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Abstract— Recent research has illustrated privacy breaches
that can be effected on an anonymized dataset by an attacker
who has access to auxiliary information about the users. Most
of these attack strategies rely on the uniqueness of specific
aspects of the users’ data - e.g., observing a mobile user at just
a few points on the time-location space are sufficient to uniquely
identify him/her from an anonymized set of users. In this work,
we consider de-anonymization attacks on anonymized summary
statistics in the form of histograms. Such summary statistics are
useful for many applications that do not need knowledge about
exact user behavior. We consider an attacker who has access
to an anonymized set of histograms of K users’ data and an
independent set of data belonging to the same users. Modeling
the users’ data as i.i.d., we study the composite hypothesis
testing problem of identifying the correct matching between
the anonymized histograms from the first set and the user data
from the second. We propose a Generalized Likelihood Ratio
Test as a solution to this problem and show that the solution
can be identified using a minimum weight matching algorithm
on an K×K complete bipartite weighted graph. We show that
a variant of this solution is asymptotically optimal as the data
lengths are increased. We apply the algorithm on mobility traces
of over 1000 users on EPFL campus collected during two weeks
and show that up to 70% of the users can be correctly matched.
These results show that anonymized summary statistics of
mobility traces themselves contain a significant amount of
information that can be used to uniquely identify users by
an attacker who has access to auxiliary information about the
statistics.

I. INTRODUCTION

In recent years, many datasets containing information

about individuals have been released into public domain in

order to provide open access to statistics or to facilitate

data mining research. Often these databases are anonymized

by suppressing identifiers that reveal the identities of the

users, like names or social security numbers. Nevertheless,

recent research has revealed that the privacy offered by

such anonymized databases may be compromised, if an

adversary correlates the revealed information with publicly

available databases. For instance, in [1] it was shown that

anonymous movie ratings released during the Netflix Prize

context could be de-anonymized using public user reviews

from the Internet Movie Database (IMDB), and more re-

cently, in [2] it was shown that users can be uniquely

identified from a database of mobility traces collected at

coarse spatio-temporal resolutions. In most works of this

kind, the vulnerability to privacy breaches often arises due

to the sparsity of the temporal evolution of the user’s data.

For instance, the fact that a user watched a movie during

a particular time-period or the fact that a user was at a

specific location during a particular time can be used to easily

identify the user’s data from the anonymized dataset.

A potential approach to counter such attacks is to reveal

only statistics of the data belonging to each user in the

anonymized database. For instance, in the case of mobility

traces of users, the summary statistics could be the average

time spent by each user in the different locations during

a day (or during a different time duration). Similarly, for

web-browsing histories, the summary statistics would be the

average time spent by each user on different websites. Such

summary statistics are sufficient for some applications such

as estimating ‘popularity’ of different locations or websites.

In this work, we study de-anonymization attacks on such

summary statistics, by an adversary who has access to

independent auxiliary information about the users, in the

form of datasets or statistics.

Since temporal information is not available, we adopt an

i.i.d. model for the temporal evolution of each user’s data.

We assume that the empirical frequency (or histogram) of the

data of each user is released in an anonymized fashion. We

consider an adversary who has access to a non-anonymized

version of the data of the users collected in an independent

experiment. We then study the problem of matching the sets

of anonymized and non-anonymized data under the i.i.d.

model. This problem is closely related to a classification

problem studied by Gutman in [3]. In Gutman’s problem,

labeled training strings are available from K i.i.d. sources

having unknown underlying probability distributions, and the

objective is to use this information to classify an unlabeled

independently drawn test string to the correct source. The

current problem is very similar, except that we now have

K unlabeled test strings, one from each source, and the

objective is to match all K of them to the correct training

string. The current problem and Gutman’s problem can be

considered to be extreme cases of a more general problem

in which some L ≤ K unlabeled test strings are available

in addition to the K labeled training strings. In this paper

we stick to the case where L = K . We show that an

asymptotically optimal procedure for correctly matching the

K sources can be derived by following steps similar to that

in [3]. The solution is given by a minimum weight matching

problem on a bipartite graph and hence can be efficiently

implemented.

The privacy literature contains various approaches for

using auxiliary information to de-anonymize datasets. For

example in [1] the Netflix dataset was de-anonymized using



user reviews from IMDB and in [4] medical records were

de-anonymized with the help of external auxiliary infor-

mation, namely, ZIP code, birth date, and gender. The de-

anonymization of mobility traces was investigated in the

works of [5]–[10]. These techniques take into account the

temporal information available in the traces. For example,

in [8], [9], a Markov model is constructed based on the

mobility behaviors of the users, and then similarity measures

based on heuristics were used for de-anonymization. In [11]

the authors build a contact graph of the users using the

spatial and temporal information available in the traces, and

then de-anonymize the users by correlating this graph with

a social network. Our work differs from these related works

in the fact that we assume that only anonymized statistics,

e.g., anonymized histograms, of the users’s data are available.

For instance, in the case of location data, we assume that

we know only the average time spent by the users in

various locations, i.e., the histograms, and not the exact

temporal information, as required by most existing methods.

In addition, we assume that the information available in

the dataset to be de-anonymized is independent from the

auxiliary information. Our notion of independence will be

clear in the next section where we present the problem state-

ment. One example of independent information is the case

where the dataset and the auxiliary information comprise of

users’ mobility traces that belong to two non-overlapping

time periods. We remark that in the related works of [2],

[6], the auxiliary information is a subset of the information

in the dataset to be de-anonymized and hence the two are

not independent. For example, the auxiliary information is

some portions of anonymized users’ trajectories where the

identities of the users are known.

In this work, we formalize the notion of optimal de-

anonymization strategies for such data and identify the cor-

rect similarity metric between independent instances of the

users’ data that leads to an asymptotically optimal solution to

the de-anonymization task. We apply our solution to Wi-Fi

traces obtained from a university campus and demonstrate

that using only temporal statistics of users’ mobility, we

can de-anonymize more than half of the users in a dataset

containing more than a thousand users. The rest of the

paper is organized as follows. After introducing our notation,

we state the problem in mathematical form in section II.

We propose our solution and its optimality properties in

Section III, and experimentally evaluate it in Section IV. We

conclude in Section V.

Notation: For a finite alphabet Z, we use P(Z) to denote

the set of all probability distributions defined on Z. For any

string s ∈ Z
n, we use Γs ∈ P(Z) to denote the empirical

distribution of the string defined as

Γs(z) =
1

n

n∑

i=1

I{si = z}, z ∈ Z.

Further we use Ts to denote the type class of s, i.e., the set

of all strings of length n with the same empirical distribution

as s. Throughout the paper we use log to refer to logarithm

to the base 2.

II. PROBLEM STATEMENT

Consider a set K of K sources each producing i.i.d.

data according to distinct but unknown distributions on Z.

Consider a set S1 = {x1, x2, . . . , xK} of unlabeled strings

of length n each generated by a distinct source in K, and

an independent set S2 = {y1, y2, . . . , yL} of labeled strings

of length n each generated by a distinct source within a

subset of K of size L. Here S1 represents the user data

whose unlabeled (i.e., anonymized) statistics are released

in public and S2 represents auxiliary information about the

users that is obtained by an adversary. The information S2 is

assumed to be independent of S1. In the case of data such as

mobility patterns or web-browsing history, the information

in S2 could be collected, for instance, by tracking the

users. Alternatively, it may be the case that the adversary is

some network service provider (e.g., location based service

provider or internet service provider) who has access to the

user’s locations or web-browsing history which contain S2.

Let k denote the source that generated string xπ(k) ∈ Z
n and

yk ∈ Z
n where π : {1, 2, . . . , L} 7→ {1, 2, . . . ,K} is some

unknown injective (one-to-one) function. When L = K , the

function π is just some unknown permutation. Let pk denote

a probability measure on Z that captures the probability

law followed by data from source k. The de-anonymization

problem that the adversary needs to solve, is to match each

string from set S2 to the string from S1 produced by the

corresponding source. Equivalently, the adversary seeks to

estimate π. The special case of this estimation problem when

L = 1 was studied by Gutman [3]. In the present paper,

we study the other extreme case of L = K . Since the

observations from each source are assumed to be i.i.d., we

will show later (see Lemma 3.2) that the optimal testing

procedure requires only the types, or empirical distributions,

of the strings {xi} and {yj}. Thus only the types of the

strings are used while performing the matching, as required

in the de-anonymization problem.

We view this as a hypothesis testing problem with M =
K! composite hypotheses. Each hypothesis corresponds to

a unique permutation of {1, 2, . . . ,K}. Let π1, π2, . . . , πM

denote the M possible permutations of {1, 2, . . . ,K}. The

hypothesis Hi corresponds to a particular permutation πi.

The hypotheses are all composite because the probability

distributions of each user’s data could lie anywhere in

P(Z). We seek a decision rule for this problem that admits

exponential decay of error probability as a function of n
under each hypothesis. For this purpose, we allow a no-

match decision, i.e., rejection of all M hypotheses. Following

an approach similar to that in [3] we denote a decision

rule for the M -hypotheses problem by a partition Ω =
(Ω1,Ω2, . . . ,ΩM ,ΩR) of Z = (Zn)K × (Zn)K the space

of vectors of the form x1, x2, . . . , xK , y1, y2, . . . , yK , into

(M +1) disjoint cells Ω1,Ω2, . . . ,ΩM ,ΩR, where Ωi is the

acceptance region for hypothesis Hi, and ΩR = Z−∪M
i=1Ωi

is the rejection zone. We consider an error event e under

hypothesis Hi to denote a decision in favor of a wrong

hypothesis Hj where j 6= i. Note that a decision in favor



of rejection does not correspond to an error event under any

hypothesis. Thus the probability of error of the decision rule

Ω under hypothesis Hi is

PΩ(e/Hi) = PHi




(x, y) ∈

M⋃

j=1
j 6=i

Ωj





(1)

where x = (x1, x2, . . . , xK), and y = (y1, y2, . . . , yK). We

consider a generalized Neyman-Pearson criterion wherein we

seek to ensure that all error probabilities decay exponentially

in n with some predetermined slope λ, and simultaneously

minimize the rejection probability subject to these con-

straints. Specifically, we seek optimal decisions rules Ω such

that ∀p1, p2, . . . pK ∈ P(Z)

lim
n→∞

1

n
logPΩ(e/Hi) ≤ −λ, i = 1, . . . ,M, (2)

and ΩR is minimal.

III. PROPOSED SOLUTION

The problem of matching strings across two sets can be

best visualized as a matching problem on a bipartite graph.

Let G = (V,E) denote a complete bipartite graph where

each vertex in the set V of vertices denotes a unique element

in S1 ∪ S2. There exists an edge from each element i in S1

to each element j in S2 and no edges between elements

in S1 or S2. Thus we have a complete bipartite graph

where S1 and S2 form the two parts. Corresponding to the

M = K! different hypothesis, there are M possible maximal

matchings on G. A matching is a subset S of edges E of

G such that no two edges in S share a vertex. A maximal

matching is a matching S such that no edge from G can

be added to S while preserving the matching property. The

matching corresponding to Hk is the maximal matching in

which node i from S2 is mapped to node πk(i) in S1. The

hypothesis testing task thus is equivalent to identifying the

correct maximal matching.

A commonly used solution for universal and composite

hypothesis testing problems is the generalized likelihood

ratio test (GLRT). The first step for obtaining a GLRT

solution is to maximize the log-likelihood function of the

observations from all distributions under each hypothesis.

For hypothesis Hi this is given by

L(Hi) = sup
p1,p2,...,pK

K∑

k=1

[
log pk(xπi(k)) + log pk(yk)

]

= −2n

K∑

k=1

[
H(Γxπi(k)

) +H(Γyk
)

D(Γxπi(k)
‖ 1
2 (Γxπi(k)

+ Γyk
))

+D(Γyk
‖ 1
2 (Γxπi(k)

+ Γyk
))
]

(3)

where the second relation follows by noting that the

original expression is maximized by choosing pk =
1
2 (Γxπi(k)

+ Γyk
). Here H(p) denotes the entropy of distri-

bution p. A good solution to the multiple hypothesis testing

problem in practice is to decide in favor of the maximum-

likelihood (ML) solution1 given by

Ĥ = argmax
Hi

L(Hi) (4)

or equivalently,

Ĥ = argmin
Hi

D(Hi) (5)

where

D(Hi) =

K∑

k=1

D(Γxπi(k)
‖ 1
2 (Γxπi(k)

+ Γyk
))

+D(Γyk
‖ 1
2 (Γxπi(k)

+ Γyk
)). (6)

This test can be interpreted as a minimum weight matching

[12] on the complete bipartite graph G with appropriate

weights assigned to the edges in E. For i ∈ S1 and j ∈ S2

let the weight wij of edge eij between them be given by

wij = D(Γxi
‖ 1
2 (Γxi

+ Γyj
)) +D(Γyj

‖ 1
2 (Γxi

+ Γyj
)). (7)

Weight wij can be interpreted as a distance measure between

strings xi and yj . The following proposition summarizes this

result.

Proposition 3.1: The solution to (4) is given by the hy-

pothesis corresponding to the permutation defined by the

minimum weight matching on the bipartite graph G de-

scribed above with weights given by (7) (refer to Figure 1).

⊓⊔

x1

x2

y1

y2

xK yK

w11

Set S1 Set S2

Fig. 1. The solution to the mutiple hypothesis testing problem given in (4)
can be obtained by performing a minimum weight bipartite matching with
weights given in (7).

The solution of (4) can be justified by the asymptotic

optimality properties of a threshold test that uses this statistic.

For proving asymptotic optimality we restrict ourselves to

tests that are based only on the empirical distributions of the

observations. For this purpose, we use ΓXY to denote the

collection of empirical distributions:

ΓXY := (Γx1 ,Γx2 , . . . ,ΓxK
,Γy1 ,Γy2 , . . . ,ΓyK

) .

This is justified in the asymptotic setting because of the

following lemma.

1To be precise, this should be a maximum generalized likelihood solution
because the data distributions p1, p2, . . . , pK are unknown.



Lemma 3.2: Let Ω = (Ω1,Ω2, . . . ,ΩM ,ΩR) be a deci-

sion rule based only on the sequences {x1, x2, . . . , xK} and

{y1, y2, . . . , yK}. Then there exists a decision rule Λ =
(Λ1,Λ2, . . . ,ΛM ,ΛR) based on the sufficient statistics ΓXY

such that

lim sup
n→∞

1

n
logPΛ(e/Hi) ≤ lim sup

n→∞

1

n
logPΩ(e/Hi),

i = 1, 2, . . . ,M, ∀p1, p2, . . . pK ∈ P(Z) (8)

and

lim sup
n→∞

1

n
log |ΛR| ≤ lim sup

n→∞

1

n
log |ΩR|. (9)

⊓⊔

We provide a proof in the appendix. Note that ΛR and ΩR

are finite sets, thus their cardinality is well-defined.

In order to prove optimality, we allow for a no-match zone,

i.e., we allow a decision in favor of rejecting all the M
hypotheses. For this purpose, we need to identify the second

most likely hypothesis. Let

H̃ = argmin
Hi 6=Ĥ

D(Hi) (10)

where Ĥ is defined in (5). The optimal test with rejection is

described in the following theorem.

Theorem 3.3: Let Ω = (Ω1,Ω2, . . . ,ΩM ,ΩR) be a de-

cision rule based on the collection ΓXY of empirical

distributions such that for all collections of distributions

p1, p2, . . . , pK from P(Z) we have

PΩ(e/Hi) ≤ 2−λn, i = 1, 2, . . . ,M (11)

when source k is distributed according to pk for k ∈
{1, 2, . . . ,K}.

Let λ̃ = λ− 2K|Z| log(n+1)
n

,

Λi = {ΓXY : D(H̃) ≥ λ̃, Ĥ = Hi}, i = 1, 2, . . . ,M,

and

ΛR = {ΓXY : D(H̃) < λ̃}.

Then

lim
n→∞

1

n
logPΛ(e/Hi) ≤ −λ,

i = 1, 2, . . . ,M, ∀p1, p2, . . . pK ∈ P(Z) (12)

and

ΛR ⊂ ΩR. (13)

⊓⊔

We provide a proof to the theorem in the appendix.

The difference in the solution given by Theorem 3.3 and

that proposed in (5) only arises due to the rejection region.

As seen in the statement of the theorem, the no-match

decision is made if the second most likely solution also has

high likelihood. Due to this rejection region, we can now

guarantee exponential decay of the error probabilities with a

given exponent under the various hypotheses. Nevertheless,

the optimality property of the solution given by Theorem 3.3

suggests that the ML estimate of (5) is a reasonable choice

even if we do not permit a no-match decision.

IV. EXPERIMENTAL EVALUATION

We applied the ML test proposed in (5) to mobility traces

obtained from connections to Wi-Fi access points on the

École Polytechnique Fédérale de Lausanne (EPFL) campus.

In this experiment the datasets in S1 and S2 correspond to

the users’ mobility traces measured over two different non-

overlapping time periods. Using only the frequency of visits

of the various users to various access points in each time-

period we show that users’ mobility traces in S1 can be

matched to those in S2 with high accuracy.

A. Dataset Description and Preprocessing

The EPFL campus consists of several buildings and hun-

dreds of wireless access points (APs) (refer to Figure 2).

The main wireless network on the campus requires authen-

tication, and can thus be accessed only by members of the

university (students, faculty, etc.). The history of connections

of every device to the network is recorded in the following

way: Whenever a device (user) connects to the network, its

(anonymized) MAC address, the ID of the AP to which it

connects, and the time of start of the connection measured to

a precision of one second, are stored in a log file. When the

device moves across the campus and gets connected to a new

AP, the time of this new connection and the ID of the AP are

similarly stored. However, if a device loses its connection

or disconnects, it is not recorded in the log file, unless it

reconnects to one of the APs. For our experiments we used

the information available in the log file of all such accesses

for two consecutive weeks during the academic semester. For

privacy reasons, all the MAC addresses inside the log file are

encrypted, however the encryption key is the same for the

two weeks period, and thus it is possible to recognize a MAC

address across different days.

Fig. 2. The position of wireless access points on the EPFL campus.
The campus has several buildings and around one thousand wireless access
points.

For obtaining the ground truth for our statistics-matching

experiments, we estimated the trajectories of all the users on

the campus by using the log file. There are two main sources

of error: First, all the wireless devices (laptops, smart-phones,

etc.), connected at any time to the network, appear in the

log file; therefore, if a user does not connect his device to

the network, or does not carry the device everywhere he

goes, his true trajectory cannot be reconstructed. Second,



whenever a user leaves the campus (disconnects), the time of

disconnection is unknown. For reconstructing the trajectories,

we assumed that a device remains connected to the same AP

until the time when it is connected to a new AP (based on the

log file entries). When a device is connected to an AP, it stays

in the communication range of the AP (typically 50-100 m),

specifically, in the AP’s vicinity. Thus the reconstructed

trajectories of the users have a spatial resolution equal to

the coverage region of an AP level of granularity. Further,

since the connections to APs are monitored every second, the

time resolution is equal to one second. In other words, the

user trajectories are reconstructed as a sequence of spatial

locations sampled every second. We use these sequence of

reconstructed user locations as the data vectors x.’s and y.’s
in our experiments. Although the reconstructed trajectories

are affected by the above mentioned sources of error, they

are reconstructed based on actual wireless connection logs.

B. Experiment One

For our first experiment, we considered all users who

are on the campus during the interval 9h00–17h00 on both

Mondays during the two weeks period. There are K =
1154 such users. For simplicity of exposition let the true

matching π be the identity permutation. Then trajectory

of a user i in the first Monday and the second Monday

can be seen as strings xi and yi, respectively, with length

n = (17h00− 9h00) × 3600 = 28800. The alphabet Z

consists of the set of APs and |Z| = 934. The mean, median,

maximum, and standard deviation of the number of visited

APs by the users during a Monday are equal to 11, 8, 60,

and 10.4, respectively. As in Section II we assumed that

for a user i, elements of strings xi and yi are drawn in

an i.i.d. manner from an unknown underlying distribution,

which is specific to user i. Sets S1 and S2 consist of the

strings of all the users in the first Monday and the second

Monday, respectively. The empirical distributions Γxi
and

Γyi
are equal to the proportion of time that a user i spent in

different APs in the first Monday and the second Monday,

respectively.

After computing Γxi
and Γyi

for every user i, we con-

structed a complete bipartite graph described in Section III

with edge weights given in (7), and computed a mini-

mum weight matching on the graph. The obtained results

are shown in Table I under “Matching K users”. There

are 610 out of 1154 users correctly matched which gives

52.9% accuracy. We observe that although the underlying

i.i.d. assumption of users’ position at every second of their

trajectory is inherently false, the obtained accuracy is high

considering the large number of users. This means that given

the anonymized proportions of time that 1154 users spend

between 9h00–17h00 in different APs across campus on

two consecutive Mondays, we are able to correctly match

(de-anonymize) more than half of them. Or from a privacy

perspective, given anonymized temporal averages of all these

users on one Monday, the identities of more than half of these

users can be identified by tracking these users on a different

Monday.

Days
included
in dataset

# users
(K)

Matching K users in
second week

Matching 1
random user in
second week

#
correct

matches

Accuracy Fraction of
correct matches

Mondays
1154 610 52.9% 44.5%

2174 934 43.0% 32.9%

Mondays
and

Tuesdays

1047 738 70.5% 53.5%

TABLE I

RESULTS OF DE-ANONYMIZATION EXPERIMENTS. NOTE THAT (I)

INCREASING THE NUMBER OF USERS IN AN EXPERIMENT LEADS TO A

REDUCTION IN THE ACCURACY OF THE MATCHING, AND (II) MATCHING

INFORMATION ABOUT ALL USERS IN THE SECOND WEEK GIVES

STRICTLY BETTER ACCURACY THAN THAT OBTAINED WHEN MATCHING

ONLY ONE USER.

We repeated the above experiment by considering all

users who were on campus during the interval 10h00–17h00
on both Mondays during the two weeks period. As this

interval is smaller, the string length is lower, equal to n =
(17h00− 10h00)× 3600 = 25200, and there are more users

on campus; namely, K = 2174 users. The obtained results

are shown in Table I. There are 934 users correctly matched

out of a total of 2174 users which gives 43.0% accuracy.

As there are many more users and the number of samples

n is smaller, there is less information available for finding

the correct matching and thus the obtained accuracy is lower

than that in the previous experiment.

C. Experiment Two

In our second experiment, we investigated whether the

matching accuracy can be improved by using statistics of

users from two different days of the week. We considered

all users who are on campus during the interval 10h00–17h00
on both Mondays and both Tuesdays during the two weeks

period. There are K = 1047 such users. The trajectory of

every user in each day can be seen as a string with length

n = (17h00− 10h00) × 3600 = 25200. For each user we

computed four different empirical distributions associated

with the four strings. We observed that combining the traces

of each user from Monday and Tuesday to form a single long

trace leads to poor matching accuracy - we obtain only 14.0%
accuracy. The reason for this is that users have different time

tables for different days of the week, and hence by combining

different days of the week the users tend to be less distinct.

For this reason, in the experiment we assumed that each user

has different distributions for different days of the week, and

sought a method to match across weeks using the statistics

of both Monday and Tuesday. Since we have statistics of

two days on two weeks for each user, this problem does

not fit the exact structure of that studied in Section II and

hence we used a modification of the decision obtained in

Section III. We constructed a complete bipartite graph whose

edge weights are equal to the summation of weights in (7)



corresponding to the two Mondays and to the two Tuesdays.

After computing a minimum weight matching of the graph,

738 out of 1047 users correctly match which gives 70.5%
accuracy (refer to the last row of Table I under “Matching

K users”). The obtained accuracy is significantly higher that

that of the first experiment using 1154 users. This is because

we have more information available for matching the users,

namely, four days’ statistics instead of two days.

D. Experiment Three

We repeated the two previous experiments in the setting

in which we are given statistic of all users in the first week

and only of one user in the second week. The objective is

to match the user’s statistics from the second week to the

correct statistics from the first week. This corresponds to the

case in which set S2 described in Section II is a singleton,

which also corresponds to the setting addressed by Gutman

in [3]. We proceed as follows.

We first generalize experiment one to this setting. We let

S1 be the collection of traces of all users on the Monday of

the first week as in Section IV-B. For S2 we use the trace of

a randomly selected user on the Monday of the second week.

Let Γyj
denote the empirical distribution of this trace. We

match this trace to the trace xi from the first week that gives

the minimum value of the weight computed in (7). If there

exist ties (i.e., multiple users in S1 having minimum weight),

we break them randomly. This is exactly the algorithm

studied by Gutman [3]. We estimate the average probability

of correct matching under this procedure by computing the

fraction of choices of S2 that lead to correct matchings.

Following a similar approach, we also generalize experiment

two to this setting, i.e., when data from both Mondays and

Tuesdays are available in both weeks.

The obtained probabilities are shown in the last column of

Table I for the datasets used in experiments one and two. The

observed behavior is similar to that when all the K users are

matched: matching probability decreases when the number of

users increases, and increases when the available information

increases. We also observe that the obtained accuracy of

matching is lower than the accuracy obtained with the same

dataset when all the users are matched. This is expected

because in the latter case we have more data (set S2 is larger)

and thus we can do a better matching. This observation

has important implications in the perspective of privacy of

anonymized statistics. A user’s privacy depends not only on

how much her trajectory is revealed to the adversary, but

also on how much others’ trajectories are revealed to the

adversary.

V. CONCLUSION

In this paper we have studied strategies for de-

anonymizing anonymized user statistics given auxiliary in-

formation about the user’s behavior. We obtained an asymp-

totically optimal strategy for this problem assuming an i.i.d.

model for the users’ data. We focussed primarily on the

setting in which auxiliary information about all the users

are available in the form of independent data strings of all

users. It may be possible to extend the optimality result to

the case where only auxiliary information about a subset

of the users are available, a special case of which was

studied by Gutman [3], where auxiliary information about

only one user is available. Similarly, although in this paper

we have assumed that the length of the data-strings in the

anonymized statistics and the auxiliary information are all

equal to n, the proposed solution and optimality result can

easily be generalized to the case where these are distinct,

following the same steps as in [3], provided that the length

of all data-strings are of equal order. We also saw the

performance obtained with the proposed algorithm on real

mobility traces recorded on two different days. We saw that

de-anonymization can be performed with higher accuracy

if traces about all users are available on the second day,

as against having information only about a single user.

One aspect that we did not consider in the location de-

anonymization is that the geometric distance between various

locations may be available. In practice, it may be possible

to perform better matching by taking this information into

account, although obtaining optimality results may be hard.
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APPENDIX

We need the following lemma for the proofs. Recall that

for any string s ∈ Z
n we use Ts to denote the type class of s,

i.e., the set of all strings of length n with the same empirical

distribution as s. The following lemma is well known (see

e.g., [13, Ch. 12]).

Lemma 1.1: For every p ∈ P(Z) and every s ∈ Z
n,

1

(n+ 1)|Z|
2−nD(Γs‖p) ≤ Pp(Ts) ≤ 2−nD(Γs‖p)

where Pp denotes the probability measure when all observa-

tions in s are drawn i.i.d. according to law p. ⊓⊔

A. Proof of Lemma 3.2

Consider an arbitrary tuplet of sequences

(x1, x2, . . . , xK , y1, y2, . . . , yK). Let T =
(Tx1 , . . . , TxK

, Ty1 , . . . , TyK
) denote the joint type-class of

all the sequences. Any (x′
1, x

′
2, . . . , x

′
K , y′1, y

′
2, . . . , y

′
K) ∈ T

belongs to exactly one of the sets Ω1,Ω2, . . . ,ΩM ,ΩR. We

modify the decision rule Ω as follows. For any type T we

let Λi include T if Ωi contains the most number of the

sequences of T , for i ∈ {1, 2, . . . ,M,R}. In case of ties we

break them arbitrarily and include T in exactly one of the

Λi’s.

By construction we have for any type T ⊂ ΛR

|ΩR| ≥
1

M + 1
|T |.



Moreover, we have

|ΛR| =
∑

T⊂ΛR

|T |

≤
∑

T⊂ΛR

(M + 1)|ΩR|

≤ |ΩR|(1 + (M + 1)τn)

where τn represents the number of types of length n. Since
log τn

n
→ 0 [13] we have (9).

Now for any type T ⊂ Λi with i ∈ {1, 2, . . . ,M} we have

by Lemma 1.1 and definition of Λi:

PHi
{Ωi} ≥ PHi

{Ωi ∩ T } ≥
1

M + 1
PHi

{T }

≥
2
−n

∑K
k=1

(
D(Γxπi(k)

‖pk)+D(Γyk
‖pk)+δ(n)

)

M + 1

where δ(n) = 2|Z| log(n+1)
n

. Combining the above result

along with the definition of Λi and Lemma 1.1, we have

PHi
{Λi} =

∑

T⊂Λi

PHi
{T }

≤
∑

T⊂Λi

2
−n

∑
K
k=1

(
D(Γxπi(k)

‖pk)+D(Γyk
‖pk)

)

≤
∑

T⊂Λi

2nδ(n)(M + 1)PHi
{Ωi}

≤ τn2
nδ(n)(M + 1)PHi

{Ωi}

Since log τn
n

→ 0 [13] we have (8).

B. Proof of Theorem 3.3

Define

Λ̃i = {ΓXY : D(Hi) ≥ λ̃}, i = 1, 2, . . . ,M.

Clearly,

Λj ⊂ Λ̃i for all j 6= i

and hence

∪j 6=iΛj ⊂ ∪j 6=i

(
∩k 6=jΛ̃k

)
⊂ Λ̃i.

Therefore,

PΛ(e/Hi) =
∑

∪j 6=iΛj

K∏

k=1

pk(xπi(k))pk(yk)

≤
∑

Λ̃i

K∏

k=1

pk(xπi(k))pk(yk)

(a)

≤
∑

Λ̃i

K∏

k=1

2
−2nH( 1

2
(Γxπi(k)

+Γyk
))

=
∑

Λ̃i

2
−2n

∑K
k=1 H( 1

2
(Γxπi(k)

+Γyk
))

=
∑

Λ̃i

2
−n

∑
K
k=1

(
H(Γxπi(k)

)+H(Γyk
)+

D(Γxπi(k)
‖ 1

2
(Γxπi(k)

+Γyk
))+

D(Γyk
‖ 1

2
(Γxπi(k)

+Γyk
))
)

≤
∑

Λ̃i

2
−n

∑K
k=1

(
H(Γxπi(k)

)+H(Γyk
)+λ̃

)

≤ 2−nλ̃
∑

Z

2
−n

∑
K
k=1

(
H(Γxπi(k)

)+H(Γyk
)
)

≤ 2−nλ̃

where (a) follows from the inequality p(s) ≤ 2−nH(Γs) for

all p. This proves (12). For proving (13) we observe that for

any test based on empirical distributions, we have

2−λn ≥ PΩ(e/Hi)

=
∑

∪j 6=iΩj

K∏

k=1

pk(xπi(k))pk(yk)

(a)

≥
∑

T⊂∪j 6=iΩj

2
−n

∑K
k=1

(
D(Γxπi(k)

‖pk)+

D(Γyk
‖pk)+δ(n))

≥ 2
−n

∑
K
k=1

(
D(Γx′

πi(k)
‖pk)+D(Γy′

k
‖pk)+δ(n)

)

where (a) follows from Lemma 1.1 with T =
(Tx1 , . . . , TxK

, Ty1 , . . . , TyK
) and δ(n) = 2|Z| log(n+1)

n
,

and (x′
1, x

′
2, . . . , x

′
K , y′1, y

′
2, . . . , y

′
K) ∈ ∪j 6=iΩj and

p1, p2, . . . , pK ∈ P(Z) is arbitrary. Now letting

pk = 1
2 (Γx′

πi(k)
+ Γy′

k
) we get

λ ≤
K∑

k=1

(
D(Γx′

πi(k)
‖ 1
2 (Γx′

πi(k)
+ Γy′

k
))+

D(Γy′
k
‖ 1
2 (Γx′

πi(k)
+ Γy′

k
)) + δ(n)

)

which further implies that

∪j 6=iΩj ⊂ Λ̃i. (14)

Now let

Λ̂i := ∩j 6=iΛ̃j .



Hence,

∪iΛi = {ΓXY : D(H̃) ≥ λ̃} = ∪iΛ̂i.

Combining with (14) we get

Λ̂i = ∩j 6=iΛ̃j ⊃ ∩j 6=i ∪k 6=j Ωk ⊃ Ωi

and thus

Λc
R = ∪iΛi = ∪iΛ̂i ⊃ ∪iΩi = Ωc

R.

Hence

ΛR ⊂ ΩR.
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