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ABSTRACT

We study the problem of privacy-preserving computation of func-
tions of data that belong to users in a social network under the as-
sumption that users are willing to share their private data with trusted
friends in the network. We demonstrate that such trust relationships
can be exploited to significantly improve the tradeoff between the
privacy of users’ data and the accuracy of the computation. Under
a one-hop trust model we design an algorithm for partitioning the
users into circles of trust and develop a differentially private scheme
for computing the global function using results of local computations
within each circle. We quantify the improvement in the privacy-
accuracy tradeoff of our scheme with respect to other mechanisms
that do not exploit inter-user trust. We verify the efficiency of our
algorithm by implementing it on social networks with up to one mil-
lion nodes. Applications of our method include surveys, elections,
and recommendation systems.

1. INTRODUCTION

Several applications such as surveys, elections, and auctions require
the computation of functions of private data belonging to multiple
users. As an example, consider the network of Netflix users. The
private data are the individual users’ movie ratings and the global
function is the average movie ratings across all users. The challenge
in such applications is to perform the computation accurately while
preserving the privacy of the users’ data. A vast amount of literature
on this topic investigates strategies that can be adopted by the users
and/or the service provider (also called server) to enhance the privacy
of the users’ data. Most of the known non-cryptographic solutions
to this problem can be viewed as belonging to one of the following
two extreme regimes.

The first regime (Regime I) is when every user trusts only her-
self, not the server nor other users, and she is responsible for protect-
ing her own privacy. In other words, the “circle of trust” of a user
comprises only herself. She can protect her privacy by, for example,
adding some random noise to her private information before sending
it to the server. Clearly the addition of noise leads to a reduction
in the accuracy of the computed global function, which is known as
the privacy-accuracy tradeoff (also referred to as the privacy-utility
tradeoff). In the second regime (Regime II), every user trusts her-
self and the server but not any of the other users. In other words,
the circle of trust of a user comprises herself and the server. In this
regime, each user is willing to send her exact private information to
the server, and expects the server to protect the privacy of their data.

Both these regimes have some inherent drawbacks. In Regime
I, typically the accuracy of the computation has to be compromised
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significantly in order to obtain sufficient privacy. In Regime II, the
users need to trust the server completely. If, for instance, the server
discloses the users’ information to a third-party, then their privacy
may be compromised even if the released data were anonymized [1].

In this context we propose an alternative to privacy enhance-
ment methods proposed for these two regimes. In practice, a user
often has trusted “friends” with whom she is willing to share her
private information and whom she trusts to perform computations
accurately and protect the privacy of her information. We consider
such a regime in which the circle of trust of a user consists of herself
and her friends, but not the server. This regime is hence a middle
ground between the two extreme regimes I and II. The trust rela-
tionships between users are represented in the form of connections
in a social network. The key idea that we introduce in this paper
is that the knowledge of the social network can be intelligently ex-
ploited to design function-computation schemes that perform better
in terms of privacy-accuracy tradeoff, when compared to Regime I.
We first partition the users into circles of trust based on the underly-
ing social network. The users within each circle perform local com-
putations and the results of these computations are then transmitted
to the server in a privacy-preserving manner, where the final global
function is computed. As the individual user’s data is hidden within
the local computations, this approach yields an additional layer of
protection compared to schemes in Regime I.

The existing literature on privacy-preserving function computa-
tion can be divided into two broad categories. One category is per-
turbation methods, where users’ data are perturbed to protect their
privacy [2], for example by addition of random noise [3, 4]. For this
category of methods, the circle of trust of a user comprises only her-
self if she applies the perturbation technique herself, and herself and
the server if she trusts the server to perform the perturbation tech-
nique. Another category is cryptographic methods, where users’
data are encrypted to ensure their privacy [5–10]. Some of these
techniques belong to the class of Secure Multiparty Computation
(SMC) protocols, where users can compute functions of their private
data in a distributed way such that every user learns only the value of
the output function and nothing more about other users’ private data.
In this case, the circle of trust of each user consists of only herself.
These methods usually need extensive computational power [11].

In this paper we use differential privacy (DP) for quantifying a
user’s privacy with respect to the server and other entities outside of
her circle of trust. Differential privacy is a well accepted notion of
privacy for database privacy [12]. It models users’ data as determin-
istic, and gives a strong guarantee that the perturbation of a single
user’s data will not significantly affect the output of the computation.
Differential privacy quantifies a worst-case guarantee with respect to
an adversary who may have access to auxiliary information about the
users’ data. In this work, we develop a perturbation-based function-
computation scheme in which all users are guaranteed the same level

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6250



of differential privacy with respect to the server. We use the mean-
squared-error (MSE) in estimating the global function of interest as
the accuracy measure. We compare the performance of our scheme
with those under Regime I that do not exploit inter-user trust, and
show that our scheme performs better in terms of privacy-accuracy
tradeoff. Other privacy measures used in the literature include confi-
dence intervals [3], mutual information [13,14], priori and posteriori
knowledge [15, 16], game theory [17], and cryptographic notions of
confidentiality [18, 19]. For a more comprehensive review on the
literature we refer the reader to the surveys of [20, 21].

The rest of the paper is organized as follows. We introduce the
problem and motivate the proposed approach in Sec. 2. We compute
the privacy-accuracy tradeoff of our scheme in Sec. 3. We describe
our star cover algorithm in Sec. 4. In Sec. 5 we discuss experimental
evaluation of our method and conclude in Sec. 6.

2. PROBLEM DESCRIPTION

2.1. Model

We model the friendship (trust) relationships among all the users in
a social network by a “friendship” graph G = (V, E), which we
assume is a simple undirected connected graph with vertex set V ,
consisting of N ≥ 3 nodes v1, v2, . . . , vN representing the users
and edge set E. An example is the graph shown in Figure 1(a). An
edge eij ∈ E exists if and only if users vi and vj are friends, indi-
cating that they trust each other and are willing to receive and per-
form computations on information from each other (i.e., we assume
a one-hop trust model). We use the terms node and user interchange-
ably. Every user vi has some private information denoted by Xi that
takes values in some bounded interval S ⊂ � whose length is de-
noted by |S|, where � is the set of real numbers. We assume Xi’s
are deterministic. The objective is to compute some global function
f(X1, X2, . . . , XN ) of the private information of all users. We as-
sume that function f belongs to the class of divisible functions [22],
i.e., it admits a decomposition of the form

f(X1, X2, . . . , XN ) = g (h1(Z1), h2(Z2), . . . , hM (ZM )) (1)

for all partitions {Zj}1≤j≤M
of the set of variables {Xi}1≤i≤N

.
Examples of functions that have this property include sum, product,
arithmetic mean, histogram, minimum and maximum functions. In
this paper, we restrict our privacy analysis to the sum function

f(X1, X2 . . . , XN ) =

NX
i=1

Xi = Xsum (2)

for real-valued inputs, which is the function of interest in applica-
tions like census surveys and recommendation systems, with the
understanding that the results presented here can be generalized to
other divisible functions and other ranges of data values.

2.2. Proposed Approach

In our approach the server uses its knowledge of the topology of G
to partition users into clusters. Since users are willing to share in-
formation only with immediate neighbors under the one-hop trust
model, each cluster must have one user who is a neighbor of every
user in the cluster. Equivalently, each cluster must be a star sub-
graph of G. A star is a tree with maximum diameter 2 [23]. Given
a friendship graph G, we first identify a spanning star forest of the
graph G, i.e., a spanning subgraph of G whose connected compo-
nents are stars. We denote these stars by S1, S2, . . . , Sr , where r
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Fig. 1. (a) An example of a friendship graph G with 7 nodes. (b)
A spanning star forest of G in (a). Square shaped nodes and thick
edges represent centers and edges of the stars. Each star represents
a circle of trust (enclosed by a gray area in the figure). Each star
center collects the information from neighboring nodes in the star
and sends the sum of the collected information to the server.

is the number of connected components in the spanning subgraph.
We call C = {S1, S2, . . . , Sr} a star cover of graph G. Note that
the stars cover the nodes of the graph, but not necessarily the edges.
In general star covers are not unique. The exact criterion and algo-
rithm we use for choosing the appropriate star cover are described
in Sec. 4. We denote by cj the center node of star Sj , and by kj

the number of vertices in Sj . The center nodes c1, c2, . . . , cr , also
called star centers, form a dominating set for G, i.e., every vertex in
G is at most one hop away from one of the star centers [23]. We
use s(i) to denote the index of the star to which user i is assigned.
Figure 1(b) shows an example star cover C = {S1, S2} of the graph
in Figure 1(a) with r = 2 stars. Star S1 consists of k1 = 3 nodes
v5, v6, v7, where v5 is the center node (c1 = v5), and star S2 con-
sists of k2 = 4 nodes v1, v2, v3, v4, where v3 is the center node
(c2 = v3).

By partitioning the graph into disjoint star-shaped clusters we
effectively partition users into disjoint circles of trust where all users
in each circle (i.e., star) trusts the user represented by the star center.
In our scheme, the center node cj of each star Sj collects the private
information of all the nodes, computes the sum

Zj =
X

vi∈Sj

Xi

of the collected information and sends a perturbed version ( eZj ) of
it to the server. The server computes sums up the local values it
receives from the star centers to obtain

bXsum =

rX
j=1

eZj ,

which is an unbiased estimate for Xsum in Eq. (2) when the added
perturbations are zero-mean. In our approach, we assume that the
server knows the friendship graph topology and that it is the entity
responsible for performing the star cover.

3. PRIVACY-ACCURACY TRADEOFF

In this section we quantify the privacy guarantee and accuracy ob-
tained using our scheme, and compare them with schemes under
Regime I that do not exploit inter-user trust.

3.1. Differential Privacy (DP) Metric

We propose an algorithm for computing the sum of users’ data that
guarantees ε-differential privacy (ε-DP) to all the users with respect
to the server. Let X = [X1, X2, . . . , XN ] denote the vector of
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users’ private information. Denote by T (X) the set of all informa-
tion available at the server. Vector T (X) is essentially a vector of
size r that contains all the uploaded values by the star centers. Our
proposed algorithm is ε-DP (i.e., all users enjoy ε-DP) if

P [T (X) = t] ≤ exp(ε) × P

h
T (X

′

) = t

i
(3)

for all pairs X ,X
′

which differ in only one entry, and for all t ∈
�r , where by abuse of notation we use P [T (X) = t] to denote the
probability density function of T (X) computed at t [24].

Differential privacy guarantee enjoyed by a user gets stronger as
ε decreases to 0. Differential privacy quantifies a worst-case guar-
antee with respect to an adversary who may have access to auxiliary
information about the users’ data. In particular, even if all users out-
side the circle of trust of a user decide to collude and report their
data to an adversary, the user still has ε-DP. Therefore, our approach
is robust to malicious nodes outside a user’s circle of trust. Further-
more, DP is composable. That is, joint computation of functions
f1, f2, . . . , fq , each with ε1, ε2, . . . , εq-DP guarantee, respectively,
yields

`Pq

l=1
εl

´
-DP guarantee [25].

A popular mechanism to guarantee differential privacy [12, 26]
in function computation is via the Laplacian mechanism. In this
approach, the value of the computation is perturbed using addi-
tive Laplacian noise. In order to guarantee ε-DP for computing
a real-valued function f via the Laplacian mechanism, the result
of the computation f(X) is perturbed by adding to it a noise
term that follows a Laplacian distribution with mean 0 and variance
2 (Δ(f)/ε)2, where Δ(f) is the sensitivity of the function f defined
as

Δ(f) = max
X ,X

′

˛̨̨
f(X) − f(X

′

)
˛̨̨
, (4)

where the maximum is taken over all pairs X ,X
′

which differ in
only one entry. The Laplacian mechanism is known to be optimal
for high privacy scenario (ε → 0) [27]. For the purpose of analysis,
we restrict ourselves to the Laplacian mechanism.

3.2. Quantifying Accuracy

To guarantee ε-DP, each star center adopts a Laplacian mechanism
while reporting the value of the local computation to the server. In
the case of sum function, it is easy to see that it suffices that each
star center cj uploads

eZj = Zj + nj , (5)

to the server, where nj is zero-mean Laplacian noise with variance
σ2

n = 2|S|2/ε2.
At the server, an estimate bXsum of Xsum is computed bybXsum =

Pr

j=1
eZj . There are r independent noise terms added to

Xsum, hence the MSE in estimating Xsum using bXsum, which is
defined as our accuracy measure, is

MSE( bXsum) = 2r|S|2/ε2. (6)

Note that a small MSE indicates that Xsum can be accurately es-
timated, i.e., high accuracy. It is immediately seen that if users de-
mand more privacy (smaller ε), the accuracy in computing Xsum de-
grades, which indicates the privacy-accuracy tradeoff of our scheme.
In addition, for a fixed ε, the accuracy improves as r decreases. In
other words, a star cover with fewer star components, performs bet-
ter in the privacy-accuracy tradeoff compared to a star cover with
more star components.

For comparison, now consider a perturbation-based scheme un-
der Regime I that does not exploit inter-user trust. In such a scheme,
as every user takes care of her privacy, in order to guarantee ε-DP to
her data, she has to communicate Xi to the server in an ε-DP way.
The obtained accuracy is thus

MSE( bXsum) = 2N |S|2/ε2, (7)

which is a factor N/r worse than that obtained under our scheme.
The Relative Accuracy Gain (RAG) under the Laplacian mechanism
is thus

RAG =
N

r
. (8)

Our scheme thus performs better in the privacy-accuracy tradeoff
compared to the perturbation-based scheme in Regime I that does
not exploit inter-user trust.

3.3. Extensions of the Method

Our approach can be easily adapted for other divisible functions sat-
isfying (1). For example, in the case of the maximum (resp., mini-
mum) function, each star center uploads to the server the maximum
(resp., minimum) of the data within the star in an ε-DP way. Sup-
pose that in Eq. (1) M = r and {Zj}1≤j≤r

represents the partition
induced by the star cover, then the amount of noise added by the star
center node cj to the uploaded data in Eq. (5) is determined from
the sensitivity of hj . Furthermore, if one or more such functions
are computed, we can quantify the privacy guarantee of our scheme
from the composability property of DP.

The privacy guarantee of our scheme can be enhanced when
combined with other privacy-preserving mechanisms. For instance,
privacy of the proposed scheme with respect to the server can be
boosted by using an SMC protocol [20, 21] for the communication
between the star centers and the server. In addition, an extra layer of
protection with respect to other users in the cluster can be added if
the users in each star adopt an SMC scheme when reporting the data
to their star-center.

4. STAR COVERING ALGORITHM

For a general graph G, the problem of finding a star cover as dis-
cussed in Sec. 2.2 does not admit a unique solution. A natural choice
for the star cover is one that minimizes the number of star compo-
nents r. The following proposition is immediate from Sec. 3.

Proposition 1. Consider a star cover C∗ that has the minimum num-
ber of star components r among all the possible star covers for a
given graph G. Equivalently, C∗ is a star cover whose centers form
a minimum dominating set (MDS) for G. Then, the MSE in estimat-
ing the sum of users’ private information is minimized (maximum
accuracy) where ε-DP is guaranteed to all the users. �

An MDS of a graph is a dominating set with the minimum
number of vertices. Although finding an MDS for a graph is NP-
complete, it can be approximated. In our experiments, we use the
greedy approximation algorithm [28] initialized with a warm start
obtained from the solution to a linear program (LP) approxima-
tion [29] of the MDS problem. The solution to the LP provides
also a lower-bound on the MDS size. Note that C∗ in Proposition 1
may not be unique. Thus even if we identify an approximate MDS
for the friendship graph, we still have the task of assigning all the
users in the network to the star centers in order to have a complete
description of the star cover. We assign the remaining nodes such
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that the workload of the star centers is balanced. The computation
and communication load for each star center node is proportional to
the number of users in its star (the star size). Thus the maximum
workload among all users can be minimized by choosing the assign-
ment that minimizes the maximum size of all stars, which is called
the rooted minmax star cover problem

Our overall algorithm for finding a star cover is as follows. In
the first stage, we find a set of r star centers (also referred to as star
roots) that approximate an MDS. In the second stage, we run our
rooted minmax star cover algorithm described in Algorithm 1. In
the algorithm, Δmax denotes the maximum degree of the roots in G,
and GB denotes the bipartite graph consisting of the set of r roots,
the set of N−r remaining nodes and the edges between the two sets.
For integer-valued vector REP = [REP(1), REP(2), . . . , REP(r)],
we use GREP

B to denote the bipartite graph obtained from GB by
replicating every root i together with all its incident edges REP(i)
times. Our rooted minmax star cover algorithm is based on replicat-
ing the star centers in GREP

B and performing a maximum cardinality
matching; user i is assigned to star center cj iff node i is matched
to one of the replicates of root cj . The algorithm keeps decreasing
the number of root replicates in a greedy manner such that the max-
imum number of times a star center is replicated is minimized. The
algorithm terminates as soon as a replicated root is not matched to
any user. We have the following theorem. We do not include a proof
due to space constraints.

Theorem 1. Given r star centers (roots) such that the minimum
degree of ri’s is at least 2, the minmax star cover algorithm in Al-
gorithm 1 outputs a star cover with the given roots such that the size
k
∗

of the largest star is minimized. �

REP(s) ← Δmax for s = 1, 2, . . . , r;
for k∗ = Δmax to 1 do

while ∃ci s.t. REP(i) > k∗ do
REP(i) ← REP(i) − 1;
M ← A maximum matching on GREP

B ;
if |M | < N − r then

REP(i) ← REP(i) + 1;

k
∗
← k∗ + 1;

M ← A maximum matching on GREP

B ;
foreach matched user in M do

Assign user to star with center cj if she is
matched to a replicate of cj ;

end
Exit the algorithm;

end
end

end
Algorithm 1: Our proposed rooted minmax star cover algorithm.

In the next section we apply the proposed star covering algo-
rithm on friendship graphs obtained from real datasets.

5. EXPERIMENTS AND DISCUSSION

We apply our star covering scheme on two datasets. Dataset A is a
collection of several users’ ego networks, i.e., the nodes in the graph
are a few randomly chosen users and their friends, collected from
Google+ [30]. Dataset B consisting of friendship relationships of
Pokec, a popular social network [31]. For each dataset, we built

G Graph Statistics k
∗

RAG
N δavr C r

A 95897 30.4 0.40 153 3278 626.7

B 1198274 13.9 0.11 209360 223 5.72

Table 1. Statistics of the friendship graphs obtained from the
datasets; resulting minmax workload k

∗
; and the Relative Accuracy

Gain (RAG) (refer to Eq. (8)) of our scheme relative to perturbation-
based schemes under Regime I that do not exploit inter-user trust.

graph G by drawing an edge between any pair of users who are
friends with each other (bidirectional friendships) and discarding
all isolated nodes. We then found an approximate MDS (AMDS)
for each graph and ran our rooted minmax star cover algorithm. In
Table 1 we present statistics of the above graphs including number
of nodes N , average degree δavr and average clustering coefficient
C [32], the AMDS size r, and the minmax workload k

∗
. The ob-

tained AMDS sizes are within 0.7% of the LP lower-bound. As the
graph for dataset A is a collection of a few users’ ego networks,
the graph is inherently well connected. Thus, the graph has a small
MDS.

When all users are guaranteed ε-DP, the Relative Accuracy
Gain (RAG) (refer to Eq. (8)) in estimating Xsum compared to
perturbation-based schemes under Regime I is 626.7 and 5.72 for
datasets A and B, respectively. Hence, our proposed scheme per-
forms much better, especially for dataset A, compared to perturbation-
based schemes under Regime I that do not exploit inter-user trust.
The benefits of our scheme are enjoyed especially when the size r of
the AMDS is small compared to the total number of users N . This
happens for example when the graph is well-connected such as that
for dataset A.

6. CONCLUSION AND FUTURE WORK

We studied the problem of privacy-preserving computation of func-
tions of data belonging to users in a social network under the as-
sumption that users are willing to trust their friends with their data.
Our approach is based on partitioning the friendship graph into dis-
joint circles of trust, and performing local computations within each
circle. In a setting where all users are guaranteed ε-differential pri-
vacy, the distortion added to the computed global function under our
scheme is much lower compared to that under a scheme that does
not exploit inter-user trust. In addition, our algorithm for partition-
ing the friendship graph ensures that the workload on star centers
are balanced. From the experimental evaluation of our algorithms on
real social networks, we observed that the algorithm provides good
privacy-accuracy tradeoff when the graph is well-connected. As we
discussed it is also possible to extend our scheme to more general
functions. We are currently exploring applications of this scheme in
social computing applications like crowd-sourcing and participatory
sensing.
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