EUROSOI January 2014

Role of the Gate in Ballistic Nanowire SOI MOSFETs

A. Mangla¹, J.-M. Sallese¹, C. Sampedro², F. Gamiz², C. Enz¹

¹École Polytechnique Fédérale de Lausanne (EPFL), Switzerland ²Universidad de Granada, Spain

anurag.mangla@epfl.ch

Double-Gate Nanowire SOI MOSFET

The picture inside the MOSFET

• A simplistic view of charge transport inside the MOSFET channel:

(PH)

The picture inside the MOSFET

• A simplistic view of charge transport inside the MOSFET channel:

Electrons travel across the channel without scattering in a ballistic MOSFET

What role does the gate play?

Diffusive:

• Carrier population depends on local channel potential which is **function of gate** voltage

Ballistic:

• Carrier population is governed by source and drain Fermi levels and NOT the local quasi-**Fermi level**

Ballistic MOSFET \equiv **vacuum tube**?

- Virtual Source barrier: potential bump which acts as the effective source of carriers
- The gate voltage V_G controls its height

Ballistic MOSFET \equiv vacuum tube?

D

A ballistic MOSFET with partial gates

- *L*_c: Length of the channel between the source and drain junctions
- *L*_G: Length of the channel covered by the metal gate

Effect of gate length | Long channel ($L_c = 100 \text{ nm}$)

 c_1, c_2 : determined by V_D

Slide 8

(PA

Effect of gate length | Short channel ($L_c = 10 \text{ nm}$)

Slide 9

Effect of gate voltage | Long gate

Effect of gate voltage | Short gate $(L_G/L_c = 0.3)$

Effect of gate voltage | Channel length $L_c = 10 \text{ nm}$

Short gate

Long gate

Effect of gate Voltage | Channel length $L_c = 10 \text{ nm}$

• Poisson's equation:

• In the **non-gated part**:

$$\frac{\partial^2 \psi(\mathbf{x}, \mathbf{y})}{\partial \mathbf{x}^2} = \frac{\mathbf{q} \rho(\mathbf{x}, \mathbf{y})}{\varepsilon_{\mathrm{Si}}}$$

$$\psi(\mathbf{x}) = \frac{\mathbf{q}\rho}{\underbrace{2\varepsilon_{\mathrm{Si}}}_{\mathrm{charge}}} \mathbf{x}^{2} + \mathbf{c}_{1}\mathbf{x} + \mathbf{c}_{2}$$

Channel electrostatics
dominated by drain,
especially at low V_G

Short gate

ICLAB © A Mangla | 2014

Ballistic drain current

 Short gate current two orders of magnitude less than the long gate current

- Same order of magnitude in the short and long gate cases
- Short gate current > long gate current at low voltages!

$$\mathbf{I}_{\mathbf{D}} = \mathbf{q}\,\rho(\mathbf{x})\upsilon(\mathbf{x})$$

(Pfl

Ballistic carrier velocity | Channel length $L_c = 10 \text{ nm}$

Ballistic drain current | Channel length $L_c = 10 \text{ nm}$

Conclusions

- What role does the gate play?
 - 100 nm: The gate controls the electrostatics.
 - 10 nm: The drain dominates the electrostatics.
- Is a partial gate sufficient?
 - 100 nm: No, the drain current is diminished.
 - 10 nm: Same order of magnitude of drain current in the partial and full gate cases.
- Full gate is necessary to maintain current efficiency even in 10 nm ballistic devices.
- Drain current in ballistic devices is NOT independent of channel length.
- Perspectives: development of ballistic compact model including channel electrostatics.

Slide 17

EUROSOI January 2014

Role of the Gate in Ballistic Nanowire SOI MOSFETs Questions?

A. Mangla¹, J.-M. Sallese¹, C. Sampedro², F. Gamiz², C. Enz¹

¹École Polytechnique Fédérale de Lausanne (EPFL), Switzerland ²Universidad de Granada, Spain

anurag.mangla@epfl.ch

