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a b s t r a c t

In this paper, we consider the problem of manifold approximation with affine subspaces.
Our objective is to discover a set of low dimensional affine subspaces that represent
manifold data accurately while preserving the manifold's structure. For this purpose,
we employ a greedy technique that partitions manifold samples into groups, which are
approximated by low dimensional subspaces. We start by considering each manifold
sample as a different group and we use the difference of local tangents to determine
appropriate group mergings. We repeat this procedure until we reach the desired number
of sample groups. The best low dimensional affine subspaces corresponding to the final
groups constitute our approximate manifold representation. Our experiments verify the
effectiveness of the proposed scheme and show its superior performance compared to
state-of-the-art methods for manifold approximation.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

The curse of dimensionality is one of the most funda-
mental issues that researchers have to face across various
data processing disciplines. High dimensional data is often
difficult to manipulate: it might belong to huge parametric
spaces that are challenging to exploit while the corre-
sponding models can be complex enough to make learning
challenging and prone to over-fitting. However, it is not
rare that the data follows some underlying structure,
which can lead to more efficient data representation and
analysis if modeled properly.

The underlying structure of signals of a given family can
often be described adequately by a manifold model that has
a smaller dimensionality than the signal space. Prominent
examples are signals that are related by transformations, like
rygianni),
images captured under different viewpoints in a 3D scene, or
signals that represent different observations of the same
physical phenomenon like EEG and ECG data. Manifold
models have been successfully used in many different
applications like transformation-invariant classification,
recognition and dimensionality reduction [1–3].

In general, manifolds are topological spaces that locally
resemble a Euclidean space. Therefore, although they might
be extremely complicated structures, they have locally, i.e., in
the neighborhood of a point, the same characteristics as the
usual Euclidean space. In this work, we are going to consider
d-dimensional, differentiable manifolds that are embedded
into a higher dimensional Euclidean space, RN ;Nbd. Intui-
tively, one can think of a d-dimensional manifold embedded
into RN as the generalization of a surface in N dimensions:
it is a set of points that locally seem to live in Rd but that
macroscopically synthesize a structure living into RN . For
example, a sphere in R3 and a circle in R2 are both manifolds
of dimensions 2 and 1 respectively. Although manifolds are
appealing for effective data representation, their unknown
and usually strongly non-linear structure makes their
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manipulation quite challenging. There are cases where an
analytical model can represent the manifold, like a model
built on linear combinations of atoms coming from a pre-
defined dictionary [4]. However, an analytical model is
unfortunately not always available. A workaround consists
in trying to infer a global, data-driven parametrization
scheme for the manifold by mapping the manifold data from
the original space to a low-dimensional parametric space. The
problem of unveiling such a parametrization is called mani-
fold learning [1,2].

However, it is in general hard to compute a universal
manifold representation that is accurate for all data in
the datasets. In general, it is not possible to represent all
the non-linearities of the manifold by one single mapping
function. Therefore, instead of using just one global
scheme, it is often preferable to employ a set of simpler
structures to approximate the manifold's geometry. This
can be done in the original space of the manifold. The
objective of the approximation is to create a manifold
model that is as simple as possible while preserving the
most crucial characteristic of a manifold, namely its
geometrical shape. An example of such an approximation
for a 1D manifold is shown in Fig. 1a, where a set of lines
approximates the spiral shape.

In this paper, we approximate generic manifolds with
simple models that are affine subspaces (flats). Such
a choice is motivated by the locally linear character of
manifolds as well as the simplicity and efficiency of flats
for performing local computations like projections. Our
objective is to compute a set of low dimensional flats
that represent the data as accurately as possible, and at the
same time preserves the geometry of the underlying
manifold. We formulate the manifold approximation pro-
blem as a constrained clustering problem for manifold
samples. The constraints are related to the underlying
geometry of the manifold, which is represented by the
neighborhood graph of the data samples. We borrow
elements of the constrained clustering theory to motivate
the use of a greedy scheme for manifold approximation.
Fig. 1. Manifold approximation illustration. On the left, we have an example of
different colors represent the different groups of samples, each approximated by
not align well with the manifold structure, as a result of the median k-flats alg
approximation example. (For interpretation of the references to color in this fig
We first propose to relate the capability of a set of points to
be represented by a flat, with the variance of the tangents
at these points. Then, we use the difference of tangents
to uncover groups of points that comply with the low
dimensionality of flats. The partitioning is done in a
bottom-up manner where each manifold sample is con-
sidered as a different group at the beginning. Groups are
then iteratively merged until their number reduces to the
desired value. We have tested our algorithm on both
synthetic and real data where it gives a superior perfor-
mance compared to state-of-the-art manifold approxima-
tion techniques.

The rest of the paper is organized as follows. In Section 2,
we discuss the related work in manifold approximation and
other relevant fields like manifold learning and hybrid linear
modeling. In Section 3, we give some mathematical defini-
tions related to manifolds and tangent spaces, which are
essential for the work presented in this paper. In Section 4,
we motivate the use of a greedy strategy with concepts from
constrained clustering theory and we present our novel
problem formulation for the manifold approximation. We
present our approximation algorithm in detail in Section 5.
In Section 6, we describe the experimental setup and the
results of our experiments. Finally, in Section 7, we provide
concluding remarks.
2. Related work

Data representationwith affine models has received quite
some attention lately. Relative approaches usually fall under
the name of either subspace clustering or hybrid linear
modeling. Their objective is to find a set of affine models
explaining the different data sources, i.e., to cluster the data
into groups so that each group can be well represented by a
low-dimensional affine space. A common approach is to
use an iterative scheme to alternate between steps of data
segmentation and subspace estimation aiming at either
a valid approximation by lines of a 1D manifold embedded into R2. The
a line. On the right, we have an example where the approximation does
orithm [6]. (a) Good manifold approximation example. (b) Bad manifold
ure caption, the reader is referred to the web version of this paper.)



S. Karygianni, P. Frossard / Signal Processing 104 (2014) 232–247234
minimizing the sum of reconstruction errors [5,6] or max-
imizing the likelihood of the data under a probabilistic
model, like probabilistic PCA [7]. Alternatively, different
kinds of algebro-geometric approaches have also been pro-
posed. An interesting formulation has been presented in [8],
where the problem of subspace clustering is transformed
into a problem of fitting and manipulating polynomials.
Moreover, in [9,10], the spectral analysis of an appropriately
defined similarity matrix over the data is used to uncover the
underlying low dimensional structures as well as the parti-
tion that favors them. Recently, in [11], the use of spectral
analysis is combined with a multiscale analysis of the growth
rate of the local neighborhoods' eigenvalues, so that the
appropriate clustering as well as the model parameters,
number and dimensionality of the subspaces, are simulta-
neously recovered from the data. While they are quite
successful at times, the above methods apply mainly to cases
where data is generated from different low dimensional
subspaces that do not necessarily form a manifold. And as
such, they uncover a set of linear spaces that do not
necessarily comply with the manifold structure, such as the
set of lines shown in Fig. 1b.

As far as manifold-driven data is concerned, there is a
great variety of works in the so-called fields of manifold
learning and dimensionality reduction. The goal of mani-
fold learning is to devise a low dimensional and global
parametrization for datasets that lie on high dimensional
non-linear manifolds, while preserving some properties of
the underlying manifold. Two pioneer works in that field
are the Isomap [1] and the LLE algorithm [12]. In Isomap,
the parametrization is uncovered in a way that preserves
the geodesic distances between the points while in LLE
the focus is on preserving the local linear properties of
neighborhoods. Other well known approaches that aim at
preserving local properties of the points' neighborhoods
are provided by the Laplacian Eigenmaps (LE) [13] and the
Hessian Eigenmaps (HLLE) [14]. Recently, these methods
have been extended to points lying on Riemmanian mani-
folds as opposed to Euclidean spaces [2]. This opens the
range of possible applications for manifold-based repre-
sentations. A detailed list of the most popular algorithms
for manifold learning can be found in [15,16], along
with interesting comments on their relative strengths
and weaknesses.

In manifold approximation, the goal is to represent the
manifold structure in the original space. The ultimate
target is not a global parametrization, but rather the
definition of a set of local affine subspaces that accurately
approximate the original geometry accurately. Although
the locally linear nature of manifolds has been used as a
tool for learning a global parametrization by aligning or
combining local probabilistic data models (e.g., [17,18]),
only a few works so far have tried to create a model of the
manifold in the original space while preserving its struc-
tural properties. Two such examples are the works of
Wang and Chen [3] and Fan and Yeung [19]. In [3], the
authors introduce the Hierarchical Divisive Clustering
(HDC) algorithm, which is a method for hierarchically
partitioning the data by dividing highly non-linear clus-
ters. As a linearity measure, it uses the deviation between
the Euclidean and geodesic distances. In [19], the
clustering is performed in a bottom-up manner, named
Hierarchical Agglomerative Clustering (HAC), where again
the geodesic distances are used to express the underlying
manifold structure.

In our work, we have chosen a new bottom-up
approach that uses a different linearity measure, namely
the variance of the tangent spaces. As it will be shown in
the next section, this measure emerges naturally from the
definition of the local properties of a manifold while both
linearity measures in [19,3] are more simplistic. The
importance of the tangent spaces for manifold related
tasks has been lately recognized by many researchers. In
[20], the authors use the tangent spaces to infer valid
parametrizations of a manifold. Moreover, in [21], the
tangent computed by a face image and its perturbed
versions is used to capture the local geometry of the
corresponding data manifold; faces are then classified
based on the distances between their tangents. In our
work, however, tangents are computed based on a set of
neighboring data. Similarly, the authors in [22] focus on
the reliable estimation of the tangent spaces from the data.
They also incorporate the tangent distance into a variation
of a k-means algorithm to classify samples into linear
groups, which is another piece of evidence that tangent
distances can be used for identifying linear regions on
manifolds. Our approach, however, specifically addresses
the problem of linear manifold approximation as it effec-
tively combines the tangent distances with the theory of
constrained clustering towards the design of an accurate
manifold model.
3. Preliminaries

The manifold approximation method proposed in this
paper uses d-dimensional linear subspaces to approximate
the distribution of the data, which is modeled as a
differential manifold. At the same time, these linear sub-
spaces form a Riemannian manifold as well, called the
Grassmann manifold. The Grassmann manifold is often
used when signals are modeled with linear low-dimen-
sional models such as in [23] and in [3]. While many
metrics exist for computing distances between linear
subspaces [24], the most natural one is the geodesic
distance on the Grassmann manifold that is computed
based on angles between subspaces. In the rest of this
section, we will provide some more basic definitions
necessary for understanding our method, along with the
description of proper metrics.

First of all, a set MDRN is a d-dimensional differentiable
manifold [25] iff 8xAM there exist open sets VARN with
xAV and WARd as well as a one-to-one, differentiable
function f :W-RN with continuous inverse such that
1.
 f ðWÞ ¼M \ V , and

2.
 f 0ðyÞ ¼Df ðyÞ, the Jacobian matrix of f, has rank d,

8yAW .
The function f is called a coordinate system at x. Assuming
that f ðaÞ ¼ x, the d-rank Jacobian matrix Df(x) and the
corresponding linear transformation f n:R

d
a-RN

x define a
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d-dimensional subspace of RN
x , which is the tangent space

of M at x denoted as Mx. Instead of working with a set of
d-dimensional subspaces that are positioned at point x, it
is more convenient to translate all of them to the origin of
RN . For the rest of the paper, Mx refers to the tangent space
of x translated to the origin of RN .

After the shifting, the tangent spaces of M belong to
the space of all d-dimensional linear subspaces of RN; this
space is called the Grassmann manifold and it is denoted
as GN;d [26]. In GN;d, the geodesic distance (arc length)
between two subspaces is computed based on their
principal angles [27]. In particular, we can define the
distance between two tangents Mx and My as

DT ðMx;MyÞ ¼ ∑
d

i ¼ 1
θ2i

 !2

¼ ‖θ‖2 ð1Þ

where θ¼ fθ1;…; θdg is the vector of the principal angles of
Mx and My.

Finally, we describe the notion of the mean tangent of a
set of samples Ci. To define such a quantity, we can use the
generalization of the arithmetic mean to manifolds. To be
more specific, the mean or center of a set C of points in the
metric space S (with respect to a distance D) has been
given by Karcher in [28] as the element mCAS that
minimizes the sum of square distances D's to the points
x in the set, i.e.,

mC ¼ arg min
sA S

∑
xAC

D2ðx; sÞ ð2Þ

For a set Ci, where each sample xACi has a tangent space
Mx. The mean tangent MCi

can be computed using the
geodesic distance introduced in Eq. (1). Hence, Eq. (2)
translates into

MCi
¼ arg min

MAGN;d

∑
xACi

D2
T ðMx;MCi

Þ ð3Þ

There are several methods that can be used to solve for
MCi

in Eq. (3). In this work, we have used the algorithm
based on the singular value decomposition [29].
1 The term ‘predicate’ is used to refer to boolean valued functions.
4. Manifold approximation problem

4.1. General framework

Equipped with the above definitions, we can now
present our problem formulation. We consider the pro-
blem of approximating a d-dimensional manifold M,
embedded into RN , with a set of d-dimensional affine
subspaces, which we call flats. The dimension d is an
external parameter in our problem; in practice, it is either
specific to the application at hand or estimated a priori
from the data. The manifold is represented by the set of
samples X ¼ fxkARN ; kA ½1;m�g and the undirected and
symmetric neighborhood graph GX ¼ GðX ; EÞ, which repre-
sents the manifold's geometry by connecting neighbor
samples on the manifold. Our objective is to uncover a
partition of X into L clusters, CLðX Þ ¼ fCi; iA ½1;L�g, so that
each cluster can be well represented by a d-dimensional
flat that respects the underlying geometry of the manifold.
The number of clusters L is also specific to the target
application; it could also be inferred from the data through
an iterative procedure that stops when the approximation
error reaches a pre-defined threshold. In this paper, we
simply consider that the number of clusters is given as an
external parameter to the algorithm.
4.2. Feasible partitions

In order for CLðX Þ to be a partition of X , the involved
clusters should not overlap and they should cover the
whole set X , i.e., Cj \ Ci ¼∅; 8 ia j and ⋃L

i ¼ 1Ci ¼X .
There are many different ways to partition a set into L
clusters. However, not all possible partitions of X are valid
in our case since we are interested only in partitions that
respect the underlying geometry of the manifold. In
particular, we would like to ignore the partitions whose
clusters spread over different regions of the manifold as
the resulting flats do not comply with the local manifold
structure, although these clusters can be approximated
well with flats. An example of such a bad partitioning is
illustrated in Fig. 1b.

In order to check the compliance of a partition CLðXÞ
with the manifold's shape we can use the graph GX . Based
on the above description, a sufficient condition for a
partition to be valid is to have clusters with connected
subgraphs. To be more specific, each cluster's subgraph is
defined as GCi

¼ GX ðCi; EiÞ, where Ei ¼ faijAE: xi; xjACig is
the set of edges in E with both endpoints in Ci. Then, the
subgraph GCi

is connected if every pair of nodes in Ci is
connected with a path in Ei.

The set of all partitions that fulfill this condition, i.e.,
the ‘good’ partitions, is called the feasible set of order L and
denoted by ΦLðXÞ. The corresponding feasibility predi-
cate,1 ΦX ðCLÞ � CLAΦLðX Þ, is then defined as

ΦX ðCLÞ ¼ ⋀
Ci ACL

ϕðCiÞ

where ϕðCiÞ ¼
true if GCi

is connected
false if GCi

is not connected;

(
ð4Þ

where the symbol 4 stands for logical addition.
In what follows, we are proposing a bottom-up

approach we therefore need a rule that permits us to
merge clusters while preserving the feasibility of the
resulting partition. To this end, we define the fusibility
predicate ψðCi;CjÞ that expresses whether two clusters Ci
and Cj are ‘related’, i.e., they could be merged. It is closely
related with the feasibility predicate ϕ of Eq. (4) by the
following property of binary heredity:

if Ci;Cja|; Ci \ Cj ¼ |; ϕðCiÞ4ϕðCjÞ and
ψðCi;CjÞ; then ϕðCi [ CjÞ ð5Þ

This property means that the fusion of two ‘good’ and
‘related’ clusters should give a ‘good’ cluster. In our case,
the ‘goodness’ of a cluster is defined in (4) and is related to
the connectivity of the clusters’ graph GC. Therefore, an
appropriate choice for the ‘related’ predicate is to make
sure that the graph corresponding to the union of the two
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clusters is connected. A sufficient condition consists in the
presence of an edge between any sample in Ci and any
sample in Cj. Therefore, the fusibility predicate becomes

ψðCi;CjÞ ¼
true if Ci;Cj have an edge connecting them
false otherwise:

(

ð6Þ

4.3. Evaluation of feasible partitions

Equipped with the definition of feasible partitions and
with a method to create new feasible partitions from
existing ones through merging fusible clusters, we now
define a way to evaluate the effectiveness of a feasible
partition in capturing the manifold's local geometry. We
first need a criterion function P that is non-negative,
distributive over the clusters in C and zero for the case
of single-element clusters, i.e.,

PðCÞ ¼ ∑
Ci AC

pðCiÞ with pðCiÞZ0 and pðfxgÞ ¼ 0; 8xAX :

ð7Þ
The function pðCiÞ, which represents the distribution of P
over the clusters in a partition, has to be non-negative for
all clusters and zero for single-element clusters. In our
case, the goal is to uncover clusters that can be well-
represented by d-dimensional flats; therefore, the function
p should be measuring how well the points in the
corresponding cluster can be represented by a linear
d-dimensional space.

From the definition of manifolds in Section 3, we can
observe that the regions of the manifold that can be well
represented by linear d-dimensional spaces are the ones
for which the function f is linear. In such a case, we
have the Jacobian matrices Df ðaÞ ¼Df ðbÞ; 8a; bAW , which
means that the tangent spaces of all points xAM \ V
coincide when they are seen as subspaces in RN . Therefore,
an appropriate measure of the linearity of a manifold
region is the variability of the tangent spaces in it. Hence,
we introduce a variance-based criterion function pðCiÞ that
measures the variance of the tangents of the samples in a
cluster Ci, i.e.,

pðCiÞ ¼ ∑
xACi

D2
T ðMCi

;MxÞ ð8Þ

where MCi
is the mean tangent over the tangents of the

samples in Ci and DT is the geodesic distance on the
Grassman manifold given in Eq. (1).
4.4. Problem formulation

We now formalize our manifold approximation objec-
tive as the problem of finding the feasible partition Cn

LðX Þ
that minimizes P, i.e.,

Cn

LðXÞ ¼ argmin
CAΦLðX Þ

PðCÞ ¼ argmin
CAΦLðX Þ

∑
Ci AC

pðCiÞ ð9Þ

By substituting the exact form of the criterion function
(8) in (9) we get the following constrained clustering
problem:

Cn

LðXÞ ¼ argmin
CAΦL

∑
Ci AC

∑
xACi

D2
T ðMCi

;MxÞ ð10Þ

where ΦL is defined in (4), DT is the geodesic distance on
the Grassman manifold and MCi

is the mean tangent of
cluster Ci.

The problem of Eq. (9) can be solved with dynamic
programming, i.e. by incrementally creating the optimal
partitions of different sizes starting with size 1 and
exploring all possible ways to scale up. To be more specific,
from [30], the constrained clustering problem of Eq. (9)
can be expressed with the generalized Jensen equality [31]:

Cn

LðXÞ ¼
fXg; L¼ 1
Cn

L�1ðX \CnÞ [ fCng; L41

(
ð11Þ

where

Cn ¼ argmin
| � C � X

( CAΦL� 1 ðX \CÞ:C [ fCgAΦL ðX Þ

P X \Cð Þþp Cð Þð Þ ð12Þ

The symbol \ stands for set subtraction and [ for set
addition. This is a dynamic programming equation that
may lead to polynomial time solutions under certain con-
straints, depending on the characteristics of the clustering
problem [32]. However, in the general case, this approach
gives rise to algorithms that have exponential time
complexity.

An alternative way of solving problems of the form of
Eq. (9) is presented in [33]. It allows for more efficient, but
less accurate, algorithms as it proposes the use of a greedy
framework instead of the dynamic programming one.
We opt for such an alternative approach for solving the
problem in Eq. (9).

In order to get to our greedy framework, we need a
measure for comparing clusters and deciding on proper
merging choices. Thus, we define the dissimilarity mea-
sure d: ðCi;CjÞ-Rþ

0 as the difference in the criterion
function before and after the merging of two clusters, i.e.,

dðCi;CjÞ ¼ pðCi [ CjÞ�pðCiÞ�pðCjÞ; ð13Þ

assuming that the merging of any two fusible clusters
always gives rise to a cluster with a higher score in terms
of the criterion function. Under some mild assumptions on
the relations between P, d and Φ [33], we can now rewrite
Eq. (9) as

Cn

LðXÞ ¼ ðC0
Lþ1ðX Þ\fC0

i;C
0
jgÞ [ fC0

i [ C0
jg ð14Þ

where

C0
Lþ1 Xð Þ;C0

i;C
0
j

� �
¼ argmin

Ci ;Cj A C
CAΦLþ 1

ψðCi ;Cj Þ is true

P Cð Þþd Ci;Cj
� �� �Þ

This equation still suggests a dynamic programming
solution. The difference with Eq. (11) is that in Eq. (14) we
move from higher values of L to lower ones, i.e., in order to
find the best partition of size L, we check all partitions of
size Lþ1 for the pair of fusible clusters that can be merged
with the minimum cost.

From Eq. (14), it is now straightforward to derive a
greedy approximation strategy for the clustering problem



Fig. 2. The block diagram of the system.
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by eliminating the search over the set ΦLþ1, i.e.,

ĈLðX Þ ¼ ðĈLþ1ðX Þ\fC0
i;C

0
jgÞ [ fC0

i [ C 0
jg ð15Þ

where

ðC0
i;C

0
jÞ ¼ argmin

Ci ;Cj A ĈLþ 1 ðXÞ
ψðCi ;Cj Þ is true

d Ci;Cj
� �

With this approach, we reduce significantly the com-
putational complexity of the scheme, as we do not per-
form an exhaustive search over all possible partitions of
size Lþ1 anymore. Instead, we rely on one partition of
size Lþ1, the ĈLþ1ðXÞ, and perform a search over all
fusible pairs of clusters in this one. However, as it is often
the case with greedy strategies, we cannot guarantee the
optimality of the resulting partitions ĈLðX Þ anymore.

5. Greedy cluster merging for locally
linear approximation

Following the greedy strategy that is introduced in the
previous section, our manifold approximation algorithm is
based on grouping the manifold samples X according to
local tangent spaces, in order to minimize the cost func-
tion in Eq. (10) and to preserve the manifold geometry. Our
method is divided in two main steps. First, we perform the
necessary preprocessing steps on the samples in order to
compute the graph GX and the tangent spaces Mx. Second,
we use the graph GX and the tangent spaces Mx's to
greedily merge the samples into clusters according to
Eq. (15) until we reach a feasible partitionwith L components.
The block diagram of the method is presented in Fig. 2.

5.1. Tangent space

In the first step of the algorithm, our objective is to
compute the neighborhood graph GX and the local tangent
spaceMx for each sample xAX . There exist various ways to
construct GX . We have chosen to use the simplest one,
namely the k-nearest neighbor approach, i.e., we connect
each sample in X with its k-nearest neighbors. The
resulting graph GX is assumed to be undirected and
symmetric. For each sample x we can then define a
neighborhood Nx ¼ fyAX : ðx; yÞAEg as the set of samples
that are connected to x by an edge in GX . Then, we can
approximate the tangent space at x by the d-dimensional
subspace of RN that best approximates the data in Nx.
Equivalently, we compute Mx as the d-dimensional sub-
space of RN that best approximates the neighborhood N0

x
i.e., Nx shifted to the origin.2 In other words, we need to
compute the best d-rank approximation of the data matrix
corresponding to Nx

0
, denoted as ½N0

x �. Based on Eckart–
Young theorem [34], this approximation is equal to the
d-rank SVD of ½N0

x �. Therefore, the tangent space Mx

corresponds to the subspace spanned by the left eigen-
vectors of the d dominant singular values of ½N0

x �.
2 We apply a shift operator T
x! to the whole neighborhood Nx, where

x! is the vector corresponding to the sample x in RN . This operator moves
x to the origin and brings along all its neighborhood, while preserving all
distances in it.
The first step of our scheme is not the main focus of our
work. Its purpose is to infer the local geometry of the
manifold and as such can be replaced by any other
algorithm that achieves the same objective. We have made
simple choices, namely a k-nearest neighbor algorithm for
representing the local manifold geometry and SVD decom-
position for tangent computation. Our goal in this paper
is to show that the tangent space information can be
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effective in manifold approximation even when tangents
are computed with naive techniques. More sophisticated
techniques can be used for tangent computation e.g.
[35,22], as any further improvement of this step can only
benefit the overall algorithm. For example, one can
account for the noise in the data using the method shown
in Fig. 6. After computing the tangents with the process
described above, an additional improvement step is per-
formed by averaging neighboring tangents. In this way,
the final tangents are smoothed and the effect of noise
is almost canceled. However, such alternative solutions for
tangent space computation go beyond the scope of
this work.

5.2. Greedy merging

Once the graph and the tangent spaces have been
computed, we proceed with solving the optimization
problem presented in Eq. (10). In order to minimize the
cost function, we follow the method presented in Eq. (15).
We start with n¼ jX j separate clusters, one for each
sample. This is the optimal partition for n clusters, i.e.,
Cn

n ¼ ffxg; xAXg. Then, we reduce the number of clusters
iteratively, by merging the clusters Ci and Cj with the
minimum dissimilarity, until we reach the desired number
of clusters L.

At each iteration, there exists a set of possible mergings
between the clusters in C. The fusibility predicate, given in
Eq. (5), defines the sufficient condition for a pair of clusters
to be fusible: any cluster Ci can be merged with any of its
neighbors, i.e., the set NGCi

¼ fCj: (xACi; (yACj s:t ðx; yÞA
Eg. The dissimilarity between Ci and CjANGCi

is given by
Eq. (13) and Eq. (8) as

dðCi;CjÞ ¼ ∑
xACi [Cj

D2
T ðMx;MCi [Cj

Þ� ∑
xACi

D2
T ðMx;MCi

Þ

� ∑
xACj

D2
T ðMx;MCj

Þ

¼ ∑
xACi

D2
T ðMx;MCi [Cj

Þ� ∑
xACi

D2
T ðMx;MCi

Þ

þ ∑
xACj

D2
T ðMx;MCi [Cj

Þ� ∑
xACj

D2
T ðMx;MCj

Þ ð16Þ

Note that, since MCi
and MCj

are respectively the mean
tangents of Ci and Cj, each of them is the subspace that
minimizes the sum of the square distances from the
tangents in each cluster (see Eq. (2)). As a result, MCi [Cj

can only produce the same or a higher value than MCi

when measuring the sum of square distances from
the tangents in Ci. In other words, ∑xACi

D2
T ðMx;MCi [Cj

Þ is
greater or equal to ∑xACi

D2
T ðMx;MCi

Þ. The same holds for
the cluster Cj. Therefore, dðCi;CjÞ is always non-negative.

However, it is costly to compute Eq. (16) for all feasible
mergings as it requires the computation of the mean
tangent for all possible merged clusters. We would rather
use a measure that depends only on the information that is
already available to the algorithm, i.e., the means of the
clusters that we have computed so far and their distances
to the tangents in their clusters. Moreover, since we are
using a greedy bottom-up approach with an initial cost
equal to zero, we have to ensure that, at each iteration of
the algorithm, the chosen merging does only marginally
increase the overall cost. Therefore, an upper bound for
dðCi;CjÞ that depends only on the means of the existing
clusters would be a suitable approximate dissimilarity
measure ~dðCi;CjÞ for our algorithm. It would contribute
in reducing the complexity of the algorithm by limiting the
amount of necessary computations at each iteration.

In order to compute our approximate measure ~dðCi;CjÞ,
we need to perform a series of steps. First, we observe that

∑
xACi

D2
T ðMx;MCi [Cj

Þr ∑
xACi

D2
T ðMx;MCj

Þ; ð17Þ

which means that the mean tangent of Ci [ Cj is closer to
the mean tangent of Ci than the mean tangent of Cj. This
statement, which also holds if we interchange the clusters
Ci and Cj, is inevitably true. Indeed, by contradiction,

if ∑xACi
D2
T ðMx;MCi [Cj

Þ is larger than ∑xACi
D2
T ðMx;MCj

Þ,
then ∑xACi [Cj

D2
T ðMx;MCi [Cj

Þ is also strictly larger than

∑xACi [Cj
D2
T ðMx;MCj

Þ. But, this contradicts the optimal
character of MCi [Cj

for representing Ci [ Cj in terms of
the projection distance.

Then, by substituting Eq. (17), and its equivalent form
for Cj in Eq. (16), we have

dðCi;CjÞr ∑
xACi

½D2
T ðMx;MCj

Þ�D2
T ðMx;MCi

Þ�

þ ∑
xACj

½D2
T ðMx;MCi

Þ�D2
T ðMx;MCj

Þ� ð18Þ

Moreover, by the triangle inequality:

DT ðMx;MCi
ÞrDT ðMx;MCj

ÞþDT ðMCi
;MCj

Þ; 8xAX ð19Þ

DT ðMx;MCj
ÞrDT ðMx;MCi

ÞþDT ðMCi
;MCj

Þ; 8xAX ð20Þ
Taking the square of these inequalities and summing over
Cj and Ci respectively we get

∑
xACj

½D2
T ðMx;MCi

Þ�D2
T ðMx;MCj

Þ�

r2DT ðMCi
;MCj

Þ ∑
xACj

DT ðMx;MCj
ÞþjCjjD2

T ðMCi
;MCj

Þ

∑
xACi

½D2
T ðMx;MCj

Þ�D2
T ðMx;MCi

Þ�

r2DT ðMCi
;MCj

Þ ∑
xACi

DT ðMx;MCi
ÞþjCijD2

T ðMCi
;MCj

Þ

ð21Þ
Substituting Eq. (21) into Eq. (18) we finally have the
following upper bound for the dissimilarity measure:

dðCi;CjÞr ðjCijþjCjjÞD2
T ðMCi

;MCj
Þ

þ2DT ðMCi
;MCj

Þ ∑
xACi

DT ðMx;MCi
Þþ ∑

xACj

DT ðMx;MCj
Þ

" #
;

ð22Þ
which depends only on the pre-computed information.
Therefore, we can define our approximate dissimilarity
measure ~dðCi;CjÞ as

~dðCi;CjÞ ¼ ðjCijþjCjjÞD2
T ðMCi

;MCj
Þ

þ2DT ðMCi
;MCj

Þ ∑
xACi

DT ðMx;MCi
Þþ ∑

xACj

DT ðMx;MCj
Þ

" #
;

ð23Þ
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By comparing Eq. (23) with Eq. (16), we can observe
that Eq. (23) is indeed more computationally efficient as it
involves only the means of the existing clusters and not
those of the clusters after merging the fusible pairs. In our
algorithm, the costs for all possible mergings at each
iteration are thus computed according to Eq. (23). The
clusters with the minimum estimated merging cost are
then combined and the mean of the newly formed cluster
is computed as shown in Section 4.3. The procedure is then
repeated until we reach the desired number of clusters L.

At the end, each cluster represents a group of samples
that can be well approximated by a d-dimensional flat. We
compute the final flats for each cluster and we use the
subspace spanned by the left eigenvectors corresponding
to the d dominant singular values of each cluster's data
matrix as a representative subspace. The overall manifold
approximation algorithm is summarized in Algorithm 1.

Algorithm 1. Agglomerative clustering based on differ-
ences of tangents (ACDT), Part 1.

Input: X ; k;L; d
Step 1 nPreprocessing, Section 5.1n

1:
 Construct GðX ; EÞ by connecting each element in X with its

k-nearest neighbors.

2:
 for all xAX do

3:
 Nx ¼ fyAX : ðx; yÞAEg nCompute neighborhoodsn

4:
 ½N0

x � ¼USVT
where ½N0
x � is the data matrix formed by the elements in Nx

shifted to the origin of RN and U; S;V are the results of its
d-rank SVD.
5:
 Mx ¼U nCompute tangent spacesn

6:
 end for
Step 2 nGreedy computation of partition Cn

Ln

7:
 n¼ jX j, λ¼ 0, Cn

n ¼ ffxg: xAXg nInitializationn

8:
 for λon�L do nGreedy merging, Section 5.2n� �

9
 C0

i ;C
0
j ¼ argmin

Ci ;Cj A Cn
n� λ

ψ ðCi ;Cj Þ is true

~d Ci;Cj
� �

nEq. (23)n
10:
 Cn

n� λþ1 ¼ ðCn

n� λ\fC0
i;C

0
jgÞ [ fC0

i [ C0
jg
11:
 Compute MC0
i [C0

j
nEq. (3)n
12:
 λ¼ λþ1

13:
 end for

14:
 for CiACn

L do n Compute the final flats Fin

15:
 ½C0

mi
� ¼USVT
where mi is the sample mean of Ci, ½C0
mi
� is the data matrix

formed by the samples in Ci shifted by mi and U; S;V are the
results of its d-rank SVD.
16:
 Fi ¼U

17:
 end for
3 Hn and HL are the harmonic numbers of order n and L respectively.
Output: Cn

L , F

5.3. Computational complexity

We now analyze briefly the complexity of both versions
of the manifold approximation algorithm, that respectively
use the exact dissimilarity measure of Eq. (16) and the
approximate measure of Eq. (23). The preprocessing step
is the same for both schemes and it is skipped in the
following analysis. Then, the operations that are time
consuming in our scheme are the tangent distance com-
putations and the computation of mean tangents. In
the following we will consider that both have similar compu-
tational costs.
Computing the cost of a possible merging with Eq. (23)
requires only the computation of one additional tangent
distance at each step. Denoting by Kn� λ the number of
possible mergings in the clustering Cn� λ at step λ, the
complexity of one step of the greedy merging (line 9 in
Algorithm 1) requires Kn� λ computations of tangent dis-
tances. Then, the operation at line 11 also requires one
mean tangent computation plus jC0

i [ C0
jj tangent distance

computations for the newly formed cluster. Therefore,
the greedy merging (lines 8–12 in Algorithm 1) will
be performed with a time complexity of TapproxðnÞ ¼
Oð∑n�L

λ ¼ 1ð1þjC0
i [ C0

jjþKn� λÞÞ where n is the number of
data samples.

On the other hand, if the exact dissimilarity measure
was used, Eq. (16) would require one mean tangent
computation plus jC0

i [ C 0
jj tangent distance computations

for every possible merging. Then, after picking the win-
ning merging, no further actions would be required.
In total, the scheme would have a time complexity of
TexactðnÞ ¼O ∑n�L

λ ¼ 1ð1þjC 0
i [ C0

jjÞKn� λÞ
� �

.
To complete our analysis, we need to estimate the

number of possible mergings Kn� λ. Since, at each step
of the algorithm, we perform one merging operation, we
will have exactly n�λ clusters at step λ. Moreover, each
CiA Cn� λ will have on average a size equal to ~jCij ¼ n=j
Cn� λj ¼ n=ðn�λÞ and therefore we have that Ci has at most
kn=ðn�λÞ different neighbors. Thus, the number of possi-
ble mergings is at most Kn� λr1

2 Cn� λ kn= n�λð Þ ¼ 1
2kn

���� .
By substituting Kn� λ from above and jC0

i [ C0
jj with its

average in Tapprox(n) we get

Tapprox nð Þ ¼O ∑
n�L

λ ¼ 1
1þ2

n
n�λ

þ1
2
kn

� �� �

¼O ∑
n�L

λ ¼ 1

1
2
kn

� �
¼O n2� � ð24Þ

For the exact dissimilarity measure we have

Texact nð Þ ¼O ∑
n�L

λ ¼ 1
1þ n

n�λ
kn

� �� �

¼ Oðkn2ðHn�1�HL�1ÞÞ ¼Oðn2 ln nÞ ð25Þ

which is higher than the average running time of our
approximate algorithm.3 Therefore, we can clearly see that
the use of the approximate dissimilarity measure is ben-
eficial for the computational complexity of the algorithm.
6. Experimental results

We have conducted two different sets of experiments
to study the performance of our manifold approximation
scheme. In the first one, we have tested the performance
in approximating the manifold data for both synthetic and
real datasets. In the second one, we have studied the use of
the flats as projective spaces in the place of manifolds and
evaluated their discriminative power on the MNIST dataset
of handwritten digits [36].



Table 1
Running times for the three algorithms in case of the Swiss role data and
60 flats. The results were obtained on an Intel Core Duo 2.66 GHz,
MacBook Pro.

ACDT HDC HAC

Running time (s) 389 15 288
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6.1. Manifold Data approximation

We compare our scheme (ACDT) with two other mani-
fold approximation approaches from the literature, namely
the Hierarchical Divisive Clustering (HDC) [3] and the
Hierarchical Agglomerative Clustering (HAC) [19]. The
HDC algorithm starts with considering all the data as one
cluster and then hierarchically partitions them by dividing
highly non-linear clusters. As a linearity measure, it uses
the deviation between the Euclidean and geodesic dis-
tances, i.e., each cluster gets a nonlinearity score that is
equal to the average ratio of the geodesic distance over the
Euclidean one for all the pairs of samples in the cluster.
The process continues until all existing clusters have a
nonlinearity score that is lower than a given threshold. On
the other hand, HAC is a bottom-up algorithm, i.e., each
sample is considered at the beginning as a separate cluster
and then clusters are merged iteratively until their number
reduces to the desired target. At each iteration of the
algorithm, the pair of clusters with the minimum distance
is merged. The distance between two clusters is measured
as the average geodesic distance between the samples of
the one cluster and the samples of the other. Our scheme
follows also a bottom-up strategy; however, our distance
measure is completely different than the one in [19].
Instead of relating our merging decisions to the average
geodesic distances, we use the variance of tangents to
decide on proper mergings. This choice has been moti-
vated by the definition of tangents as the best locally linear
approximations of manifolds and has been proven very
effective in practice.

In order to quantify the performance of the compared
schemes, we use the mean squared reconstruction error
(MSRE). The MSRE is defined as

MSRE¼ 1
N

∑
N

i ¼ 1
‖xi� x̂i‖2

where xi and x̂i are respectively a data sample and its
projection on the corresponding approximating flat, while
N is the total number of signals. For the HDC and HAC
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Fig. 3. Mean squared reconstruction error (MSRE) versus the number of flats.
(b) S-curve.
algorithms, whose output is a set of clusters and not a set
of representative flats, we compute the corresponding
flats by principal component analysis on the data of each
cluster. The results of our experiments for all three algo-
rithms are given below for three different datasets.
6.1.1. Synthetic data
Firstly, we test the performance of our scheme in

approximating synthetic manifolds. We use the Swiss
roll and the S-curve dataset. The training set for both
cases consists of 5000 points, randomly sampled from the
manifolds. The neighborhood size k is set equal to 15 in the
experiments. We have observed that it is preferable to use
low values for k, varying from 0.5% to 2% of the total
number of samples, in order to avoid “short-circuit” effects
that distort the manifold structure.

The MSRE versus the number of flats, for our synthetic
manifolds, is presented in Fig. 3. The results are averaged
over 10 randomly chosen training sets. From Fig. 3, we can
see that our scheme approximates better the manifold
structure than the other approaches. The approximation
performance is better even for a small number of flats but
the differences are more evident in the mid-range cases
where the number of flats is between 15 and 30. For higher
number of flats, the difference stabilizes around 50–60
flats when the MSREs of the algorithms converge. The
effectiveness of our method is mainly due to the use of
the difference of tangents for measuring the linearity of
sample sets instead of the geodesic-based criteria used by
other algorithms [3,19]. For the sake of completeness, we also
give in Table 1 the running times for the three algorithms in
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The error on the y-axis is shown in a logarithmic scale. (a) Swiss roll.



Fig. 5. The final groups formed by the HDC (a) HDC, (b) HAC, (c) LSA, (d) spectral clustering algorithms with 10 flats. Each color represents a different cluster of
points.

Fig. 4. The final groups formed by the proposed approximation algorithm with 12 flats. Each color represents a different cluster of points. (a) Swiss roll.
(b) S-curve. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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the case of 60 flats. We can see that the two bottom-up
schemes are a bit penalized in terms of complexity as they
start with a high number of clusters (equal to the number of
points) and proceed with mergings until they reach the
desired number of clusters, which is significantly smaller in
this experiment. On the other side, HDC has to perform fewer
splittings, as it starts with considering all points as one cluster.
As far as ACDT is concerned, we would like to note that there
is still room for improvement as the code used is far from
optimized. For example, a significant gain could be achieved
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by optimizing the SVD computations but this is beyond the
scope of our paper.

Finally, an example of the final groups computed by our
algorithm is shown in Fig. 4 for the case of 12 flats. In this
figure, we see that the structure of the manifold is correctly
preserved by the proposed manifold approximation algo-
rithm. The final groups for the HDC and the HAC algorithm
for the S-curve data are shown in Fig. 5. Moreover, to
strengthen our argument on the inappropriateness of general
subspace clustering methods for manifold data, we also
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can observe, the smoothing process (averaging in this case) improves
g the side effects of noise. (a) Non-noisy data. (b) Noisy data. (c) Tangents
after smoothing.



Fig. 8. Example faces from the VidTIMIT database after face detection
and downsampling. The size of the images is 26�26.
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provide the results of Local Subspace Affinity (LSA) method
[37] and spectral clustering in the same figure. For spectral
clustering we used the same k-nearest neighbor graph as
for our own scheme, weighted with tangent distances by
the formulawij ¼ 1�DT ðMxi ;MxjÞ=maxDT , where maxDT is the
maximum tangent distance over the whole dataset. As we can
see clearly from the plots, all algorithms fail to uncover
clusters that comply with the manifold geometry. The spectral
clustering, HDC and HAC achieve better results than LSA but
when compared to ACDT it is obvious that they orient their
clusters in the wrong way.

6.1.2. Natural patches
We have also tested the performance of our scheme in

approximating natural image patches since they are often
assumed to form a lower dimensional manifold, e.g. [38].
The manifold samples are taken from the training set of
the Berkeley Segmentation Dataset (BSDS) [39]. Each patch
is of size 8�8 and captures a square region of a natural
image. Before approximating the manifold, we preprocess
the patches so that they have zero mean and unit variance.
For constructing the manifold we use 10,000 patches and k
is set equal to 100.
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The approximation performance (in terms of the MSRE)
versus the number of flats is presented in Fig. 7. We have
plotted the approximation error for three different choices
0 50 100 150 200 250 300
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

Number of flats

lo
g(

M
S

R
E

)

Natural Patches, 32 dim

0 200 250 300

 of flats

hes, 60 dim

The error on the y-axis is shown in a logarithmic scale. (a) 16-Dimensional



S. Karygianni, P. Frossard / Signal Processing 104 (2014) 232–247244
of the flats’ dimensionality, i.e., d¼16, 32 and 60 respec-
tively. As we can observe from the plots, in all cases,
our scheme approximates significantly better the manifold
structure than the other approaches and the differences
increase as the dimensionality of flats increases. The per-
formance of the HDC and the HAC scheme is quite similar
with the HDC usually outperforming the HAC. These
results suggest that our approximation algorithm is very
promising even in cases where the underlying structure of
the data cannot be easily identified.

The effectiveness of our method is mainly due to the
use of the difference of tangents for measuring the
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HAC, SNR = 23 dBOriginal

Fig. 10. The reconstruction of a sample fac
linearity of sample sets instead of the geodesic-based
criteria used by other algorithms

6.1.3. VidTIMITT faces
In a last set of experiments, we have also tested the

approximation power of ACDT on faces taken from the
VidTIMIT database [40]. This face database contains three
different video sequences for 43 subjects. In each video
sequence, the person performs a head rotation starting
from the frontal position and moving sequentially to the
right, left, center, up and down. For our experiments, we
have first isolated the faces with the P. Viola's face detector
0 10 20 30 40 50 60 70 80 90
5

6

7

8

9

0

1

2

Number of flats

VidTIMIT Sub 1, 10 dim

0 10 20 30 40 50 60 70 80
6

7

8

9

10

11

12

Number of flats

VidTIMIT Sub 2, 10 dim

(c) Median SNR for Subject 2. (d) MSRE for Subject 2.

ACDT, SNR = 30 dBHDC, SNR = 24 dB

e based on the approximating flats.



S. Karygianni, P. Frossard / Signal Processing 104 (2014) 232–247 245
[41] from all the video sequences and then downsampled
the images to size 26�26. Some resulting example faces
are shown in Fig. 8.
Fig. 11. (a) The corresponding group of sample image in Fig. 10 according to AC
HDC. (c) The corresponding group of sample image in Fig. 10 according to HAC.
Based on the assumption that all face images belonging
to the same subject form a low dimensional manifold, we
have used the previous algorithms to approximate this
DT. (b) The corresponding group of sample image in Fig. 10 according to
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manifold with a different number of flats. The dimension
of the manifold was set to 10 and the number of neighbors
k¼15. The results of the approximation for two of the
subjects are shown in Fig. 9. For this experiment, in
addition to the MSRE, we also provide results in terms of
the median SNR in the image reconstruction. As we can
see from these plots ACDT generally outperforms the other
two algorithms, although the differences are not extremely
big. However, there are sample cases where the perfor-
mance of the schemes is significantly different. Such an
example is shown in Fig. 10, where we can see that ACDT
achieves a significantly better approximation than the
other schemes. The reason is that the group that the
sample belongs to with ACDT is more uniform than
the corresponding group uncovered by HDC and HAC.
These groups are shown in Fig. 11 where it is obvious that
the group of ACDT contains mainly frontal poses with open
eyes, while the same group in the other algorithms also
includes closed eyes and downwards or slightly profile
poses.
6.2. Geometric separability of the flat-based
distance features

We finally check the discriminative power of the flats
approximating the manifolds when used as projective
spaces in the place of the manifolds themselves. With
this experiment we would like to check how the spatial
distribution of the data coming from different classes
changes in terms of separability when the data are
represented by their relative position on the manifolds'
approximating flats. For this purpose, we employ the
notion of geometric separability of data which is described
in [42] as an extension to linear separability; the Geometric
Separability Index (GSI) of a multiclass dataset is defined as
the ratio of the nearest neighbor pairs that share the same
class label.

To be more specific, assuming that we have m datasets,
each belonging to a different class, we run at first our
scheme for approximating the underlying manifold of each
class with L flats. We denote the set of resulting flats by S.
Then, for each sample, we create an m� L dimensional
vector of features, where each entry corresponds to the
distance of a data sample to a flat in S. After computing
the new flat-based distance features, we can compute the
separability index of this dataset.

In Table 2 we can see the separability index computed
for a part of the MNIST dataset in different spaces. In the
first column, we present the geometric separability in the
original, 784 dimensional space, as this is measured by GSI
when we use 2000 random samples for each digit. Then,
we have used L¼ 10 flats to approximate each digit's
Table 2
Separability index for the MNIST dataset and different embedding
algorithms. The original space is of dimension 784. The embedding space
has a dimension equal to 100 in all cases.

Original space Flats LLE Isomap Laplacian

0.969 0.961 0.895 0.856 0.991
manifold. The GSI of the dataset in the space of the flat-
based distance features is shown in the second column. As
we can see it is almost the same as that in the original
space despite the significant reduction in the dimension-
ality (original space: 784, reduced space: 100). Finally, in
order to have a measure of comparison, we have also
checked the separability index of the data after embedding
them in lower dimensions with some well-known mani-
fold learning algorithms namely the LLE [12], the Isomap
[1] and the Laplacian Eigenmaps [13]. The resulting GSIs
show that although there is room of improvement as the
Laplacian Eigenmap scheme outperforms our flat-based
distances embedding, the performance of our features is
still promising as it is better than that of LLE and Isomap.
Moreover, our flat-based algorithm can easily used to
embed out of sample points; this is unfortunately impos-
sible to do with Laplacian Eigenmaps, which has to
recompute the whole manifold to include new training
points.

To sum up, based on the relatively good GSI of the
features, we can presume that the flats uncovered by our
manifold approximation scheme manage to capture and
preserve the crucial characteristics of the manifolds, which
might prove to be very useful in classification applications.
Finally, this simple embedding scheme can represent a
method of projecting new samples to manifolds: instead of
finding the principal directions of the data and project to
them, we compute the principal flats of the manifold and
use them to project new samples.
7. Conclusion

We have presented a new greedy algorithm for approx-
imating a manifold with low dimensional flats based on
the difference of tangent spaces. Our method is shown to
be quite powerful for manifold approximation where
it outperforms state-of-the-art manifold approximation
approaches both in terms of preserving the manifold
structure and reducing the approximation error. The final
low-dimensional representation of signals from the mani-
fold can be used for data compression or signal classifica-
tion. In the future, we will explore ways to uncover
manifold approximations that are especially useful for
classification. We will also extend our method to other
problems like image denoising and restoration, manifold
to manifold distance computations as well as geodesic
distance computations on manifolds.
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