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Dye-sensitized solar cells have gained widespread attention in recent years because of their low production costs, ease of
fabrication and tunable optical properties, such as colour and transparency. Here, we report a molecularly engineered
porphyrin dye, coded SM315, which features the prototypical structure of a donor–p-bridge–acceptor and both maximizes
electrolyte compatibility and improves light-harvesting properties. Linear-response, time-dependent density functional
theory was used to investigate the perturbations in the electronic structure that lead to improved light harvesting. Using
SM315 with the cobalt(II/III) redox shuttle resulted in dye-sensitized solar cells that exhibit a high open-circuit voltage VOC

of 0.91 V, short-circuit current density JSC of 18.1 mA cm–2, fill factor of 0.78 and a power conversion efficiency of 13%.

D
ye-sensitized solar cells (DSCs) are an attractive solar energy
conversion technology and their advantages include their low
cost of manufacture, ease of fabrication and modifiable aes-

thetic features, such as colour and transparency1–4. Initial forms of
this technology employed ruthenium(II)-based dyes in conjunction
with iodide-based electrolytes to achieve a certified solar-to-electric
power conversion efficiency (PCE) of 11.9% under full sun illumina-
tion (AM 1.5G, 1,000 W m22)5. Surpassing the 12% PCE threshold
required a paradigm shift in the chemical components utilized
within this photo-electrochemical device6.

A new generation of DSCs is based on a combination of light-
harvesting donor–p–acceptor (D–p–A) dyes in conjunction with
cobalt-based redox mediators6–9. The strong molar absorptivity of
D–p–A dyes enables the use of thin TiO2 films, potentially reducing
fabrication costs relative to ruthenium(II) sensitizers, with concomi-
tant improvements in the open-circuit voltage VOC when used with
cobalt-based redox mediators. The synthetic flexibility of D–p–A
dyes has enabled the engineering of enhanced compatibility
toward these alternative redox couples by introducing steric bulk
into the donor component and p-system, minimizing the unfavour-
able recombination between the electrolyte and the TiO2 surface6–9.
By using these new light harvesters, DSCs have achieved a
maximum PCE of 12.3% under full sun illumination, utilizing the
tris(2,2′-bipyridyl)cobalt(II/III) ([Co(bpy)3]2þ/3þ) redox shuttle.
However, to achieve this PCE, the light harvesting of the porphyrin
dye YD2-o-C8 was supplemented by the organic co-sensitizer Y123
(ref. 6). This landmark result began a renaissance for the DSC, vali-
dating the combination of D–p–A dyes and cobalt redox mediators
as an effective strategy in developing high-efficiency DSCs10.

The development of single-molecule panchromatic D–p–A sen-
sitizers remains a molecular engineering challenge in efforts to
improve the overall PCE of DSC devices. Until now, achieving a
panchromatic light-harvesting response in DSCs has relied on
co-sensitization, energy-relay strategies or tandem device

configurations6,11–21. Although gains in PCE are often realized
through improved light harvesting utilizing these strategies, the fab-
rication and optimization of these devices can be laborious and
technically challenging. The development of a single D–p–A sensi-
tizer with a panchromatic light response in a DSC remains a main
objective in the realization of maximum PCEs with standard
device fabrication protocols6,22.

Porphyrin-based D–p–A dyes provide a highly flexible platform
for the development of panchromatic sensitizers6,23,24. The por-
phyrin chromophore has intrinsically strong light absorption in
the Soret and Q-bands, but there is a lack of significant absorption
in the spectral region between these two features. Typical porphyrin
D–p–A sensitizers comprising dialkylamine or diarylamine
donors, in conjunction with an ethynylbenzoic acid acceptor,
yield dyes with a vivid green colour, bereft of absorption between
500–600 nm (refs 6,24–29). Despite the high efficiency of these
dyes in DSCs, further improvements to light harvesting through
the use of stronger acceptors remains relatively unexplored30,31.
Studies unrelated to the DSC have demonstrated that integration
of proquinoidal units into the porphyrin structure causes strong
perturbations to the electronic structure of the macrocycle32–35.
These perturbations in benzothiadiazole–porphyrin analogues
result in improved light harvesting by broadening and redshifting
absorbance of the Soret and Q-bands.

In this work, we reengineered the prototypical structure of
D–p–A porphyrins to simultaneously maximize cobalt–electrolyte
compatibility and improve the light-harvesting properties.
Functionalization of the porphyrin core with the bulky bis(2′,4′-
bis(hexyloxy)-[1,1′-biphenyl]-4-yl)amine36 donor and a 4-ethynyl-
benzoic acid yielded the green dye SM371, which exhibited a
slightly improved PCE of 12% compared to the previously reported
YD2-o-C8 (11.9%)6. Incorporation of the proquinoidal benzothia-
diazole (BTD) unit into this structure afforded the dye SM315, a
panchromatic porphyrin sensitizer (Fig. 1). SM315 exhibited
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significant broadening of Soret and Q-band absorbance features
compared to SM371, yielding improved light harvesting in both
the green (500–600 nm) and red (up to 800 nm) region of the spec-
trum. SM315 demonstrated an enhancement in green light absorp-
tion, resulting in an improved JSC (18.1 versus 15.9 mA cm22 for
SM315 and SM371, respectively) when utilized in the DSC.
Ultimately, the panchromatic sensitizer SM315 achieved a record
13.0% PCE at full sun illumination without the requirement
of a co-sensitizer.

Results and discussion
Opto-electronic properties of the porphyrin sensitizers. The
syntheses of the dyes SM371 and SM315 are provided in the
Supplementary Information. The donor group bis(2′,4′-
bis(hexyloxy)-[1,1′-biphenyl]-4-yl)amine was specifically used in
the two dyes as it has demonstrated compatibility with cobalt-
based electrolytes and yields high open-rcircuit photovoltages7–9,36.
Table 1 summarizes the UV–vis, fluorescence and cyclic voltammetry
data for SM371 and SM315.

Figure 2 shows the solution (THF) absorption spectra of the
SM371 and SM315 sensitizers. SM371 features an absorption spec-
trum typical of porphyrins functionalized with a diarylamine donor
and ethynylbenzoic acid acceptor, with maxima from the Soret band
(B-band) at 447 nm and from the Q-bands at 580 nm and 646 nm.
The introduction of the BTD acceptor unit had a significant impact
on the absorption spectrum of SM315, most evident by the splitting
of the Soret band, resulting in a shoulder at 440 nm on the
maximum at 454 nm. Furthermore, the absorption of SM315
between the Soret and Q-bands (450–550 nm) displayed significant
enhancement compared to SM371, leading to the panchromatic
character of the BTD-functionalized dye. The Q-band at 581 nm
remained relatively constant compared to that of SM371, but the
lowest-energy Q-band absorption of SM315 was significantly red-
shifted to 668 nm. Both the spectral splitting and the redshifting

of absorbance maxima for SM315 are consistent with previously
reported porphyrin–BTD ensembles32,37.

The splitting of the Soret band in SM315 can be rationalized
using point-dipole exciton coupling theory37. The Soret band
(B-band) is a composition of two perpendicularly polarized tran-
sitions within the molecule, denoted Bx and By, where the x-axis
has the greatest degree of conjugation (that is, the donor–acceptor
axis, Fig. 1)38,39. In a symmetrical zinc tetraphenylporphyrin the
Bx and By transitions are degenerate. Functionalization of the por-
phyrin with donor and acceptor moieties to afford SM371 increased
the conjugation and charge transfer (CT) character along the
donor–acceptor axis (that is, x-axis) of the dye, causing the Soret
absorption originating from the Bx transition to be redshifted with
increased molar absorptivity. Overall, the Soret band in SM371
appears both broad and redshifted, as the Bx and By transitions
are no longer degenerate. The presence of the BTD-functionalized
acceptor in SM315 further increased the electronic asymmetry
and CT character of the dye, causing a redshifted Bx transition,
which resulted in the Soret band appearing as two distinguishable
maxima in the absorbance spectrum. Furthermore, the presence
of the BTD acceptor increased the x-axis polarizability of SM315,
indicative of increased oscillator strength for the Bx transition, ratio-
nalizing the differences in molar absorptivity between the two
Soret maxima.

Another noticeable difference in the spectra of the two dyes is the
redshift and increase in molar absorptivity of the lowest-energy
Q-band for SM315. For both dyes, the absorbance originating
from the Qy transition remains relatively unperturbed, appearing
at 580 nm and 581 nm in SM315 and SM371, respectively. The
increased conjugation along the x-axis of SM315 strongly shifted
absorbance from the Qx transition to produce a maximum at
668 nm. The significant increase in molar absorption coefficient is
consistent with the increased oscillator strength of the Qx transition
from enhanced x-axis polarizability within the SM315 upon intro-
duction of the BTD unit.

Comparison of the frontier Kohn–Sham (KS) orbitals between
the two compounds highlighted the effect of the BTD acceptor on
the electronic structure of SM315 (Fig. 3). The KS highest occupied
molecular orbital (HOMO) of both dyes was predominantly loca-
lized on the donor and was not affected by the choice of acceptor.
The location of the KS lowest unoccupied molecular orbital
(LUMO) in SM315 demonstrated a significant shift towards the
BTD component of the acceptor. Hence, the electronic transition
in SM315 with a dominant HOMO � LUMO contribution was
expected to exhibit an enhanced CT character compared to SM371.

Table 1 | Optical and electrochemical data for SM371 and
SM315.

Dye labs (nm)/1
(103 M21cm21)

lem

(nm)*
E0–0

(eV)†
Eox1

(V)
Ered1

(V)

SM371 447/199, 580/12,
646/29

674 1.88 0.89 21.21

SM315 440/105, 454/117,
581/12, 668/53

732 1.79 0.88 20.99

*Emission maxima obtained in THF by excitation at 440 nm.
†Zero–zero excitation energy, determined by the intersection of normalized absorbance and
emission spectra.
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Figure 2 | Absorption spectra of the dyes studied. The experimental

spectra (in THF) are shown as continuous lines and the theoretical

electronic transitions are shown as bars for both SM371 (red) and SM315

(black). Theoretical data were computed using LR-TDDFT/M06/IEF-

PCM(THF).

NN

N N
N

OC8H17C8H17O

C6H13O

C6H13O

C6H13O

C6H13O
OC8H17C8H17O

A  =

A  =

COOH

SM371

SM315

Zn

x axis (donor–acceptor axis)

y 
ax

is A

N
S

N

COOH

Figure 1 | Structures of the two dyes used in the study. The structures are

coded SM371 and SM315. They both feature a porphyrin core and a bulky

bis(2′,4′-bis(hexyloxy)-[1,1′-biphenyl]-4-yl)amine donor. Their acceptor

groups differs, with SM315 featuring a benzothiadiazole group.

NATURE CHEMISTRY DOI: 10.1038/NCHEM.1861 ARTICLES

NATURE CHEMISTRY | VOL 6 | MARCH 2014 | www.nature.com/naturechemistry 243

© 2014 Macmillan Publishers Limited. All rights reserved. 

 

http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM371
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/compfinder/10.1038/nchem.1861_compSM315
http://www.nature.com/doifinder/10.1038/nchem.1861
http://www.nature.com/naturechemistry


The calculated absorption spectra for SM371 and SM315 (Fig. 2)
were obtained by using linear-response time-dependent density
functional theory (LR-TDDFT) and the M06 functional40. An inte-
gral equation formalism of the polarizable continuum model (IEF-
PCM) with a relative permittivity of 7.43 was used to simulate the
solvent (THF) used for the experimental absorption data (see
Supplementary Information for full computational details and a
discussion of the protocol used). The LR-TDDFT/M06/IEF-
PCM(THF) methodology predicted a strong alteration of the
Soret band for SM315, with two distinct transitions appearing at
408 nm and 427 nm (3.04 and 2.90 eV, respectively), with similar
oscillator strengths, consistent with the splitting observed exper-
imentally, which contributes to the panchromatic character of the
dye. Analysis of the transition density difference plots
(Supplementary Fig. 2) for the two Soret transitions of SM315
revealed that the lower-energy Soret absorption exhibited a signifi-
cant contribution from the BTD acceptor (that is, greater polariz-
ability along the donor–acceptor axis due to an enhanced CT
character), consistent with the rationalization provided from
point-dipole exciton coupling theory (vide supra). In contrast, the
LR-TDDFT/M06/IEF-PCM(THF) absorption spectra of SM371
indicated that the Soret band is dominated by a strong transition
at 431 nm and a weaker second transition computed at 413 nm,
reproducing the trends in Soret band splitting observed experimen-
tally between the two dyes.

The calculated absorption of SM315 presented a vertical tran-
sition with moderate oscillator strength (0.213) at 578 nm
(2.15 eV), with significant donor-to-acceptor character (HOMO-1
� LUMO, 83%). This small absorption, in line with the experimen-
tal observation, also contributes to the enhanced panchromatic
light-harvesting ability of SM315, together with a series of absorp-
tion lines between 601 nm and 430 nm. The calculated absorption
spectra afforded a first vertical excitation at 658 nm (1.88 eV) and
699 nm (1.77 eV) for SM371 and SM315, respectively, consistent
with the experimental values of 646 nm (1.92 eV) and 668 nm
(1.86 eV) for the lowest-energy Q-bands. For both dyes, this first
electronic transition is characterized by a dominant HOMO �
LUMO contribution of comparable magnitude, 91% for SM371

and 88% for SM315, confirming the CT character of both dyes
(further supported by transition density plots; Supplementary
Figs 1,2). The presence of the BTD moiety in SM315 results in an
extended delocalization of the LUMO onto this acceptor site,
enhancing the CT character of this band, together with a shift
towards lower energy and higher oscillator strength. The second
transition is computed at a similar energy for both dyes, 600 nm
(SM315) and 592 nm (SM371), and displays in both cases
small oscillator strength and a similar character (Supplementary
Figs 1 and 2).

Characterization of the surface-mounted dyes was achieved by
adsorbing the sensitizer onto a 1-mm-thick TiO2 substrate following
acquisition of a Fourier transform infrared (FTIR) spectrum
(Supplementary Fig. 3). On adsorption to TiO2, the FTIR spectra
revealed the disappearance of the carbonyl stretch, n(C¼O), at
1,690 cm21 from the neat dye, with a concomitant increase in the
intensity of the band at 1,380 cm21, which originates from the
symmetric carboxylate band, n(COOsym

2 ). This change is character-
istic of bidentate binding by both oxygen atoms of the carboxylate
functional group to the titania of the substrate, consistent with
previous reports41–43.

UV–vis characterization of the surface-mounted dyes was
achieved by adsorbing the sensitizer onto a 1-mm-thick TiO2 sub-
strate (data presented in the Supplementary Information;
Supplementary Fig. 4). Both dyes experienced a slight blueshift on
adsorption to the titania, which was attributed to the decrease in
dipole following loss of the carbonyl moiety of the anchoring
group, consistent with observations from FTIR analysis of the sub-
strate. The degrees of blueshift for absorptions derived from the By
and Qy transitions were less than for those derived from the Bx and
Qx transitions, consistent with the rationale provided by point-
dipole exciton coupling theory (vide supra). Measurement of the
light-harvesting efficiency (LHE) of SM371 and SM315 on trans-
parent TiO2 films (3.5 mm) is provided in the Supplementary
Information (Supplementary Fig. 5). The LHEs for SM371 and
SM315 exhibited maxima that correlated with those observed in
the experimental absorption spectrum. Measurement of LHE
revealed that SM315 has a near-quantitative LHE throughout the

HOMO-1 HOMO LUMO LUMO+1

HOMO-1 HOMO LUMO LUMO+1

Figure 3 | Contour plots of selected KS orbitals for the dyes studied. The orbitals were calculated for geometry-optimized SM371 (top) and SM315

(bottom), using DFT/M06/IEF-PCM(THF). (Isovalue set to 0.02 a.u.).
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visible region, which is a dramatic improvement over SM371. The
splitting and redshifting of Soret and Q-band absorptions upon
introduction of the BTD unit into the dye structure is directly
responsible for the significant improvements in LHE demonstrated
by SM315. The dye loading on the TiO2 films was obtained by des-
orbing the dyes, and the amount of dyes loaded was estimated to be
8.35 × 1027 mol cm22 for the case of the SM315 dye. Assuming a
uniform coverage on the titania without any aggregates, the
SM315 dye occupies a surface area of �1.98 nm2 on the TiO2.

The steady-state fluorescence spectra for SM371 and SM315 are
provided in the Supplementary Information (Supplementary Fig. 6).
SM371 exhibited an emission spectrum that mirrored the absorp-
tion spectrum, but that of SM315 was broad and featureless, indicat-
ing that an enhanced ICT character of the excited state could be
achieved by using the strongly electron-deficient BTD unit,
thereby increasing the acceptor property of the dye44. Calculation
of the Stokes shift for the two dyes revealed that SM315
(1,309 cm21) experienced a greater shift than SM371 (643 cm21).
The acquisition of time-resolved luminescence in THF solution
and on TiO2 substrates provided insight into the electron injection
dynamics of the two dyes (Supplementary Fig. 7). The fluorescence
lifetime in solution (1.2 ns) and on TiO2 substrates (63 and 60 ps for
SM371 and SM315, respectively) was identical for both dyes. This is
indicative of the injection efficiency (hinj) for both dyes approaching
unity, as a result of efficient photoinduced electron injection from
the dye into the mesoporous anode.

Electrochemical characterization. The electrochemical
characterization of SM371 and SM315 was performed in DMF.
The oxidation potential of the dyes is critical for the functioning
of the DSC, as it determines the optimal cobalt redox couple to
be utilized within the cell. The first oxidation potentials of SM371
and SM315 were both quasi-reversible, with values of þ0.88 V
and þ0.89 V (versus NHE), respectively. The computed vertical
ionization energies (of the ground-state geometry) in DMF are
nearly identical for both dyes (4.86 eV and 4.85 eV for SM371
and SM315, respectively), consistent with the trend observed in
oxidation potential and the observation that the HOMO of
SM315 is not strongly affected by the BTD moiety.

The reduction potentials of SM371 and SM315 were –1.21 V and
–0.99 V (versus NHE), respectively. The similarity of Eox for the two
dyes demonstrated a considerable advantage of the BTD-functiona-
lized anchor, as it does not noticeably impact the oxidation potential
of the dye. The BTD-functionalized anchor exclusively influenced
the optical bandgap and absorption features of SM315 (vide
supra), allowing us to engineer the absorption features and oxi-
dation potential of the porphyrin in a separate, modular fashion.
The difference in reduction potential demonstrated the ability of

the BTD unit to stabilize the LUMO, consistent with the redshift
observed in the absorption spectrum of SM315.

Further insight into the interfacial electron transfer (that is, from
the photoexcited dye to the semiconducting photoanode) was
performed by intensity-modulated photoinduced absorption (PIA)
measurements on TiO2 films sensitized with SM371 and SM315
(Supplementary Fig. 8). Measuring the change in absorbance of
the sensitized films in the absence of electrolyte (that is, acetonitrile
solvent) revealed a decrease in absorbance from the Q-band, with
concomitant evolution of an absorbance at 800 nm, diagnostic of
formation of the porphyrin cation radical for both dyes28.
Interestingly, the amount of dye cation radicals generated by
SM315 in the absence of the electrolyte appears to be less than for
SM371, indicating that the injected electrons recombine with the
photo-oxidized sensitizer faster for SM315 than for SM371. This
back reaction is facilitated by the presence of the strongly electron-
deficient BTD moiety in SM315 and is consistent with previous
reports where the undesirable electron-recapture event could be par-
tially ameliorated through the introduction of a phenyl spacer
between the BTD and the anchoring group45. In the presence of
the cobalt electrolyte, absorbance features pertaining to the por-
phyrin cation radical disappear entirely, indicating efficient regener-
ation of the porphyrins by the Co(II) species of the redox couple6.

Photovoltaic performance. Dyes SM371 and SM315 were utilized
in DSCs using thin (7 mm) mesoporous TiO2 films to enable
compatibility with the [Co(bpy)3]2þ/3þ redox couple, essential in
obtaining DSCs exhibiting a high VOC. Figure 4 shows the J–V
curve for the two devices measured under AM 1.5G illumination
(1,000 W m22 at 298 K) (data summarized in Table 2). DSCs
fabricated using SM371 gave a high VOC (0.96 mV) and JSC
(15.9 mA cm22), achieving an overall PCE of 12.0%, a slight
improvement compared to the porphyrin sensitizer YD2-o-C8,
which has a similar structure6. Despite exhibiting a slightly lower
VOC of 0.91 V, the best cell made with SM315 attained a higher
JSC (18.1 mA cm22) and an overall PCE of 13.0%, outperforming
SM371 as a result of the improvement in visible and near-infrared
light harvesting. A histogram of 50 different devices made with
SM315 dye is shown in Supplementary Fig. 10. A higher average
PCE was obtained at 64% sun intensity (13.25%) than at full sun
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Figure 4 | Photovoltaic performance of devices made with SM371 and SM315. a, J–V curve under AM 1.5G illumination (1,000 W m22) and b, photocurrent

action spectrum for SM371 (red) and SM315 (black).

Table 2 | Summary of photovoltaic performance data for
SM371 and SM315 under AM 1.5G illumination
(1,000 W m22).

Dye VOC (V) JSC (mA cm22) FF PCE (%)

SM371 0.96 15.9 0.79 12.0
SM315 0.91 18.1 0.78 13.0
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intensity (12.75%). The lower average at full sun intensity is mainly
due to mass transport limitations of the cobalt redox mediator.

SM371 possessed a near identical photocurrent action spectrum
(Fig. 4b) to that of dyes with comparable donor and acceptor sub-
stitution (that is, YD2-o-C8), with maximum incident monochro-
matic photon-to-electric current conversion efficiency (IPCE)
values of 80% obtained at 480, 590 and 640 nm. SM315 demon-
strated impressively high IPCE values across the whole visible wave-
length range, maintaining a value of 80% from 450 nm to 750 nm,
with the DSC harvesting light up to 800 nm, demonstrating the
utility of the BTD-functionalized anchor for improvements in
visible and infrared light-harvesting properties. The overlap integral
of the photocurrent action spectrum with the standard AM 1.5G
solar emission spectrum agrees within 2% with the measured photo-
current, demonstrating that any spectral mismatch between the
simulated and true AM 1.5G sunlight is negligibly small.

Transient photovoltage and photocurrent measurements were
used to investigate the origin of reduced VOC for DSCs sensitized
with SM315. A reduction in VOC can originate from either (1)
downward shift of the conduction band or (2) the enhanced recom-
bination of injected charges in the TiO2 film with the dye or electro-
lyte6,46–48. A downward shift of the TiO2 conduction band (that is,
displacement of the trap-state distribution function to lower
energy) would cause the density of occupied states (DOS) to be
higher for SM315 than for SM3716,46–48. Measurement of the
chemical capacitance (Cm , Fig. 5a) as a function of VOC allows
insight into the DOS in devices made with either dye, as Cm and
DOS are directly proportional to each other. At a given VOC, Cm

is nearly identical for both dyes, ruling out a downward shift of
the conduction band shift as the origin of the decreased VOC in
SM315-sensitized DSCs.

Measurement of the electron lifetimes as a function of VOC
(Fig. 5b) afforded insight into the electron recombination occurring
at the TiO2–electrolyte interface. At a given VOC, the electron
lifetime in cells sensitized with SM371 was two to six times longer
than for SM315-sensitized DSCs. Evidence from previous work
clearly demonstrates that the direct connection of the BTD group
to the anchoring group accelerated conduction-band electron recap-
ture by the sensitizer and the utilization of a phenyl spacer retards the
electron recapture45. In this work, the PIA spectrum of SM315
(Supplementary Fig. 8b) clearly demonstrated that even with a
phenyl spacer in place, the electron recapture by SM315 is faster
than by SM371. This indicates that the phenyl spacer does not com-
pletely attenuate the accelerating effect of the BTD moiety on charge
carrier recombination (vide supra). The result of the accelerated
electron recapture by SM315 (compared to SM371) at the TiO2–
electrolyte interface resulted in a VOC decrease of 50 mV in the
device. However, this loss in VOC is overcompensated by a gain in
JSC, resulting in the superior performance of the SM371 dye.

Long-term stability measurements were carried out on three
individual devices sensitized with SM315 by subjecting them to
continuous light soaking at full solar light intensity for 500 h at
298 K (Supplementary Fig. 11). The cells were kept at their
maximum power point during the illumination. We obtained
excellent stability over this long period, showing that the
SM315 is a very stable dye and not prone to degradation, even
if exposed to intense sunlight for long illumination times.
During the 500 h of light soaking, devices employing SM315
underwent over one million turnovers without showing any sig-
nificant loss in stability. The initial drop in PCE of �10–20%
for the three devices is attributed to desorption of a small
amount of sensitizer from the TiO2 surface, decreasing the photo-
voltaic performance. In the future, the introduction of stronger
anchoring groups into the high-performance SM315-type design
should serve to minimize any dye desorption and further
improve the stability of the device.

Conclusion
Judicious molecular engineering of push–pull porphyrins has
allowed the realization of two high-performance sensitizers,
SM371 and SM315, exhibiting unprecedented solar-to-electric
PCEs under standard AM 1.5G illumination. The green dye
SM371 exhibited slightly better performance (12.0%) than the pre-
vious state-of-the-art YD2-o-C8. Introduction of the BTD-functio-
nalized acceptor into the dye structure afforded the broadly
absorbing sensitizer SM315. The enhanced visible and long wave-
length absorbance properties of SM315 were rationalized by LR-
TDDFT analysis. The dramatically improved absorption properties
of SM315 resulted in a near-quantitative LHE across the visible
spectrum and up to 800 nm, leading to greater photocurrents in
the DSC device compared to SM371. Fabrication of DSCs utilizing
the [Co(bpy)3]2þ/3þ redox couple and SM315 demonstrated pan-
chromatic light harvesting without the use of co-sensitization,
leading to a record 13% PCE at full sun illumination.

Methods
Details of the synthesis and characterization of the dyes, computational
investigations, DSC fabrication and photovoltaic characterization (J–V, IPCE, PIA,
transient photovoltage/photocurrent decay, stability measurements) are described in
the Supplementary Information.
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