on replication are mainly impacted because the cost of
updating the hash table is higher. As a result, compared to Figure 20(f) where REP_LOCAL was providing
the best results, PART_CACHING is now the most efficient algorithm. Note that we do not present results
for a configuration with a low hash function cost and a high operation cost because we could not find any
corresponding use case.

23

1400 PIaI’tISimbIel T 3000 7T T T
é 1200 ["Rep-remote b %2,
- Rep-local --------
8 1000 I o onc S 2000 | Sl
% 800 [Part-caching A 725
é_ 600 B é_
S 400 {1 g0
S S
E 200 ye B £
i I e S e e S e (T N N N N B |
16 32 48 64 80 96 112128 16 32 48 64 80 96 112128
Number of cores Number of cores
(a) Tilera, 90% of lookups (b) Ideal, 99% of lookups

Figure 22: Impact of the access pattern (opre = 12, 0op = 11)

5.3.3 Performance of PART_CACHING with non-uniform client key access

All evaluations until now assume a uniform distribution of the probability for clients to access one key. This
distribution has a negative impact on PART_CACHING since all clients may access a key, which minimizes
the probability of local lookups. Moreover, it is not representative of many use cases where only on small
number of clients issue most operations on a given key. To evaluate the performance of PART_CACHING in
such a scenario, we define another distribution function where a fix number of clients ¢, issue % of the
operations on a key.

Figure 22 shows the performance with ¢, = 4 and r = 80. It considers TILE-Gx with 90% of lookups
and the ideal platform with 99% of lookups. In both cases, the performance of PART_CACHING is greatly
improved. In Figure 22(b), PART_CACHING even outperforms REP_LOCAL.

5.3.4 Impact of weakening consistency criteria to sequential consistency

As we discussed earlier, unlike partitioning solutions, replication solutions are able to exploit sequential
consistency. As we saw earlier in comparing linearizable solutions, partitioning is the best approach unless
three conditions are met: (i) the percentage of lookups are extremely high; (ii) the cost of asynchronous
receives are extremely low; and (iii) the map is located in the cache system of the cores. Provided that these
conditions are met, replication can outperform partitioning. In order to understand up to which extent a
weaker consistency criteria could be in favor of replication, we compare the performance of REP_SC with
other linearizable solutions on the ideal platform, where 0, = 12, 0., = 11, for both 90 and 99 percent
of lookup workload. As you see in Figure 23(a), with 90 percent of lookups operations REP_SC still cannot
beat partitioning solutions at scale, although it outperforms other replication solutions as expected. However
as you see in 23(b), with 99 percent of lookups REP_SC outperforms all other solutions significantly. The
threshold for percentage of lookup operations in which after that REP_SC outperforms all other algorithm
at all scales, is around 95%. This threshold for REP_LOCAL is around 98%, which was mentioned earlier
too. Therefore weakening consistency criteria although improves the performance of replication, but still the
three conditions are necessary for replication to outperform partitioning, even though partitioning solutions
are not able to exploit sequential consistency in their favor.

5.3.5 Collocating clients and servers on the same core

Our evaluations are based on the assumption that clients and servers are located on different cores. One can
argue that placing clients and servers on the same core might lead to a better maximum throughput. In this
case a core, while playing the role of a server, can receive the requests asynchronously. This strategy does

24

1200 F’art-éimble' T T 30 T T T T
& 1000 |-Rep-remote 4 3000 i
q Rep-local --------) | |
S 800 - Rep-2pc 4 g 2500 B
=3 600 Rep-sc -/ £ 2000 - 3
*g_ Part-cggh[n *g_ 1500 - .- p
S 400 | .~ N [—
£ 200 R IS
= =
1 1 1 1 1 1 1 O 1 1 1 1 1 1
16 32 48 64 80 96 112128 16 32 48 64 80 96 112128
Number of cores Number of cores
(a) ideal, 90% of lookups (b) Ideal, 99% of lookups

Figure 23: Impact of weakening consistency criteria (0pre = 12, 0op = 11)

not make sense on the TILE-Gx architecture since relative high cost of asynchronous receive is added to the
critical path of all operations. However considering the ideal platform, where the cost of asynchronous and
synchronous receives are in the same order, it is not clear how this strategy can affect the maximum through-
put. Therefore we use our model to obtain the maximum throughput in this case. For the sake of simplicity,
we consider the simple partitioning algorithm, PART_SIMPLE. To obtain the maximum throughput of this
algorithm, one can consider a total number of C cores partitioned into two sets: the first set S, with the size
of C' — S, are those who are purely clients and the second set So, with the size of S, are those who collocate
clients and servers. To compute the maximum throughput, we obtain the maximum throughput of each set
and sum them up. The maximum throughput of 5 is calculated in the same way as before:

c-S S

T = min . —, ; ;

(57)
Assuming that there is no request from the S to the .Sy, the obtainable throughput from S is equal to:

S
p- (71ZC71,;7 +1—}ip) + (1 _p) : (T"Epn!7 ':pd) —0°
However this throughput cannot be obtained from Sy, since a portion of each cpu time during one
second is devoted to serve the requests which were received from the cores in S;”. This means that .72 =

(1 — %) - 7%*, where .Z is the portion of cpu time of each core in S, is devoted to serve the requests
received from the cores in S;. . can be calculated from .75 as follows:

932* _

(58)

P T3 (p-Tip+ (1 =p) - Tipa)
S
Considering the above formula, we obtained the maximum achievable throughput of PART_SIMPLE with
collocating clients and server in Figure 24. Considering all three use cases, the performance improvement is
at most 20 percent. Analysis of other algorithms show that their performance improvement by collocating
clients and servers does not exceed 20 percent.

(59)

5.3.6 Non-uniform load distribution on the servers

In calculating throughput of all algorithms, we assumed that the clients uniformly access the servers. How-
ever non-uniform distribution of the keys among servers can affect the maximum obtainable throughput.

"For simplicity, this calculation assumes the idle time during each request issued by the clients in Sz, cannot be used to serve
the requests issued from the clients in S;. The exact formula will be much more complex.

25

UO T T T 717 600

?, 1200 - no-coloc - g 500

g 1000 g 400

= 800 ?,300

Ez 600 g

2 400 5’200

£ 200 £ 100
0 | | | | | | | 0 | | | | | | | o | | | | | | |

16 32 48 64 80 96 112128 16 32 48 64 80 96 112128 16 32 48 64 80 96 112128
Number of cores Number of cores Number of cores

(@) opre =12,00p = 11 (b) opre = 156, 00p = 11 (¢) opre = 156, 00p = 88

Figure 24: Impact of collocating clients and servers on ideal platform (PART_SIMPLE)

This non-uniform distribution can be due to different reasons depending on the implementation of the map.
For example if the map is implemented using a hash table, a non-uniform hash function can create non-
uniform load on different servers. Another example is a name service to track different services in a factored
operating system implemented using a table. If some services are accessed more often than the others, it can
also create a non-uniform load among the servers. We calculate the maximum obtainable throughput of our
algorithms for a non-uniform load on the servers, given an arbitrary load distribution among them.

If we consider an arbitrary load among s servers, it can clearly affect the throughput of the system
when the servers are the bottleneck. However in case that the clients are the bottleneck, the throughput of
the system remains as before. Consider an arbitrary load where server s; is accessed with the probability
of p;, where Zle p; = 1. Now assume that the server(s) with maximum load is(are) accessed with the
probability of p,,... Therefore the load on any other server is a fraction of p;,q; such that p; = P - ki
where 0 < k; < 1. Since the server with the maximum load would be the bottleneck for the throughput of
the servers, the total throughput of the servers is equal to:

s

1
7= ki- 60
p- Ty, +(1—p) T (60)

i=1 lup upd

Clearly the uniform distribution leads to the highest server throughput (k; = 1). The negative effects
of non-uniform distribution threatens partitioning solutions more than the replication ones, since replication
algorithms are less sensitive, if not non-sensitive, to the changes in the distribution of the load on the servers.

5.4 Discussion

Results show that the only situation where replication could be used to implement a high throughput lin-
earizable map on a message-passing processor is when the percentage of lookups is extremely high, the
processor provides features such as highly efficient interrupt handling and the map is located in the cache
system of the cores. In this case, REP_LOCAL could be efficient but the REP_REMOTE approach is not
interesting because of the high cost of its lookup operation.

Althought the map algorithms designed for shared memory architectures mostly ensure linearizabil-
ity [16], to assess the effects of weakening the consistency criteria, we also study the case of sequential
consistency. Replicated maps are able to exploit sequential consistency by removing the synchronization
between lookups and updates. On the contrary partitioned maps are not able to exploit sequential consis-
tency, mainly because sequential consistency is not compositional. Evaluations show that replication still
needs the same conditions as with the case of linearizability to outperform partitioning. Study of even
weaker consistency criteria [28], using a similar methodology, can complement this study.

26

Clients and servers can be collocated on the same core. This configuration avoids dedicating resources to
play the server role. On the TILE-Gg, this is not a desirable choice since a costly asynchronous receive will
be involved in every request sent to the servers. Evaluations on the ideal platform show that, despite efficient
asynchronous receives, this collocation only leads to a negligible performance gain. The main reason is that
in the best configurations, the number of servers which can be collocated with the clients is small.

Client can access the servers non-uniformly, e.g. when the map is implemented using a hash table with a
non-uniform hash function. This non-uniformity decreases the throughput of the servers, and consequently
of the overall map (except for REP_2PC). Moreover a non-uniform access of the clients to different keys
increases the throughput of the PART_CACHING algorithm, by increasing the probability of local lookups
and decreasing the number of invalidations. For a given distribution of the client accesses among servers
and the key accesses among clients, throughput of the maps can be quantified using our model. Evaluations
considering realistic load distributions based on real case scenarios can be an interesting extension of this
work.

We considered the TILE-Gx, a general purpose message-passing manycore, as the baseline for our eval-
uations. We believe that our conclusions remain valid on similar architectures since: (i) TILE-Gx provides
efficient inter-core communication; (ii) using our model we could consider cases where broadcast opera-
tions and asynchronous receives are very efficient. Still, using our model, one can directly do a comparison
on other architectures. One exception is the architectures with one-sided communication primitives, e.g.
Intel SCC [17]. The main reason is that inter-core communication in these architectures involves some
synchronization costs [21] which are not included in our model.

6 Related Work

This chapter uses performance modeling to compare different algorithms. A few recent studies have pro-
posed performance models for other manycore architectures [21, 24]. Our approach is similar to the one
used in these papers. They all cover the same communication scenarios as the LogP model [11] (or its
extensions) that is commonly used in message-passing systems. The main difference is that the underlying
communication system considered in these studies are different from the one of this chapter: [21] models
RMA-based communication and targets the Intel SCC processor; [24] models point-to-point communication
on top of cache-coherent shared memory and targets the Intel Xeon Phi processor.

The implementation of scalable data structure in message-passing manycore is an important research
topic for message-passing-based operating systems[7, 29, 15]. Barrelfish operating system [7] applies a
model, where they structure the operating system as a distributed system of cores, communicating with each
other using message passing. They view the state as replicated instead of shared. Hence any potentially
shared data structure is considered as if it is a local replica. Consistency among the replicas is maintained
by exchanging explicit messages. Their claim to improve scalability by applying replication is based on
reducing the traffic on the interconnect, memory contention, synchronization overhead and access latencies.
On the other hand, use of client-server approach to provide shared state on chip level, is on the rise. Fos [29]
operating system applies a model, where the operating system is factored into function specific services,
where each service is provided by a set of cores, so called fleets. Cores communicate with fleets using only
messages. Fleets behave similar to Internet servers, which allowed them to scale up to millions of machines,
but instead of web pages they provide traditional kernel operations and data structures. Fleets can internally
apply different techniques, e.g. partitioning, to improve their performance. As an interesting use-case, the
implementation of a naming service for the FOS operating system has been studied in [8]. The naming
service is based on a hash map which is made scalable using replication. The replication algorithm used is
this study is similar to REP_2PC but is not compared to other approaches. Partitioning and replication were
both originally proposed as a mean to scale the operating system in the Tornado project [15]. The Tornado

27

project targets NUMA machines where remote memory accesses are an order of magnitude more costly
than local accesses. Since Tornado was designed for shared-memory processors, message-passing was em-
ulated in software with a high cost for software-based multicast operations. We compared partitioning and
replication in the context of modern message-passing manycore chips, which provide completely different
trade-offs regarding communication performance compared to [15].

Optimization of in-memory key-value stores for manycore is an area where our results could be ap-
plied [9, 20]. The authors of [9] and [20] both propose a partitioning approach similar to the PART_SIMPLE
algorithm. The solution proposed in [20] is based on message-passing emulated on top of shared memory
whereas [9] takes advantage of hardware message-passing provided by Tilera. This chapter complements
these studies by providing a comparison between partitioning and replication.

7 Conclusion

This paper studies the implementation of strongly-consistent maps in message-passing manycores. Using
a communication model it compares the performance of partitioned and replicated maps under different
settings. A Tilera TILE-Gx8036 processor is used to validate the model and serves as a baseline for the
evaluations. The results show that replication can outperform partitioning only if handling interrupts is
highly efficient, update operations are rare and map replicas are located in the cache system of the cores.

28

References

[1]
(2]
(3]
[4]
[5]
[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Adapteva. http://www.adapteva.com/.
Kalray. www.kalray.eu.

Memcached. www.memcached.org.
Picochip. http://www.picochip.com/.
Tilera. www.tilera.com.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload analysis of
a large-scale key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer Systems, pages 53—-64, 2012.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania. The multikernel: a new OS architecture
for scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, SOSP 09, pages 29—44, 2009.

Nathan Beckmann. Distributed naming in a factored operating system. Master’s thesis, Massachusetts
Institute of Technology, 2010.

Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, and Kenneth Steele. Many-core key-value
store. In Proceedings of the 2011 International Green Computing Conference and Workshops, pages
1-8, 2011.

I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit. NUMA-aware reader-writer
locks. In Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel
programming, 2013.

David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos,
Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a Realistic Model of Parallel Compu-
tation. In Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPOPP *93, pages 1-12, 1993.

Xavier Défago, André Schiper, and Péter Urban. Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys, 36(4):372-421, 2004.

Bill Devlin, Jim Gray, Bill Laing, and George Spix. Scalability terminology: Farms, clones, partitions,
and packs: Racs and raps. Technical Report MS-TR-99-85, Microsoft Research, 1999.

Stephen Dolan, Servesh Muralidharan, and David Gregg. Compiler support for lightweight context
switching. ACM Transactions on Architecture and Code Optimization (TACO), 9(4):36, 2013.

Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado: maximizing locality
and concurrency in a shared memory multiprocessor operating system. In Proceedings of the third
symposium on Operating systems design and implementation, pages 87-100, 1999.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2012.

29

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gregory Ruhl, David
Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, and et al. A 48-Core IA-32 message-passing
processor with DVES in 45nm CMOS. In 2070 IEEE International SolidState Circuits Conference,
pages 108—109. IEEE, 2010.

Chuck Lever. Linux kernel hash table behavior: analysis and improvements. Technical Report TR
00-1, University of Michigan, 2000.

Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip cache coherence is here to stay.
Communications of the ACM, 55(7):78-89, July 2012.

Zviad Metreveli, Nickolai Zeldovich, and M Frans Kaashoek. Cphash: a cache-partitioned hash ta-
ble. In Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, pages 319-320, 2012.

Darko Petrovi¢, Omid Shahmirzadi, Thomas Ropars, and André Schiper. High-performance rma-based
broadcast on the intel scc. In Proceedinbgs of the 24th ACM symposium on Parallelism in algorithms
and architectures, pages 121-130, 2012.

Darko Petrovié¢, Omid Shahmirzadi, Thomas Ropars, André Schiper, et al. Asynchronous broadcast on
the intel scc using interrupts. In Proceedings of the 6th Many-core Applications Research Community
(MARC) Symposium, pages 24-29, 2012.

NI Rafla and Deepak Gauba. Hardware implementation of context switching for hard real-time oper-
ating systems. In 54th IEEFE International Midwest Symposium on Circuits and Systems, 2011.

Sabela Ramos and Torsten Hoefler. Modeling communication in cache-coherent smp systems: a case-
study with xeon phi. In Proceedings of the 22nd international symposium on High-performance par-
allel and distributed computing, pages 97-108, 2013.

Jeffrey S Snyder, David B Whalley, and Theodore P Baker. Fast context switches: Compiler and
architectural support for preemptive scheduling. Microprocessors and Microsystems, 19(1):35-42,
1995.

Josep Torrellas. Architectures for Extreme-Scale Computing. Computer, 42(11):28-35, November
2009.

Maarten van Steen and Guillaume Pierre. Replicating for performance: Case studies. In Replication,
volume 5959 of Lecture Notes in Computer Science, pages 73—89. 2010.

Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40—44, January 2009.

David Wentzlaff and Anant Agarwal. Factored operating systems (fos): the case for a scalable operat-
ing system for multicores. SIGOPS Oper. Syst. Rev., 43(2):76-85, April 2009.

Xiangrong Zhou and Peter Petrov. Rapid and low-cost context-switch through embedded processor
customization for real-time and control applications. In Proceedings of the 43rd annual Design Au-
tomation Conference, pages 352-357. ACM, 2006.

30

