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Abstract
We are living in an era of digitalization. It is possible to permanently access knowledge of all

kinds or even daily news without going to a library or buying newspapers. Furthermore, to

access this data, we don’t have to use our personal computer anymore, as high performance

smartphones or tablet PCs are now available. Thus, nowadays a mobile phone needs to be a

highly developed multi–media station rather than only a simple phone. Since high computing

power is closely related to large power consumption, new power-saving transistors are needed.

This task can be tackled for instance by spin–electronics (spintronics), where the spin informa-

tion of an electron is used instead of its charge. Such devices promise fast and energy saving

switching. However, suitable materials are needed that can convert conventional charge– into

spincurrents. A new class of materials, namely topological insulators (TIs), is predicted to

exactly meet this demand. These materials are (conceptually) insulators in their inside, but

conduct spin-polarized currents on their surfaces. However, in real TIs the bulk is intrinsically

highly doped, resulting in a strong contribution of bulk currents to the total charge transport.

On this basis, the aim of this thesis is to find fingerprints of the exotic surface states of

three–dimensional TIs in electrical transport measurements. To this end, a chemical vapor

deposition (CVD) system is set up to grow ultrathin films of Bi2Se3 which possess a large

surface–to–bulk ratio. These samples show a pronounced linear magnetoresistance (LMR)

at low temperatures. Due to the very low film thickness we are able to alter the LMR into a

classical parabolic magnetoresistance using a back-gate, which allows us to associate the LMR

with the surface states of Bi2Se3. However, the electrical transport in this material is still domi-

nated by the bulk. Thus, we use the same CVD method to grow Bi2Te2Se (BTS) nanostrucutres,

a TI that is known to have the highest surface contribution to the total electrical transport

reported so far. In low temperature magnetoconductance measurements a pronounced 2D

weak anti–localization effect is observed, that is attributed to the topological surface states.

In addition, by epitaxial growth of BTS on hexagonal boron nitride we are able to enhance

its carrier mobility by a factor of 3 compared to samples grown on Si/SiOx substrates. This

enables the observation of pronounced, gate depended Shubnikov–de Haas oscillations for

the first time in this material. The SdH oscillations have two–dimensional character and are

likely to originate from the surface bands of BTS. However, despite the successfully increased

mobility in the samples, the carrier density is still high. Therefore, we expand the quest for new

TI materials to nature. Due to their geological age, the crystal structure of minerals should have

reached thermodynamic equilibrium and accordingly an ultimately low defect concentration

mainly given by their defect formation enthalpy. By angle–resolved photoemission measure-
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ments on the two minerals Kawazulite and Aleksite, which both originate from former gold

mines, we are able to proof their "topological" behavior. Both natural TIs possess high carrier

mobilities and, in the case of Kawazulite, a comparatively low carrier density, which signifies a

low defect density. In addition, both minerals show pronounced quantum coherence effects

at low temperatures, where the phase coherence length in Aleksite exceeds 1µm.

Keywords Topological Insulators, Magnetotransport, Thin Films, Vapor-Solid Growth, Chem-

ical Vapor Deposition, Natural Topological Insulators, Epitaxial Growth, Quantum Trans-

port, Linear Magnetoresistance, Weak Anti-localization, Universal Conductance Fluctuations,

Shubnikov-de Haas Oscillations, Bismuth Selenide, Kawazulite, Aleksite
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Zusammenfassung
Wir leben in einem Zeitalter der Digitalisierung. Neben der Möglichkeit ständig auf gespeicher-

tes Wissen aller Art zugreifen zu können, finden nun auch tägliche Nachrichten ihren Weg zu

uns ohne vorher den Umweg über eine Druckerpresse machen zu müssen. Zudem verlagert

sich der Datenzugriff zunehmend vom heimischen Arbeitszimmer auf das Smartphone oder

den Tablet-PC. Daher ist – in einer Welt ständiger Vernetzung – die Anforderung an Geräte, die

diesen Ansprüchen gerecht werden sollen enorm hoch. Ein Mobiltelefon muss, neben seiner

Eigenschaft als Telefon, auch als kompakte, leistungsstarke Multimedia Station dienen können.

Dabei soll natürlich eine ausreichende Akkulaufzeit gewährleistet sein. Da schnelle Rechenlei-

stung aber mit hohem Energieverbrauch einhergeht, ist eine neuartige Prozessortechnologie

von Nöten damit, der technologische Fortschritt nicht zum Erliegen kommt. Einen Ausweg

liefert die sogenannte Spin-Elektronik (engl. Spintronic), bei der der Spin einzelner Elektronen

zur Dateinspeicherung und –übertragung genutzt wird. Ein großer Vorteil: Spins lassen sich

ohne großen Energieaufwand und auf sehr kleinen Zeitskalen manipulieren. Jedoch benötigt

man hierfür aktive Komponenten/Materialien, die in der Lage sind, einen gewöhnlichen

Ladungsstrom in einen Spin-Strom umzuwandeln. Eine neue Klasse von Quantenmaterialien,

die sogenannten Topologische Isolatoren, erfüllt genau diese Eigenschaft. Diese Stoffe sind

Isolatoren in ihrem Inneren, leiten jedoch einen spinpolarisierten Strom an ihrer Oberfläche.

Auch wenn – zumindest von einem theoretischen Standpunkt aus – topologische Isolatoren

direkt für Spintronik–Bauelemente eingesetzt werden könnten, sieht die Realität leider anders

aus. Reale topologische Isolatoren sind in Wahrheit stark dotierte Halbleiter, dessen inne-

res den elektrischen Strom so gut leitet, dass Oberflächeneffekte gänzlich überschattet werden.

Ziel dieser Arbeit ist es daher, anhand elektrischer Leitfähigkeitsmessungen an dreidimensio-

nalen topologischen Isolatoren Hinweise auf deren außergewöhnliche Oberflächenzustände

zu erhalten. Für die Herstellung dünner Proben, welche ein hohes Oberflächen–zu–Volumen–

Verhältnis aufweisen sollen, wird ein chemischer Gasphasenabscheidungs– (engl. chemical

vapor deposition (CVD)) Reaktor aufgebaut. Nach Optimierung der Wachstumsbedingungen

sind wir damit in der Lage, Bi2Se3–Schichten mit Schichtdicken im Bereich weniger nm zu

wachsen. In elektrischen Leitfähigkeitsmessungen bei hohen Magnetfeldern und niedrigen

Temperaturen können wir einen linearen Magnetowiderstand beobachten. Aufgrund der

geringen Dicke unserer Proben sind wir in der Lage, diesen Effekt bei verschiedenen Gate-

spannungen zu untersuchen, was uns erlaubt, den linearen Magnetowiderstand mit den

nicht-trivialen Oberflächenzuständen von Bi2Se3 in Verbindung zu bringen.
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Jedoch stammt der Hauptteil des Stromtransports von dem stark dotierten Inneren des Materi-

als. Daher verwenden wir unseren CVD-Reaktor, um das weitaus vielversprechendere Material

Bi2Te2Se herzustellen, dessen Oberflächenzustände einen hohen Beitrag zur Gesamtleitfähig-

keit liefern sollen. Dieses zeigt eine ausgeprägte, zweidimensionale schwache Lokalisierung

der Ladungsträger bei tiefen Temperaturen, welche wir den Oberflächenzuständen des Mate-

rials zuschreiben.

Indem wir dieses Material epitaktisch auf hexagonalem Bornitrid aufwachsen, sind wir in der

Lage, dessen Ladungsträgermobilität um einen Faktor drei zu erhöhen. Das ermöglicht die

Beobachtung ausgeprägter Shubnikov-de Haas (SdH) Oszillationen im Magnetowiderstand.

Diese zeigen ein rein zweidimensionales Verhalten und stammen aller höchster Wahrschein-

lichkeit nach von den Oberflächenkanälen des Bi2Te2Se. Dank der geringen Dicke unserer

Schichten sind wir in der Lage, die SdH-Oszillationen durch Anlegen einer Gatespannung zu

manipulieren und Rückschlüsse auf die Position der Fermienergie zu ziehen.

Das Problem der niedrigen Mobilität kann damit erfolgreich gelöst werden. Jedoch ist die

Ladungsträgerdichte unserer Schichten nach wie vor vergleichsweise hoch, weshalb wir unse-

re Suche nach neuen Materialien in eine neue Richtung lenken. Dank ihres enormen Alters

sollte sich das Kristallgitter von Mineralien im thermodynamischen Gleichgewicht befinden.

Ihre Defektkonzentration ist daher auf ein absolutes Minimum, welches hauptsächlich von

der Defektbildungsenthalphie abhängt, reduziert. Vor diesem Hintergrund untersuchen wir

die Mineralien Kawazulit und Aleksit, welche beide aus ehemaligen Goldminen gewonnen

wurden. Mittels winkelaufgelöster Photoelektronenspektroskopie (ARPES) sind wir in der

Lage, diese Materialien als natürliche topologische Isolatoren zu identifizieren. Beide zeigen

vergleichsweise hohe Mobilitäten und im Falle von Kawazulit auch eine sehr niedrige La-

dungsträgerkonzentration, was auf eine geringe Defektdichte zurückgeführt werden kann.

Außerdem zeigen die Mineralien bei niedrigen Temperaturen sehr ausgeprägte Quanten-

kohärenzeffekte mit einer Phasenkohärenzlänge, die einen Wert von bis zu 1µm erreichen

kann.

Schlagwörter Topologische Insulatoren, Magnetotransport, Dünne Schichten, Vapor-Solid

Wachstum, Chemische Gasphasenabscheidung, Natürliche Topologische Isolatoren, Epi-

taktisches Wachstum, Quanten Transport, Linearer Magnetowiderstand, Schwache Anti-

Lokalisierung, Universelle Leitwertfluktuationen, Shubnikov-de Haas Oszillationen, Bismut

Selenid, Kawazulit, Aleksit
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1 Introduction

Isn’t it fascinating that modern portable devices like mobile phones could be developed into

high performance multi–media stations during the last decade? The computing power of

up–to–date mobiles is comparable to that of personal computers from only about 10 years

ago. Thus they have now advanced to the point where it is possible to play video games or

watch high–definition movies on them. But the demand for faster, high–performance mobiles

is increasing. This requires by implication energy saving processors to guarantee a certain

period of use (since bigger batteries would unnecessarily increase the weight of the device).

As an example, by reducing the size of conducting paths in a "system on a chip" (SoC) from

65 nm to 45 nm it was possible to reduce the electricity consumption by 30%.1 But is there a

superior strategy to fabricate power–saving and faster processors?

In nearly all semiconductor devices, electrical currents are needed to transport "information".

This information is carried by the electron’s charge. For example, to define the on or off state

of a field–effect transistor the plates of a nanocapacitor have to be charged or discharged.

Since electrons can be scattered by static defects or phonons their transport is dissipative.

Hence, in the past decades researchers spent much effort to increase the crystal quality of

semiconductor devices to reduce defects and thus energy dissipation.

However, it is also possible to use another intrinsic property of the electron instead of its

charge: a property known as their spin which can be interpreted as the magnetic moment of a

single electron. The emerging field of spin–electronics (spintronics) endeavors to use this spin

to store and transport information. The advantage is that there is no external (charge) current

needed to manipulate the spin information (up or down). In addition, typical spin relaxation

times can be much higher than the lifetime of a charge state, which gets easily destroyed by

defect scattering. Thus, spintronic devices are promising to reach much higher performance

(fast switching) and consume less energy.2

Key components of spintronic devices are so–called spin–filters. These act like valves for one

type of spin, thereby transforming charge into spin–currents. A common means to inject spins

into materials is by ferromagnetic electric contacts. However, the typical spin polarization

(that is the portion of spin–polarized electrons compared to all electrons flowing) reached is

only several 10%.3
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Figure 1.1: The exotic band structure of topological insulators. (a) Sketch of the spin–
polarized Dirac cone associated with the surface of a topological insulator (TI). (b) Angle–
resolved photoemission spectrum of the 3D TI Bi2Se3. The linear surface bands are clearly ob-
servable.4 (c) Detailed ARPES spectrum of Bi2Se3 (top) and the corresponding spin–polarized
spectrum showing the helicity of the surface states (color denotes the spin–polarization in
y–direction).5

A major leap forward in spintronics may be achieved by a new class of condensed matter

recently discovered, namely topological insulators (TIs). These materials are insulators in

their inside, but conduct electrical current on their surface. These surface channels emerge

on the boundary between the material and its surrounding due to quantum mechanical

principles, making them highly robust against almost any type of defects or chemical surface

modification.6 A special feature of these surface states is, that they form a so–called Dirac

cone, i.e., the surface carriers’ energy depends linearly on their momentum. Figure 1.1a and b

depict a sketch and an experimental angle–resolved photoemission spectrum, respectively,

of the surface Dirac cone of the topological insulator Bi2Se3. Another key feature of the sur-

face channels is that the electrons’ spin is locked to their direction of motion, as depicted

by the spin–polarized ARPES data shown in Figure 1.1c. In particular, an electron moving

in +k direction has a spin oriented in +y direction (blue), whereas an electron moving in

the opposite direction (−k) has a spin oriented in −y direction (red). Such spin–momentum

coupling is also illustrated by the pink arrows in Figure 1.1a. Thus, topological insulators from

a theoretical viewpoint are well–suited as an intrinsic spin filter with a spin–polarization of

more than 50%.7 Due to exceptionally low electron–phonon coupling they are promising

for room temperature spintronic devices.8 In addition, the helical surface states of TIs could

provide access to novel, fascinating physical phenomena such as magnetic monopoles9 or

Majorana fermions.10
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While in theory these characteristics renders the surface states promising for spintronic and

quantum computing applications, as well as for fundamental research, their existence has

been difficult to prove by electrical transport studies. One reason for that is the high con-

ductivity of the intrinsically doped bulk of real topological insulators, making it difficult to

distinguish between surface and volume effects. In case of the chalcogenides Bi2Se3 (intrinsi-

cally n–doped) and Sb2Te3 (intrinsically p–doped), there are two major origins of the doping

reported in literature. Firstly, intrinsic point defects (vacancies or antisites) that form during

the growth of the material can dope the bulk with extra charge carriers.11–13 Secondly, upon

exposure to ambient the surface may react with oxygen and create a surface oxide,14 or react

with water molecules to form positively charged surface vacancies as well as bismuth hydrox-

ide.15 For Bi2Se3, both types of chemical reactions are expected to result in strong n–doping of

the sample.

Independent of the origin of intrinsic doping, the major problem remains that there are two

possible transport channels in the sample, namely the (doped) bulk and the surface states.

Hence, electrical transport measurement are generally dominated by the low resistive bulk.

In addition, strong scatterers like point defects may destroy the protected Dirac surface state

locally and create a virtual scattering channel from the surface to the bulk states.16, 17 To

overcome this problem, several possible approaches have been followed. One option is to

counter–dope the bulk,18, 19 or to combine (alloy) different topological insulators,20, 21 to com-

pensate for the intrinsic doping. Both strategies result in a reduced carrier density, which

has enabled the observation of an ambipolar effect, comprising a continuous crossover from

n–type to p–type behavior by applying an external gate voltage, which is a hint for the existence

of a state inside the bulk band gap of the material. However, the incorporation of doping atoms

or the formation of a non–stoichiometric alloy often result in very low carrier mobilities. This

is not only disadvantageous for device applications, but also low carrier mobilities prevent the

observation of quantum oscillation effects which can be used to study details of the surface

states.22 Thus, another approach is to increase the crystal quality by improved synthesis

methods or different growth conditions to decrease the amount of intrinsic defects. This can

be achieved through evaporation techniques like molecular beam epitaxy (MBE) which also

allows the growth of ultra–thin films to increase the surface–to–bulk ratio. In fact, high quality

MBE films have enabled the observation of a crossover from topological to trivial insulating

behavior by successively reducing the thickness of the sheets,23 and the observation of the

quantum anomalous Hall effect (QAHE) in magnetically doped TI films.24 Although the high

flexibility in selecting and combining materials and the good control over the film thickness

renders MBE a valuable method for sample preparation, there are several drawbacks. Besides

the fact that MBE machines are very expensive, the homogeneity of the obtained films is low.

Thin films grown by MBE usually possess many step edges and terraces. Even though it has

been experimentally demonstrated that surface electrons on TIs can transmit through step

edges with a high transmission probability of about 50%,25 terraces nevertheless can force

the surface carriers to exotic quantum interference effects which might disturb the electrical

transport measurements and render their interpretation difficult.26 In addition, as–prepared

MBE samples are much larger than the mean–free path and phase coherence length of the

3
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material such that only the diffusive regime of the topological insulator is accessible.

On this basis, the present thesis aims to develop new strategies in crystal preparation and

electrical characterization of TIs to explore the properties of the topological surface states.

The synthesis method of choice is a comparatively simple and inexpensive chemical vapor

deposition (CVD) technique reported recently.27 By setting up a CVD system and optimizing

the growth parameters, ultrathin Bi2Se3 nanostructures with high surface–to–volume ratio

are fabricated. These reveal novel electrical transport effects like gate–dependent linear mag-

netoresistance of ≈ 100%. The magnetoresistance can be changed from linear to classical

parabolic behavior by applying an external gate voltage. Combined with the temperature

dependence of resistance for different gate voltages, we are able to attribute the linear magne-

toresistance to the non–trivial surface states.

Moreover, single–crystalline nanoplatelets of the ternary compound Bi2Te2Se are grown with

thicknesses between 8 and 30 nm and lateral sizes of several micrometers. This compound

is predicted to have superior properties compared to pure Bi2Se3.28 Angle–dependent mag-

netoconductance measurements on individual nanoplates reveal the presence of a two–

dimensional weak anti–localization effect which might originate from the topologically pro-

tected surface states of the nanoplates. For the same TI, the structural quality of such

nanoplatelets can be substantially improved by van der Waals epitaxial growth on thin hBN

substrates. Thin films grown by this technique possess a surface state carrier mobility µs up

to 20000 cm2/Vs. On average, epitaxial growth increases µs by a factor of 3 compared to the

samples grown on conventional Si/SiOx substrates. This enables the gate–dependent study of

well–developed Shubnikov–de Haas oscillations in this material for the first time.

Finally, we expand the quest for new TIs to nature. We identify the two minerals, Kawazulite

and Aleksite, originating from former gold mines, as natural topological insulators with prop-

erties that compete well with their lab–made counterparts. Thin flakes with a thickness of a

few tens of nanometers are obtained by mechanical exfoliation. They exhibit a sizable mobility

of surface state carriers of the order of 1000 cm2/Vs at low temperature in both cases. Whereas

Kawazulite shows low intrinsic doping, Aleksite possesses a very high phase coherence length

on the order of 1µm. Based on these findings, further minerals which due to their minimized

defect densities display even better electronic characteristics may be discovered in the future.
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2 Theoretical Background of
Topological Insulators

This first chapter reviews the theoretical basics of topological insulators. Since the details

are quite complicated, a short descriptive section will try to convey the basics necessary to

understand the rest of this thesis to readers that are interested in a quick overview of the

topic. The subsequent sections will then provide deeper insight into the matter by addressing

the ’mysterious’ Z2 invariant, the connection between topological insulators and donuts or

oranges, and the robustness of this novel kind of quantum matter.

5
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Topological Insulators

2.1 Topological Insulators in a nutshell

Let’s start with a definition:

A topological insulator is a material with a bulk electronic excitation gap generated

by the spin–orbit interaction, which is topologically distinct from an ordinary in-

sulator. This distinction, characterized by a Z2 topological invariant, necessitates

the existence of gapless electronic states on the sample boundary. In two dimen-

sions, the topological insulator is a quantum spin Hall insulator, [...] thus spin

filtered, in the sense that the spin of the electron is correlated with its propagation

direction.29

Since this definition is rather complicated, the intention of this chapter is to give a short

overview of basics underlying the existence of topological insulators (TIs). In principle, a TI

is nothing else than an electrical conductor on its surface but an insulator in its inside. In

addition, the electrons propagating on the surface of the material are spin–polarized, this

implies that the orientation of their spin is coupled to their direction of motion: an electron

traveling from right to left will thus have the opposite spin orientation than an electron travel-

ing from left to right. Thus, if an electron hits a non–magnetic impurity it cannot get scattered

back (doing a U–turn) since it would need to flip its spin orientation. As a consequence, the

electrical surface transport is nearly dissipationless.

But what is the origin of these extraordinary surface states? In most cases, surface states

simply arise as a consequence of breaking the translational symmetry of a crystal, that is:

making it finite by creating a surface. In semiconductors and insulators that have an energy

gap separating their valence (highest occupied) and conduction (lowest unoccupied) band,

the surface states could disperse such, that parts of their bands reach into the bulk band gap.

Far away from the gap (at high/low energies) the surface states will overlap and hybridize with

the bulk bands, so that it is impossible to distinguish between bulk and surface states anymore.

Thus, in the simplest case, surface bands start and end in bulk bands and can disperse in

a random way in between. To visualize that, imagine the bulk bands to be two rivers 1 and

2 that are flowing more or less parallel like depicted in Figure 2.1a. There are basically two

different ways how to construct small creeks that start or end in one of the big rivers. As one

possibility, the creek starts and ends in the same river. Alternatively, it may connect the two

rivers. Now imagine, that from time to time some external parameters (like the topography

of the landscape) smoothly change. As a result, the exact course of the creek may vary, too.

For the creek that starts and ends in the same river this path disturbance could result in a

case, where it completely vanishes in river 1. However, this is impossible for the other creek

that starts in river 1 and ends in river 2. Hence, this creek is robust against smooth external

changes of the landscape and cannot be pushed out of the gap between the two rivers.

To directly apply this idea to topological insulators we have to introduce two further in-

gredients, namely time–reversal symmetry and spin–orbit interaction. The first is easy to

understand: just reverse the arrow of time by pressing the rewind button of the system and

6
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conduction band

valence band valence band

a c
river 1

river 2

b conduction band

Figure 2.1: Possible types of surface states. (a) If a small creek has to fulfill only one boundary
condition, that is to start and end in a big river, there are two ways such a creek could flow. In
the left case the creek could be pushed out of the gap between the two big rivers by slightly
changing the topography of the ground. By contrast, the right case, where the creek starts and
ends in different rivers, is robust against perturbations. (b) A trivial insulator. The surface
bands are spin–split and start and end in the same band (here: conduction band). (c) A
topological insulator. Here, the surface bands connect conduction and valence band. Like
for the connecting river arm, these bands cannot be pushed out of the band gap by smooth
changes of the energy landscape describing the system.

look at its physical properties. Electrons that where moving in +k–direction should now move

in −k–direction. But rewinding the system will also reverse the spinning direction of the

electrons (e.q. their spin). Hence, for a system that is time–reversal symmetric, it follows for

an electron with the energy E :

E(k,↑) = E(−k,↓). (2.1)

For a "normal" material this requirement has little consequences, since every electronic state

is two times degenerate (i.e. spin–up and spin–down have same energy). However, in ma-

terials consisting of heavy atoms, the electrons orbiting the atomic cores reach such high

velocities (due to the very high potential of the positively charged core) that their magnetic

orbital angular momentum (classical picture: a current flowing on a circular path induces a

magnetic field) gets big enough to influence the orientation of the spin of the electron. This

spin–orbit interaction leads to a breaking of the degeneracy of spin–up and –down states. As

a consequence according to Equation 2.1 for every electron with, lets say spin–up, moving

in +k direction there must be a single state at −k with opposite spin. Using the concept of

connecting rivers, there are still only two possible ways to construct bands inside the gap that

start and end in bulk bands. One way is shown in Figure 2.1b, comprising a "parabolic" surface

dispersion for the spin–up case (red), which is mirrored at k = 0 to construct the spin–down

band (blue). For the second case, shown in Figure 2.1c, the valence and conduction band are

connected by a spin–up band, which is again just mirrored at k = 0. One can directly see that

Equation 2.1 is fulfilled in both cases.
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These are the two possible surface states that can form on the surface of a insulating material

with strong spin–orbit coupling, that is time–reversal symmetric. And like in the example of

the rivers, the case shown in Figure 2.1b is trivial since the surface bands can be pushed out of

the band gap by changes of the energy landscape, making this material a normal insulator. By

comparison, Figure 2.1c represents the non–trivial case of a topological insulator, where the

spin–polarized linear energy bands (called Dirac cones) on its surface cannot be destroyed by

any (non–magnetic) disorder.

The last question we have to answer is: when is an insulator trivial and when is it "topological"?

The answer is given by the topology of its band structure. Topology simply counts the number

of holes in an object. A sphere can be smoothly deformed into a cube without destroying it.

However it cannot be continuously deformed into a donut, since one would have to pinch

through the surface and introduce a hole into the body. Thus, a sphere (zero holes) and a

donut (one hole) are in different topological classes.

The concept of topology can also be applied to the electronic band structures of materi-

vacuum topological insulator vacuumconduction

band

valence

band

metallic

surface state

Figure 2.2: Change in topology. If a topological insulator is in contact with vacuum, the
topology of the band structure changes upon crossing the interface. This results in a gap–
closing and –reopening and thus metallic states at the interface.

als. Topological insulators exhibit so–called inverted band structures, that is, the order of

conduction and valence band is switched, resulting in a "negative band gap" (drawing the

band structure would look the same like in the normal case; the bands just have different

symmetry and are thus called inverted per definition). These are topologically distinct from

the normal band structure of trivial materials. By connecting a topological insulator and a

normal insulator (for example vacuum) the topology of the band structure changes at their

interface (see Figure 2.2). Thus, by going from the insulator to the topological insulator the

band gap will close and re–open again (that’s the change in topology; like cutting a hole in a

sphere) resulting in a metallic state directly at the interface.

The above descriptions, although partially oversimplified, should provide a useful basis for

the detailed mathematical derivation of the topological insulating phase in the next chapters.
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2.2 Why ’Topological’?

2.2.1 Berry–Phase

To illustrate the idea behind a geometric phase, let us consider a gedankenexperiment pro-

posed by Berry30: a pencil is placed at the north pole of a globe so that it points along one of

the degrees of longitude (see Figure 2.3). It is then moved along this longitude (path 1 – 3) until

1

2

3

4

5

6

7α

Figure 2.3: Example of parallel transport. A vector is moved on a sphere along the path 1 – 7.
After a closed loop its angle has changed by α.

it reaches the next degree of latitude where it makes a left turn and follows this latitude until

reaching the next longitude (path 3 – 5). After another left turn, it should move back to the

north pole (path 5 – 7). It can be directly seen, that (after returning to its original position) the

pencil points in a different direction. This angle–shiftα is a fundamental and purely geometric

result of parallel transport, i.e., moving a vector that is slaved to the local vertical along a

curved surface. The anholonomy (=the angle shift, which formally equals the Berry–Phase) in

this example is equal to the solid angle subtended at the globes center by the area enclosed

by the path the pencil was moved along. An other mechanical example where a Berry–Phase

can be measured is the Foucault pendulum, where a vector (direction of swing) is parallel

transported around a circle (due to the rotation of the earth). The concept of a geometric

phase can also be used to describe phase shifts in electron wavefunctions, when a system in

a certain eigenstate is adiabatically transferred to the same initial eigenstate by going along

a closed circle in parameter space. This can be achieved by, for example, rotating the spin

of an electron using an external magnetic field. The parameter space in this case is defined

by a sphere that is spun by unit vectors representing the possible spins. The magnetic field

direction is changed in such a way, that it follows a closed loop. Thus, although the electron

reaches exactly the same state it had initially, its phase has changed. The geometric phase the

electron acquires is given by the product of the spin–quantum number and the solid angle of

the area the loop encloses on the parameter space sphere.

To find a general expression for the Berry phase in quantum systems we consider a system
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with a Hamiltonian H(R) that changes in time.31 The Hamiltonian depends on several time–

dependent parameters (like the magnetic field, electric field, strain, ...) labeled by a vector

R(t ) = (R1(t ),R2(t ),R3(t ), ...). Assume the system to be in its ground–state |n(R(0))〉. If the state

vector R(t) is adiabatically (slowly) moved along a closed path C , the phase of the electron

wavefunction changes by:

γn = i
∮

C
〈n(R) |∇R |n(R)〉 dR. (2.2)

Here the Nabla operator ∇R = ∂
∂R is the derivative with respect to the parameters. To further

develop this equation we can (in analogy to electromagnetic fields) define the Berry vector

potential An(R) = i 〈n(R) |∇R |n(R)〉 and get

γn =
∮

C
dR ·An(R). (2.3)

Since we assumed C to be a closed path that encloses the surface S (in parameter space) we

can use Stokes theorem to get

γn =
∮

C
dR ·An(R)

!=
∫

S
d A · (∇R ×An(R)) =

∫
S

d A ·Ωn(R). (2.4)

In this equation we introduced the curl of the Berry vector potential which is called the Berry

curvatureΩn(R).i Like in electrodynamics, where the curl of the vector potential represents a

magnetic flux density (B(r) =∇×A(r)) the Berry curvature can be interpreted as a flux density

in parameter space. The Berry phase is then simply the "flux" through any closed surface S in

parameter space.

An effect that can be readily explained in this simple picture is the Aharonov–Bohm effect

(see below). Here the parameter space through which the particle moves is not a complicated

mathematical construct, but simply real space through which the particle moves on a circle.

The Berry curvature is just the magnetic flux (in units of the flux quantum φ0 = h/e) that is

penetrating that circle.

2.2.2 Chern numbers

Before discussing quantum systems let us go back to basic geometry again. Imagine a 3–

dimensional object—like a sphere—with a local Gaussian curvature K . Define a closed area

S (with the boundary ∂S that may have a geodesic curvature kg ) on the surface of the object.

The boundary may also contain i angles αi . There is a theorem by Gauß and Bonnet that

iFor the sake of completeness it can be shown, that Equation 2.4 can be used to solve the Foucault pendulum,
too. If the Gauss curvature K = 1/r 2 for a sphere with a radius r is used, the geometric phase α(C ) (in this case: the
angle difference of the pendulum after one day) is simply given by α(C ) = S(C )

r 2 , where S(C ) is the area the path
encloses on a sphere (= earth).
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directly links the geometry of this object to its topology:∫
S

K d A+
∫
∂S

kg d s +∑
αi = 2πχ(S). (2.5)

Here, the Euler characteristic χ(S) = 2−2g is defined by the genus g (= number of holes) of

the 3–dimensional object. Thus, Equation 2.5 says, that the sum of all angles αi and the total

curvatures of the surface S and its boundary ∂S is an integer number (given by the topology of

the object) times 2π. This formula simplifies for compact, boundaryless surfaces to∫
S

K d A = 2πχ(S). (2.6)

This equation states, that the total Gaussian curvature is independent of the exact shape

of the surface and only given by the Euler characteristic of the object. Thus, if a sphere

(g = 0 → χ(S) = 2) is deformed in a completely random way, its local curvature may change

drastically, but its total curvature remains constant, or in other words, it is topologically

invariant.

These arguments also hold for quantum mechanical systems. Here, the right–hand side of

Equation 2.6 is still an integer 2πm, where m is called the Chern number. The importance of

the Gauß–Bonnet theorem becomes apparent by comparing Equation 2.6 and Equation 2.4

for the Berry phase. This can be illustrated by the following example of the integer quantum

Hall effect. Using the Kubo formula, Thouless, Kohmoto, Nightingale and den Nijs (TKNN)

derived an expression for the Hall conductance:32

σx y = i e2

2πh

∑
n

∫
B Z

d 2k
(
∂u∗

nk

∂kx

∂unk

∂ky
− ∂u∗

nk

∂ky

∂unk

∂kx

)
, (2.7)

where the sum is over all occupied electron sub–bands (Landau levelsii) and the integration is

over the Brillouin zone (BZ). Using the definition for the Berry vector potential (see above) for

Bloch states An(k) = i 〈unk |∇R |unk〉 reduces the Hall conductivity to

σx y = νe2

h
(2.8)

where ν=∑
n νn with

νn =
∫

B Z

d 2k

2π

(
∂An,y

∂kx
− ∂An,x

∂ky

)
(2.9)

= 1

2π

∫
B Z

d 2k ·Ωn(k) (2.10)

= 1

2π
γ∂B Z

n . (2.11)

iiBy defining a unit cell with an area 2πħ/eB (enclosing one flux quantum) Landau levels can be labeled with 2D
crystal momenta k. If there is in addition a periodic potential with lattice periodicity the energy levels disperse
with k and form sub–bands (like in an ordinary insulator).33
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For the last step the definition of the Berry phase γ∂B Z
n (Equation 2.4) for an electron encircling

the Brillouin zone boundary ∂B Z was used. This is an intriguing result, since it shows, that

the Hall conductivity is governed by the phases the electrons in every sub–band n (=LL)

accumulate upon encircling the BZ.

But how can the quantized nature of the quantum Hall effect be explained? The answer can

be found using the Gauß–Bonnet theorem again. According to Equation 2.6 the Berry phase in

Equation 2.10 should be an integer multiple of 2π, where the integer m again is robust against

external (continuous) changes to the system and only given by the topology of the BZ as long

as there is a finite gap separating occupied and empty bands (= Landau levels).iii Thus, using

γ∂B Z
n = 2π ·m (m: Chern numbers), it follows that the Hall conductivity σx y is quantized in

integer values of e2/h. In this context, the filling factor ν is often referred to as the TKNN

invariant.

2.2.3 Bulk–boundary correspondence

In the last section it was shown, that topology can be used to describe the quantized conduc-

tance in a quantum Hall insulator. But can it also give information on where the conduction

actually takes place in the sample? Before answering that question, a simplified explanation

for the formation of edge channels in quantum Hall systems shall be given. In a semi–classical

sc
a
tt

er
in

g

insulator

insulator

quantum Hall state

ν = 0

ν = 0

ν = 1
EF

conduction band

valence band

k  = 0x

ba

y

x

Figure 2.4: Interface between a trivial insulator and a quantum Hall state. (a) A system in
the quantum Hall state (grey region) in direct contact to two trivial insulators (green region)
in y–direction. An external magnetic field is applied out–of–plane. The electrons are forced
on cyclotron orbits (blue circles). Electrons near the boundaries of the quantum Hall system
form dissipationless edge channels (skipping orbits). (b) Sketch of the dispersion relation of a
single edge state (purple) connecting the bulk conduction and valence band.

iiiThis is the reason why the Chern number is called topological invariant. The Hamiltonian describing the
system is invariant under small deformations. Small deformations (external fields, forces, strain) may change the
local curvature (= Berry curvature) but the total curvature remains constant, thus the system stays in the initial
ground state. The only way to change the Chern number is a large deformation, so that higher energetic states
become more favored.
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picture, electrons in the quantum Hall state are forced on circular orbits due to the strong

external magnetic field (see Figure 2.4a). Thus, electrons in the "bulk" are localized, cor-

responding to an insulating state. In contrast, electrons near the edges of the sample can

probably not fulfill a whole cyclotron orbit but get reflected at the edge. This results in a

so–called skipping orbit motion along the edges. Since the orbital motion of all electrons is

clockwise or anti–clockwise (like in Figure 2.4a), depending on the orientation of the external

magnetic field, there is only one possible direction the electrons can propagate along an edge.

In addition, since there are no free states into which back–scattering can occur, the transport

is dissipationless (the only possible back–scattering mechanism would be scattering from one

edge to the other).

The formation of dissipationless edge states can also be understood on the basis of topology.

For the case of a quantum Hall system in direct contact to an insulator (e.g., vacuum), as shown

in Figure 2.4a, the topology, given by the TKNN invariant ν changes from ν= 0 (→ σx y = 0,

trivial insulator) to ν = 1 (quantum Hall state) upon moving perpendicular to the edges of

the system (= y–direction). But, as stated above, a change in topology is only possible, when

the energy gap closes and reopens again. Thus, there must be a gapless state, that is bound

to the interface. The dispersion relation of such a state formed at one of the boundaries is

sketched in Figure 2.4b. The state connecting the valence and conduction band of the bulk

has a positive group velocity vg = 1
ħ
∂E
∂k at the Fermi level and represents a right–moving edge

channel. Interestingly, by slightly changing the Hamiltonian near the interface, the shape of

the dispersion of the edge state can vary. Imagine one would "deform" the Hamiltonian in

such a way, that kinks are introduced in the edge band, such that it passes the Fermi level

three times between the valence and the conduction band. This would result in two states

with positive (right–mover) and one state with negative (left–mover) group velocity occupied

at the Fermi level. In total, there would be one right–mover. The edge state dispersion can be

deformed in an arbitrary manner, and the difference NR −NL between the number of right

and left–mover will always remain constant and is determined by the topology of the bulk

states. This is called the bulk–boundary correspondence

NR −NL =∆ν, (2.12)

where ∆ν is the difference in TKNN invariants across the interface.33

2.3 Why ’Robust’?

2.3.1 Time–reversal symmetry

It is intriguing to look what happens to physical systems, when the arrow of time is simply

reversed:

T : t →−t . (2.13)
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For the example of the quantum Hall effect, the picture of the skipping orbits illustrates how

time–reversal changes the system: the electrons orbital motion is clockwise or anti–clockwise

depending on the orientation of the external magnetic field. Thus, for a certain field, specific

"one–way" channels are formed at the edges. By reversing time, electrons should in principle

just go back the way they came from. But since the orientation of the external magnetic field

is not changed, moving back along the same edge is impossible (backward moving is only

allowed on the opposite edge, as can be seen in Figure 2.4). Accordingly, the Hall conductance

would become zero when time is reversed—or in other words—the quantum Hall effect breaks

time–reversal symmetry.

Although systems that are time–reversal invariant seem to be less interesting at first glance,

some of them exhibit extraordinary topological properties, as will be demonstrated below.

Before that, the details of the time–reversal operator shall be briefly explained. Since the

time–reversal operator Θ only changes the direction of time, the position operator will be

unchanged. By contrast, the velocity of a particle and thus the momentum operator flip sign if

the time is reversed:

Θx̂Θ−1 = x̂, Θp̂Θ−1 =−p̂. (2.14)

It is also possible to look at the action of the time reversal operator on the commutator of x̂

and p̂

Θ[x̂, p̂]Θ−1 =−[x̂, p̂], (2.15)

where [x̂, p̂] = iħ (canonical commutation relation). Hence

ΘiΘ−1 =−i . (2.16)

For particles without spin, the time reversal operator is equal to the operator of complex

conjugation K . Since the spin S of a particle can—in a classical picture—be seen as a kind of

spinning–direction of the electron, the time reversal operator has to flip S, when the time is

reversed and the electron changes its spinning–direction:

ΘSΘ−1 =−S. (2.17)
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For a spin–1/2 particle S = (ħ/2)(σx ,σy ,σz ) with the Pauli matrices

σx =
(

0 1

1 0

)
(2.18)

σy =
(

0 −i

i 0

)
(2.19)

σz =
(

1 0

0 −1

)
. (2.20)

The operator of complex conjugation K alone cannot flip the spin of a particle, since Kσx K −1 =
σx , Kσy K −1 =−σy and Kσz K −1 = σz . Thus, to fulfill Equation 2.17 the time–reversal oper-

ator has to be expanded by a unitary operator U with UσxU−1 = −σx , UσyU−1 = σy and

UσzU−1 = −σz . This can only be satisfied if U = iσy , hence the time–reversal operator for

spin–carrying particles assumes the form:

Θ= iσy K . (2.21)

In classical systems, if the time is reversed twice one simply gets back to the starting point.

But is this also true for quantum mechanical systems? Applying the time–reversal operator

twice gives:

Θ ·Θ= iσy K · iσy K =
(

0 1

−1 0

)(
0 1

−1 0

)
K 2 =

(
−1 0

0 −1

)
=−I , (2.22)

where I is the identity matrix. Thus, if the time is reversed twice, the spin of a particle is

rotated by 2π, however the system doesn’t come back to its initial state but assumes a minus

sign. This change is nothing else than the Berry phase the electron acquires when moving

on a closed loop in parameter space (see chapter 2.2.1). A very important consequence of

Θ2 =−1 in time–reversal invariant systems is the Kramers theorem that will be introduced in

chapter 2.3.3. Prior to that the phenomenon of spin–orbit interaction will be described in the

following.

2.3.2 Spin–Orbit Interaction

A simple description of atoms is given by Bohr’s model: electrons surround the positively

charged atomic core on orbitals. Classically, an electric current along a closed path creates

a magnetic field. Applying this concept to the case of electrons on orbitals, this magnetic

field B is proportional to their orbital angular momentum L. The interaction between B and

the internal momentum of the electrons, their spin S, leads to an energy increase in the case

where B and S are parallel and a decrease in the anti–parallel case.

This picture can be generalized to spin–orbit effects in solids. Let us assume a crystal lattice
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Figure 2.5: Effect of the spin–orbit coupling on the band structure of a 2D material. (a)
Splitting of the bands into two energy paraboloids due to SOC. The arrows on the circles of
constant energy indicate the orientation of the spin of the corresponding state in k direction.
(b) Cut through the dispersion relation along kx . The color of the sub–bands indicates their
spin. The shift k0 of the parabolas is given by the Rashba parameter αR .

with an internal electric field E =∇V (r) due to the gradient of the potential V (r) of the atomic

cores. If an electron moves with an velocity v through this lattice, it will see a changing electric

field which can be directly transformed (Lorentz transformation) into a B field in the electrons

rest frame:34

B =− 1

c2 v×E = 1

mc2 E×p, (2.23)

where terms of (v/c)2 or higher order are neglected. Thus, the moving electron "feels" a

magnetic field normal to its direction of motion (and normal to the electric field) that can

interact with its spin via the Zeeman interaction. The corresponding Hamiltonian is given by

HSO = 1

2
· gµB B ·S = gµB

2mc2

(∇V (r)×p
)

·S, (2.24)

where µB = e/(2m)ħ is the Bohr magneton and g is the spin gyromagnetic ratio of the electron.

The factor 1/2 is a correction due to the Thomas precession.34 Using Equation 2.24 we can

also define the Rashba Hamiltonian

HR =αR
(
S×p

)
·e (2.25)

where αR = gµB E0

2mc2 is the Rashba parameter, and e is the unit vector of the electrical field E0. As

an example, the total Hamiltonian H = H0 +HR of a 2D electron gas can be diagonalized to

E± =
ħ2k2

||
2m∗ ±αR k||, (2.26)

with k|| =
√

k2
x +k2

y . It follows that SOC can split spin–degenerate levels since it directly couples

the direction of motion to the orientation of the spin. This can be directly seen by plotting
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Equation 2.26 (see Figure 2.5a). Figure 2.5b shows a cut in kx direction through the dispersion

relation. The two energy parabolas for different spins are shifted by k0 =αR m∗/ħ2. This shift is

most prominent if the electric field of the atomic cores is big. Since this field is directly related

to the mass of the atoms, SOC is more relevant in compounds containing heavy elements.

2.3.3 Kramers theorem

In a time–reversal invariant system, the corresponding Hamilton operator H must commute

with the time–reversal operator, meaning that [Θ, H ] = 0. Thus, the eigenstates |ψ〉 andΘ |ψ〉
have the same energy E . But are |ψ〉 and its time–reversed stateΘ |ψ〉 simply the same quantum

state or are they different? Assuming |ψ〉 and Θ |ψ〉 were the same state and that they only

differ by a phase φ, then

Θ |ψ〉 = eiφ |ψ〉 . (2.27)

Calculating the time–reversed state yields

Θ ·Θ |ψ〉 = Θ ·eiφ |ψ〉 = e−iφ · Θ |ψ〉︸ ︷︷ ︸
E q.2.27

= e−iφ ·eiφ |ψ〉 = |ψ〉 (2.28)

⇒Θ ·Θ = +1. (2.29)

This result is in contradiction with that derived from Equation 2.22, demonstrating that every

quantum state |ψ〉 is different from its time–reversed state Θ |ψ〉. Therefore the Kramers

0 π/a-π/a

E

kx

ky

π/a0

π/a

Λ3 Λ4

Λ2Λ1

a b

-k‘ k‘

k

Figure 2.6: Kramers pairs of bands and time–reversal invariant momenta (TRIMs). (a) The
degeneracy for spin–up (red) and –down (blue) bands is lifted due to spin–orbit coupling. For
every wavevector k’ there is a corresponding state -k’ at the same energy (see dashed green
line), forming a Kramers pair. Each pair of bands are degenerate at TRIM points. (b) Four
TRIM pointsΛ1 toΛ4 for a 2D square BZ (grey shaded area).35

theorem states, that all eigenstates of a time–reversal invariant Hamiltonian H are at least
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two–fold degenerate. In a system without spin–orbit interaction, this is simply the degeneracy

between spin–up and –down states (E↑(k) = E↓(k)). But by switching on spin–orbit coupling,

spin–degeneracy is lifted and the Kramers theorem has important consequences. A time–

invariant Hamiltonian satisfies35

ΘH(k)Θ−1 = H(-k). (2.30)

Thus, for every—for example spin–up—electron with a wavevector k at a certain energy E

there must be a corresponding time–reversed spin–down electron with −k (see Figure 2.6a)

E↑(k) = E↓(−k). (2.31)

These two states form a so–called Kramers pair. The Kramers pairs are degenerate at special

time–reversal invariant momenta (TRIM) points due to the periodicity of the Brillouin zone

(for example at k = 0 or k =π/a, which is equal to k =−π/a). As an example the TRIM points

of a 2D cubic BZ are depicted in Figure 2.6b.

2.4 Z2 Topological Insulators

This section addresses the question, which materials are topological insulators and which ones

are not. Imagine a 2D time–reversal invariant insulator whose valence and conduction bands

valence band

conduction band

Γa Γb
k-Γb

E

EF

k

E

EF

b

valence band

conduction banda

Γa Γb-Γb

Figure 2.7: Possible dispersion relations between two TRIM points Γa = 0 and Γb = π/a at
one edge of a 2D insulator. (a) A trivial insulator, where an even number of edge states is
crossing the Fermi energy EF (green points). (b) The non–trivial case, where an odd number
of edge states is crossing EF (green points). This leads to topologically protected metallic
boundary states.33 To illustrate the concept of Kramers pairs, the band structure is plotted
from −Γb to +Γb through Γa .

are separated by an energy gap (see Figure 2.7). Depending on the Hamiltonian describing the

system, edge states may form within the bulk band gap. The Kramers theorem requires, that

these states are two–fold degenerate at the TRIM points. If spin–orbit coupling is strong, this
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2.4. Z2 Topological Insulators

degeneracy is lifted for all momenta k between the TRIM points (Γa = 0 and Γb =π/a in Figure

2.7), such that the edge bands split into spin–down and spin–up bands. There are two possible

ways how the TRIM points can be connected by the edge states. In Figure 2.7a, the TRIMs are

connected by the same pair of spin–split bands. Thus, the edge states will cross the Fermi

level an even number of times. This represents the case of a trivial insulator for two reasons:

Firstly, back–scattering is allowed, since for every +k there are free states at certain −k ′ with

the same spin–orientation. Thus, these states will be localized by weak disorder.36 Secondly,

by smoothly changing the Hamiltonian, it is possible to push the edge bands completely out

of the band gap (imagine, the Kramers points at Γa and Γb are continuously pushed down to

lower energies until they overlap with the bulk valence band).

But there is also a second way to connect the TRIMs. In Figure 2.7b, the edge bands cross the

Fermi energy an odd number of times. This is a non–trivial case, i.e., of a topological insulator,

since the edge states cannot be eliminated by slightly changing the Hamiltonian. Likewise,

opening a gap in the crossing edge–states at the TRIM points is impossible, since they form

Kramers doublets, whose degeneracy cannot be lifted by any perturbation that is not breaking

time–reversal symmetry. This is an outstanding feature of topological insulators, involving

robust, time–reversal symmetry protected boundary states which allow for example chemical

modification of the material without destroying these boundary states.6

The band structure in Figure 2.7b closely resembles the one in Figure 2.4b for an edge channel

in the quantum Hall phase. However there is an important difference: as a consequence

of time–reversal invariance in the case of a topological insulator there are two counter–

propagating channels per edge (the crossing bands possess different group velocities). But

since the two bands form time–reversed Kramers pairs, their spin–orientation is opposite.

Thus, the edge states are spin–filtered in the sense that electrons with opposite spins prop-

agate in opposite directions.37 Hence, like in the case of the quantum Hall effect, elastic

back–scattering by a random potential is forbidden, and consequently electrical transport

along an edge of a topological insulator is spin–filtered and dissipationless.

How can one distinguish between materials that behave trivial and those who are topological

insulators? Unfortunately, the classification by TKNN invariants introduced in section 2.2.2 for

the integer quantum Hall effect cannot directly be used for this purpose, since in time–reversal

invariant systems the quantum Hall effect vanishes and thus the TKNN invariant ν= 0. Thus, a

new classification of time–reversal invariant systems by a so–called Z2 invariant νZ 2 has been

introduced.36 Since the number NK of Kramers pairs that intersect the Fermi level directly

tells us if the system is trivial (NK = even) or non–trivial (NK = odd), a new bulk–boundary

correspondence (compare Equation 2.12) can be formulated:

∆νZ 2 = NK mod 2, (2.32)

where ∆νZ 2 is the change in the Z2 invariant across the interface and mod 2 is the modulo

operation that finds the remainder of the devision by 2. Thus, for example, if νZ 2 is the same

on both sides of the interface, ∆νZ 2 = 0 and the edge states intersect the Fermi level an even

number of times. By comparison—like in the case of the integer quantum Hall effect—the
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"topology" changes when passing the boundary, an odd number of Kramers pairs cut the

Fermi level and a non–trivial state is formed at the interface.

What is the physical meaning of the Z2 invariant and how can the value of νZ 2 be calculated?

For the easiest case, a 2D system where the perpendicular spin Sz is conserved due to the

absence of inter–band coupling, interactions or disorder, each spin component can be treated

independently and is described by an individual TKNN integer n↓ or n↑.36 Time–reversal

symmetry still requires, that the total TKNN integer n↓+n↑ = 0, but their difference nσ =(
n↓−n↑

)
/2 defines a quantized spin Hall conductivity. The Z2 variant is then given by

νZ 2 = nσ mod 2. (2.33)

It can be directly seen, that Equation 2.33 has only two possible solutions: the case of a

trivial insulator (νZ 2 = 0) and the case of a topological insulator (νZ 2 = 1). For more realistic

systems (where Sz is not conserved), however, the calculation of the Z2 invariant becomes

more complicated. The basic principle to achieve this is to somehow "count" the number

of Kramers pairs of the edge modes. One way to do so is to define an antisymmetric matrix

wi j (k) of overlaps of the i th occupied Bloch band wave function |ui 〉 with the time–reversal of

the j th eigenstateΘ |u j 〉:31, 36

wi j (k) = 〈
ui (k)

∣∣Θ ∣∣u j (k)
〉

. (2.34)

There are two basic ways how a Bloch wave can change under application of the time–reversal

operator: in the "even" caseΘ |u j (k)〉 is equal to |u j (k)〉. This is, for example, fulfilled at the

special TRIM points (k = 0, k = π/a) in the BZ. In the "odd" case, Θ |u j (k)〉 is orthogonal

to |u j (k)〉. This corresponds to the Kramers pairs we are interested in. The even and odd

subspaces spanned by the Bloch waves can be identified by calculating the Pfaffian of wi j (k):

P (k) = Pf
[〈

ui (k)
∣∣Θ ∣∣u j (k)

〉]
. (2.35)

For the even subspace |P (k)| = 1, whereas for the (interesting) odd subspace P (k) = 0. Thus,

the strategy to calculate the Z2 invariant is to count the zeros of P (k) in half (time–reversal

symmetry!) of the Brillouin zone. Depending on the symmetry of the system, these zeros can

be at special symmetry points or lie on loops around TRIM points (where P (k) = 1). The Z2

index I is hence given by

I = 1

2πi

∫
C

dk ·∇ log(P (k)), (2.36)

where the contour C is half the BZ. νZ 2 = I mod 2 can be 0 for an even number of zeros (trivial

insulator), or 1 for an odd number of zeros (topological insulator).

Before coming to real examples of TIs, a more physical interpretation of the Z2 index shall be

given by introducing the model of time–reversal polarization (Θ–polarization). In this model,

the quantum spin Hall effect (topological insulator) is described by an adiabatic spin pump38

similar to Laughlin’s argument.39 In the latter, the integer quantum Hall effect was thought as
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an adiabatic charge pump within the following gedankenexperiment: Imagine a 2D electron

Δϕ = h/e

Jx

Ey

B

ΔQ = ne

Figure 2.8: Laughlin’s gedankenexperiment. For cylindrical 2D electron gas, a strong mag-
netic field B is applied normal to its surface to condensate all carriers in certain Landau levels.
If the flux through the cylinder is changed, this charge pump generates an electrical field Ey

in y–direction which induces a Hall current Jx in the x–direction. Changing the flux by one
flux–quantum will transfer a charge ne from one side of the device to the other.40

gas that is rolled into cylindrical shape like depicted in Figure 2.8. Suppose that this system

has an energy gap which is due to an external B–field normal to the surface, that condensates

the density of states into Landau level and that the Fermi energy is located in this gap. If a

magnetic fluxφ is penetrating through the cylinder and is slowly varied with time, an electrical

field Ey will be induced on the cylinders surface (Faraday’s law). This electric field is connected

to the Hall current density Jx by Jx =σx y Ey , where σx y is the Hall conductance. The charge Q

that is transported along x is related to the current density by the continuity equation:

dQ

d t
=−

∮
C

dl · Jx =−σx y

∮
dl ·Ey =︸︷︷︸

Stokes

σx y

∫
S

dS ·∇×Ey . (2.37)

Using Faraday’s law ∇×E = −dB
d t and the definition of magnetic flux φ = ∫

S dS ·B, it can be

written

dQ

d t
=

∫
S

dS ·
dB

d t
=σx y

dφ

d t
. (2.38)

Hence

∆Q =σx y∆φ. (2.39)

If the flux is changed by one flux quantum ∆φ= h/e the charge ∆Q = n ·e is transferred from

one side of the cylinder to the other, and the Hall conductance becomes σx y = n e2

h . The

number n of electrons corresponds to the so–called charge polarization Pρ , which is given by

Equation 2.10 (phase change of the electron when performing one orbit around the cylinder

during one pump–cycle) and is equal to the TKNN invariant.

The above concept can be used to unravel the physical meaning of the Z2 invariant. If a
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magnetic flux is threading a quantum spin Hall system that is rolled up into cylindrical shape,

a certain spin ∆Sz is transfered from one side of the cylinder to the other, when the flux is

changed by one flux quantum (whereas the total charge that is transfered is zero due to time–

reversal symmetry). In this case, the spin that is transported is given by ∆Sz = νZ 2ħ, where

νZ 2 is the Z2 invariant.38 Following the idea of the charge pump, the total charge polarization

Pρ (that originally defined the number of electrons flowing during one pump cycle) can be

redefined as a sum of partial polarizations Pi of every contributing band. Now let’s have a look

at time–reversal invariant systems. The contributing bands i should now be a Kramers pair,

thus Pρ = P1 +P2
!= 0, since there is no charge polarization when the system is time–reversal

invariant. But we can also define a new quantity called theΘ–polarization Pθ which is given

by

Pθ = P1 −P2 = 2P1 −Pρ . (2.40)

This quantity represents the difference in charge polarization between spin–up and spin–

down bands, since the bands 1 and 2 form a Kramers pair. The partial polarizations Pi can be

calculated using Equation 2.10:

Pi = 1

2π

π∫
−π

dk · Ai (k), (2.41)

where Ai is the Berry vector potential (Berry connection) of the Kramers partner i and the

integration is done from one TRIM at k = −π to k = π via the TRIM at k = 0. By using the

matrix wi j (k) (see Equation 2.34) it can be shown that:35, 38

Pθ =
1

iπ
log

(p
det[w(0)]

Pf[w(0)]
·

Pf[w(π)]p
det[w(π)]

)
, (2.42)

or

(−1)Pθ =
p

det[w(0)]

Pf[w(0)]
·

Pf[w(π)]p
det[w(π)]

. (2.43)

For a skew–symmetric matrix Pf[w ]2 = det[w ]. Thus, Pθ can only assume the values 0 or 1. To

expand this model to a 2D system (until now we were only integrating along one direction in

the BZ), all TRIM points have to be included. For a cubic BZ, these are the pointsΛi with i = 1

to 4 (see Figure 2.6). Therefore, the Z2 invariant is given by

(−1)νZ 2 =
4∏

i=1
δi (2.44)

with

δi = Pf[w(Λi )]√
det[w(Λi )]

. (2.45)
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The general idea behind this formula is the following: All TRIM points will be connected by

two edge–bands (see TRIM points Γa and Γb in Figure 2.7). The expression Pf[w(Λi )]p
det[w(Λi )]

gives

theΘ–polarization at every TRIM point and can only be +1 or −1, since Pf[w ]2 = det[w ]. If the

Θ–polarization of two TRIM points is identical, then they share the same two spin–split edge

bands (see Figure 2.7a). In contrast, if theΘ–polarization of two TRIM points is different, there

is a sign–change in between the points and thus there must be an edge mode crossing the

Fermi level if situated in the gap.31 This is the non–trivial case depicted in Figure 2.7b, where

Kramers pairs "switch partners" (i.e., TRIM points).

It should be noted, that Equation 2.44 can be further simplified if the crystal has inversion

symmetry. In that case only the eigenvalues ξm(Λi ) of the space inversion operatorΠ have to

be calculated at the TRIM pointsΛi usingΠ |um(Λi )〉 = ξm(Λi ) |um(Λi )〉. The Z2 invariant can

then be simply obtained using

(−1)νZ 2 =
4∏

i=1

N∏
m=1

ξm(Λi ), (2.46)

where the second product is over the Kramers pairs of 2N occupied bands preserving inversion

symmetry and time–reversal symmetry. This formalism is widely used to predict candidates of

TI materials.41, 42

2.4.1 Z2 invariants in three dimensions

The concept of distinguishing trivial and non–trivial insulators using Z2 invariants can be easily

generalized to three–dimensional (3D) systems.43 In 3D, time–reversal invariant insulators are

characterized by four Z2 invariants. Since every invariant can have the values 0 or 1, this leads

to 16 classes of trivial/topological insulators. In a cubic–primitive Brillouin zone, the eight

TRIM points Γi are located at the vertices of a cube (see Figure 2.9) and can be expressed in

terms of a reciprocal lattice vector Γi=n1n2n3 = (n1b1 +n2b2 +n3b3)/2, with n j = 0,1. For every

TRIM Γi a parameter δi =±1 can be calculated using Equation 2.45 or 2.46 (if the crystal has

inversion symmetry). The four Z2 invariants ν0; (ν1ν2ν3) describing the system are defined as

(−1)ν0 = ∑
n j=0,1

δn1n2n3 , (2.47)

(−1)νi=1,2,3 = ∑
n j 6=i=0,1;ni=1

δn1n2n3 . (2.48)

These equations shall be illustrated by an example. In the cubic BZ (blue) in Figure 2.9a,

the δi for every TRIM are: δ000 = −1, δ100 = −1, δ010 = +1, δ001 = +1, δ110 = +1, δ011 = +1,

δ101 = −1 and δ111 = +1. The invariant ν0 can be calculated using Equation 2.47, as the

product of all possible δi , i.e. (−1)·(−1)·(+1)·(+1)·(+1)·(+1)·(−1)·(+1) = −1 and ν0 = 1.

The index ν1 can be calculated from the product of all δn1n2n3 where n1 = 1 (see Equation
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Figure 2.9: Topological phases in three dimensions. (a) Example of a (001) surface. The
eight TRIM Γi are projected on the x–y plane. The green + and − signs at the vertices of
the cube depict the sign of δi . The blue (+) and red (−) circles on the x–y plane depict the
sign of πa = δi=a1δi=a2. (b) Four different phases indexed by ν0; (ν1ν2ν3). (c) Corresponding
projections on (001). The thick black lines and grey shaded areas indicate possible surface
Fermi surface arcs.43

2.48), hence δ100 ·δ110 ·δ101 ·δ111 = (−1) · (+1) · (−1) · (+1) = 1 and ν1 = 0. The invariants ν2 and

ν3 are obtained in the same manner yielding (−1)ν2 = δ010 ·δ011 ·δ110 ·δ111 = 1 and (−1)ν3 =
δ001 ·δ011 ·δ101 ·δ111 = −1, and finally: ν0; (ν1ν2ν3) = 1;(0,0,1). Four other bulk phases are

shown in Figure 2.9b.

Now let’s come to the question what happens, if a boundary is introduced to a time–reversal

invariant material. To investigate these boundaries (e.g. the surfaces), the TRIM points are

projected along the direction normal to the surface that is formed. This is depicted in Figure

2.9a for a (001) surface, where the eight bulk TRIM points Γi are projected onto the x–y plane

24



2.4. Z2 Topological Insulators

along the [001] direction. The four surface Kramers degenerate pointsΛa are projections of

pairs Γa1Γa2 and form 2D Dirac points. The pairs of δi are combined to a new parameter

πa = δa1δa2 = ±1 which expresses the Θ–polarization associated with every surface TRIM

pointΛa . The signs of πa are depicted by blue (+) and red (−) circles in Figure 2.9a and c.

Importantly, the same arguments like in the 2D case can be used to describe the surface

spectrum of the system: if two surface TRIM pointsΛa andΛb with differentΘ–polarization

(given by the sign of πa and πb) are connected, theΘ–polarization has to change sign along

that path resulting in a "partner switching" at the TRIM, as depicted in Figure 2.7b. Thus,

this path intersects the Fermi surface once (non–trivial case). If there is no sign–change

along a path connecting two TRIM points with the sameΘ–polarization, the surface band will

intersect with the Fermi level an even number of times or not at all (see Figure 2.7a). Thus, for

any path connecting two surface TRIM pointsΛa andΛb , the surface band structure will be

equal to Figure 2.7a or b if πaπb = 1 or −1. As a consequence, the Fermi surface will divide the

surface BZ into two region: one region with Dirac points at TRIMs with πa =−1 and the other

region with πa =+1. This is shown in Figure 2.9c for the (001) surface of four different bulk

phases. The thick black lines and grey shaded areas denote different surface Fermi arcs which

enclose specific Λa . In the left panel all πa are positive, thus no path connecting any TRIM

will cut the Fermi surface. This is the case of a trivial insulator. In the second left panel the

Fermi surface is intersected in kx direction, although the path along ky does not cut the Fermi

surface (or is cutting it an even number of times). The second right panel shows a similar

situation, since there is a path along the [110] direction where the surface Fermi surface is

not cut. These phases with ν0 = 0 are called weak topological insulators (WTI), since a weak

periodic potential is able to open a gap at their Dirac points. They can be interpreted as a

stack of 2D topological insulators in the direction given by the vector Gν = ν1b1 +ν2b2 +ν3b3

defined by the Z2 invariants. This can be directly from Figure 2.9c, where Gν always points in

the "trivial" direction, whereas planes normal to that vector would intersect the Fermi level

once and thus behave non–trivial.

If the Fermi arc encloses either one or three Dirac points (like shown in the right panel) the

phase is called a strong topological insulator (STI) described by ν0 = 1. These materials are

robust and form Dirac points on all faces.43 Like in the 2D case, time–reversal symmetry

requires that states at k and −k have opposite spins making the surface states of a strong 3D

topological insulator a so–called "helical metal" where the spin rotates with k around the

Fermi surface.33 This leads to a non–trivial Berry–phase of π when an electron encircles the

Fermi surface once. As a result, those states are immune against localization by weak disorder

(see Chapter 3.3.2).

2.4.2 Theoretical prediction of real Topological Insulator materials

2D Topological Insulators Remarkably, the first topological insulator that was predicted the-

oretically was graphene, a sp2–bonded monolayer of graphite.37 It has been put forward that

spin–orbit interaction should open a gap in the Dirac cones at the K /K ′ points of graphene. In-

terestingly, the signs of the gaps at K and K ′ are opposite. Thus, by connecting them, two edge
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Figure 2.10: Quantum spin Hall effect in a one–dimensional zigzag stripe of graphene. (a)
QSH phase. The dispersions of the different edges (green and red lines) cross at the TRIM
point k =π (blue circles). (b) Trivial insulator case. (c) Phase diagram as a function of λv , λR

and λSO . The blue circle and yellow circle correspond to the QSH phase in (a) and the trivial
case in (b), respectively.36

bands (per edge) will cross at the TRIM point kx =π (see Figure 2.10a). The gap introduced

by spin–orbit interaction is "topologically" different from a gap that could be introduced by,

for example, breaking of inversion symmetry by a staggered sublattice potential (see Figure

2.10b). By smoothly changing the strength λv of the staggered sublattice potential, a transition

between the two phases, the trivial and the non–trivial one, should occur. At the transition the

bulk energy bandgap closes and reopens again, allowing the edge states to "switch partners".

Thus, a phase diagram can be constructed, describing the occurrence of the different topo-

logical phases as a function of the strength of the spin–orbit coupling λSO , the strength of the

staggered sublattice potential λv , and the strength of the Rashba effect λR (see Figure 2.10c).36

Although from a theoretical point of view graphene should be a 2D topological insulator, an

experimental proof is still lacking. This is mainly because the gap opened due to spin–orbit
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interaction is on the order of 10−3 meV, which is rather difficult to detect by spectroscopic or

electrical transport measurements.

Nevertheless, the band–inversion (e.g., a "negative" bandgap) in graphene stimulated the

identification of further TI materials. Such a band–inversion can be found at the Γ–point of

quantum wells of HgTe.31 Due to the heavy elements in that compound, the very strong spin–

orbit interaction lifts the p orbitals above the s levels, resulting in an inverted band structure.

However, bulk HgTe is a zero–gap semiconductor. A way to open up a gap in such systems

is to reduce the dimensions of the material. Practically, for HgTe, that has been achieved by

fabricating sandwich structures of CdTe/HgTe/CdTe.44 Confining HgTe to two dimensions

creates quantum well states parallel to the confinement direction. The band structure of the

2D electron gas (2DEG) formed normal to that direction can be tuned by the thickness of the

well. For thick quantum wells (d > dc ) the 2D bands have the same inverted order like the

bulk material. By decreasing the well thickness the confinement energy for every subband

increases. Below a critical thickness dc the s–like subbands shift to higher energies than the p–

like subbands and the band order is trivial again. Thus, by successively changing the thickness

of the HgTe layer, its bandgap can be changed from inverted to normal band–order.45 This

quantum phase transition in turn comes along with a closing and opening of a bulk bandgap,

and hence a change in the Z2 invariant of the system. For the inverted case, the Z2 invariant

of the HgTe layer is νZ 2 = 1, whereas the CdTe layers are trivial insulators with νZ 2 = 0. The

bulk–boundary correspondence leads to time–reversal protected edge states at the boundary.

The existence of such spin–polarized edge–states in the 2D topological insulator HgTe could

be verified by electrical transport measurements.46–48

3D Topological Insulators Like in the 2D case discussed above, the best strategy to find 3D

TIs is to consider materials with strong spin–orbit interaction that may lead to an inverted

band structure at certain points in their BZ. By investigating such compounds that additionally

exhibit inversion symmetry (see Equation 2.46), Fu and Kane41 were able to predict the first

strong 3D topological insulators: α–Sn and HgTe (both under uniaxial strain), as well as the

Bi1−x Sbx alloy. α–Sn and HgTe are zero–bandgap semiconductors with an inverted band–

order at their Γ point. Small uniaxial strain lifts the degeneracy at Γ and opens up a band gap.

Strained HgTe films have been successfully proven to be topological insulators using low–T

electrical transport measurements.49

Pure Bi is a semimetal with conduction band minima (separated from the valence band

maxima by a small bandgap of several 10 meV) at the three equivalent L points overlapping

with a valence band maximum at the T point. This leads to electron (hole) pockets at the L

(T) point. By alloying Sb into Bi the valence band edge at the T point can be shifted to lower

energies. Interestingly, at a concentration of about x ≈ 0.04, the gap at the L point closes and

reopens again in inverted order. At a concentration of about x ≈ 0.09, the T band drops below

the valance band at L and the system becomes a direct (inverted) semiconductor. This phase

belongs to the 1;(111) class and is a strong TI.
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Although it has been verified that Bi1−x Sbx alloy is a strong topological insulator by means of

ARPES experiments50 electrical transport experiments on this material are challenging. On the

one hand, very good control of the composition x is needed, since the topological insulating

phase only exists for the range 0.07 < x < 0.22. In addition, alloys tend to form impurity bands

inside their bandgap leading to an extra transport channel that screens surface effects. On the

other hand, the electronic surface structure of Bi1−x Sbx is very complicated with five surface

bands crossing the Fermi level. This complicates the interpretation of experimental results.

Thus, the motivation to find materials with controlled stoichiometry and a simple surface

band structure led to the discovery of the topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 by

Zhang et al..42

The chalcogenides Bi2Se3, Bi2Te3 and Sb2Te3 form rhombohedral (space group R3m) crystals

consisting of hexagonally close–packed atomic layers of five atoms (quintuple layer) that are

weakly bonded together by van der Waals interaction (see Figure 2.11a and b). In the case
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Figure 2.11: Crystal and band structure of Bi2Se3 (a) Side view of the layer structure. Five
covalently bond layers form one quintuple layer. The crystal has an inversion center at the
Se(2) positions. (b) View along the z–direction showing the stacking order of the crystal. (c)
Calculated bulk band structure of Bi2Se3 without (grey dashed line) and with (purple solid
line) SOC. A camel’s back feature appears at the Γ point when SOC is switched on.42

of Bi2Se3, for example, the stacking order is Se(1)–Bi–Se(2)–Bi–Se(1). These crystals have an

inversion center at the Se(2) site (Te(2) site in the case of Bi2Te3 and Sb2Te3) which allows to

use Equation 2.46 to calculate the Z2 invariant. However, the non–trivial character of these

chalcogenides is already apparent from calculated band structures without and with spin–

orbit interaction (see Figure 2.11c). By switching on SOC a pronounced anti–crossing feature

at the Γ point emerges (camel’s back like feature in the valence band) which is an indication

for an inversion of the valence and conduction band, suggesting that Bi2Se3 is a topological
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2.4. Z2 Topological Insulators

Table 2.1: Parity of 14 occupied bands and the lowest unoccupied band at the Γ point of
Sb2Te3, Bi2Te3 and Bi2Se3. The product of the parities of the occupied bands is given in
brackets on the right hand side.

Sb2Te3 + − + − + + − + − + − − − +; − (−)
Bi2Te3 + − + − + − + + − + − − − +; − (−)
Bi2Se3 + − + − + − + − + − + − − +; − (−)

insulator. To verify that, a full parity analysis of all 14 occupied bands at the Γ point can be

done. The results for Bi2Se3, Bi2Te3 and Sb2Te3 are shown in Table 2.1. It can be seen, that the

product of the parities of all occupied bands is −1, thus ν0 = 1, making these three materials

strong TIs. To highlight the origin of band inversion, the effect of chemical binding, crystal

field splitting and SOC on the atomic levels is shown in Figure 2.12. The parity of these levels

is depicted in blue (even) and red (odd). Since the chemical bond in Bi2Se3 is mainly via the
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Figure 2.12: Band sequence and surface states of Bi2Se3 (a) Evolution of the p atomic orbitals
of Bi and Se into the valence and conduction band of Bi2Se3 when forming a chemical bond,
taking into account crystal field splitting and switching on SOC. (b) Numerical calculation of
the energy and momentum dependence of the local density of states on a Bi2Se3 (111) surface.
The surface state can be seen at the Γ point.42

p orbitals of Se (4s24p4) and Bi (6s26p3), effects of the s orbitals can be neglected. A simple

chemical bond will result in a hybridization of the p orbitals which pushes down the three p

orbitals (two of which have odd and one has even parity) of the Se atom and lifts the two p

orbitals (one even, one odd) of the Bi atom. Crystal field splitting breaks the degeneracy of the

pz and the px y orbitals. Thus, after this splitting the two p orbitals closest to the Fermi level

(purple) are the two pz orbitals P1z and P2z . Switching on spin–orbit interaction, leads to a

further level repulsion between the px y and the pz components. If the SOC is strong enough,

the P2z orbitals of the Se can be lifted above the P1z orbital of the Bi, imparting a switch in
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parity. This explains the band inversion of Bi2Se3 at the Γ point.

Figure 2.12c shows the calculated surface band structure of the (111) surface of Bi2Se3.42 It

can be clearly seen, that a Dirac cone is formed inside the gap of the projected bulk bands.

For all three chalcogenides Bi2Se3, Bi2Te3 and Sb2Te3 only a single Dirac cone was observed.

Thus, their surface band structure is much simpler than that of the Bi1−x Sbx alloy, making

them ideal systems to study surface related phenomena.
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3 Magnetotransport phenomena

ΦΦ

In this chapter fundamental transport phenomena relevant for the investigation of topological

insulator nanostructures will be presented. It covers classical diffusive electrical transport

effects, as well as coherent and quantum transport phenomena. Which of these effects is pre-

dominantly manifested mainly depends the length scales of the sample under investigation.

31



Chapter 3. Magnetotransport phenomena

3.1 Length scales

The strong interest in nano-electronics arises from the many fascinating electrical transport

effects that can only be revealed when making the sample size L smaller than some special

characteristic lengths. One of them is the carrier mean free path le . In disordered samples,

electrons are scattered by impurities or phonons on a typical time scale τe , and hence the mean

free path defines which (average) distance le = vFτe (here vF is the Fermi velocity) an electron

can propagate between scattering events. If an electron is described quantum mechanically

as a wave with a Fermi wavelength λF , its phase φ changes after a certain time τφ due to

various interactions. The resulting phase coherence length lφ = vFτφ is crucial to understand

the crossover between quantum mechanical and classical systems, since after a length lφ any

interference phenomena will be lost. In a strongly disordered system, scattering is so strong

that the carriers become localized on a certain length scale defined by the localization length

ξ (see below). Comparing these length scales to the system size L allows to classify electrical

transport phenomena as depicted in Figure 3.1:34
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Figure 3.1: Length scales. Electrical transport regimes in dependence of the mean free path
le and the phase coherence length lφ of an electron. L and λF denote the dimension of the
sample and the Fermi wavelength, respectively.

1. Diffusive classical transport (L,ξÀ le ≥ lφÀλF ).

Due to pronounced scattering, the trajectories of individual electrons can be considered

as random walks. Charge transport can be described by classical diffusion of an electron

gas (Drude model).

2. Weak localization regime (L,ξÀ lφÀ le >λF ).

Carrier motion is still dominated by scattering and can be described by (semiclassical)

quantum diffusion. The term semiclassical implies that the electrons follow essentially
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3.2. Diffusive electrical transport

classical trajectories, but carry a quantum phase information which allows for interfer-

ence. Such interference can lead to enhanced back scattering and thus to localization

(see below).

3. Quantum regime of strong localization (lφ > ξ≈ le ≈λF ).

Many (phase coherent) scattering events cause localization of electrons around the

impurities. Electrical transport can be described by (occasionally coherent) hopping

between localization sites.

4. Regime of classical strong localization (ξ≥ lφ ≈ le ≈λF ).

Mainly dominated by classical, incoherent hopping transport without any quantum

interference.

5. Ballistic transport (le > L).

If the mean free path between two (elastic or inelastic) scattering events becomes larger

than the sample size, the system acts like a waveguide for individual electron waves with

a group velocity vg .

6. Mesoscopic systems (lφ > L).

The dimensionality of a system can be described by comparing the phase coherence

length lφ to its size. If the width W of a 2D sample gets smaller than lφ it can be treated

as a 1D mesoscopic system. Comparing the length L of that system to le allows to define

a diffusive (le < L) and a ballistic (le > L) mesoscopic regime.

3.2 Diffusive electrical transport

3.2.1 Drude model with magnetic field

The simplest model to describe electronic transport in metallic systems is the Drude model. It

considers that a solid contains a "gas" (in analogy to the kinetic gas theory) of non-interacting

electrons. An external electric field E will accelerate the electrons until they scatter with crystal

defects, charged impurities or phonons within a mean free time τe . After every scattering

event the carriers will have lost their memory and move in a random direction. Thus, the paths

of individual electrons are like a random walk movement. Although individual electrons move

statistically, the whole electron gas drifts parallel to the external field E with the drift velocity

vd = 1

N

∑
i

vi , (3.1)

defined as the average carrier velocity of an electron gas containing N electrons with individual

velocities vi .

An external magnetic field imports a Lorentz force on the electrons. As the direction of this

force is always perpendicular to their direction of propagation, the electrons are forced onto

circular orbits between two scattering events. This leads to the following classical equation of
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Chapter 3. Magnetotransport phenomena

motion:

m∗v̇ =−e (E+vd ×B)−m∗ vd

τ
. (3.2)

For the stationary case v̇ = 0, such that this equation simplifies to

vd =− eτ

m∗ (E+vd ×B) . (3.3)

For B = 0 the drift velocity is given by the general equation vd =µE, where µ= eτ
m∗ is the carrier

mobility.

Upon application of a magnetic field B = (0,0,Bz ) in z-direction, the components of vd in

equation 3.3 can be written as

vd ,x =− eτ

m∗
(
Ex + vd ,y Bz

)
vd ,y =− eτ

m∗
(
Ey − vd ,x Bz

)
vd ,z =− eτ

m∗ Ez .

(3.4)

Inserting these equations into the general definition of the current density j = envd yields jx

jy

jz

= σ0

1+ (ωcτ)2

 1 −ωcτ 0

ωcτ 1 0

0 0 1+ (ωcτ)2


Ex

Ey

Ez

=σE, (3.5)

where σ is the conductivity tensor, ωc = eBz
m∗ is the cyclotron frequency, and σ0 = ne2τ/m∗ is

the conductivity without external magnetic field.

For thin samples, it can be assumed that there is no current flowing in z-direction, thus jz = 0

and (by observing Equation 3.5) Ez = 0. Hence, Equation 3.5 simplifies to(
jx

jy

)
= σ0

1+ (ωcτ)2

(
1 −ωcτ

ωcτ 1

)(
Ex

Ey

)
=

(
σxx σx y

−σx y σxx

)(
Ex

Ey

)
. (3.6)

The tensor of resistivity ρ is obtained by tensor inversion:

(
Ex

Ey

)
=

(
ρxx ρx y

−ρx y ρxx

)(
jx

jy

)
(3.7)

with

ρxx = σxx

σ2
xx +σ2

x y
= 1

σ0
= 1

neµ
(3.8)

ρx y = σx y

σ2
xx +σ2

x y
= B

ne
. (3.9)
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3.2. Diffusive electrical transport

Thus, through measurement of the two components of the resistivity tensor as a function of

the external B-field, the carrier density n and the mobility µ can be calculated from

n =
(
e

dρx y

dB

∣∣∣∣
B=0

)−1

(3.10)

µ = 1

ρxx (B = 0)
·

dρx y

dB

∣∣∣∣
B=0

. (3.11)

While the Drude model is able to predict the linear dependence of the Hall resistivity ρx y on B ,

it fails to describe the longitudinal component ρxx . In fact, the Drude model would predict

that ρxx is independent of the magnetic field, and thus the magnetoresistance MR

MR = ρxx (B)−ρxx (B = 0)

ρxx (B = 0)
(3.12)

is zero, in contradiction to experimental observations and will be topic of the next chapter.

3.2.2 Magnetoresistance

The effect of a weak magnetic field |ωc |τ¿ 1 is to increase the magnetoresistance according

to Kohler’s rule by51, 52

MR ≈ (µB)2. (3.13)

The absence of magnetoresistance in the Drude model results from the assumption of only

one scattering time τe and an average drift velocity vd valid for all carriers. However, in reality

τe depends on the individual velocity vi of every carrier. A simple expansion of this model is

to take into account two types of carriers, which could be electrons and holes, electrons in s

and d bands or open and closed orbits in the Fermi surface.52 The steady state drift velocity in

Equation 3.3 is then the sum vd = v1 +v2 of the two individual velocities v1 and v2 with

v1 = eτ1

m∗
1

(E+v1 ×B) (3.14)

v2 = −eτ2

m∗
2

(E+v2 ×B) . (3.15)

Here, we assume type 1 and type 2 to be electrons and holes with effective masses m∗
1 , m∗

2 and

scattering times τ1, τ2, respectively. For high B–fields |ωc1|τ1 À 1 and |ωc2|τ2 À 1, it follows
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Chapter 3. Magnetotransport phenomena

for the y components of the velocities in Equations 3.14 and 3.15:i

v1y = Ex

Bz
= v2y . (3.16)

Thus

jy ≡ en1v1y −en2v2y = e(n2 −n1)

Bz
Ex (3.17)

and furthermore with jy = Exσxx +Eyσx y

σx y = e(n2 −n1)

Bz
. (3.18)

This is a very important result, since it shows that for equal density of electrons and holes the

Hall voltage becomes zero, and if σx y = 0 then the resistivity becomes simply ρxx = (σxx )−1,

with σxx given by Equation 3.6 (in the limit |ωc |τÀ 1):

ρxx
∼= (µe f f Bz )2 1

enµe f f
, (3.19)

where n = n1 = n2 and 1/µe f f = 1/µ1 +1/µ2. Thus, if n1 = n2 the longitudinal magnetoresis-
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Figure 3.2: Longitudinal magnetoresistance of a material containing electrons and holes.
ρxx was calculated using Equations 3.6 and 3.18 for different ratios n1/n2. It is apparent, that
the magnetoresistance doesn’t saturate for n1 = n2.

tance doesn’t saturate. This is demonstrated in Figure 3.2 for different ratios n1/n2. Having

the same concentration of different types of carriers is a special situation. Indeed, it has been

observed, that in some materials the magnetoresistance doesn’t saturate in special crystal ori-

entations, although there is only one type of carriers contributing to the electrical transport.52

Electrons in a magnetic field will move on orbits in real space. Such circular motion in real

space corresponds to a likewise circular motion in reciprocal space. Correspondingly, the elec-

iUsing Equation 3.4 we can write for the y-component of the velocity: vy = − eτ/m∗
1+(ωcτ)2 (Ey +ωcτEx ). In the

high-field limit |ωc |τÀ 1 this simplifies (with ωc = eBz /m∗) to vy =−Ex
Bz

.
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trons will orbit the Fermi surface on paths normal to the external magnetic field. If the Fermi

surface of a material lies entirely in the first BZ all these orbits will be closed. In comparison, if

the Fermi surface extends the first BZ in some direction kopen , then, due to the periodic zone

scheme, a continuous surface forms in this direction. Accordingly, if an external magnetic field

is applied normal to kopen the orbits are called open. In strong magnetic fields currents can

only be carried along open orbits. Thus, if there is an open orbit in kx direction, the resistivity

ρxx is52

ρxx,open = (
µB

)2 1

enµ

s

s +1
, (3.20)

where s is defined by the conductivity in y direction σy y = senµ. This resistivity does not

saturate and increases with B 2. If the crystal is oriented such that the transport is along a

closed orbit, the resistivity becomes

ρxx,closed = enµ

s +1
, (3.21)

implying that the magnetoresistance saturates at high fields.

In summary, for low B–fields the MR ∝ (µB)2, whereas in high fields, provided that there are

open orbits, transport along these directions will result in non-saturating magnetoresistance.

If the transport is normal to the open orbits the MR will saturate, unless there are two types of

carriers with the same density.

3.2.3 Linear Magnetoresistance

Some materials exhibit a non-saturating linear magnetoresistance (LMR) up to very high

B-fields. Since the first observation of the LMR in 192853 numerous theoretical models have

been proposed to account for this effect.54–61 One simple explanation can be found for

polycrystalline systems with an open Fermi surface. As shown in the previous section, for

narrow intervals around these open directions the magnetoresistance should not saturate, but

rather increase with B 2. It can be derived that the width of these intervals is proportional to

1/B , rendering the average magnetoresistance in polycrystals proportional to B .62

Another classical model has been derived by Parish and Littlewood,63 who calculated the

magnetoresistance for macroscopically disordered semiconductors (e.g., non-stoichiometric

Ag2+δSe) using a random resistor network model. In this model, a two-dimensional square

lattice of four-terminal resistors is constructed, and an external magnetic field applied normal

to the network. By calculating the current paths, they found that due to scattering, the current

flows perpendicular to the applied voltage for a significant portion of time. Thus, a Hall

resistance RH al l contributes to the total longitudinal magnetoresistance which is linear in B ,

such that

MR ∝〈µ〉B , (3.22)
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for ∆µ< 〈µ〉 where 〈µ〉 is the average mobility and ∆µ is the mobility disorder. The crossover

from the classical quadratic behavior at low B–fields to the linear MR occurs at a crossover

field Bcr ossover ≈ 〈µ〉−1.

For isotropic metals in the extreme quantum limit (all carriers occupy the first Landau level)

that fulfill

n0 ¿ eB

ħ
3/2

and T ¿ eBħ
m∗ (3.23)

a quantum linear magnetoresistance has been theoretically proposed by Abrikosov:62, 64

ρxx = ρy y
Ni B

πn2
0e

, (3.24)

where n0 is the electron density at T = 0 and Ni is the concentration of static scattering

centers. This model can be slightly modified for inhomogeneous materials that are not in the

quantum limit. They might consist of regions with high carrier density that are surrounded by

a medium with very low carrier density (which can reach the quantum limit). If these materials

display in addition a linear dispersion relation (like graphene or topological insulators), the

magnetoresistance is given by

ρxx = ρx y = 1

2π

(
e2

ε∞ħvF

)
Ni

en2
0

B ln(ε∞) , (3.25)

where ε∞ is the background dielectric constant due to the ion cores, and vF is the Fermi

velocity (for a dispersion relation E =ħvF k). The crossover from quadratic to LMR then occurs

at the B-field where all carriers in the areas of low carrier density condense into the first LL.

3.2.4 Shubnikov–de Haas oscillations

Landau quantization Let’s start with a simple, semi-classical picture. As already mentioned,

a magnetic field curves the trajectories of electrons. As a consequence, they move on orbits

with a cyclotron frequency ωc = eB/m∗ in the plane normal to this field. If ωc > 1/τe an

electron can fulfill an orbit without experiencing a scatter event. Thus, it can "interfere with

itself" forming a standing wave if the phase it accumulates (= Aharonov-Bohm phase, which

is given by the flux inside the cyclotron orbit) during its orbit is n ·2π. This leads, like in the

Bohr-Sommerfeld model for atoms, to a quantization of energy for different orbits described

by a quantum number n (= Landau quantization).

Deriving the quantized energy states requires an exact solution of Schrödinger’s equation. The

Hamiltonian describing this problem is very similar to the 1D quantum mechanical harmonic

oscillator of an electron that "oscillates" (circular) with a frequency ωc . The corresponding

energy eigenvalues are

En =ħωc

(
n + 1

2

)
. (3.26)

38



3.2. Diffusive electrical transport

Thus, the energy spectrum of the system consists of discrete Landau levels (LL) whose energy

is determined by the strength of the external magnetic field B . As a natural consequence, also

the density of states (DOS) becomes discrete and can be described by delta functions located

at every En .

In real samples, carriers will have a finite lifetime τq , and therefore this discrete DOS broadens

due to carrier scattering events. The lifetime broadening leads to a Lorentzian–shaped DOS at

every En , where the full–width–at–half–maximum of the Lorentzian Ln is given by ħ/τq :

DOS2D = 2·nL
∑
n

Ln(E −En), (3.27)

where nL is the degeneracy of a LL and the factor 2 accounts for the spin. Calculating the limit

of this sum for n →∞ yields34

DOS2D = m∗

πħ2

[
1−2e−π/(ωcτq ) cos

(
2π

E

ħωc

)]
. (3.28)

It follows that firstly, at constant energy the DOS oscillates with a period of 1/B , and secondly,

the so–called Dingle factor exp[−π/(ωcτq )] leads to an exponential increase in the amplitude

of the DOS modulation when the B-field is increased.

Magnetoresistance oscillations By involving the Fermi-Dirac distribution function, Equa-

tion 3.28, and Drude’s model (see Equation 3.6) the component ρxx of the resistivity tensor is

obtained as34, 65

ρxx (B ,T ) = m∗

e2nsτ0

[
1−2e−π/ωcτq

λ(T )

sinhλ(T )
cos

(
2π

hns

2eB

)]
. (3.29)

The resistivity hence oscillates around the B-field independent prefactor ρ0 = m∗/(e2nτ0),

which corresponds to the classical Drude resistivity. These magnetoresistance oscillations

are called Shubnikov-de Haas (SdH) oscillations. Minima in the longitudinal resistivity arise

as a result of minima in DOS at EF . If the temperature T is increased, the amplitude of the

oscillations decreases due to the prefactor

λ(T ) = 2π2kT

ħωc
. (3.30)

The exponential increase of the amplitude with increasing B-field accounts for the finite

carrier lifetime. Since the argument of the oscillation factor is EF /(ħωc ) = hns/(2eB), similar

oscillations emerge if Fermi level is varied at a constant B-field.

Determination of ns , τq , and m∗ from SdH oscillations Minima in the SdH oscillations are

periodic in 1/B and occur at

hns/(2eB) = i +γO , (3.31)
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where γO is the Onsager phase (see below) and i is an integer. Thus, plotting the positions 1/B

of the minima versus the index i gives a straight line with a slope of 2e/(hns).

For a circular Fermi surface, kF can be calculated from the carrier density ns using kF =p
4πns .

According to Equation 3.29 the envelope of the oscillations can be written as

ρxx −ρ0

ρ0
=±2e−π/ωcτq

λ(T )

sinhλ(T )
. (3.32)

This can be rewritten as

ln

(
ρxx −ρ0

ρ0

sinhλ(T )

λ(T )

)
=−πm∗

eτq

1

B
+ const . (3.33)

Thus, by plotting the left-hand side of this equation versus 1/B , the carrier lifetime τq can

be extracted from the slope of the resulting straight line. Moreover, using le = vFτq and

µ= eτq /m∗ the mean free path and the carrier mobility can be calculated, respectively.

To obtain the effective mass m∗, the SdH oscillations have to be measured at different tem-

peratures. From a fit to the plot of the amplitude of one particular maximum/minimum at

different T using

ρxx −ρ0

ρ0
= λ(T )

sinhλ(T )
(3.34)

m∗ can then be extracted.

It should furthermore be mentioned, that the Onsager phase is closely related to the Berry

phase via (see Equation 2.4 and 2.10)

γO = 1

2
− 1

2π

∮
C

dk ·An(k). (3.35)

In conventional metals, the Onsager phase γO = 1/2. However, topological insulators possess

a non-trivial Berry phase of π, and hence the Onsager phase becomes γO = 0.22 Thus, by

plotting the position 1/B of the minima of the SdH oscillations as a function of the filling factor

and extrapolating to B →∞, the intersect with the abscissa allows to extract the Berry phase.28

3.3 Diffusive quantum transport

3.3.1 Weak localization

In a diffusive system, the mean free path le of an electron is much smaller than the system size

L. Thus, the electron motion will be dominated by scattering, equivalent to a random walk

movement. In the previous section, electrons were treated as classical particles which only

interact by scattering. If, by contrast, the phase coherence length lφ of the electrons becomes

sufficiently long, they will keep there quantum phase information over many scattering events.

This can lead to interesting interference phenomena like localization effects.
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B

δρ (B)a b

Figure 3.3: Weak localization. (a) Time-reversed paths in a diffusive sample. Without external
magnetic field the two paths |A+〉 (dark green solid) and |A−〉 (light green dashed) are always
interfering constructively. (b) Magnetoresistance correction for different ratios lφ/le . The
larger this ratio, the sharper are the maxima around zero field.34

Imagine an electron that is scattered such that it follows a closed path, as depicted by the green

solid line in Figure 3.3a. If we treat the electron quantum mechanically, this path may have

a certain complex amplitude |A+〉 = Ae iϕ+
, where A is a positive real number between zero

and one, and ϕ is a real-valued phase. Correspondingly, we consider the time-reversed path

described by |A−〉 = Ae−iϕ−
of the electron simply moving the same path back. The classical

probability Pcl for an electron returning to its starting point would then simply be

Pcl =
〈

A+ ∣∣ A+〉+〈A− | A−〉 = 2A2, (3.36)

that is the sum of the two individual probabilities for getting scattered clockwise or anti-

clockwise. However, in quantum mechanics the total probability is given by the scalar product

of the two probabilities, thus〈
A+ ∣∣ A−〉= 2A2 +2A2 cos

(
ϕ+−ϕ−)

. (3.37)

Here, the second term on the right hand side represents the interference of the two paths.

Without external magnetic field, time-reversal symmetry requires |A+〉 = |A−〉 (henceϕ+ =ϕ−)

and the time-reversed paths always interfere constructively. As an important consequence,

the probability for backscattering is enhanced by 2A2 due to interference effects, and hence,

the conductivity of the sample is decreased compared to the classical value obtained by the

Drude model. This effect is called weak localization, since the probability distribution of

electrons is enhanced in regions where their trajectories form closed loops.

Applying a magnetic field B normal to the area S enclosed by the paths can suppress this effect

since it adds an Aharonov-Bohm phase ϕAB = 2πBS/φ0 to the electron wavefunctions (see

Section 3.4.1). The sign of the phase depends on the direction of the path. Specifically, the

clockwise moving electron will acquire a phase ϕ+ =+ϕAB , the anti-clockwise moving one a

phase ϕ− =−ϕAB . Thus, the constructive interference between time-reversed paths will be
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Chapter 3. Magnetotransport phenomena

destroyed and the conductance approaches its classical value (see Figure 3.3b). The shape

of the conductance minimum is determined by the ratio of lφ/le : the higher this ratio, the

sharper is the minimum around zero B-field. It is noteworthy, that by inserting the AB-phases

in Equation 3.37, one may expect an oscillatory modulation of the quantum interference

correction for every area S enclosed by random scattering paths. However, in a macroscopic

diffusive sample, there are so many individual paths contributing to this effect that different

oscillations average out completely. Close to zero B-field, all oscillations have the same phase

and add up to the weak localization effect and the conductance minimum survives the averag-

ing.

For the sake of completeness, it should be mentioned that by increasing the density of scat-

tering centers in a sample, there will be a crossover to strong localization if kF le < 1. In that

case the electrons are localized on a length scale ξ ≈ le ekF le /2 (localization length) around

scattering centers. As a consequence, at low temperatures electronic transport can only occur

by electron hopping from one impurity site to another.

3.3.2 Weak anti-localization

The weak localization effect described in Section 3.3.1 is fundamentally different in diffusive

systems with strong spin-orbit coupling. Upon getting scattered along a closed path, the spin

of the electron will be slightly rotated between every scattering event. After one loop, all these

rotations add up to a total rotation R and the spin |s〉 (before the rotation) will change into66

|s′〉 = R |s〉 . (3.38)

The spin on the time–reversed path will get rotated exactly in the opposite way:

|s′′〉 = R−1 |s〉 , (3.39)

where R ·R−1 = 1.

If the spin-orbit time τSO of the system, i.e., the typical time required to randomize the spin

orientation due to SOC, is very small (= strong SOC) the spin of the electron will be completely

randomized after performing the closed loop. By comparison, the spin of the electron taking

the time-reversed path has experienced the opposite rotation. Toward calculating the total

probability for backscattering, it follows in analogy to Equation 3.37:∣∣〈s′
∣∣ s′′

〉∣∣2 = 2+2
〈

s′′
∣∣ s′

〉= 2+2
〈

s
∣∣R2

∣∣ s
〉

. (3.40)

Interestingly, calculating the expectation value of R2 for all possible rotation angles (averaging

is possible if τSO is small enough and the spin orientation after one loop is completely random)

gives
〈

s
∣∣R2

∣∣ s
〉=−1/2.ii Thus, in the case of strong SOC the destructive interference between

iiFor τSO À τφ the spin will essentially not change during scattering events. Thus, R becomes 1. This is the case

of weak localization discussed above. Using the spin-orbit length lSO =√
DτSO we can say: for lSO > lφ > le we

expect to see weak localization. If we reduce lSO (increase SOC) until lSO = le < lφ we expect to see a cross over to
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3.3. Diffusive quantum transport

time-reversed paths dominates and the quantum correction to the classical conductance is

negative (and half of the value valid for weak localization). Like for weak localization, this

effect can be destroyed by an external magnetic field. An analytical expression to describe

localization in 2D diffusive systems has been derived by Hikami, Larkin and Nagaoka (HLN):67

∆σ(B) =αe2

h

[
ln

(
Bφ

B

)
−Ψ

(
1

2
+ Bφ

B

)]
, (3.41)

whereΨ is the digamma function, lφ =√
Dτφ the phase coherence length, Bφ =ħ/(4el 2

φ), and

the constant α is 1 for weak localization and −0.5 for weak anti-localization.
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Figure 3.4: Weak anti-localization. (a) Time-reversed paths in a topological insulator have
opposite spin orientation, which results in a phase difference of π due to the anomalous Berry
phase in TIs. (b) If the spin of an electron on the surface of a TI is rotated by 2π, the electrons
phase changes by π.68 (c) Magnetoresistance correction calculated for different strengths of
the spin-orbit coupling, i.e., lSO/le = 30 (blue), 3 (pink) and 1 (green). The ratio lφ/le = 5 is
kept constant.34

It should be noted that in exotic Dirac systems like topological insulators, the weak anti-

localization effect can be explained in a simpler way. Specifically, since in TIs the spin of an

electron is locked to its momentum, the two time-reversed paths will always have opposite spin

(see Figure 3.4a), hence at every point on the loop the spin-rotation between the two paths is π.

As a full orbit around the Fermi surface of a TI results in a Berry phase of π, the spin-rotation

of π corresponds to a Berry phase of π/2 (see Figure 3.4b). Therefore, the time-reversed

paths moving clockwise and anti-clockwise acquire a phase of +π/2 and −π/2, respectively.

The resulting phase difference of π which leads to destructive interference. On this basis,

the factor α is often used to determine the number of transport channels contributing to

the total conductance; for a bulk sample with a single conductive surface state α = −1/2.

Previous studies on various types of TIs have found α values between −0.3 and −1.1, which

were interpreted as evidence for transport through a single surface state,69, 70 two decoupled

surface channels with comparable phase coherence length,71 or intermixing of bulk and

weak anti-localization (see Figure 3.4c).
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surface conductance.72

It is also possible to modulate these interference effects. In particular, by using magnetic

impurities, a gap ∆ can be opened in the topological surface states. The resulting Berry phase

is then given as73

γ=π
(
1+ ∆

2EF

)
, (3.42)

where EF is measured from the middle of the gap. In the strongly doped regime 2EF can

reach ∆. Thus, in dependence of the doping level, the Berry phase will change from π (weak

anti-localization) to 2π (weak localization). Such a transition is illustrated in Figure 3.4c, where

the magnetoresistance correction is calculated using Equation 15.4 in Ref [34, pp.270 & 283] for

kF = 0.2 Å−1, lφ = 50 nm, le = 10 nm, and lSO = 300 nm (blue), 30 nm (pink), or 10 nm (green)

3.3.3 Decoherence

As already mentioned, there are scattering processes that destroy the quantum phase infor-

mation of an electron, such as inelastic scattering by phonons. As at temperatures below

4.2K lattice vibrations are frozen out, electron-electron scattering becomes the dominant

dephasing mechanism. As an electron wave is surrounded by a sea of randomly moving

other electrons, randomly fluctuating electromagnetic fields (photons) are created, which

can scatter with the electron and destroy its phase. The decoherence rate 1/τφ can usually be

described by a power law:

ħ
τφ

∝ (kT )p . (3.43)

where p = 3/2 for 3D, p = 1 for 2D and p = 2/3 for 1D systems.74, 75 Thus, for decreasing

temperature the phase coherence time increases and localization effects become more pro-

nounced (i.e., more paths enclosing an area S < l 2
φ can contribute). This has a very important

consequence at very low T , namely that disordered systems without SOC will be in an insulat-

ing state when reaching the zero-temperature limit, whereas systems with SOC will remain

metallic.
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3.4. Interference effects in quantum transport

3.4 Interference effects in quantum transport

3.4.1 Aharonov–Bohm effect

ΦΦ0

Φ

ΦΦ

a b

c

Figure 3.5: Aharonov-Bohm effect. (a) An electron beam is split and passing around a
solenoid containing a total flux Φ (consisting of quantized flux-quanta φ0, gray green ar-
rows). When the two individual paths interfere after passing the flux, their quantum phase
may change depending onΦ. (b) Schematic illustration of the AB-effect (top view). A metallic
ring is connected to two electrical contacts. The incoming electron wave is split into a compo-
nent moving clockwise and a component moving counter-clockwise. Upon increasingΦ the
resistance of the device will oscillate with a period given by Equation 3.47. (c) AAS-effect, in-
volving the interference of waves that travel around the ring completely in different directions.
This results in resistance oscillations with a period half of that of the AB-effect.

General basics In quantum mechanical systems potentials can have an effect on charged

particles even when they move in regions without any fields and thus no external forces are

acting on them. Aharonov and Bohm76 predicted that an electron which is passing around a

long solenoid that is enclosing a B-field will acquire a phase of

∆ϕAB =− e

ħ
∮

C
Ads =− e

ħφ=−2π
φ

φ0
. (3.44)

Here, φ= ∮
C Ads is the magnetic flux trapped in the solenoid. Interestingly, this phase shift

is solely due to the vector potential A since the B-field outside the solenoid is zero. Now

imagine the situation depicted in Figure 3.5a: an electron wave is split into two components

|ψ〉 = |ψ1〉+|ψ2〉, where |ψ1〉 is going around the solenoid clockwise and |ψ2〉 is passing around

it anti-clockwise. Thus, |ψ1〉 travels an angle −π and acquires a phase of −πφ/φ0, whereas

|ψ2〉 travels an angle π and acquires a phase πφ/φ0. After passing the solenoid the two partial
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waves interfere. Thus, the total transmission probability is given by

T = ∣∣〈ψ1
∣∣ψ2

〉∣∣2 ∝ cos

(
2π

φ

φ0

)
. (3.45)

Consider an experiment where a metallic ring structure with an area S is connected to two

contacts, as depicted in Figure 3.5b. By applying an external magnetic field B normal to the

ring, the flux φ inside the ring will change by

φ= B ·S. (3.46)

Based upon Equation 3.45 the conductance of the device should oscillate when the B-field is

swept. The period of these oscillations is given by

∆B = h/e

S
. (3.47)

It should be mentioned that by applying an external magnetic field a Lorentz force will act on

the electrons. However, when the field is small enough, that the cyclotron radius Rc =ħkF /(eB)

is large compared to the radius of the ring, these forces are negligible.

In experiments, oscillations with a periodicity of

∆B = h/(2e)

S
, (3.48)

half of the periodicity of the AB oscillations are observed. These are the Altshuler-Aronov-

Spivak (AAS) oscillations, which result from (constructive) interference of time-reversed

paths, associated with electrons traveling around the ring completely either clockwise or

anti-clockwise. Since both the AB and AAS effect depend on the interference of electron waves

with different phases, the phase coherence length lφ needs to be at least on the order of the

diameter of the ring structure. Accordingly, this effect vanishes at hight temperatures due to

the onset of decoherence effects (see Section 3.3.3).

AB effect in Topological Insulators The Landauer-Büttiker formalism can be used to de-

scribe the AB and the AAS effect.34

In this framework, the conductance of the ring-like structure is given by

G = 2e2

h
T (EF ) = 2e2

h
[1−R(EF )] , (3.49)

where T (EF ) and R(EF ) are the transmission and reflection probability at the Fermi energy,

respectively. There are three possible electron paths, as depicted in Figure 3.6. In (a) an

electron is simply reflected at the entrance of the ring with a probability amplitude r0. In (b)

and (c) the electron is reflected after traveling around the ring clockwise and counterclockwise,

respectively, (probability amplitude r1) where upon it acquires an AB-phase. If we ignore paths
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ΦΦ ΦΦΦΦ

a b c

Figure 3.6: Paths considered in the Landauer-Büttiker description of the Aharonov-Bohm
effect. (a) An electron is reflected at the entrance of the ring structure. (b) An electron is
reflected after moving around the ring once clockwise. (c) An electron is reflected after moving
around the ring counter-clockwise.34

where the electron moves around the ring more than once, the total reflection probability can

be written as

R =
∣∣∣r0 + r1e i ·2πφ/φ0 + r1e−i ·2πφ/φ0

∣∣∣2
(3.50)

= |r0|2 +2 |r1|2︸ ︷︷ ︸
cl assi cal

+4 |r0| |r1|cos(δ)cos

(
2π

φ

φ0

)
︸ ︷︷ ︸

AB

+2 |r1|2 cos

(
4π

φ

φ0

)
︸ ︷︷ ︸

A AS

. (3.51)

Thus, the AB-effect can be visualized as the interference of an electron moving around the ring

once with an electron that is reflected at the entrance. The AAS oscillations originate from the

interference of electrons moving once around the ring clockwise and counter–clockwise. In

this model, a phase δ is introduced to account for the phase an electron acquires when it moves

once around the ring at zero magnetic field (= Berry phase). In a TI wire, the spin of an electron

moving once around the circumference rotates by 2π and the electrons phase changes by π.

This non-trivial Berry phase in topological insulators has intriguing consequences. Unlike for

normal metals, one would expect the magnetoconductance to oscillate with a period of φ0,

but with a maximum at integers of φ=φ0/2 and a minimum at B = 0 for ballistic undoped

TIs. The physical reason for this is, that in a wire-like structure the Berry phase of an electron

orbiting the wire diameter would open a gap in the energy spectrum.iii However, for a flux of

φ=φ0/2 the Berry phase is exactly compensated by the AB-phase, and hence a gap–less and

perfectly transmitting state can exist. Numerical simulations furthermore show, that for small

disorder the position of the conductance maximum should vary between φ= 0 and φ=φ0/2

when the Fermi level is continuously shifted to higher energies.77, 78

iiiIf x and y are the direction along the wire axis and around the wires circumference, respectively, then for a
wire with an circumference W the periodic boundary conditions φ(x, y +W ) = eiπφ(x, y) get anti-periodic due to
the Berry phase π. This leads to a gapped energy spectrum with many sub-bands for different transverse momenta
qn = 2πn/W .
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3.4.2 Universal conductance fluctuations

In low temperature magnetoresistance experiments on small metallic systems it is often

observed that the signal gets more "noisy" the lower the temperature is. Interestingly, this

non-periodic noise is perfectly reproducible and symmetric in B-field. Moreover, at very

low T the amplitude of these oscillations is found to be of the order of e2/h, independent of

the sample size, shape and defect concentration. This is the reason why this effect is called

universal conductance fluctuations (UCF).

Imagine a metal bar that is connected to two electrical contacts. To estimate its conductance,

Equation 3.49 can provide the reflection probabilities for all possible paths starting and ending

(getting back–reflected) in one of the contacts. Summing up all paths (with slightly different

probabilities) gives a certain conductance value for a certain arrangement of scattering centers.

Changing the defect configuration will change the trajectories of the electrons, and thus result

in a slightly different conductance. Thus, by measuring the conductance as a function of

different scattering distributions one would expect a fluctuating behavior. If all scattering

paths would be uncorrelated, the root-mean-square (rms) of the conductance signal (i.e., the

power of its fluctuations) would be75

rms(Gu) ≈ le

L
. (3.52)

This result suggests, that the variation of the conductance measured for a wide range of

different statistical defect configurations averages out if the system size L gets big enough.

However, such scenario is in contradiction to the universal amplitude of e2/h found in diffusive

materials at very low T for all system sizes. Instead of assuming uncorrelated paths, the UCF

can be explained by considering that the phase coherence length lφ of the electrons in a

diffusive metal is larger than the system size L, and hence electrons can propagate through

the whole sample without losing their phase information. Thus, there can be many pairs of

paths connecting the contacts that form closed loops. Like in the case of weak localization (see

Section 3.3.1), closed loops can lead to interference effects that change the total conductance

by about e2/h and thus survive averaging. By changing the impurity configuration the specific

phases of the paths will be modified in an arbitrary manner, causing the interference terms

to vary randomly. The same effect can be achieved by an external magnetic field which

introduces a further arbitrary relative phase to each pair of paths that form a closed loop

(AB-phase). The effect of finite temperatures will be to reduce both, the phase coherence

length and conductance fluctuations. For example, if the phase coherence length becomes

smaller than the length of a 2D sample (W < lφ < L), then one can consider L/lφ segments of

the channel fluctuating independently.34 The UCF amplitude then reduces to

rms(G) ∝ e2

h

(
lφ
L

)(4−d)/2

(3.53)
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where d is the dimension of the electron system (in our quasi-1D example d = 1). This

makes the effect sensitive to averaging if the sample size is increased (finite size effect)iv. The

average spacing between two conductance spikes corresponds to ∆Bc ∝ φ0

W lφ
since every

small segment with a size lφW can be considered as an individual Aharonov-Bohm ring (see

Equation 3.47). This is the so–called field correlation range, which provides access to the

phase coherence length. It represents the decay length of the autocorrelation function of

the conductance signal (since an autocorrelation function always decays on the time scale a

measured quantity fluctuates).

3.5 Sample geometries in electrical transport measurements

In an electrical transport experiment typically either the resistance or the conductance of

a device is measured, which both depend on the geometry and dimension of the sample.

However, for the physical interpretation of the results, often specific values like resistivity or

conductivity are needed. Two possible device geometries that can be used to avoid geometric

errors are Hall bars and van der Pauw structures (see Figure 3.7).

L

Wc

p 2

1

3

4

I

Uba
L‘

UH

Uxx

Ixx

Figure 3.7: Hall bar and van der Pauw contact configuration. (a) The geometry of a Hall bar
is defined by its length L, width W and the separation L′ of the side arms that have length p
and width c. (b) Sketch of the van der Pauw method.

A typical Hall bar is depicted in Figure 3.7a. The sample is electrically contacted by a source and

a drain contact, complemented by several (in this case four) voltage probes. The components

of the resistivity tensor of a 2D sample are given by

ρxx = Uxx

Ixx

W

L′ , (3.54)

ρx y = UH

Ixx
. (3.55)

ivRemark: Keep in mind that this is only valid for finite temperatures.
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To minimize geometric errors, the Hall bar should have an aspect ratio L/W ≥ 3. By contacting

simple rectangular samples (length of side arms p = 0) the error in the Hall mobility can be

fairly large and is given by:79

∆µH

µH
= 1−

(
1−e−

π
2W

)(
1− 2c

πW

)
. (3.56)

Thus, to reduce the contact size error the following aspect ratios are ideal: p ≈ c and c ≤W /3.79

For arbitrary shaped samples, an alternative is the use of the van der Pauw method. Here, in

the ideal case, four point contacts are attached to the edges of the sample (see Figure 3.7b). If

a current is applied between contacts 1 and 2, the voltage drop measured between contacts 3

and 4 can be used to calculate the resistance R12,34 =U34/I12. The sheet resistance Rs = ρxx /t

(where t is the thickness of the sample) can be determined by measuring two different contact

configurations and numerically solving the equation

e−πR12,34/Rs +e−πR23,41/Rs = 1. (3.57)

The Hall resistance can also be measured using the van der Pauw method. For this purpose, a

current is applied between contacts 1 and 3, and the voltage drop between contacts 2 and 4

is measured during a full B-field sweep (from −B to +B). Two resistance components RP
13,24

(measured at positive B) and RN
13,24 (measured at negative B) can be calculated. This has to be

repeated for RP (N )
24,31. The Hall resistance can then be calculated from

RH =
(RP

13,24 −RN
13,24)+ (RP

24,31 −RN
24,31)

4
. (3.58)
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4 CVD growth and device fabrication

To fabricate ultrathin platelets and ribbons of topological insulators which posses a high

surface–to–bulk ratio, chemical vapor deposition is a valuable method. In this chapter the

relevant parameters that influence the morphology of the as–grown material are discussed.

It will be shown that not only the growth conditions but also the growth substrate strongly

influences the resulting films. The last part of this chapter outlines how to identify thin TI

platelets and the approach to electrically contact them.
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4.1 How to grow Topological Insulators?

General methods After the discovery of the 3D topological insulator behavior of Bi2Se3 and

Bi2Te3 many groups have used these materials in their research. This choice has a physical

reason. Both chalcogenides have a band gap of Eg ≈ 0.3 eV, big enough for room temperature

applications, and possess a single Dirac cone at their surfaces.11, 42, 80 The latter feature renders

them into ideal model systems to study topologically protected surface states. Moreover, these

compounds have been studied for many decades as very promising thermoelectric materials.

Thus, many fabrication techniques are available, several of which can be easily repeated in

any lab. One of them is the widely–used Bridgman method,81, 82 in which ultrapure elements

(for example Bi and Se in the proper stoichiometry) are sealed in a quartz tube and put

into a horizontal or vertical furnace. The furnace is then heated to a temperature above the

melting points of the elements. After the material melted, the quartz tube is pulled out of

the furnace at a defined rate (in furnaces with many heating zones this can be also done

by appropriate temperature programs) to achieve controlled solidification of the desired

compound. Although the stoichiometry of the formed crystals should be controllable, there

is still a high degree of intrinsic doping (vacancies), so that the growth of undoped crystals

of good quality is difficult.81 Nonetheless, this method allows to reduce the carrier density

by co–alloying the compounds with dopants. For instance, by using a small amount (< 2%)

of Ca, negatively charged substitutional defects (CaBi’) are created that generate holes to

compensate the electrons introduced by the Se vacancies.83, 84 As a result, the Fermi level can

be lowered by about 400 meV towards the valance band making the material p–type with a

carrier density of about 1×1017 cm
−3

.84, 85 The same effect can be achieved by doping Bi2Se3

with Sb.86, 87 Besides doping, the Bridgman method can also be used to form alloys of different

topological insulators. In many cases these alloys are TIs themselves. For example, the system

(Bix Sb1−x )2Te3 has been demonstrated to show topological surface states for the entire mixing

range x.20

Another way to increase the influence of the topological surface states is to fabricate samples

with a high surface–to–bulk ratio by using vapor phase processes. Molecular beam epitaxy

(MBE) allows to grow single crystalline films of, for example, Bi2Se3 with any desired thickness

and high crystal quality.88 By successively decreasing the thickness of the sample, a transition

between a non–trivial and a trivial insulating state could be observed.23 For films thinner than

6 "quintuple layers" (see below) the interaction between the top and the bottom surface is

strong enough to open a gap in the surface states. The same conclusion has been drawn from

electrical transport measurements on exfoliated Bi2Se3 films, revealing an purely insulating

behavior when their thickness is below 6.5 nm.89

Since the chalcogenides Bi2Se3, Bi2Te3 and Sb2Te3 are quasi–2D layered compounds, wherein

covalently bond quintuple layers composed of 5 atomic layers are held together by van der

Waals interaction (see Figure 2.11a) with no dangling bonds between the individual quintuple

layers, it is possible to grow high quality films by van der Waals epitaxy (VDWE). In VDWE,

passivation of the dangling bonds at the surface of the growth substrate is necessary to ensure

that the interactions during growth are purely van der Waals forces. In this technique the
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lattice matching conditions are drastically relaxed, allowing epitaxial growth even for lattice

misfits of more than 50% .90 Bismuth selenide films grown with VDWE on Si(111)91 or double–

layer graphene92 show low intrinsic doping of 1−3×1018 cm
−3

and bulk insulating behavior.

It is also possible to grow Sb2Te3 films on graphene substrates with MBE.93 In this case, the

defect concentration could be minimized and there is transfer doping between the n–doped

graphene growth substrate and the intrinsically p–doped Sb2Te3 films grown on top which

results in high quality layers with the Fermi level in the bulk band gap.

V–VI binary and ternary compounds containing Bi, Sb, Te and Se can also be synthesized by

solvothermal methods by mixing the metal oxides with a reducing organic solvent and heating

in an autoclave for several hours.94, 95 The thickness of thus obtained, mostly hexagonal

shaped nanoplates ranges from 4−30 QL, rendering them highly interesting for gate dependent

electrical transport studies. However, their intrinsic doping is also relatively high due to both,

the low growth temperatures (about 200 K), and possibly the incorporation of organic traces

into the crystal lattice during growth.

CVD growth Thin films and nanowires of 3D TIs can also be grown by a chemical vapor

deposition (CVD) method. Kong et al. reported an elegant approach to Bi2Se3 and Bi2Te3

nanostructures using an Au–catalyzed vapor–liquid–solid96 or a catalyst–free vapor–solid27

mechanism. In the latter method, ultrapure Bi2Se3 or Bi2Te3 crystals are placed in the hot

zone of a horizontal tube furnace, while the growth substrates are placed several cm away

in the colder down–stream zone. A carrier gas (Argon) with defined flow rate is used to

transport the evaporated material to the substrates. Depending on the source temperature,

gas flow, substrate temperature, pressure in the tube, growth time, and the growth substrates

nanostructures with different lateral size and thickness can be obtained. It is noteworthy, that

it is also possible to use catalytic particles to grow wires or ribbons and to in situ incorporate

traces of the particles into the lattice of the nanostructures. In this manner, Sb particles can

impart p–doping of Bi2Se3,97 while Ni particles can dope the material magnetically which is

expected to open up a gap in the surface states.98

4.2 Setting up a CVD system

Figure 4.1 shows the CVD system that was set up during this work. A quartz tube (diameter

2.5 cm, CF flanges) is put inside a horizontal tube furnace (Gero + Eurotherm 818 temperature

controller). The left end of the tube is connected to a flow controller (red–y smart, Vögtlin

instruments) which can regulate the flow of ultrapure Ar gas (6.0) in the tube in the range of

1−150sccm. To increase the speed of the venting process, a bypass is installed to bridge the

flow controller.

The right end of the tube is connected to a pumping station (HiCube 80 Eco, Pfeiffer Vacuum,

equipped with a oil–free membrane pump and a turbo pump) via a LN2 cold trap and a needle

valve. A pressure gauge (active capacitive gauge CMR 361, 0.1−1100 mbar, Pfeiffer Vacuum)

is connected to the exhaust of the cold trap. The cold trap serves to avoid contamination of

53



Chapter 4. CVD growth and device fabrication

cold trap

pressure

gauge

Figure 4.1: Image of the CVD system. The pink arrows illustrate the Ar flow direction in the
system. For details see main text.

the turbo pump. The needle valve allows precise regulation of the pressure inside the tube.

To allow faster evacuation, a bypass is connecting the pump directly with the glass tube via a

butterfly valve. Figure 4.5a shows the temperature gradient along the furnace at the typical

growth temperature of 582 K. This gradient can be used to control the source and substrate

temperatures individually.

4.3 Results of the CVD growth

In a typical growth process, ultrapure source material (Bi2Se3 and/or Bi2Te3 crystalline pow-

ders) are placed in the hot zone of the tube furnace, with growth substrates positioned several

cm away within the colder downstream region. To exclude residual oxygen, the tube is repeat-

edly evacuated to a pressure of p < 1 mbar and flushed with ultrapure argon (at least three

times). Subsequently, the carrier gas flow rate and the pressure inside the tube are adjusted.

The furnace is then heated to the growth temperature, at which it is kept for a growth time

of several min, followed by natural cool down without gas flow at a constant pressure. The

deposited material appears as a gray film on the growth substrate. The final morphology,

size and thickness of the nanostructures strongly depends on the growth parameters like the

growth temperature, time and pressure, the flow rate, the temperature of the growth substrates

(i.e. their position) and the heating rate. Before discussing the influence of these parameters

in detail the possible growth morphologies will be presented.

Possible morphologies In most cases, the vapor–solid growth of platelets starts with the

formation of triangles as depicted in Figure 4.2a. The ratio of the growth rates in 〈1010〉,
〈1120〉 or 〈0001〉 directions mainly governs the morphology of the nanostructures. If the

growth rate in 〈1010〉 > 〈1120〉 (À〈0001〉), thin hexagonal or trigonal platelets will grow (see

Figure 4.2b and c). If the rate in 〈1120〉 > 〈1010〉 (À〈0001〉), which is normally favored in the

vapor–liquid–solid mechanism99 when using catalysts (Au nanoparticles or "catalytic dirt"
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Figure 4.2: Growth morphologies of topological insulators. (a) VS–growth of nanoplatelets
typically starts with the formation of nanotriangles. If the growth rate in 〈1010〉 direction is
higher than in 〈1120〉 direction, hexagonal (b) or triangular (c) platelets form. In the opposite
case, trapezoidal (d) platelets, nanoribbons (e), nanowires (f) or saw–tooth shaped nanostruc-
tures (g) can form. (h) Bulk–like crystals form at elevated substrate temperatures. Scale bars:
(a)–(d): 1µm, (e)–(h): 4µm.

like metallic Se/Te melt droplets that can form spontaneously), trapezoidal (Figure 4.2d) or

quasi 1D (Figure 4.2e and f) nanoribbons/wires or saw tooth–like (Figure 4.2g) structures are

obtained. If the rate in 〈0001〉 becomes sufficiently large (at elevated substrate temperatures)

bulk–like crystals will be formed (Figure 4.2h).

Growth rate–dominating parameters The growth rate–dominating steps of a typical CVD

process are depicted in Figure 4.3. Source material (for example Bi2Se3) with mass m and a

total surface area ABi 2Se3 will sublimate due to the difference in vapor pressure pBi 2Se3
vap and

partial pressure pBi 2Se3
par , with a rate given by the Knudsen–Langmuir equation

ΦBi 2Se3 =
pBi 2Se3

vap −pBi 2Se3
parp

2πmkT
. (4.1)

Here, the saturation vapor pressure pBi 2Se3
vap = A exp

(
−∆H Bi 2Se3

subl
kT

)
can be estimated using the

Clausius–Clapeyron equation, and depends on the sublimation enthalpy ∆H Bi 2Se3
subl and the

temperature T . Since sublimated material is continuously transported away from the surface

by the Ar gas flow (flow rate J Ar ) the partial pressure of Bi2Se3 in the gas phase can be calculated
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Figure 4.3: Material transport in an CVD growth process. Source material sublimates with
a rate ΦBi 2Se3 and is transported by the Ar gas (flow rate J Ar ) to the colder substrates in the
down–stream zone. The gas flow in the tube is assumed to be laminar, such that different
stream lines (blue) do not cross or mix. A boundary layer with the thickness δ(x) forms on the
substrate surface. Material has to diffuse through this layer to reach the substrate. Adsorbed
material can diffuse on the surface and agglomerate to form a stable cluster that is able to
grow further.

using100

pBi 2Se3
par = ΦBi 2Se3 ABi 2Se3

ΦBi 2Se3 ABi 2Se3 + J Ar
ptot al . (4.2)

The material will be transported to the substrates in the down–stream region by the Ar gas.

For sufficiently low gas flow rates, the flow is laminar, thus material is transported in different

gas layers that do not mix. The velocity distribution of the gas inside a glass tube is restricted

by two boundary conditions: v = 0 at the walls of the tube (and at the surface of the substrates

inside the tube) and v = v0, where v0 is the velocity of the undisturbed incoming gas, far away

from the walls. This results in the formation of a boundary layer with a thickness δ(x) given by

δ(x) = 5
xp
Re

. (4.3)

The Reynolds number is given by Re = vd
ν , where v is the mean velocity of the gas, d is the

diameter of the quartz tube and ν is the kinematic viscosity. Transported material has to

diffuse through the depleted boundary layer to reach the substrate surface. The driving force

for precipitation on the substrates is again the difference between the partial pressure of the

material in the gas phase and the equilibrium vapor pressure of Bi2Se3 in the solid phase at the

substrate temperature Ts (cold substrates → enhanced precipitation). Adsorbed material has

to diffuse to supercritical clusters to form a crystal (warm substrates → enhanced diffusion).
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Source temperature According to literature27, 96, 99 typical source temperatures range be-

tween 450 and 700 ◦C. In contrast to observations by other groups, the influence of the source

temperature on the morphology of the nanostructures deposited on the growth substrates in

this study was found to be small. In general, the source temperature influences the sublima-

tion rate of the source material according to Equation 4.1. For growth temperatures lower than

450 ◦C there is hardly any deposition occurring on the substrates, whereas for T > 600 ◦C the

amount of deposited material is so large, that it is not possible to find individual and isolated

nanostructures that are suitable for electrical contacting. It also turned out, that at elevated

temperatures (T À 600 ◦C) deposition of metallic Se occurs at colder substrates and the colder

parts of the quartz tube. This observation indicates that Bi2Se3 is decomposed into its metallic

components.

Pressure and gas flow rate The pressure has two important effects: firstly, the sublimation

rate of the source material and the deposition rate of evaporated material on the growth

substrates depends on the partial pressure of this material (see Equation 4.1), which in turn

depends on the pressure in the tube (Equation 4.2). Thus, lower system pressures facilitate

sublimation of material. Secondly, the interplay between pressure and gas flow defines the

thickness of the boundary layer formed at the substrate surface (see Equation 4.3). In the ideal

a b c

Figure 4.4: Control experiments to exclude diffusion controlled growth. If the growth is
diffusion controlled, the deposition is inhomogeneous if the substrate is mounted vertically
(a), (b) or placed behind a barrier (c).

case, the diffusion through the boundary layer should be much faster than the precipitation

and diffusion on the surface, such that the total CVD process is reaction–controlled. In this

case, the morphology of the nanostructures can be controlled by the substrate temperature.

To check if the system is diffusion or reaction controlled, the growth substrates were placed

horizontally behind barriers, or mounted vertically with their faces parallel or perpendicular

to the Ar flow direction (see Figure 4.4). An indication for diffusion controlled growth was

the inhomogeneous deposition of material at the edges of the substrate. By reducing the

pressure inside the tube, and/or increasing the flow rate, it should be possible to render the

growth reaction–controlled. Indeed, such cross–over was found to occur at a flow rate of

about 80sccm for a pressure of 80 mbar in a tube with a diameter of 2.5 cm. For lower flow

rates there is no deposition of material on the substrates, except when barriers are introduced

(that probably cause turbulent flow) or the substrates are tilted into the material stream. For

the sake of completeness it should be mentioned, that decreasing the tube diameter d has a

similar effect on the size of the boundary layer, since in Equation 4.3 δ(x) ∝ (vd)−0.5. As the
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velocity of the gas is proportional to the flow f divided by the cross–sectional area (d/2)2π of

the tube, δ(x) ∝ d/ f . Or in other words: if the flow is constant the gas atoms have to move

faster to transport the same volume when the diameter of the tube is reduced.

Heating rate Although the heating rate strongly influences the CVD growth and morphology

of the nanostructures, the underlying mechanism is unclear. Best growth results were ob-

tained by following heating rates: 20 → 100 ◦C with 25 ◦C/min, 100 → 510 ◦C with 80 ◦C/min

and 510 → 582 ◦C with 25 ◦C/min. It was found, that the third ramp is the most important

one. Tests using different heating rates between 20 ◦C/min and 70 ◦C/min for the third ramp

revealed, that only in a small window of 25−30 ◦C/min regular and thin nanoplatelets can

be grown. Outside this parameter window, the substrates are mainly covered with irregular,

polycrystalline nanocrystals.

Substrate temperature/position The substrate temperature strongly influences the mor-

phology of the deposited material. Figure 4.5 illustrates this dependency for a typical growth

of Bi2Te2Se (see Chapter 6)i using TBi 2Se3 = 582 ◦C, Bi2Se3 source at 0 cm, Bi2Te3 source at

6 cm, p = 80 mbar, f = 150sccm and t = 1 min.

iThe results would be qualitatively the same for Bi2Se3.
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Figure 4.5: Influence of the substrate position. (a) Temperature profile of the furnace at 80 mbar and 150sccm Ar flow rate. (b) Magnification
of (a) (Red area: region of BTS growth, green area: deposition of metallic Te and Se). The position of the Bi2Se3 source (42 cm in (a)) is chosen
as 0 cm. The Bi2Te3 source is located at 6 cm. Substrates are placed between 13 and 20 cm. The growth results are shown in (c). The three
images in every column correspond to one substrate position and comprise two SEM images (secondary electron and in–lens detector) and an
optical micrograph (scale bars 1–8: 100µm, 9–16: 5µm, 17–24: 20µm).
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Figure 4.5b shows the relevant temperature gradient of the furnace under growth conditions.

The substrates are placed 13−20 cm away from the Bi2Se3 source material. The size and

morphology of the deposited material is determined by the interplay of nucleation and growth.

If some adsorbed atoms on the substrate surface randomly aggregate, the cluster they form is

stable, if its size is bigger than the critical cluster size given by the substrate temperature. The

cooler the substrate, the smaller is the critical cluster size and the higher is the chance that

a stable cluster is formed. This can be directly seen in the Figures 4.5c (panels 1 – 7), where

the substrate temperature is reduced from approximately 520 ◦C to 440 ◦C. The amount of

material is increasing when the substrate temperatures decreases. In order that a cluster is

growing, more and more atoms have to diffuse to it. Thus, crystal growth is faster at higher

temperatures. Comparison of the SEM images in Figures 4.5c (panels 9 – 15) or the optical

micrographs in panels 17 – 23 supports that model. For very hot substrates a few very big

crystals form (mainly at defects like the substrate edge, see also Figure 4.2h). The colder the

substrates get, the smaller the nanostructures become. In addition, the temperature also influ-

ences the thickness of the platelets. In general, the layer–by–layer growth of the chalcogenides

investigated in this work is very anisotropic and lateral growth is always favored compared

to growth normal to the layers. However, at elevated substrate temperatures growth usually

gets more and more isotropic due to the higher thermal energy, and the platelets become

thicker. In conclusion, the optimal growth conditions are found by trading the lateral size of

the structures against their thickness. In our experiments, flakes with a lateral size of about

1−10µm and a thickness down to 5 nm are obtained at substrate temperatures between

480−490 ◦C (yellow region in Figure 4.5b).

For the sake of completeness two things have to be added. First, at very low substrate temper-

atures pure metals (Te and Se) can deposit and form small hexagonal crystals (see Figure 4.5c

panels 8, 16 and 24). Another interesting finding is, that the amount of wire–like structures

(quasi 1D growth) increases upon increasing the substrate temperature (see the typical area

depicted in Figure 4.5c panel 18). This behavior is in contrast to the reports of Yan et al..99

Growth time The growth time mainly influences the density of structures and their size.

Long growing times result in big and thick flakes. Again, the best growth time can be found by

trading the lateral size of the structures against their thickness.

Growth substrate type In this work we mainly used Si substrates with a 300 nm thick layer

of SiOx . An advantage of these substrates is, that the interaction between the SiOx layer and

the nanostructures is weak and that they often grow out of the surface under a small angle.

This arrangement facilitates the transfer of as–grown material to other substrates (like marker

substrates suitable for e–beam lithography). However, by modifying these substrates or by

using substrates that strongly interact with the deposited material, interesting changes in

the morphology can be observed. For example, when a small amount of metal (Au, Bi) is

thermally evaporated onto Si/SiOx substrates it forms small clusters instead of a closed film.

These metal particles can dissolve Bi2Se3 at elevated temperatures until the metal–Bi2Se3 alloy
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Figure 4.6: Influence of the growth substrate. (a) VLS growth of Bi2Se3 nanowires and –
ribbons on Si/SiOx covered with 5 nm Bi. (b) Van der Waals epitaxy of Bi2Se3 on HOPG. The
arrows indicate the rotation angles of 0◦, 60◦ and 120◦. (c) Van der Waals epitaxy of Bi2Se3

on graphene oxide (GO). (d) Van der Waals epitaxy of Bi2Te2Se on mica. Bi2Se3 can be grown
similar and forms closed single–crystalline films suitable for ARPES investigation (e).

gets supersaturated, and Bi2Se3 precipitates again. This well–known vapor–liquid–solid (VLS)

process results in the growth of nanowires or –ribbons with a diameter that is influenced by the

metal particle size.96 Figure 4.6a shows a typical growth using a Si/SiOx substrate covered with

5 nm of Bi. The ribbons have a length ranging from about 100 nm to 20µm with a thickness

on the order of 50−200 nm and a typical width of 100 nm – 1µm. Almost no platelets can be

found.

Using substrates with a layered crystal structure allows for epitaxial growth (van der Waals

epitaxy, for details see Chapter 7) which provides access to high quality TI crystals.93 One

possible layered substrate is highly oriented pyrolytic graphite (HOPG).101 Figure 4.6b shows a

SEM image of Bi2Se3 grown on HOPG. It is apparent that the material grows in an oriented

manner with platelets parallel or rotated by 60◦ or 120◦. Since HOPG is a good conductor,

it is rather difficult to perform electrical transport experiments on structures grown on it.

Instead, insulating substrates with similar lattice structure, like hexagonal boron nitride (see

Chapter 7) or graphene oxide (GO) have to be used for epitaxial growth. To test the latter, a GO

solution102 was spin–coated on a Si/SiOx substrate. Figure 4.6c shows the resulting growth

of Bi2Se3 as a closed film on the underlaying GO flake. Another insulating layered material

useful for epitaxial growth is mica. As depicted in Figure 4.6d, the growth on this substrate is

highly oriented which is again a indication for epitaxial growth. By increasing the growth time,

individual nanoplatelets merge together and form a closed, single–crystalline film with lateral

size of up to several mm. Such single–crystalline films can be directly investigated with angle–

resolved photoemission spectroscopy (ARPES).103 Figure 4.6e shows the ARPES band structure
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of a 300−400 nm thick Bi2Se3 film grown on mica. One can clearly observe the linear surface

states inside the bulk band gap. Additionally, a Rashba split parabolic surface band is visible

near by the Fermi level. Such detailed information is comparable to ARPES measurements on

grown bulk single crystals (whose preparation is quite demanding) making this CVD method

an elegant approach to produce high quality samples for ARPES experiments.

4.4 Contacting topological insulator nanostructures

As a first step toward electrical contacting, individual nanostructures were identified by optical

microscopy. The optical contrast can be used to estimate the thickness of the crystals. Figure
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Figure 4.7: Influence of the growth substrate. (a) Optical image of Bi2Se3 nanoplatelets
transferred onto a marker substrate. The optical contrast of the flakes can be used to estimate
their thickness. (b) AFM scan of the same area shown in (a). The corresponding hight profiles
are shown in (c). Fitting these profiles reveals the following thickness values: 7 nm (blue),
9 nm (pink) and 34 nm (green). Scale bars: 40µm.

4.7a shows an optical image of thin Bi2Se3 nanoplatelets transferred onto a marker substrate.

Three flakes with different contrast are highlighted by colored circles. By comparing their

contrast to the AFM image of the same area (Figure 4.7b) and the corresponding height

profiles (Figure 4.7c) it can be concluded, that the darker the flakes appear under the optical

microscope, the thinner they are.

The process of electrical contacting using e–beam lithography (EBL) is depicted in Figure

4.8. Initially, an e–beam resist is spin–coated onto the substrates bearing the structures to

be contacted. As resist, we typically use a double layer of PMMA (a layer of PMMA with a

degree of polymerization of 950K on top of a layer with 200K) to facilitate the lift–off process.

During EBL, an electron beam exposes the intended contact areas and destroys bonds in the

PMMA polymer (positive resist). Since the polymer chains become shorter their solubility is
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Figure 4.8: Electrical contacting of nanostructures. Flakes are transfered to a marker sub-
strate and e–beam resist (PMMA) is spin–coated on top. After e–beam lithography and devel-
opment, the contact material is thermally evaporated, followed by lift–off that leaves metal
only in the developed regions.

increased.ii In the development step a weak solvent is used to dissolve the (shortened) PMMA

in the exposed areas.

Deposition of the contact material is typically done by thermal evaporation, since this is a very

anisotropic deposition technique which ensures, that no contact material is deposited on the

side–walls of the developed PMMA trenches. In our studies we mainly used a combination of a

very thin adhesion layer (< 5 nm Ti) and a gold film with a thickness about twice the thickness

of the contacted nanoplatelets (30−150 nm). The gold on top of the PMMA is removed during

the lift–off process, during which the substrate is immersed into warm acetone for several

hours.

We observed, that it is not possible to attain ohmic contacts by directly evaporating the

contact material on the as–grown structures. The reason for that could be the formation of a

(insulating) native oxide layer14 when the nanoplatelets are exposed to air and/or humidity.

To remove this layer, we used two different techniques, either a 6 min "dip" in 36% HCl, or a

50 s Ar–plasma treatment right before loading the sample to the evaporation chamber. Both

methods ensured good ohmic contacts.

iiSince the shorter chains get destroyed easier this results in a so–called undercut which prevents the evaporated
contact material touching the walls of the PMMA film.
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5 Gate–controlled linear magnetoresis-
tance in thin Bi2Se3 sheets

B
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We explore the emergence of linear magnetoresistance in thin Bi2Se3 sheets upon tuning

the carrier density by a back gate. With increasingly negative gate voltage, a pronounced

magnetoresistance of ≈ 100% is observed, while the associated B–field dependence changes

from quadratic to linear. Concomitantly, the resistance vs. temperature–curves evolve from

metallic to semiconductor–like, and increasingly strong weak anti–localization behavior is

manifested. Analysis of the magnetoresistance data reveals two contributions, namely from

the bulk conduction band and from a state inside the bulk gap. The latter is responsible for

the linear magnetoresistance and likely represents the topologically protected surface state.
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5.1 Introduction

Linear magnetoresistance (LMR), first discovered about 100 years ago in Bi,53 has been ob-

served in a wide range of materials, albeit the underlying mechanism can be quite different (see

Section 3.2.3). Examples of topological materials in which LMR has been detected are Bi2Se3

and Bi2Te3,22, 104 semi–metallic YPtBi,105 as well as the silver–based compounds Ag2+δTe and

Ag2+δSe.106 In case of the prototypical TI Bi2Se3, LMR has been observed under high magnetic

fields applied to 100 nm thick nanoribbons and attributed to the topological surface states

(TSS).104 Furthermore, it has been found that Bi2Se3 thin films are able to exhibit LMR down to

a thickness of 6 nm below which a weak negative magnetoresistance emerges.107 In this chap-

ter, we demonstrate the possibility to tune the magnetoresistance characteristics of Bi2Se3 by

electrostatically tuning the carrier concentration. Under large negative gate potential, a MR on

the order of 100% can be obtained in this manner, a finding that is relevant for magnetic field

sensor applications. We assign the LMR observable under such condition to predominant

charge transport through TSS. This suggests LMR as a possible fingerprint of TSS in charge

transport experiments, thus complementing the widely employed ARPES measurements.

5.2 Sample preparation and characterization

Thin plates of Bi2Se3 were synthesized by a catalyst–free vapor transport method (see Chapter

4). The chemical composition of the product was confirmed by transmission electron mi-

croscopy (TEM) and Raman spectroscopy. The TEM analysis revealed the top and bottom

surface of the Bi2Se3 platelets to be (0001) facets, while their side faces correspond to (0110)

facets (see Figure 5.1a and b). The Raman spectra of a thin sheet and a Bi2Se3 bulk crystal are

compared in Figure 5.1c and were acquired with a 633 nm laser beam. They display modes at

131 and 173 cm−1, which can be attributed to the Eg and A1g modes of bulk Bi2Se3, respec-

tively.108 The lower intensity in the bulk sample is due to multiple reflections in the crystal

that is suppressed for thin sheets.109 Figure 5.1d and e show the reflection image and the

corresponding Raman Eg map of an electrically contacted nanoplatelet, respectively. Raman

intensity can only be observed in the region of the platelet.

For the electrical transport studies, Cr/Au electrodes were defined using standard e–beam

lithography. To reduce the contact resistance, the exposed contact regions were etched for

6 min in diluted HCl directly prior to the metal deposition, with the aim of removing the

surface oxide (mainly Bi2O3).

5.3 Electrical transport measurements

The two– and four–terminal MR of an approximately 10 nm thick platelet is shown as a func-

tion of applied (negative) gate voltage in Figures 5.2a and b, respectively. At the measurement

temperature of T = 40 K, the most pertinent features could be observed. For the highest

negative gate voltage (Vg =−100 V), a significant MR of ≈ 80% is reached. The same MR mag-
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Figure 5.1: Sample characterization. (a) Real space TEM image of a Bi2Se3 nanosheet. (b)
Corresponding selected area diffraction pattern. (c) Raman spectra of a Bi2Se3 bulk crystal
(used for synthesis, pink line) and a synthesized nanosheet (blue line). The bulk signal is
amplified by a factor 11 for comparison. (d) Optical reflection image and (e) Raman Eg map of
an electrically contacted sheet.

nitude was reproducibly observed for nine other samples with thicknesses ranging between 10

and 30 nm. In the lower gate voltage regime
(∣∣Vg

∣∣< 40 V
)
, the MR curves display a quadratic

B–field dependence, in accordance with previous reports.69 This dependence is characteristic

of Lorentz deflection of charge carriers, which can be described by Kohler’s rule (see Section

3.2.2)

R(B)

R(B = 0)
≈ 1+ (

µB
)2 , (5.1)

where µ is the carrier mobility. With increasingly negative gate voltage, a transition from

quadratic to linear B–field dependence occurs. It is noteworthy that at all gate voltages, the

region around B = 0 deviates from the linear dependence as a consequence of the weak anti–

localization effect (see Section 3.3.2), which is most pronounced at Vg =−100 V. The trend

from quadratic to linear B–field dependence is obvious from both the two– and four–terminal

data, excluding that the LMR originates from the contact resistance. In order to unravel its

origin, we measured the temperature dependence of resistance at different gate voltages. As

exemplified in the inset of Figure 5.2b for the above sample, with increasingly negative gate

voltage the resistance increases, which can be attributed to reduced carrier concentration. It is

furthermore evident that the R vs. T curves exhibit metallic behavior up to Vg =−40 V, while

a resistance peak appears at more negative gate voltages. A reasonable explanation for the
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Figure 5.2: Gate–dependent magnetoresistance. (a) Two–terminal magnetoresistance of a
10 nm thick Bi2Se3 sheet at 40 K and different back gate voltages. The left panel shows the
absolute values, and the right the relative magnetoresistance. (b) Four–terminal magnetore-
sistance of the sample at 40 K for different back gate voltages. In left panel, the absolute
values are plotted, in the right panel the relative values. In all cases, the Hall contribution was
removed from the raw data. Inset: Resistance vs. temperature curves of the sample measured
at different gate voltages.

peak is that two components contribute to the charge transport, with the first one showing

normal metallic behavior and the second one thermally activated behavior.110 While the latter

behavior likely stems from the thermal excitation of carriers to the bottom of the conduction

band, the metallic component can be ascribed to a state inside the bulk gap. Although there

is convincing evidence that this state is the topological surface state (see further below), it is

termed “gap state” in the following analysis of the resistance peak.

Figure 5.3a depicts a set of MR curves measured on the above sample at different temperatures

and fixed Vg =−100 V. It is apparent that with decreasing temperature, the curves become

more linear. In Figure 5.3b, the corresponding zero–field resistance is plotted as a function of

temperature. For fitting the curves, we write the total conductance Gt of the sample as

Gt (T ) =Gi (T )+Gb(T ), (5.2)

where Gi is the conductance of the gap state, and Gb is the conductance associated with the

bulk conduction band.51 We furthermore assume that Gi is given by

Gi (T ) = 1

A+BT
, (5.3)

where A accounts for the static disorder scattering and B introduces electron–phonon cou-

pling.111 The thermally activated bulk conductance can be written as

Gb(T ) = eµnb0 exp

(
−∆

T

)
= 1

Rb0
exp

(
−∆

T

)
, (5.4)
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where the fitting parameter∆ defines the energy gap between the Fermi level and the bottom of

the bulk conduction band, and Gb0 is the high temperature conductance of the bulk state. The

fit of the data in Figure 5.3b yields ∆= 369.9 K, Rb0 = 290.7Ω, A = 2665.3Ω and B = 18.42Ω/K.

The extracted gap size ∆ is significantly larger than the measurement temperature in Figures

5.2 (T = 40 K), indicating that under this condition, the bulk conduction band contribution to

the transport is strongly suppressed. In fact, based upon the above fitting values, one obtains

Rb (T = 40 K) = 3.0 MΩ and Ri (T = 40 K) = 3.4 kΩ. It follows that the bulk resistance exceeds

the gap state resistance by approximately three orders of magnitude and is even larger than the

total magnetoresistance measured at the highest B–field (12 T). Accordingly, at low tempera-

ture, the gap state is expected to dominate the charge transport and thus impart the observed

linear magnetoresistance behavior. The poor agreement between the fit and measured data at

lowest temperatures (T < 20 K) is attributable to electron–electron interaction.112 Under the
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Figure 5.3: Temperature–dependent magnetoresistance. (a) Four–terminal magnetoresis-
tance of the same sample as in Figure 5.2 measured between 5 and 193 K at fixed Vg =−100 V.
Left panel: absolute values; right panel: relative values. (b) Resistance at zero B–field measured
as a function of temperature with Vg fixed at −100 V. Fitting (solid line) of the raw data (stars)
reveals a thermally activated behavior. (c) Fits (dashed lines) of the raw magnetoresistance
curves (solid lines) recorded at four different temperatures. Fitting was performed using the
parallel conduction model involving a bulk conduction band and a topological surface state
contribution.

assumption that the gap state and the bulk conduction band are characterized by a linear and

quadratic B–field dependence, respectively, the total magnetoresistance is given by

Rt (B) = Ri (B)Rb(B)

Ri (B)+Rb(B)
, (5.5)

where Rb(B) and Ri (B) are the bulk and gap state resistance, respectively. The two components

can be expressed by

Rb(B) = Rb(0)+αB 2 (5.6)
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and

Ri (B) = Ri (0)+βB. (5.7)

As Ri (0) and Rb(0) are interrelated fitting parameters, only three fitting parameters remain. The

fits yield the mobility of the bulk charge carriers µb =√
α/Rb(0) and the bulk carrier density

nb = 1/
(
Rb(0)eµbF

)
, where F =W /L = 3 represents the sample width divided by length. The

curve fits in Figure 5.3c (for Vg =−100 V) describe well the measured data for temperatures

roughly above 70 K (see Appendix A). At lower temperatures, by comparison, there is a notable

deviation at low B–fields, which is due to the fact that the model does not include the weak

anti–localization effect. From the fits, bulk carrier densities of 5.3×1023 m−3 at 193 K and

4.7×1022 m−3 at 70 K were calculated. This decrease upon cooling is in qualitative agreement

with the assumed thermally activated behavior, and the absolute values are similar to those

reported for Bi2Se3 nanostructures.110 Moreover, the obtained gap and bulk state resistance

values are consistent with the fitting results based upon Equations 5.2 to 5.4 (see Appendix A).

In order to characterize the gap state, we further analyze the weak anti–localization (WAL)

effect around zero B–field, which is notably enhanced with increasingly negative gate voltage

(see Figure 5.2). The low field anomaly in the magnetoconductivity of Bi2Se3 is well described

by the Hikami–Larkin–Nagaoka (HLN) model introduced in Section 3.3.2 (see Equation 3.41).

The 2D magnetoconductivity is obtained by multiplying the conductance with the geometric

factor L/W = 1/3. Previous magnetotransport studies on Bi2Se3/Bi2Te3 grown by MBE have

concluded that only the top surface of the layer conducts.69, 113 By contrast, magnetotransport

data gained from exfoliated Bi2Se3 sheets have pointed toward both surfaces contributing to

the transport.110 In Figure 5.4a, ∆σ(B) is plotted for the above sample under different applied

gate voltages. The data can be well fitted using the HLN equation, which underscores that

the gap state is the topological surface state of Bi2Se3. Moreover, α decreases from −0.6 at

Vg = 0 V to −1.2 at Vg =−80 V, as seen in Figure 5.4b, suggesting that under the latter condition,

charge transport occurs through both surfaces. The fact that α slightly exceeds the value of

−1 might be due to a residual contribution of the bulk state or to the rough estimation of

sample geometry. The dephasing length lφ shows an initial increase upon changing the gate

voltage from 0 V to −40 V, which likely reflects the suppression of the bulk conduction band

contribution. The subsequent decrease of lφ when the gate voltage is made more negative is

ascribable to enhanced electron–electron interaction with decreasing electron density.113

5.4 Quantum linear magnetoresistance?

The finding of gate–controllable LMR in Bi2Se3 has implications for related materials such

as Ag2+δTe and Ag2+δSe, which according to theory are likely candidates as TIs.106 The MR

in these compounds shows a transition from quadratic to linear B–field dependence at a

certain crossover field.57, 58 The physical meaning of this field has not yet been fully clarified.

Specifically, within the quantum magnetoresistance model by Abrikosov62, 64 it corresponds

to the B–field above which all the electrons condense into the first Landau level, while the
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Figure 5.4: Weak anti–localization in a Bi2Se3 nanosheet. (a) Anomaly in the two–
dimensional magnetoconductivity, defined as ∆σ4t (B) = σ4t (B)−σ4t (0), for different gate
voltages applied to the same sample as in Figures 5.2 and 5.3. The raw data is represented by
symbols and the fitting curves by solid lines. (b) Fitting parameter α and dephasing length lφ
as a function of gate voltage, both extracted from the line fits in (a).

classical Parish–Littlewood model63 considers it as a measure of average mobility or mobility

disorder (see Chapter 3.2.3). Based upon the above analysis, the crossover field may well

reflect the competition between the bulk and topological surface state contributions.

5.5 Summary

In conclusion, we have demonstrated that by the application of high negative gate volt-

ages to thin Bi2Se3 plates, the B–field dependence of magnetoresistance can be tuned from

quadratic to linear. This transition is accompanied by a notable enhancement of the weak

anti–localization effect, while the temperature dependence of the sample resistance changes

from metallic to semiconductor–like. Our data analysis suggests that the quadratic B–field

dependence originates from the bulk conduction band, while the linear B–field dependence

is most likely associated with the topologically protected surface state of the sheets. The possi-

bility of gate control over the magnetotransport characteristics of thin topological insulator

sheets could prove useful for the development of magnetic sensors.
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6 Two–dimensional magnetotransport
in Bi2Te2Se nanoplatelets

Single–crystalline Bi2Te2Se nanoplatelets with thickness between 8 and 30 nm and a lateral size

of several micrometers were synthesized by a vapour–solid growth method. Angle–dependent

magnetoconductance measurements on individual nanoplatelets revealed the presence of a

two–dimensional weak anti–localization effect. In conjunction with gate–dependent charge

transport studies performed at different temperatures, evidence was gained that this effect

originates from the topologically protected surface states of the nanoplatelets.
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6.1 Introduction

Although the LMR observed in Chapter 5 gives hints toward the existence of a topologically

protected surface state, the contribution of the highly n–doped bulk still dominates the total

electrical transport in Bi2Se3. One approach to overcome this problem is to enhance the

surface transport contribution by using materials with low bulk mobility. One of the most

promising candidates for this purpose is Bi2Te2Se that has been theoretically predicted114

and experimentally confirmed by ARPES115 to be a TI. According to recent magnetotransport

studies, Bi2Te2Se has indeed a high bulk resistivity of 6Ωcm, and hence a strong surface

contribution to the total conductance of about 6%, which is one of the largest values thus far

reported for TIs.28 In this chapter, we investigate thin platelets of this compound, in particular

the possibility to control the position of the Fermi level in the bulk band gap via electrostatic

gating. Such capability is needed to compensate for the fact that most established synthesis

procedures yield samples wherein the bulk dominates the electrical transport.

6.2 Sample preparation and characterization

Bi2Te2Se (BTS) nanoplatelets were synthesized by a catalyst–free vapour–solid (VS) method,

similar to that used for the synthesis of Bi2Se3 nanostructures. The details of BTS growth

are provided in Chapter 4. It was found that the stoichiometry Bi2(SexTe1−x)3 of the product

depends sensitively on the position of the Bi2Se3 and Bi2Te3 sources and the molar ratio of the

two compounds. In order to obtain Bi2Te2Se, 266 mg of Bi2Se3 powder (hot zone) and 355 mg

of Bi2Te3 powder (6 cm away) had to be used. According to atomic force microscopy (AFM)

and scanning electron microscopy (SEM) analysis, thus obtained Bi2Te2Se nanoplatelets have

a lateral size of 1−10µm and thickness of 8−30 nm. In Figure 6.1a and b, a transmission

electron microscopy (TEM) image and a corresponding selected area diffraction pattern of

a typical Bi2Te2Se platelet are shown, respectively. Bi2Te2Se forms rhombohedral (space

group R3m) crystals that consist of hexagonally close–packed atomic layers of five atoms

(quintuple layer) which arrange along the c–axis as follows: Se(1)/Te(1) – Bi – Se(2)/Te(2) – Bi

– Se(1)/Te(1) (see Chapter 2.4.2 and Figure 2.11a and b). All flakes investigated by TEM were

found to be single–crystalline, exhibiting {0001} and {1120} crystal facets. Toward determining

their chemical composition, the Bi2Te2Se platelets were investigated by Raman microscopy.

The chalcogenides Bi2Se3 and Bi2Te3 are strongly Raman active and can be identified by

their characteristic A1
1g , E2

g , and A2
1g Raman peaks in the low wavenumber region.116 In the

corresponding alloys Bi2(SexTe1−x)3, these peaks shift with changing composition.108 For

x < 1/3 this shift is small, since only the Te(2) atoms are replaced by Se atoms and the Bi–Te(2)

and Bi–Se(2) bonds are of similar strength. In contrast, when x exceeds 1/3 also Te(1) atoms

get replaced by Se, which causes a notable shift of the A1
1g mode, as well as a splitting of

the A2
1g mode due to out–of–phase movements of the outer Bi and Te(1)/Se(1) atoms. Figure

6.1c compares the Raman spectra acquired from the Bi2Se3/Bi2Te3 starting materials and a

representative Bi2Te2Se nanoplatelet. The experimentally accessible range of 80−200 cm−1

contains the E2
g and A2

1g peaks, but not the A1
1g peak. The nanoplatelets spectrum displays
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Figure 6.1: Characterization of Bi2Te2Se nanoplatelets. (a) Transmission electron mi-
croscopy (TEM) image and corresponding selected area diffraction pattern (b) of a Bi2Te2Se
nanoplatelet. Scale bar corresponds to 1µm ((b): 5 nm−1) (c) Raman spectra of a Bi2Se3 flake
(top), a Bi2Te2Se nanoplatelet synthesized by the CVD method (middle), and a Bi2Te3 flake
(bottom). (d) Optical image of a 15 nm thick flake contacted in Hall bar geometry (scale bar:
5µm).

three distinct features, namely the E2
g peak at 105.2 cm−1, and the A2

1g peak which is split into

two components at 138.8 cm−1 and 148.9 cm−1, respectively. The latter two peak positions

are in good agreement with the corresponding values of 139.7±1 cm−1 and 148.5±1 cm−1,

as reported by Richter and Becker108 for Bi2Te2Se bulk samples, from which x = 0.34 can be

concluded for the present samples.

6.3 Electrical magnetotransport measurements

In order to determine the charge transport mechanism and dimensionality of the involved

transport channels in the nanoplatelets, we performed magnetotransport studies. To this end,

the Bi2Te2Se nanoplatelets were mechanically transferred onto Si substrates covered with a

300 nm thick SiO2 layer. Individual platelets were provided with Ti(4 nm)/Au(40 nm) contacts

in Hall bar or van der Pauw geometry using e–beam lithography (as exemplified in Figure 6.1d).

Prior to metal evaporation, the exposed regions were subjected to Ar–plasma (50 s at 250 W)

in order to reduce the contact resistance. Low temperature Hall measurements on several

devices revealed an average electron density n3D of about 1025 m−3, a value comparable to

typical Bi2Se3 crystals.27 The average Hall mobility µH of our samples was determined to

be on the order of 100−400 cm2/Vs, which is lower than in pure Bi2Se3 or Bi2Te3 nanostruc-

tures.14, 117 Figure 6.2a presents the low field magnetoconductance signal∆σ=σ(B)−σ(B = 0)

of a 15 nm thick Bi2Te2Se platelet at T = 1.5 K as a function of the tilting angle θ between the

z–axis and the B–field direction. The prominent peak around B = 0 T can be attributed to
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Figure 6.2: Weak anti–localization of Bi2Te2Se nanoplatelets. (a) Corrected low field magne-
toconductance signal acquired from a 15 nm thick Bi2Te2Se nanoplatelet for different angles
θ as a function of the magnetic field, and (b) as a function of the magnetic field component
Bz = B sin(θ) normal to the surface. The fitting result for the WAL curve recorded at θ = 90◦ is
shown in black. The data at θ = 0◦ was fitted with a B 2 model (panel (a)).

the weak anti–localization (WAL) effect (see Section 3.3.2). This effect is not limited to 2D

systems, but can also have a contribution from the 3D bulk. To test whether the observed WAL

effect is a pure 2D effect, the sample was tilted in the external magnetic field, since in this

case the signal should depend only on the magnetic field component Bz = B sin(θ) normal

to the sample surface. For the present samples, the WAL effect vanishes at θ = 0◦ (B in plane,

Bz = 0), under which condition the magnetoconductance shows a simple parabolic behavior

like in conventional semiconductors. The 2D character of the WAL is further illustrated by

Figure 6.2b, where ∆σ is plotted as a function of Bz . It can be seen that all curves coincide

for different angles θ. The observed angular dependence of ∆σ signifies the 2D character of

the WAL, suggesting that this effect originates from the topologically protected 2D surface

states. A similar conclusion based upon angle–dependent magnetotransport measurements

has recently been drawn for thin Bi2Te3 films grown by MBE.69 The magnetoconductance data

can be well fitted by the Hikami–Larkin–Nagaoka (HLN) model for 2D localization (Equation

3.41). Fitting the magnetoconductance curve at θ = 90◦ yieldsα=−0.57 and lφ = 69.5 nm. The

value of α=−0.57 ≈−0.5 indicates that either only one surface is contributing to the 2D WAL

effect, or that the top and the bottom surfaces are strongly coupled, in analogy to observations

made for Bi2Se3
113 and Bi2Te3

69 thin films. It is noteworthy that the∆σ(B) signal in Figure 6.2a

shows a notable oscillatory behavior. This feature could be explained by quantum interference

phenomena like universal conductance fluctuations18 or the Aharonov–Bohm effect97 which

have been observed in various TI materials (for details see Chapter 3).

Having demonstrated the pure 2D magnetotransport in very thin BTS nanoplatelets, we ex-

plored the possibility of using an external gate to tune the Fermi level in such manner as to

favor charge transport through the surface state also in thicker platelets. Such samples still

show WAL at zero angle,69 and their Fermi level position is expected near the conduction

band (CB) edge. Along these lines, we measured the temperature dependence of resistance
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6.3. Electrical magnetotransport measurements

at different back gate voltages for several platelets with a thickness above 20 nm. The aim

of these experiments was to determine the Fermi level position from the observed thermal

activation barriers. The electrical behavior is exemplified in Figure 6.3 for a ≈ 20 nm thick
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Figure 6.3: Temperature dependent electrical transport behavior of Bi2Te2Se
nanoplatelets. (a) Temperature dependent resistance recorded at different backgate
voltages applied to a Bi2Te2Se nanoplatelet with a thickness of ≈ 20 nm. Dotted lines:
Arrhenius fits to the curves. (b) Energy gap ∆ between Fermi level and bulk conduction band
edge for different gate voltages, as obtained from Arrhenius–type fitting. The inset shows the
definition of ∆.

Bi2Te2Se nanoplatelet. While at zero gate voltage, purely thermally activated behaviour can be

discerned, at highest negative gate voltage (−100 V) a resistance maximum emerges at approx-

imately 50 K. At moderate temperatures, the mobility of the surface electrons is expected to be

low due to strong electron–phonon scattering,111 and correspondingly the charge transport

through the bulk should dominate over the surface state. On this basis, the thermal activation

behaviour can be attributed to the excitation of surface state electrons nearby the Fermi level

into the bulk CB, with the excitation energy being equal to the energy gap ∆ between the

Fermi level and the CB edge.110 We extracted the energy gap ∆ by fitting the R(T ) curves in the

high T range (80−180 K) with an Arrhenius formula R(T ) = R0 + A · exp(−∆/T ) (black, dotted

curves in Figure 6.3a). Thus obtained values are plotted in Figure 6.3b as a function of gate

voltage. It is apparent that the application of increasingly negative gate voltages results in

the expected increase of the energy gap. The maximum in the R(T ) curves at negative gate

voltages can be explained by an interplay between two effects. The first one comprises a

resistance increase due to the reduced carrier concentration at lower temperatures. The sec-

ond effect, which counteracts the aforementioned resistance increase, involves the reduction

of electron–phonon scattering of the surface electrons upon cooling, owing to the metallic

character of surface state electrons.110 As distinguished from the behavior under negative

gate voltages, the temperature characteristic can be changed into purely metallic by applying

a strong positive gate voltage (+80 V). In this gating regime, the Fermi level is located within

the bulk conduction band, similar to quasi–metallic Bi2Se3 crystals without compensation
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doping.84

6.4 Summary

In summary, we have demonstrated the presence of a 2D WAL effect in thin nanoplatelets of

Bi2Te2Se, which points toward the participation of the topologically protected surface states

in the charge transport. The samples are amenable to gate control, as proven by gate– and

temperature–dependent resistance measurements, enabling the manifestation of surface state

transport also for thicker platelets. Our results establish Bi2Te2Se as a valuable material for

further studies of the fundamental properties of topological surface states.
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7 Growth of High–Mobility Bi2Te2Se
Nanoplatelets on hBN Sheets by van
der Waals Epitaxy

The electrical detection of the surface states of topological insulators is strongly impeded by the

interference of bulk conduction, which commonly arises due to pronounced doping associated

with the formation of lattice defects. As exemplified by the topological insulator Bi2Te2Se, we

show that via van der Waals epitaxial growth on thin hBN substrates the structural quality

of such nanoplatelets can be substantially improved. The surface state carrier mobility of

nanoplatelets on hBN is increased by a factor of about 3 compared to platelets on conventional

Si/SiOx substrates, which enables the observation of well–developed Shubnikov–de Haas

oscillations. We furthermore demonstrate the possibility to effectively tune the Fermi level

position in the films with the aid of a back gate.
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7.1 Introduction

Strategies that have been pursued to minimize the contribution of the bulk transport include

compensation doping,85, 118 alloying of differently doped TIs,20, 115 or increasing the surface to

bulk ratio by using ultrathin samples.27 However, doping or alloying typically results in a con-

comitant drastic decrease in carrier mobility due to the introduction of defects. One possibility

to avoid such decrease in the structural quality of the crystals involves the epitaxial growth

of TI thin films on graphene (see Section 4.3), which has been demonstrated to significantly

reduce the defect density and hence the bulk interference.93 At the same time, the lowered

defect concentration in epitaxially grown films ensures enhanced carrier mobilities.119 The

suitability of graphene as a substrate for epitaxial growth of TI materials derives from its

layered structure with hexagonal lattice symmetry, combined with its C–C bonding length of

1.42 Å corresponding to a small lattice mismatch of only 2.9% versus Bi2Se3.93, 101 However,

due to its high electrical conductivity, graphene rules out as underlying substrate if electrical

transport studies are desired on the grown TIs.

In this chapter, we report the van der Waals epitaxial growth and electrical characterization

of high quality Bi2Te2Se thin films on electrically insulating hexagonal boron nitride (hBN)

sheets (band gap of about 6 eV120). Bi2Te2Se has emerged as one of the most promising TIs

due to its simple surface band structure, large bulk band gap, and low bulk contribution to the

total charge transport.28, 115, 121

Our Bi2Te2Se films grown by van der Waals epitaxy are sufficiently ordered to display Shubnikov–

de Haas (SdH) oscillations that provide access to important quantities such as the cyclotron

mass, the Fermi velocity, or Fermi energy.22 This capability is in contrast to previously inves-

tigated Bi2Te2Se films grown by chemical vapor deposition (CVD) on Si/SiOx substrates in

which case the relatively low surface state mobility122 has prevented the observation of SdH

oscillations (see Chapter 6). As another advantage, the present Bi2Te2Se films are sufficiently

thin to permit tuning the Fermi level position over a sizable range by applying a back gate

voltage.

Bi2Te2Se forms rhombohedral (space group R3m, see Figure 7.1a) crystals with the lattice

constants a = 4.283 Å and c = 29.846 Å.123 Thus, hexagonal boron nitride (hBN), which like-

wise forms a layered crystal with hexagonal symmetry and has a B–N bonding length of 1.45 Å

(close to that of the C–C bonding length of graphene) is a suitable insulating substrate for van

der Waals epitaxy. The alignment of Bi2Te2Se on hBN proposed in Figure 7.1b is characterized

by a small lattice mismatch of 1.5%. In addition, the layered crystal structures of Bi2Te2Se and

hBN are expected to favour epitaxial growth by van der Waals epitaxy. Herein, the weak van

der Waals interaction between the two materials relaxes the lattice–mismatch condition.101

7.2 Sample preparation and characterization

Thin Bi2Te2Se (BTS) films were grown by a catalyst–free vapor solid method as described in

Chapter 4. The hBN sheets were prepared by micromechanical cleavage of hBN powder. To

this end, a tiny amount of the powder was placed on a stripe of scotch tape, which was then
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Figure 7.1: Van–der–Waals epitaxy of Bi2Te2Se on hBN. (a) Schematic illustration of the crys-
tal structure of Bi2Te2Se, and (b) the proposed epitaxial growth mode on hBN. (c) SEM image
of Bi2Te2Se nanoplatelets grown on hBN. The armchair and zigzag edges of the hBN sheet
are marked in blue and red, respectively. (d) AFM image of the square area marked in (c). (e)
Histogram of the orientation distribution of the Bi2Te2Se nanoplatelets grown on hBN.

repeatedly folded onto itself. Subsequently, a Si/SiOx substrate was pressed onto the tape

and then removed, followed by ultrasonication of the substrate in 2–propanol to remove thick

hBN flakes. In this manner, hBN flakes with a thickness down to 7 nm were obtained. The

growth substrates were mounted in the quartz tube 15 cm away from the hot zone within

the colder downstream region. Finally, the furnace was heated to approximately 590 ◦C and

held at this temperature for 30 s to 6 min, followed by natural cool down without gas flow.

Morphology and thickness of the BTS films were found to sensitively depend on the position

of the growth substrates and the growth time. The accessible film thickness was determined

to range between 4 and 500 nm.

As exemplified by the SEM image in Figure 7.1c, as well as the AFM image in Figure 7.1d,

Bi2Te2Se grows on top of the hBN in the form of regular platelets with hexagonal symmetry.

The Bi2Te2Se growth mechanism proposed in Figure 7.1b is supported by the observation that

the crystal faces in all platelets are oriented parallel or rotated by 60 or 120◦ (see Figure 7.1d, e).

Moreover, it can be seen in Figure 7.1c that the nanoplatelets preferably grow parallel to one

of the sharp edges of the hBN sheet that are formed during exfoliation. Since the edges of the

hBN flake enclose an angle of precisely 30◦, they can be assigned to armchair or zigzag edges.

Assuming that the edges marked in blue in Figure 7.1c are the armchair edges of the hBN flakes,

the growth mechanism suggested in Figure 7.1b gains further support (if these edges were the

zigzag edges instead, the resulting misfit would be unrealistically high, specifically 26% in case

that the Bi2Te2Se flakes would be compressed, and 47% if they would be expanded). Evidence

for the formation of Bi2Te2Se could be gained by Raman spectroscopy. The chalcogenides

Bi2Se3, Bi2Te3, and their alloys Bi2(Sex Te1−x )3 are highly Raman active in the low wavenumber
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Figure 7.2: Raman measurements of Bi2Te2Se on hBN. (a) Raman spectrum of Bi2Te2Se
on hBN, acquired with λexc = 633 nm. The low wavenumber region can be fitted (pink
curve) using three Lorentzians (blue curves). The inset amplifies the wavenumber region
1300−1450 cm−1, with a Lorentzian fit to the peak (pink curve). (b) Sketch of the E2

g and the

A2
1g Raman modes.

region.108 The Raman spectrum in Figure 7.2a, acquired with a laser wavelength of 633 nm,

displays three peaks at 105.0, 139.1, and 149.6 cm−1, respectively. They can be identified as

the E2
g and the A2

1g peak (which is split into two components) of Bi2Te2Se (see Figure 7.2b).108

The additional peak at 1365.5 cm−1 (see Figure 7.2a, inset) corresponds to the E2
g mode of the

underlying hBN flake.124

It is noteworthy that besides Bi2Te2Se, also Bi2Se3 could be grown on hBN by van der Waals

epitaxy (see Figure 7.3a). The growth conditions were as follows: Bi2Se3 source material

was placed in the hot zone, and Si/SiOx substrates covered with hBN flakes 14 cm away

from the source in the down–stream zone. The pressure, flow, temperature and time were

p = 80 mbar, f = 150 sccm, T = 590 ◦C and t = 6 min, respectively. The thickness of thus–

prepared Bi2Se3 nanoplatelets ranged between 5 nm and several hundreds of nm (see Figure

7.3b). As the growth preferentially occurred on thick hBN flakes (d > 400 nm), subsequent

electrical contacting of the Bi2Se3 nanoplatelets proved very difficult.

7.3 Electrical transport measurements

For electrical transport studies, standard e–beam lithography was performed to provide in-

dividual Bi2Te2Se platelets with Ti(4 nm)/Au(200 nm) contacts in Hall bar or van der Pauw

geometry. Figure 7.4a displays the high field part of the sheet resistance Rs and the Hall resis-
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Figure 7.3: Epitaxial growth of Bi2Se3 nanoplatelets on hBN. (a) Optical micrograph. The
thickness of the platelets ranges from 5 QL to 21 QL. In general, the flakes were found to be
oriented parallel or tilted by 120◦ (indicated by the blue arrows) with respect to each other. (b)
AFM image of the two Bi2Se3 platelets close to the center of the hBN sheet in panel (a).

tance Rx y as a function of the magnetic field B at T = 1.5 K for a 19 nm thick Bi2Te2Se platelet

on a 17 nm thick hBN sheet. Here the sheet resistance is calculated via the standard procedure

applied to samples contacted in van der Pauw geometry (see Section 3.5), specifically by solv-

ing Equation 3.57 for each contact pair. It is apparent that both signals feature Shubnikov–de

Haas (SdH) oscillations. Subtraction of the background (different ways of smoothing were

tested, which gave an identical oscillation period) yields the oscillatory signal depicted in

Figure 7.4b, where ∆R/ < R > is plotted to highlight the different signal–to–noise ratio in the

two cases.i Importantly, Rs and Rx y show the same oscillation frequency, while there is a phase

shift of about π/2 between them (see also the fan diagrams in Figure 7.4c). Such phase shift is

expected by theory (see Section 3.2.4) and consistent with experimental observations on bulk

Bi2Te3 samples.22

In a prototypic two–dimensional (2D) electron gas, SdH oscillations are periodic in 1/B , with

a periodicity given by22

2πn = AF
ħ

eB
, (7.1)

where n is the Landau level (LL) index, and AF is the external cross–section of the Fermi

surface (see also Section 3.2.4). Such periodicity is evident by plotting the 1/B values of the

maxima/minima of the Rs and Rx y data as a function of the LL index (see fan diagram in

Figure 7.4c). We determined the position 1/B of the LL using the minima of the Rs signal.22, 28

The maxima are shifted by π with respect to the minima, which results in a shift of n +1/2

iSince the signal–to–noise ratio for the Rx y signal is much higher than that for Rs , the former will be used for
further analysis.
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Figure 7.4: Shubnikov–de Haas oscillations in epitaxially grown Bi2Te2Se nanoplatelets. (a)
Comparison between the Rx y (green) and Rs (black) signal. (b) The same data shown in (a)
subtracted by a smoothed background (< R >). To compare the signal–to–noise ratio, ∆R was
divided by the smoothed background. The period of the SdH oscillations in the Rx y signal is
highlighted by grey shades. (c) Fan diagram using the data shown in (b). The inset shows the
extrapolation to 1/B → 0.

in the fan diagram. Since the Rx y signal is shifted by a phase of π/2, the maxima/minima

are corrected by n +1/4 and n +3/4, respectively. By extrapolating to 1/B → 0 we find an

intersection with the abscissa at −0.28 (see inset of Figure 7.4c). This value is at least close

to −0.5, which would be expected for SdH oscillations originating from Dirac fermions (see

Section 3.2.4 and Equation 3.31). To further test whether the observed oscillations originate

form the topological surface states, their dimensionality has to be determined. Figure 7.5a

displays the high field part of the Hall resistance Rx y as a function of the magnetic field B at

T = 1.5 K for a 45 nm thick Bi2Te2Se platelet on a 50 nm thick hBN sheet. The Rx y signal clearly

features SdH oscillations, as highlighted by the first derivative dRx y /dB (green curve). For 2D

electron systems, the formation of LLs depends only on the B–field component B = B cos(θ)

normal to the surface. Accordingly, if the observed quantum oscillations originated from

the topological 2D surface states, the maxima/minima of the SdH oscillations should shift

by 1/[B cos(θ)] upon tilting the sample in the magnetic field B . In the plot of the amplitude

of the SdH oscillations ∆Rx y (= Rx y−< Rx y >, where < Rx y > is a smoothed background) as

a function of B in Figure 7.5b, indeed all curves coincide up to an angle of 50◦. To further

underscore the 2D character, the inset of Figure 7.5b demonstrates that the dependence of the
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Figure 7.5: Shubnikov–de Haas oscillations in epitaxially grown nanoplatelets. (a) High–
field Hall resistance (black curve) and its first derivative (green curve) as a function of the
magnetic field, featuring pronounced Shubnikov–de–Haas (SdH) oscillations. (b) Amplitude of
the SdH oscillations as a function of 1/[B cos(θ)] for different tilting angles θ (between surface
normal and magnetic field). The inset shows the position 1/B of the SdH peak with the LL
index n = 22 (arrow) for different angles θ, combined with a 1/cos(θ) fit (green curve) to the
data.

position of the n = 22 peak at B = 7.7 T (for θ = 0◦) on the tilting angle θ can be smoothly fitted

with a 1/cos(θ) function.

Having confirmed the 2D nature of the SdH oscillations, we now address the position of the

Fermi level in our samples. The Fermi energy can be calculated from

EF = mc yc v2
F (7.2)

where mc yc is the cyclotron mass and vF is the Fermi velocity. According to the Lifshitz–

Kosevich (LK) theory65 the thermal damping of the SdH oscillations provides a suitable es-

timate for the cyclotron mass mc yc (see Equation 3.34). From the plot of ∆Rx y versus 1/B

at different temperatures in Figure 7.6a, the oscillation amplitude is seen to decrease with

increasing temperature. Figure 7.6b displays the amplitude of the n = 15 peak at B = 11 T,

normalized according to Equation 3.34

∆σx y (T )

∆σx y (0)
= λ(T )

sinhλ(T )
, (7.3)

where λ(T ) = 2π2kB Tmc yc /(ħeB). Fitting of the data yields a value of mc yc /m0 = 0.15, which

agrees well with previous reports on Bi2Te2Se bulk crystals.28 Furthermore, in order to access

the Fermi vector kF we plot the position 1/B of the SdH maxima as a function of the LL index n

(see Figure 7.7b below). The LL index is obtained by plotting the SdH maxima as a function of

n+1/4 (since we are using the Rx y signal, see above) and extrapolating to 1/B → 0 (i.e., B →∞).

The intersection with the abscissa defines the first LL. By fitting the data with the Onsager
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relation (Equation 7.1) and assuming a circular 2D Fermi surface with AF =πk2
F , one obtains

a value of kF = 0.073 Å−1. On this basis, a surface carrier density of 4.2×1016 m−2 is calculated

from ns = k2
F /4π. This value agrees well with the surface carrier density of 5.4×1016 m−2, as

derived from Hall measurements (see below), thus further supporting the 2D nature of the

SdH oscillations.

Toward determining the Fermi energy using Equation 7.2, we assume Dirac fermions with

linear dispersion relation and a Fermi velocity of vF = kF /mc yc = 5.7×105 m/s, which is close

to the value of vF = 4.6×105 m/s determined by ARPES.115 This yields a Fermi energy of EF =
272 meV above the Dirac point. By comparison, a value of EF = 223 meV is calculated from

kF = 0.073 Å−1, as derived from the ARPES–derived band structure.115 We have furthermore

tested the possibility to tune the Fermi level in the samples through the action of a back

gate. As can be discerned from Figure 7.7a, which displays the extracted SdH oscillations

for different back gate voltages VG , the period ∆1/B rises with increasing VG . In Figure 7.7b,

the peak positions of the SdH oscillations are plotted as a function of the LL index n. As

discussed above, the slopes directly yield values for the Fermi vector kF via Equation 7.1.

The corresponding EF values can then be determined with the aid of the ARPES–derived

band structure of Bi2Te2Se, see Figure 7.7c.115 In this manner, the error associated with the

assumptions made to calculate the cyclotron mass can be avoided. For comparison, Figure

7.7c also includes the EF values derived from the cyclotron mass. The sketch in Figure 7.7d

evidences that EF (of the bottom surface which is influenced by the back gate, see arguments

below) can be shifted by approximately 160 meV through the back gate voltage. Similar Fermi

level shifts have been attained in case of considerably thicker hBN sheets (≈ 200 nm), which is

in accordance with the following estimation: In a simple capacitor model, the charge carrier

density n(VG ) induced at the interface between TI and gate dielectric by applying a gate voltage

VG can be written as

n(VG ) = ε0εd

t ·e
VG , (7.4)
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Figure 7.7: Gate–dependent Shubnikov–de Haas oscillations. (a) Amplitude of the SdH os-
cillations as a function of 1/B for different back gate voltages. (b) Plot of position 1/B of
the SdH maxima versus LL index for different gate voltages. The data fits (solid lines) were
performed using Equation 7.1. (c) Comparison of the Fermi energy in Bi2Te2Se nanoplatelets,
calculated from the cyclotron mass obtained by SdH analysis (pink rectangles), and from the
ARPES–derived band structure (blue rectangles). (c) Sketch of the position of the Fermi level
of the bottom surface in the Bi2Te2Se samples for different back gate voltages.

where ε0 is the vacuum permittivity, e is the elementary charge, and εd and t are the dielectric

constant and the thickness of the dielectric, respectively. Assuming a linear dispersion relation

for the surface states, the Fermi energy can be calculated from

EF (kF ) =ħ|vF |kF , (7.5)

where vF is the Fermi velocity and kF is the Fermi wave vector. For a circular Fermi surface,

kF is related to the 2D surface carrier density ns (per spin) via kF = 2
p
πns . Based on these

equations, the gate–induced Fermi level shift is given by EF (VG ) ∝
√

εd
t VG . While the dielectric

constants of SiO2 and hBN are similar,125 the gate effect depends on the total thickness of

the dielectric. By using a 200 nm thick hBN substrate instead of a 50 nm thick one, the gate

efficiency is only changing by a factor of 0.84, which explains the efficient gating of Bi2Te2Se

nanoplatelets grown on relatively thick hBN sheets.

The application of a gate voltage is expected to cause bending of the bands at the interface
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between dielectric (hBN) and semiconductor (Bi2Te2Se), and thereby to create a depletion

layer. The thickness of the latter, which corresponds to the penetration depth of the electric

field in the semiconductor, is of the order of only 10 nm.19 Accordingly, the bulk and the top

surface of the platelet should be only little affected by gating.

The fact that the SdH oscillations display only a single period for all gate voltages (see Figure

7.7), points toward the contribution of only one surface state. A similar conclusion has been

drawn from the magnetotransport behavior of Bi2Te2Se nanoplatelets on Si/SiOx (see Chapter

6).70 We attribute this finding to a deterioration of the surface state at the top surface due to

long exposure to air, an explanation which is in accordance with previous charge transport

studies on Bi2Se3.14, 118

Evaluation of the SdH oscillations also enables the determination of the carrier mobility (see

ln
[Δ

R
/4
R

 s
in

h
(λ

)/
λ]

0

0.08 0.10 0.12 0.14 0.16

0.08 0.10 0.12 0.14 0.16

-9
-6
-3
-9
-6
-3
-9
-6
-3

V =20Vg

V =0Vg

V =-20Vg

V =-40Vg

V =-60Vg

1/B (1/T)

-9
-6
-3
-9
-6
-3
-9
-6
-3

Figure 7.8: Dingle plots for different gate voltages. Straight lines are linear fits to the data
using Equation 3.33.

Section 3.2.4). The amplitude of the SdH oscillations is given by Equation 3.29. By a Dingle

plot (Equation 3.33) of ln
[
∆Rmax/mi n

4R0

(
sinhλ
λ

)]
versus 1/B (see Figure 7.8), where ∆Rmax/mi n is

the amplitude of the maxima/minima of the SdH oscillations, the transport lifetime τ can

be extracted from a linear data fit. This in turn yields the mean–free path le = vFτ and the

mobility µ= evFτ
ħkF

.

To further explore the gate effect in our devices, we performed low temperature Hall measure-

ments at different back gate voltages. Figure 7.9a presents such data for the sample discussed

above (see also Appendix B for Hall data of a different device). Consistent with the n–doped

character of our samples,28, 121, 122 all curves show negative slopes up to the highest negative

gate voltages. Another notable feature is the pronounced non–linearity of the curves, which

can be explained by the contribution of two types of charge carriers to the total electrical

transport. Assuming parallel conduction of bulk electrons (described by a bulk carrier density

nb and a bulk mobility µb) and bottom–surface electrons (described by ns and µs), a two band

model28 can be used to fit the Hall data according to

ρx y =
(Rsρ

2
b +Rbρ

2
s )B +RsRb(Rs +Rb)B 3

(ρs +ρb)2 + (Rs +Rb)2B 2 , (7.6)
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Figure 7.9: Hall measurements of epitaxially grown Bi2Te2Se films on hBN. (a) Hall resistiv-
ity as a function of B–field for different back gate voltages (T = 1.5 K). (b) Comparison of the
bulk– (black curve) and surface– (pink curve) carrier density for different gate voltages, as
obtained by fitting the data in panel (a) using the two–band model. The blue curve corre-
sponds to the surface carrier density derived by analysis of the SdH oscillations. (c) Plot of
the measured resistivity ρxx as a function of gate voltage. For comparison, resistance values
calculated from the SdH oscillations are shown. (d) Comparison of the bulk– (black) and
surface state– (pink) mobility for different gate voltages, as obtained using the two–band
model for fitting. The blue points are the values obtained by the Dingle analysis.

where Rs , Rb are the Hall constants of the surface/bulk, and ρs , ρb , is the surface/bulk resistiv-

ity. The four fitting parameters contained in this equation can be reduced to three126 by using

ρs = ρbρxx /(ρb −ρxx ), with ρxx = Rsheet d , where d is the thickness of the sample and Rsheet

is the sheet resistance measured separately (see Figure 7.9b). The fitting results are shown in

Figure 7.9c and d in dependence of gate voltage. As apparent from Figure 7.9c, the surface

carrier density ns is decreasing with increasingly negative gate voltage, a trend consistent with

the above described downshift of the Fermi level. Comparison with the corresponding values

obtained from the SdH analysis reveals a very good agreement, thereby consolidating the

surface nature of the oscillations at different gate voltages. In contrast to the surface carriers,
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the bulk carrier density remains almost unaffected over the complete voltage range. This

behavior can again be explained by assuming that the gating is effective only for the bottom

surface of the Bi2Te2Se sheet. Accordingly, the bulk of the platelet should be only little affected

by gating, while the surface carrier density at the bottom increases by roughly one order of

magnitude upon applying the highest negative gate voltage.

The reason why despite the high bulk carrier density of almost 1025 m−3 the bulk is not dom-

inating the total transport can be gleaned from Figure 7.9d, which shows that the mobility

of the topological surface state is one to two orders of magnitude higher than the bulk value

over the entire gate voltage range. The Hall mobilities agree well (within a factor of 2) with the

values extracted from the SdH oscillations for −60 V <Vg < 20 V (see Figure 7.9d).ii

To further test the reliability of the latter values, we calculated the sample resistivity from

ρxx ≈ (σxx )−1 = e
(
nSd H

s µSd H
s +nbµb

)−1
, where nSd H

s and µSd H
s are the surface carrier density

and mobility derived from the SdH analysis, respectively, and nb and µb are the corresponding

values for the bulk, as obtained from the Hall data. In Figure 7.9b, thus gained resistivity is

compared to ρxx measured at different gate voltages.

Figure 7.9d furthermore evidences that upon lowering the electron density the surface carrier

mobility first increases, and then decreases again. One reasonable explanation for the initial

increase involves reduced electron–electron interaction at lower electron concentration. The

relevance of such interaction has been documented recently.112, 127 If we assume, that for

highly negative gate voltages (low electron density) electron–electron interaction dominates

the total scattering of electrons, then the scattering rate is expected to be proportional to

the square–root of the electron density, according to 1
τe−e

∝p
ns (electron–electron Coulomb

scattering in 2D systems).128 In conjunction with µ= eτ
me f f

, where the effective mass me f f to a

first approximation is independent of the carrier density, it follows that the surface mobility µs

should be proportional to 1/
p

ns . In order to test this hypothesis, we plot 1/
p

ns versus the

surface state mobility µs (see Figure 7.10a). The good quality of the line fit proves the validity

of this model for electron densities above 1.5×1016 m−2. The subsequent decrease of mobility

at lower electron densities may originate from the opening of a new scattering channel from

the surface states into the bulk VB when the Fermi level position approaches the valence

band (VB) edge, which in Bi2Te2Se is located above the Dirac point.115 A similar model has

recently been used to account for scattering effects in scanning tunneling microscopy (STM)

on Bi2Se3.16 To consolidate this assertion, we calculate the Fermi energy for different surface

carrier densities by using the equations ns = k2
F /(4π) and EF = mc yc v2

F (with vF =ħkF /mc yc

and mc yc = 0.15m0), and plot the surface mobility as a function of the Fermi energy, as de-

picted in Figure 7.10b together with a sketch of the band structure of Bi2Te2Se. The arrow

in the band diagram indicates a scattering event from the surface states into the bulk VB.

Alternatively, such scattering may occur into an acceptor band, which has been reported to

iiThe mobility obtained from SdH analysis is approximately two times smaller than the Hall mobilities. This
difference originates from the fact that τ obtained from the Dingle analysis reflects scattering events in all direc-
tions, with backscattering as the dominant contribution. However, as in topological insulators backscattering
is prohibited, τ will be underestimated.28 It should be noted that the Dingle analysis becomes more and more
difficult for higher negative gate voltages due to the limited number of maxima/minima in this regime. This leads
to considerable error bars in Figure 7.8.
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be about 33 meV above the VB edge.28 A fully quantitative analysis would require detailed

knowledge of the energy dispersion and transition probabilities, which is, however, difficult to

achieve.

The question why SdH oscillations are observable in nanoflakes epitaxially grown on hBN,

whereas the same flakes grown on normal Si/SiOx substrates do not show this effect, can be re-

solved by comparing the obtained mobility values. For the Bi2Te2Se on hBN sample discussed

above, very high surface state carrier mobilities in the range of 8000 to 20000 cm2/Vs were

found, most likely owing to the reduced defect density in the films grown by van der Waals epi-

taxy. This assertion gains support by comparing Bi2Te2Se thin films grown on hBN or Si/SiOx

substrates (see Chapter 6). Specifically, an average surface state mobility of 4900 cm2/Vs was

observed on hBN, approximately three times larger than the value of 1600 cm2/Vs obtained in

case of the Si/SiOx substrates.

7.4 Summary

In summary, we have successfully grown the topological insulator Bi2Te2S on hBN in an

oriented manner by van der Waals epitaxy. Thus obtained thin films show enhanced surface

mobilities, which enable the study of gate–dependent quantum oscillations for the first time

in this material. The unique combination of high mobility surface charge transport with an
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efficient tunability of the Fermi level provides a suitable basis for studying novel, spin–related

charge transport phenomena in such devices.
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8 Kawazulite: A natural Topological
Insulator

The earth’s crust and outer space are rich sources of technologically relevant materials which

have found application in a wide range of fields. Well–established examples are diamond, one

of the hardest known materials, or graphite as a suitable precursor of graphene. The ongoing

drive to discover novel materials useful for (opto)electronic applications has recently drawn

strong attention to topological insulators. Here, we report that Kawazulite, a mineral with

the approximate composition Bi2(Te,Se)2(Se,S), represents a naturally occurring topological

insulator whose electronic properties compete well with those of its synthetic counterparts.

Kawazulite flakes with a thickness of a few tens of nanometers were prepared by mechanical

exfoliation. They exhibit a low intrinsic bulk doping level and a sizable mobility of surface state

carriers of more than 1000 cm2/Vs at low temperature. Based on these findings, further miner-

als which due to their minimized defect densities display even better electronic characteristics

may be identified in the future.
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8.1 Introduction

The extraordinary properties and architecture of naturally occurring compounds have inspired

the synthesis of numerous biomimetic materials, a field that has attracted tremendous interest

in the past few years.129 Nature’s ability to serve as a valuable blueprint for modern synthetic

compounds is owed to the fact that it houses a wide variety of materials which have been

forged over geological periods of time under extreme conditions that are difficult to simulate

in the laboratory. Many of these naturally occurring materials are finding use in fields like

optics, electronics, mechanics, or materials science. A most intriguing example is diamond,

which is formed in the lithosphere at considerable depth, supplying the required high pressure

and temperature.130 Furthermore, quasi–crystals, of which the discovery was awarded by the

Nobel Prize in 2011,131 were very recently found in sky–fallen meteorites,132 although they

were hitherto believed to be only synthetically accessible. A further notable natural compound

is graphite as a source for graphene, the thinnest atomic sheet isolated to date.133 Owing to its

linear energy dispersion relation at low carrier energies, graphene has emerged as one of the

most promising components of future electronic devices. In this chapter we demonstrate that

it is also possible to find another interesting class of materials closely related to graphene in

nature, i.e., natural topological insulators.

Quartz veins, which have a long history in gold mining, represent a promising location to

encounter TIs in nature. In fact, chalcogenides have been shaped in such veins over bil-

lions of years via hydrothermal deposition at high temperatures (> 300 ◦C).134 Some of these

compounds contain heavy elements like bismuth or antimony which are a necessary ingredi-

ent for the strong spin–orbit coupling (SOC) operative in TIs. One prospective candidate is

Kawazulite, a metallic gray mineral with the general chemical composition Bi2(Te,Se)2(Se,S),

which is named after the Kawazu mine in Japan, where it was first discovered. It belongs

to the Tetradymite group (rhombohedral, space group R3m) featuring a crystal structure

composed of quintuple layers (VI(1)–V–VI(2)–V–VI(1), where VI = (Se, Te, S) and V = Bi) that are

held together through van der Waals bonds. Its crystal structure was first reported by Bland

and Basinski in 1961.135

8.2 Sample characterization

The samples investigated in this work originate from a former gold mine in Jílové u Prahy,

Czech Republic. Figure 8.1a shows an optical micrograph of one of the investigated specimens

(purchased from Mineralienkontor, Germany), comprising Kawazulite crystals as metallic–like

inclusions in a quartz matrix. Chemical analysis of mechanically extracted, tiny Kawazulite

pieces by inductively coupled plasma mass spectrometry (ICP) revealed a composition of

(Bi2.12Sb0.06)Te2(Se0.14S0.32). Besides these major elements, fourteen additional trace elements

could be identified (see Table 8.1).i Powder diffractometry (see Figure 8.1b) indicated that

iFor supporting XPS data, see Appendix C.
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Figure 8.1: X–ray and Raman characterization of Kawazulite. (a) Optical micrograph of
the investigated specimens with a size between 3 and 10 mm. (b) Rietveld plots for the two
Kawazulite phases. (c) Magnified plot of the X–ray diffraction (XRD) data within the range of
11◦ to 13.4◦. (d) Sketch of the unit cell of the mineral, as derived from the XRD analysis. (e)
Raman spectrum recorded from a Kawazulite crystallite (λexc = 633 nm). The two blue lines
are Lorentzian fits, while the red line corresponds to the total fit.

the Kawazulite is composed of two different crystalline phases, which both crystallize in

rhombohedral (3Rm) structure and exhibit slightly different lattice constants (see Appendix

C for details). While the major phase (89.6 wt %) is characterized by the lattice parameters

a = 4.25 Å and c = 29.70 Å (Se rich), with a stoichiometry of Bi2(Se0.2S0.74)(Te0.61Se0.39)2, val-

ues of a = 4.37 Å and c = 30.42 Å (Te rich) and a stoichiometry of Bi2(Se0.59Te0.41)Te2 were

found for the minor phase (10.4 wt %). These lattice parameters are smaller than for Bi2Te3,

consistent with the fact that S and Se atoms are smaller than Te. Moreover, the observation

of (107) and (00.12) peaks (see Figure 8.1c) testifies a sizable extent of chalcogen ordering

and correspondingly the presence of an ordered layer structure136 (see sketch of the unit

cell in Figure 8.1d). In addition to the two Kawazulite phases, some spectra also contain
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Chapter 8. Kawazulite: A natural Topological Insulator

Table 8.1: List of the trace elements determined by semi–quantitative ICP analysis.

Element wt % Element wt % Element wt %
Al 1.28 Cr 0.02 Ni 0.05
As 0.73 Cu 0.02 Ti 0.02
Au 0.11 Fe 0.23 Zn 0.01
Ba 0.01 Mg 0.58 Zr 0.04
Co 0.12 Na 0.18

peaks originating from the surrounding matrix of the mineral, which could be identified as

Clinochlore (Mg,Fe,Al)6(Si,Al)4O10(OH)8 (in good agreement with the determined elemental

composition, see Table 8.1).

The layered structure of the Kawazulite is confirmed by its Raman spectrum, which displays

two pronounced peaks located at 105 cm−1 and 151 cm−1 (Figure 8.1e). Similar to the layered

chalcogenides Bi2Se3, Bi2Te3, Sb2Te3, and their alloys, these two peaks can be assigned to

the E2
g and the A2

1g peak, respectively, which originate from the opposite phase motion of the

outer V and VI(1) atoms of the quintuple layers. Based upon the dependence of the E2
g peak

position on the chemical composition of the alloys,108 it can be concluded that the Kawazulite

comprises a Te–rich Bi2(Te1–x Sex )3 matrix, with a Se content x < 0.6. Further clues regarding

the composition derive from the absence of a split of the A2
1g peak. Replacing the heavy Te

atoms by Se atoms is documented to shift this peak from 134 cm−1 in pure Bi2Te3 to higher

energy, with a split into two components at 139 cm−1 and 150 cm−1 upon reaching Bi2Te2Se

stoichiometry.108 It hence follows that the Se concentration in Kawazulite is slightly below

x = 1/3. The quite high energy of the A2
1g peak (151 cm−1) can be explained by the Sb content

of the sample, in close correspondence to the up–shift detected upon replacing the heavy Bi

atoms in Bi2Te3 by lighter Sb atoms.108

The electronic structure of the (111)–surface near the Γ–point (k|| = 0), determined by angle–
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Figure 8.2: ARPES of Kawazulite. Raw data (a) and sketch of the electronic band structure
derived from the measurement (b).
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8.3. Electrical transport measurements

resolved photoemission spectroscopy (ARPES) of a tiny (0.7×0.7 mm2) Kawazulite crystal, is

displayed in Figure 8.2a. A surface state with the typical Dirac–like conical dispersion can be

seen in the center, which verifies the natural Kawazulite to be a TI. In Figure 8.2b, the corre-

sponding electronic band structure is schematically illustrated. The general dispersion closely

resembles that of the thoroughly investigated Bi chalcogenide family.11, 42, 83, 137–139 While

the area of enhanced intensity above a binding energy of 0.4 eV can be attributed to the bulk

valence band, the bulk conduction band is difficult to discern near the Fermi level presumably

due to a suppression of the spectral intensity through matrix element effects or sample/surface

quality. If the Fermi level actually resides within the occupied states, comparison with similar

compounds suggests that it is less than 0.1 eV away from the band edge.138, 139 In any case,

it can be concluded that the size of the band gap is at least 0.25 eV if the conduction band

is slightly occupied, or above 0.35 eV assuming that it is completely unoccupied. The latter

value exceeds the band gap reported for pure Bi2Te3,138 which may be explained by the higher

electronegativity of sulfur vs. tellurium.139

The appreciable sulfur content of the Kawazulite is remarkable in view of the finding that

the replacement of Se by S atoms in TlBi(S1–x Sex )2 weakens the spin-–orbit interaction in

these compounds, which causes a topological quantum phase transition from a topological

state (Se rich) to a trivial insulating state (S rich).137 In the topological insulators Bi2X3 (X

= Se, Te), a similar transition takes place, which is, however, coupled to a structural phase

transition. For increasing sulfur content in Bi2Se3 a change from rhombohedral R3m (Se rich)

to orthorhombic crystal structure Pnma (S rich) occurs, resulting in a trivial band insulator

with a large gap.138 In Bi2(Te1–y Sy )3, by contrast, the heavier Te stabilizes the rhombohedral

structure up to high sulfur contents of y = 0.5.138 As natural Kawazulite contains a sizable

amount of Te, a similar stabilization can be expected, consistent with the rhombohedral

crystal structure revealed by XRD analysis.

Evaluation of the ARPES data yields a Fermi vector of kF = 0.091±0.002 Å−1, a Fermi velocity

of vF = 8.63×105 m/s, and (by assuming a circular Fermi surface) a surface electron density

of ns = k2
F /4π= 6.45×1016 m−2.

8.3 Electrical transport measurements

Furthermore, we determined the electrical conductivity of individual thin Kawazulite flakes

prepared by micromechanical cleavage of the extracted crystals (see inset of Figure 8.3a for an

optical image of a typical device in Hall bar configuration, or Figure 8.3b for an AFM image of

a ribbon–like device). Thus obtained microflakes (see TEM image in Figure 8.3c) exhibit the

bulk crystal structure, as evidenced by the selected area diffraction (SAD) data in Figure 8.3d.

From the SAD pattern, it furthermore follows that they reproducibly comprise (111) crystal

faces which are oriented parallel to the substrate surface. In Figure 8.3a, the Hall resistance

of a 12 nm thick flake is plotted as a function of the applied B–field. From low temperature

(T = 1.5 K) Hall measurements on a range of different flakes, a Hall mobility between 300

and 1300 cm2/Vs, and an average electron density of n = 1×1017 m−2 (normalized by the
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Figure 8.3: Hall and TEM measurements on Kawazulite flakes. (a) Hall data gained from the
device shown in the inset (optical micrograph). (b) Atomic force microscopy image of the
device discussed in the main text. The height profile is taken along the dashed line. (c) TEM
image and (d) SAD pattern of a typical microflake.

sample thickness) could be derived (see Table 8.2 for details). The latter density is only slightly

Table 8.2: Sheet thickness, sheet resistance, carrier density and mobility values for several
devices.

Sample–# d (nm) Rs (Ω) n (m−2) µ (cm2/ (Vs))

1 7 – 1.72×1017 –
2 70 1277 1.88×1017 260
3 17 2437 1.24×1017 393
4 17 2013 1.81×1017 270
5 12 2047 3.80×1016 1272
6 46 3641 5.20×1016 934

higher than the value gained from the ARPES data, indicative of a dominant contribution

of the surface state to the total charge transport. To further consolidate this assertion, we

evaluated the low–temperature magnetoresistance of the samples at different tilting angles

θ. As apparent from Figure 8.4a, where data gained from the device in Figure 8.3b are shown,

there emerges a pronounced weak anti–localization (WAL) peak in the sheet conductance

∆σ=σ(B)−σ(B = 0) (see Section 3.3.2). When∆σ is plotted in dependence of B cos(θ), that is,

the B–field component normal to the surface, all curves coincide (see Figure 8.4b), signifying

the 2D character of the effect.69 In addition, the low–field magnetoconductance data can be

well–fitted by the Hikami-–Larkin-–Nagaoka (HLN) model for 2D localization, according to

Equation 3.41. By fitting the low–field magnetoconductance of the above sample at different
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Figure 8.4: Weak anti–localization in Kawazulite. (a) Low B–field range of the magnetocon-
ductance recorded at tilting angles θ. (b) The same data shown in panel (a), after normalization
to the B–field component normal to the surface. (c) Low field magnetoconductance data at
different temperatures. The solid lines in the range 0 < B < 0.2 T represent data fits obtained
by the HLN equation. (d) Temperature dependence of the phase coherence length extracted
from the fits in panel (c). The curve fit (red line) indicates scaling of the phase coherence
length with T –0.49.

temperatures (see Figure 8.4c), a phase coherence length of 200 nm at 1.5 K and 60 nm at

30 K was obtained. In addition, the fits yielded an average value of α=−0.92, which suggests

electrical transport through two decoupled surface channels, that is, the top and bottom

surface with comparable phase coherence length. As apparent from Figure 8.4d, the phase

coherence length displays a pronounced decrease with increasing temperature, which is at-

tributable to enhanced electron-–phonon and electron—electron interactions.140 Assuming

that electron-–electron scattering is the dominant mechanism, we fit the data by a simple

power law, where lφ is proportional to T –1/2 for a 2D system, and T –2/3 in the 3D case.74 From

such a fit, we obtain an exponent very close to −1/2, thus further corroborating the 2D nature

of the WAL in the present samples.

Another intriguing observation is the emergence of pronounced universal conductance fluctu-

ations (UCF) in the magnetoconductance curves (see Section 3.4.2), as exemplified in Figure
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Figure 8.5: Universal conductance fluctuations in Kawazulite. (a) Magnetoconductance
recorded at different temperatures. (b) Root–mean–square of the UCF as a function of the
phase coherence length calculated from the WAL fits (see Figure 8.4). The red line is a linear fit
to the data. (c) UCF at different angles. The squares/circles mark the B–field position of the
two characteristic features (marked with arrows in (d)) of the UCF at different angles. (d) UCF
as a function of the B–field component normal to the sample surface. (e) B–field position of
the two characteristic features of the UCF in dependence of the tilting angle of the sample.
The solid lines are (1/cosθ) fits to the data.

8.5a. These oscillations are non–periodic, but perfectly reproducible and symmetric in B–

field, and provide valuable information about the defect distribution. It is evident from the

magnetoconductance plot in Figure 8.5a that the UCF amplitude decreases substantially with

increasing temperature. According to Equation 3.53, the root–mean–square (rms) of the UCF

is related to the phase coherence length of the electrons via rms(δG)∝ (
lφ/L

)(4−2)/2, where L is

the typical edge length of the sample and d is the dimensionality of the electronic system. On

this basis, the dimensionality of the observed UCF can be determined by plotting rms(δG) as a

function of lφ derived from the WAL measurements (see Figure 8.5b). The very good quality of

the fit by a straight line (d = 2) signifies a 2D character of the UCF. To further consolidate this
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conclusion, we studied the angle dependence of the magnetoconductance. In Figure 8.5c the

UCF amplitude, obtained by subtracting a smoothed background, is depicted as a function of

the B–field. Plotting the UCF amplitude as a function of the B–field component normal to the

surface (see Figure 8.5d) reveals several features that shift in B by tilting the sample. In Figure

8.5e, the position of two selected peaks (see guideline to the eye in Figure 8.5d) is plotted

versus the tilting angle θ. That the data can be well fitted by a 1/cos(θ) function indicates that

the peak positions depend only on the B–field component normal to the substrate plane, thus

confirming the 2D character of the charge transport.

8.4 Summary

The discovery of Kawazulite as a natural TI whose electrical properties are comparable to

those of state–of–the art synthetic compounds renders it likely that further minerals belonging

to this fascinating class of materials can be located in nature. Prospective candidates are, for

instance, the members of the Tetradymite and Aleksite group which together comprise more

than 20 compounds. One useful search guideline may be established on the basis of theoretical

predictions, making use of, for example, high–throughput robustness descriptors.141 This

could involve sorting out those compounds which occur as minerals, and further select

those exhibiting high defect formation energies. Due to their geological age, the crystal

structure of these minerals should have reached thermodynamic equilibrium and therefore

an ultimately low defect concentration. In this manner, it may be possible to spot natural TIs

which display further reduced bulk doping and accordingly even better accessible surface state

transport, as compared to Kawazulite. In addition, the very recent visualization of topological

phases in photonic quasi–crystals142 suggests that also their natural counterparts can display

"topological" properties.
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9 A second example from the forge of
nature: Aleksite
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The discovery of the natural topological insulator Kawazulite strongly motivates the search

for a new "non–trivial" mineral with even better properties. ARPES studies on Aleksite, a lead

containing mineral with the composition PbBi2Te2S2, allow us to identify a second natural TI.

Low temperature Hall measurements reveal the existence of two transport channels with a

significant average Hall mobility of 943 cm2/Vs and a high carrier density of n = 3.9×1025 m−3.

Thin Aleksite nanoribbons display a 1D weak anti–localization effect from which a high Nyquist

dephasing length on the order of 1µm can be extracted. In addition very pronounced 1D

universal conductance fluctuations with an amplitude close to the theoretical value of 1e2/h

are observed. Interestingly, a cross–over to 2D behavior is found for a ribbon width above

approximately 200 nm.

103



Chapter 9. A second example from the forge of nature: Aleksite

In Chapter 8 we successfully demonstrated, that it is possible to find topological insulators in

nature. However, the crystal structure and electronic properties of Kawazulite are comparable

with TI materials grown in the lab. Thus, we now address the question if also more exotic

TIs with unique properties occur in nature. Our work143 (and a theoretical work published

recently by Silkin et al.144) suggested that minerals belonging to the Aleksite group may be

novel natural topological insulators.

Aleksite, with a composition PbBi2Te2S2, is a promising candidate for several reasons: firstly,

theoretical calculations predict it to have a relatively large band gap of the order of 0.3 eV.

Secondly, most TIs investigated so far are materials closely related to Tetradymite which has a

crystal structure (space group R3m) that forms quintuple layers separated by a van der Waals

gap. Aleksite, by contrast, belongs to the space group P3m1 comprising seven–layer blocks

that are also separated by van der Waals gaps (see Figure 9.1). In addition, it is interesting

to investigate the influence of Pb and S on the topological insulating behavior, which both

can lead to a phase transition from TI to a trivial insulator.137, 145 The Aleksite microcrystals

Bi
Te
S
Pb

c

Figure 9.1: Crystal structure of Aleksite. Seven atoms form a block. The covalently bond
blocks are held together by van der Waals interaction. Bismuth, Tellurium, Sulfur and Lead
atoms are shown in blue, red, yellow and green, respectively.144

investigated in this work were purchased from Mineralienkontor and originate from the

Kochkar district in southern Urals, Russia. Unfortunately, the size of the specimen was only

about 200µm. This small amount of material (most of the material was needed for ARPES and

electrical characterization) hampered the investigation of the crystal structure of the mineral.

In particular, single crystal X–ray diffraction (SC–XRD) and powder XRD measurements did

not provide reliable results. Thus, lattice constants a and c could not be determined, and also

a Rietveld fit to the data was impossible.

To test whether Aleksite is a natural topological insulator we need to know its surface band

structure. To this end, we performed ARPES measurements on a tiny single crystalline domain

of the mineral. After cleaving the Aleksite crystal in air to clean its surface, it was directly
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Figure 9.2: ARPES of Aleksite. (a) ARPES spectrum of Aleksite. (b) Calculated band structure
of Aleksite.144 The theoretical and calculated band structures are aligned in such a way, that
the valence band edges are at the same energy value.

transferred to UHV. Figure 9.2a shows the ARPES spectrum obtained at about 100 K. Despite

the weak signal, a cone–like shaped band can be observed inside the band gap. This result can

be compared to theoretical calculations144 of the band structure of Aleksite (see Figure 9.2b).

The two band structures are aligned such that the valence band edge (which is the clearest

feature in the experiment) is at the same energy. Thus, if the dark region in Figure 9.2a close to

the Fermi energy is attributed to the bulk conduction band, the experimental ARPES spectrum

is in good agreement with the theoretical prediction (Eg = 307 meV).144 The band gap value

is significantly larger than the gaps found in PbBi2Te4 and PbBi4Te7 (below 200 meV).35 This

difference may be due to the replacement of heavy Te atoms by lighter S which weakens the

SOC and thus lowers the splitting of the states forming the valence and conduction band of

the material. As a result the band gap is expected to increase.144 It can be further concluded

from Figure 9.2 that the Fermi energy is located deep inside the bulk conduction band. Such

high n–doping was also found experimentally in the compound PbBi4Te7.146

After having gained convincing evidence for Aleksite to be natural topological insulator we

further investigated its electronic properties. For this purpose, we used micromechanical

cleaving (see Chapter 8) to prepare thin flakes and ribbons. Figure 9.3a shows a 19 nm thin (see

Figure 9.3b) and about 130 nm wide ribbon randomly formed during exfoliation. We were also

able to find thin platelets with a thickness down to 10 nm. Individual thin nanostructures were

identified by their optical contrast, and then electrically contacted using standard e–beam

lithography, followed by thermal evaporation of contact metals (4 nm Ti / 60 nm Au). To ensure
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Figure 9.3: Electrical contacting of Aleksite. (a) AFM image of a ribbon that randomly formed
during mechanical exfoliation (electrical transport data of this ribbon are shown in Figure 9.5
and 9.6). (b) Height profile of the ribbon along the blue line in panel (a). (c) SEM image of a
typical thin flake contacted in van der Pauw geometry. (d) Optical image of the ribbon shown
in panel (a) contacted with electrode fingers (top), and a thin flake contacted in Hall geometry
(bottom). Scale bars: (a),(c) 2µm, (d) 20µm.

Ohmic contacts, the contact regions were pre–treated with Ar plasma for 50 s. Figure 9.3c and

d show typical devices defined in van der Pauw (Figure 9.3c), "finger–like" (9.3d, top) and Hall

bar (9.3d, bottom) geometry, respectively.

To determine the carrier density and mobility we performed DC Hall measurements at 1.4 K.

A typical Hall curve is depicted in Figure 9.4a. Using a linear fit to the data (see Equation

3.10), an average carrier density of n = 3.9×1025 m−3 was found. This comparatively high

value agrees with the ARPES results, and indicates that (as usual) the Fermi level is located

within the bulk conduction band. Application of Equation 3.11 yielded an average mobility of

943 cm2/Vs, slightly higher than the value found for Kawazulite. It should be noted, that all

measured Hall curves were slightly non–linear. This non–linearity is highlighted by plotting

∆ρx y = ρx y −ρl i near
H al l , where ρl i near

H al l is the linear background subtracted from the measured

data (see Figure 9.4b). If we assume parallel conduction of two different transport channels,

a two–band model (see Equation 7.6) can be used to fit the data. Fits to the data using a

linear fit (blue) and the two–band model (pink) are depicted in Figure 9.4a and b, respectively.

Interestingly, the curvature of the Hall curves is opposite from those found for Bi2Te2Se
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Figure 9.4: Hall measurements of Aleksite. (a) Hall resistivity as a function of the external
magnetic field, recorded at 1.4 K. (b) Non–linearity of the Hall curve in panel (a). The blue and
pink curves represent a linear fit and a fit based upon the two–band model, respectively.

(see Figure 7.9a), and can only be explained assuming both an electron– and a hole–like

transport channel. The results of the fits using the two–band model areµel ectr on = 943 cm2/Vs,

nel ectr on = 3.9×1025 m−3, µhol e = 2972 cm2/Vs and nhol e = 2.7×1023 m−3. The origin of this

high–mobility hole channel is not evident. Although the sign of the carriers could be explained

by transport through an impurity band located closely above the valence band edge which is

formed by acceptors like in the case of Bi2Te2Se,28 the high mobility would still be unexpected.

The four–terminal resistance of thin Aleksite flakes at low temperatures is on the order of

several Ohms. This low value impeded a careful analysis of the magnetotransport behavior,

since the changes in resistance were only several 100 mΩ at the highest external magnetic

fields. Therefore, we investigated thin ribbon–like devices with a typical resistance of several

100Ω. The corrected low–field magnetoresistance ∆Rxx (B) = Rxx (B)−Rxx (B = 0) of a 19 nm

thick, 138 nm wide and 1.6µm long ribbon (see Figure 9.3a and d top) recorded at different

temperatures is depicted in Figure 9.5a. Around zero magnetic field a very pronounced WAL

(see Section 3.3.2) resistance minimum can be observed. To investigate the dimensionality of

the WAL the sample is tilted in the external magnetic field. It can be seen in Figure 9.5b that the

WAL only depends on the B–field component B cos(θ) normal to the sample surface. Fitting

the data with the 2D Hikami–Larkin–Nagaoka model (see Equation 3.41) yielded unphysically

high values for the parameter α in the range of −3 to −5.69, 71, 72 For an estimation we assume

an extended 2D system with two decoupled and parallel transport channels by fixing α=−1.

Fitting the data yields a phase coherence length of about lφ ≈ 700 nm. This value is much

larger than the width W of the ribbon pointing toward a lower dimensionality than 2. That

assumption is further supported by the fact that the WAL correction is on the order of e2/h

and thus much higher than the value found in typical 2D systems. Accordingly, we attribute

the WAL to 1D diffusive transport in the device.

To analyze our data along this line, we use a 1D localization model developed by Altshuler et
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Figure 9.5: Weak anti–localization in Aleksite. (a) Corrected magnetoresistance at different
temperatures. (b) Corrected magnetoconductance as a function of the B–field component
B cos(θ) normal to the sample surface. Since all curves coincide it can be concluded that the
WAL is 2D or 1D. (c) Fits of the magnetoconductances recorded at different temperatures
(colors are the same like in panel (a)) using Equation 9.2. (d) Nyquist (pink) and phase
coherence length (blue) extracted from the fits in panel (c) as a function of T . The solid lines
are fits to the data, specifically ln ∝ T −0.13 and lφ∝ T −0.31. (e) Spin–orbit length lso calculated
from the conductance correction δσ using the results of panel (d) and Equation 9.1. The solid
line is a linear fit the last two data points (where the estimation of lso is obscured by the very
weak WAL).
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where δσ is the conductance correction, F [x] = Ai(x)
Ai’(x) , with Ai and Ai’ as the Airy Ai function

and its derivative, respectively, ln is the dephasing length governed by low energy Nyquist

scattering, lφ is the phase coherence length associated with other phase–breaking mechanisms

other than the Nyquist one, and lso is the spin–orbit length. This model can be slightly modified
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by calculating ∆σ(B) = δσ(B)−δσ(B = 0):
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which is independent of lso . The corresponding fits of the magnetoconductivity data recorded

at different temperatures using Equation 9.2 are depicted in Figure 9.5c. Their excellent quality

supports the validity of the 1D model. The fits yield a Nyquist length ln = 1152 nm and a

phase coherence length lφ = 370 nm at T = 1.4 K. Furthermore, by assuming the conductance

correction δσ to be the difference between the conductance maximum at B = 0 and the flat

background at higher magnetic fields (see Figure 9.5c) a spin–orbit length lso = 81 nm can

be estimated using Equation 9.1. The low spin–orbit length reflects the strong spin–orbit

interaction in Aleksite.

The temperature dependences of these characteristic lengths are shown in Figure 9.5d and

e. All lengths decrease with increasing temperature. Curve fits revealed a ln ∝ T −0.13 depen-

dence for the Nyquist length and a lφ∝ T −0.31 dependence for the phase coherence length.

According to theory, the dephasing length should decay with T −1/2 if the system is 2D and

T −1/3 if it is 1D (see Equation 3.43 with l =p
Dτ). Both exponents, −0.13 and −0.31 are close

to −1/3, which further underscores that the WAL observed in the samples is of 1D nature. The
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Figure 9.6: Universal conductance fluctuations in Aleksite. (a) UCF amplitude obtained by
subtracting a smoothed background from the magnetoconductance for different temperatures.
(b) Root–mean–square of the oscillations as a function of phase coherence length obtained
from the 1D fits to the WAL data (see Figure 9.5d).

quite large phase coherence lengths observed in Aleksite ribbons give rise to pronounced uni-

versal conductance fluctuations (UCF, see Section 3.4.2), which are clearly observable in Figure

9.5a. This is further illustrated in Figure 9.6, where a smoothed background is subtracted

from the magnetoconductance at different temperatures. It can be seen that the amplitude

of the oscillations is on the order of 0.3e2/h, close to the theoretically predicted (universal)
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Chapter 9. A second example from the forge of nature: Aleksite

value of 1e2/h. This finding again reflects the high phase coherence length in this material.

With increasing temperature, the phase coherence length decreases and the UCF get less

pronounced. The analytical relation between the root–mean–square of the oscillations and

the phase coherence length is given by rms(∆σ)∝ l (4−d)/2
φ

(see Chapter 8), where d is the

dimensionality of the system. Thus, for a 1D system rms(∆σ)∝ l 3/2
φ

, which is confirmed by

the plot in Figure 9.6b (a linear fit to rms(∆σ) vs. lφ failed), where the phase coherence lengths

were taken from Figure 9.5d.

It is noteworthy that for a slightly wider ribbon (W = 300 nm, d = 13 nm, L = 1.7µm) it was

possible to fit the data using the 2D HLN theory giving the expected α=−1, and lφ = 195 nm

(<W !) at 1.4 K. The amplitude of the UCF in this sample is on the order of 0.1e2/h, slightly

smaller than the value found in the narrow ribbon. In addition, rms(∆σ) scales linear with the

phase coherence length indicating 2D behavior. On this basis, we conclude a cross–over from

2D to 1D diffusive transport if the ribbon width falls below approximately 200 nm. However,

to verify this scenario, additional ribbon–like devices need to be investigated in the future.

Unfortunately, the chance to find ribbons formed during exfoliation is very low, since most

quasi–1D structures tend to break into small pieces which cannot be electrically contacted.

It should again be emphasized that the observation of low–dimensional WAL and UCF alone

is no direct proof for the contribution of topological surface states to the electrical transport.

Nonetheless, the existence of a low–dimensional transport channel with relatively large coher-

ence length (which is presumably associated with the high mobility channel observed in the

Hall experiments) makes Aleksite a very interesting topological insulator for future studies.
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10 Summary and outlook

The central topic of this work was a quest for novel topological insulating materials with

outstanding properties. A main focus was on the key problem in this field of research, namely

the interference of the conducting bulk with the electrical transport through the exotic surface

states. To address this issue, a CVD system was set up to grow ultrathin platelets of Bi2Se3

with an enhanced surface–to–bulk ratio. This allowed us to reveal a novel electrical transport

fingerprint of the topological surface states, the linear magneto–resistance (LMR). By applying

a back gate voltage to these devices we were able to switch on and off the contribution of

the transport channel that is responsible for the LMR. The temperature dependent study of

the resistance combined with the observation of pronounced weak anti–localization in these

samples provided strong evidence that this LMR channel can be related to the non–trivial

surface states of Bi2Se3.

However, the contribution of bulk states to the total transport in Bi2Se3 is very high. This

problem is mainly caused by the spontaneous formation of Se vacancies during growth, which

results in strong n–doping of the material. Therefore, we synthesized thin structures of a

novel material, Bi2Te2Se, which was known from experiments on bulk crystals to have the

highest surface contribution to the total electrical transport reported so far. For the first time

we were able to grow this TI using the same CVD technique that we used for the fabrication

of Bi2Se3 nanostructures. After having verified the stoichiometry of Bi2Te2Se (BTS) using

TEM and Raman studies we investigated its low temperature magnetoconductance behavior.

Standard Hall measurements provided an average carrier density on the order of 1025 m−3

and a carrier mobility of about 100−400 cm2/Vs. The magneto–conductance showed a purely

2D weak anti–localization, evidencing the existence of a 2D electrical transport channel on

the surface of the material. By investigating the thermally activated temperature behavior of

the four–terminal resistance of the devices we were able to estimate the position of the Fermi

level. It was found, that the Fermi energy is located inside the bulk band gap even without

applying any external gate voltage. Using different back gate voltages, we were able to tune

the Fermi level in the BTS sheets.

After having demonstrated that it is possible to grow thin BTS platelets with electronic prop-

erties superior to those of pure Bi2Se3, we aimed at optimizing the carrier mobility in these
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Chapter 10. Summary and outlook

samples. Our strategy was to grow BTS on layered hBN in an oriented manner by van der Waals

epitaxy. An epitaxial growth mode was suggested based on SEM and AFM studies of the films.

The surface state mobility of thus obtained thin platelets was increased by a factor of 3 com-

pared to platelets grown on Si/SiOx . This enabled the study of gate–dependent Shubnikov–de

Haas oscillations for the first time in this material. Analysis of the non–linear Hall effect using

a two–band model suggested the existence of a high mobility transport channel which can be

attributed to the topological surface state of BTS, and is located at the interface between the

Bi2Te2Se and hBN.

Although BTS on hBN exhibits very high surface carrier mobility, the total carrier density, and

thus the influence of the bulk conduction channel, still remains appreciable. This stimulated

us to search for new materials with lower bulk defect density. But materials science is not only

restricted to materials made in the lab. Due to their geological age, the crystal structure of

minerals should have reached thermodynamic equilibrium and therefore an ultimately low

defect concentration. This raises the question whether there are natural topological insulators.

By investigating Kawazulite, a mineral with the approximate composition Bi2(Te,Se)2(Se,S),

originating from a former gold mine in Czech Republic, we were able to demonstrate the first

natural occurring topological insulator. Its Hall mobility is on the order of 300−1300 cm2/Vs

and it shows pronounced 2D coherence effects like universal conductance fluctuations and

weak anti–localization at low temperature. Thus, Kawazulite can readily compete with its

synthetic counterparts made in the lab. Since the equilibrium defect concentration of minerals

is mainly governed by their defect formation energies, it may be possible to spot new TIs in

nature that display even better electronic performance than Kawazulite. One such candidate

provided by nature is the mineral Aleksite. According to recent theoretical predictions144

Aleksite should also be a natural TI that furthermore has a large band gap (> 300 meV) making

it suitable for room temperature electronic device applications. We were able to demonstrate

topological insulating properties in an Aleksite crystal originating from a former gold mine in

the Ural, Russia. ARPES revealed that the band gap energy is indeed in the order of 300 meV.

Hall measurements revealed an average carrier mobility of the order of 943 cm2/Vs, 1.5 times

larger than the value found for Kawazulite. Low temperature magnetoconductance measure-

ments of thin Aleksite ribbons yielded very pronounced UCF and WAL, both on the order of

the theoretical limit of e2/h. By analyzing these diffusive transport effects with a 1D model,

very high coherence lengths up to 1µm were found.

In summary, we were able to contribute important pieces to the big puzzle of the ongoing

research on topological insulators. While ARPES measurements have been well-established to

prove the existence of topological surface states, this goal has not yet been achieved for electri-

cal transport experiments. Numerous publications have tried to associate low–dimensional

transport phenomena to the surface states of TIs. However, most 3D TI materials are layered

(and thus possess a highly anisotropic resistivity) semiconductor crystals and naturally tend

to form a trivial 2D electron gas on their surface.15 Moreover, as experimentalists often use

ultrathin samples wherein the ’bulk’ itself is subjected to confinement into 2D, strong caution

has to be exercised when interpreting the results. Nevertheless, the strategies to increase the

performance of existing materials or to discover new TIs in nature, as described in this thesis,
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10.1. Growth mechanism of BTS on hBN

are promising to stimulate future research.

In the following some unanswered questions that came up during this work will be presented.

Based upon these ideas, the long-awaited bullet proof electrical transport experiments to

verify the existence of helical surface states in topological insulators may be attainable.

10.1 Growth mechanism of BTS on hBN
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Figure 10.1: TEM study of Bi2Te2Se on hBN. (a) TEM image of a hBN flake with BTS flakes
grown epitaxially on top. (b) SAD pattern of pure hBN (marked in blue in (a)). Four diffraction
spots are indexed. (c) SAD pattern of BTS on hBN. All spots observable in (b) are marked in
blue. The inner spots that are split up in triangles (marked in pink) can be attributed to the
{1100} planes of BTS.

In Chapter 7, we investigated Bi2Te2Se thin films grown epitaxially on hBN. Although there is

strong evidence for the growth mechanism depicted in Figure 7.1a, b, an experimental proof is

missing. This can be studied by transferring as–grown nanostructures of BTS on hBN onto

a TEM grid. One possible approach is to spin–coat a thick layer (300−400 nm) of PMMA on

the growth substrate and immerse it in water at 90 ◦C for about 2 h.150 The PMMA film can

be easily pealed off, with the hBN/BTS stack remaining attached to it. The film can be fished

with a TEM grid and directly be used for TEM characterization. Figure 10.1a depicts a TEM

image where BTS can be seen as dark, triangular–shaped regions on the brighter hBN flake.

We performed selected area diffraction (SAD) measurements of pure hBN (Figure 10.1b) and
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BTS/hBN (Figure 10.1c). Figure 10.1b clearly reveals the hexagonal structure of hBN. The

inner {1100} spots provide a nearest–neighbor distance a = 1.41±0.04 Å, very close the value

of 1.44 Å reported in literature.120 Interestingly, the SAD on a BTS flake yields a very complex

diffraction image as depicted in Figure 10.1c, where the positions of the reflexes of pure hBN

(Figure 10.1b) are highlighted by blue circles. The inner reflexes are split up into triangles

(marked in pink) and could be attributed to the symmetry forbidden {1100} reflexes of Bi2Te2Se.

Using the centers of these triangles a lattice constant of a = 4.24 Å is calculated, which again

fits well to the theoretical value of a = 4.283 Å.123 It is pertinent to mention, that the {1100}

reflexes of Bi2Te2Se are tilted by 30◦ compared to the {1100} reflexes of hBN supporting the

validity of the growth mechanism suggested in Figure 7.1b. However, at the present stage

we are neither able to fully explain all the observed reflexes, nor to find an explanation for

the splitting of the diffraction spots. This strongly motivates future follow up experiments to

clarify these points.

10.2 Anomalous Aharonov–Bohm oscillations in Kawazulite

In Chapter 8, we investigated the electrical transport behavior of Kawazulite, a natural topo-

logical insulator. By investigating narrow ribbons of that material, like the 280 nm wide and

25 nm thick structure depicted in Figure 10.2a, a very interesting effect was observed. Fig-

ure 10.2b shows the magnetoconductance at 1.4 K with the B–field applied along the ribbon

axis. The magnetoconductance oscillations can be seen in Figure 10.2c, where a smoothed

background is subtracted from the raw data. These oscillations are periodic in B and can

be attributed to the Aharonov–Bohm effect (see Section 3.4.1), which has similarly been ob-

served for nanoribbons of various TI materials.97, 151, 152 However, theoretical calculations77, 78

predict that the maxima of these oscillations should be located at fractional flux values and

that their position should be tunable using an external gate voltage (see Chapter 3.4.1). We

could clearly observe such effect in one device (see Figure 10.2c). These oscillations consist

of a prominent AB–part with a wavelength φ0 = h/e and a less prominent contribution due

to Altshuler–Aronov–Spivak (AAS) oscillations with a wavelength h/(2e), as underscored by

FFT in Figure 10.2d. If it would be possible to reproduce this experiment and demonstrate

the gate dependence of the AB effect, this would be the first bullet proof demonstration of the

existence of a topological surface state in an electrical transport experiment.78

10.3 Graphene tunnel barrier

Thus far, no report on spin injection in topological insulators has appeared. To efficiently inject

spins from a ferromagnetic metal into a semiconductor, the conductance mismatch problem

has to be solved. Schmidt et al. 153 demonstrated, that the spin injection coefficient γ is

proportional toσN /σF , whereσN andσF are the conductivities of the normal (semiconductor)

and the ferromagnetic material. Commonly, the conductivity of a metal is much higher than

that of a topological insulating film, making the spin injection very inefficient. To overcome
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Figure 10.2: Anomalous Aharonov–Bohm effect in Kawazulite. (a) AFM image of a ribbon of
Kawazulite formed during exfoliation. Inset: height profile. (b) Raw magnetoconductance data
with B–field applied parallel to the ribbon axis. (c) AB oscillations highlighted by subtracting a
smoothed background from the magnetoconductance signal. The oscillations are periodic
in B and have maxima at fractional flux values (the maximum at B = 0 can be attributed to
the WAL effect). (d) FFT of the data shown in (c). The oscillations consist of two parts with
wavelengths of h/e (Aharonov–Bohm) and h/(2e) (Altshuler–Aronov–Spivak), respectively.

this problem, Rashba 154 suggested to use tunnel barriers between the ferromagnetic contact

and the semiconducting sheet which should dramatically increase the spin injection. It has

been recently shown that graphene is an excellent tunnel barrier for spin injection due to

its flatness, small thickness, as well as very low conductivity in the direction normal to its

surface.155, 156

In Chapter 4, we demonstrated the possibility to grow topological insulator nanostructures on

various substrates using the CVD method. Thus, by growing TIs epitaxially on graphene we

could kill two birds with one stone: firstly, the electrical transport performance is expected to

be enhanced due to the high quality of the epitaxial films (see Chapter 7). Secondly, we could

directly use the growth substrate (graphene) as a tunnel barrier. A possible strategy to fabricate

such devices is depicted in Figure 10.3a. The as–grown TI is covered with PMMA. After putting
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Figure 10.3: Using graphene as a tunnel barrier. (a) Schematic depiction of the fabrication of
graphene tunnel barriers. BTS is grown on exfoliated graphene, followed by spin–coating of a
thick layer of PMMA. This layer can peeled off (see main text), flipped and used to transfer the
graphene/BTS sandwich upside down to a new substrate. The stack can then be electrically
contacted using standard e–beam lithography, followed by removing excess graphene by RIE.
In a last step, a top gate can be fabricated. (b) SEM image of Bi2Se3 grown on HOPG. (c) Optical
image of graphene (already flipped) on top of Bi2Se3. (d) AFM image of the area framed in (c)
after electrical contacting.

the substrate in warm water it is possible to peel off the PMMA (with the graphene/TI stack

sticking to it),150 flip the structures and transfer them upside down onto a new substrate. The

graphene–on–TI sandwich can then be electrically contacted with magnetic Co or normal

Au contacts, or a combination of both.157 The excess graphene in between the metallic

contacts can be removed using reactive ion etching (RIE). The above method also allows for

the fabrication of a top gate, in order to individually tune the top and the bottom surface
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10.3. Graphene tunnel barrier

states of the topological insulator when studying the spin–injection. Figure 10.3b shows a

SEM image of a typical epitaxial growth of Bi2Se3 on HOPG. All platelets on a terrace of HOPG

are oriented parallel or tilted by 60◦/120◦. The same growth can be performed on exfoliated

graphene as depicted in Figure 10.3c, which shows an optical image of a graphene/Bi2Se3

stack that is already flipped using the method proposed in Figure 10.3a. This sandwich, where

graphene is on top of Bi2Se3, survived all electrical contacting process steps, as apparent from

the AFM image of the final device right before RIE in Figure 10.3d. This strategy may lead to

the first experimental demonstration of spin injection in TI materials. In this manner access

could be gained to the spin–lifetime of the electrons and hence to valuable information about

possible spin–polarized surface states contributing to the electrical transport.
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A Supporting linear magnetoresistance
data

It is apparent that the bulk state resistance Rb(0) increases upon cooling from 193 K to 70 K,

consistent with thermally activated behavior. However, upon further cooling, Rb(0) displays

a monotonous decrease. As mentioned in Chapter 5, we attribute this unexpected trend to

the fact that our model does not account for the weak anti-localization (WAL) effect. The

relevance of WAL is evident from the substantial deviation of the R vs. B curves (at low

temperature and low B-fields) from the quadratic behavior, see Fig. 5.3c. Unfortunately, there

is no straightforward means to include the WAL into our model.

For comparison of the above values of Ri (0) and Rb(0) in Table A.1 and A.2, we refer to Figures

A.1a and A.1b, where the values derived from fittings of the data in Figure 5.3b and 5.3c are

presented. There is a quite good agreement (difference of ≈ 10%) between the gap state

resistance values determined by the two approaches. Somewhat larger differences can be seen

for the bulk state resistance, although the agreement is still reasonable, specifically within

a factor of 1.5 for temperatures above 70 K. At lower temperatures, as explained above, the

fitting in Fig. 5.3c is not valid any more. Overall, we consider the agreement sufficient to prove

our model correct.
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Appendix A. Supporting linear magnetoresistance data

Table A.1: Values of the gap state resistance Ri (0) and bulk state resistance Rb(0) derived from
fitting of the zero field data in Fig. 5.3b for a temperature range from 40 K to 193 K.

Temperature (K) Ri (0) (Ω) Rb(0) (Ω)

40 3.40k 3.0M
50 3.59k 475k
60 3.77k 138k
70 3.95k 57.3k
80 4.14k 29.6k
90 4.32k 17.7k

104 4.58k 10.2k
120 4.88k 6.34k
134 5.13k 4.6k
150 5.43k 3.42k
164 5.69k 2.77k
179 5.96k 2.3k
193 6.22k 1.98k

1.5

3.0

4.5

6.0

G
ap

 s
ta

te
 r

es
is

ta
n
ce

 (
k
Ω

)

50 100 150 200

Temperature (K)

15

30

45

60

0
80 120 160 200

Temperature (K)

B
u
lk

 s
ta

te
 r

es
is

ta
n
ce

 (
k
Ω

)

results from Figure 2b

results from Figure 2c

results from Figure 2b

results from Figure 2c

a b

Figure A.1: Gap and bulk state resistance. (a) Gap state resistance deduced from the data in
Figure 5.3b (pink circle) and Figure 5.3c (blue star). (b) Bulk state resistance deduced from the
data in Figure 5.3b (pink circle) and Figure 5.3c (blue star).
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Table A.2: Values of Ri (0), Rb(0), α and β extracted from the fitting curves in Fig. 5.3c, comple-
mented by values for various other temperatures. Besides the four parameters provided in
Chapter 5, the table includes also the total resistance R(0) measured at zero B-field.

Temperature (K) Ri (0) (Ω) Rb(0) (Ω) α (Ω/T 2) β (Ω/T ) R(0) (Ω)

5 5.95k 6.82k 20.9 1730 3.17k
30 4.84k 9.36k 29.6 710 3.19k
40 4.16k 15.1k 64.4 415.2 3.26k
50 4.21k 18.6k 116.2 365.6 3.44k
60 4.36k 22.7k 367 308.7 3.66k
70 4.50k 26.8k 738.8 271.7 3.85k
80 4.73k 19.6k 406.2 299.8 3.81k
90 4.59k 13.9k 258.1 252.7 3.45k

104 5.39k 6.58k 76.3 288.7 2.96k
120 5.27k 5.50k 59.8 232.9 2.70k
134 5.37k 4.96k 50 190.1 2.57k
150 5.53k 4.80k 48.7 157.9 2.57k
164 5.54k 4.78k 46.6 139.5 2.57k
179 5.97k 4.44k 40.8 120.9 2.55k
193 6.00k 4.20k 36.5 94.6 2.48k
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B Electrical transport data for 12 nm
thin platelet grown on hBN

The gate-dependent Hall resistivity and sheet resistance of a 12 nm thick film on a 38 nm thick

hBN flake are displayed in Figure B.1a and b, respectively. The Hall curves are seen to become

increasingly non-linear upon decreasing the negative back gate voltage. Fitting of the curves

with a two-band model (see Chapter 7) yielded the carrier density and mobility for the surface

state and the bulk, which are plotted in Figure B.1c and d, respectively. As distinguished

from the 45 nm thick sample described in Chapter 7, in this case the bulk carrier density is

modulated by the back gate. This finding is in agreement with the similar thickness of the

flake and the depletion layer (both ≈ 10 nm), which allows for substantial penetration of the

electric field into the flake. Reducing the bulk carrier density leads to smaller electron-electron

interaction, explaining the observed increase of bulk mobility by about one order of magnitude

(see Figure B.1d). By contrast, the surface mobility, which is 1 - 2 orders of magnitude higher

than the bulk value, remains almost constant over the entire gate voltage range.

Table B.1: Surface carrier mobility of different Bi2Te2Se nanoplatelets with varying thickness
grown on Si/SiOx or hBN.

Substrate t (nm) µs (m2/Vs)

Si/SiOx 14 0.062
Si/SiOx 15 0.136
Si/SiOx 21 0.340
Si/SiOx 26 0.100
Si/SiOx 28 0.100
Si/SiOx 38 0.122
Si/SiOx 42 0.140
Si/SiOx 45 0.152
Si/SiOx 68 0.191

Substrate t (nm) µs (m2/Vs)

hBN 12 0.567
hBN 15 0.329
hBN 16 0.263
hBN 44 0.498
hBN 45 0.723
hBN 52 0.582
hBN 107 0.459
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Appendix B. Electrical transport data for 12 nm thin platelet grown on hBN
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Figure B.1: Hall measurements of epitaxially grown Bi2Te2Se films on hBN (T = 1.5 K). (a)
Hall resistivity of a 12 nm thick Bi2Te2Se film on a 38 nm thick hBN flake. (b) Sheet resistance as
a function of the applied back gate voltage. By fitting the data shown in (a) with the two-band
model (Equation 7.6), the surface/bulk carrier density (c) and mobility (d) can be extracted for
different back gate voltages.
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C Details of XRD measurements on
Kawazulite

Indexing158 of the recorded spectra led to two similar R-centered trigonal unit cells for with

lattice parameters given in Table C.1, suggesting the parallel occurrence of two Kawazulite

phases with different distribution of elements. The major phase (I) has a slightly smaller unit

cell as the minor phase (II). Starting coordinates for both crystal structures of Kawazulite

were taken from the literature.159 Rietveld refinement160 was performed using the program

TOPAS Version 4.2 (Bruker AXS, 2010). The peak profiles and precise lattice parameters were

determined by a LeBail fit161 using the fundamental parameter approach of TOPAS.162 From

elemental analysis, a fully occupied bismuth position could be anticipated, allowing the other

occupancies to be correctly refined. A full quantitative Rietveld analysis of the Kawazulite

sample revealed a fraction of 89.6(4) wt% for (I) and 10.4(4) of (II). Despite the use of Debye-

Scherrer geometry, a small amount of preferred orientation was detected which refined to

identical values for both phases using the March-Dollase formalism.163 Agreement factors

(R-values) are listed in Table C.1 and the refined coordinates are given in Tables C.2 and C.3.
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Appendix C. Details of XRD measurements on Kawazulite

Table C.1: Crystallographic data for the two Kawazulite phases.

Bi2(Se0.2S0.74)(Te0.61Se0.39)2 Bi2(Se0.59Te0.41)Te2

Space group R3m R3m
Cell parameters (Å) a = 4.2537(2) a = 4.3648(8)

c = 29.704(2) c = 30.424(8)
Cell volume (Å3) V = 465.45(6) V = 502.0(2)
Z 3 3
T (K) 300 300
Formula weight (g/mol) 2038 2340
ρcalc (g/cm3) 7.27(1) 7.74(15)
Radiation source (Å) 0.55941 0.55941
Rexp (%)[a] 2.47 2.47
Rw p (%)[a] 5.00 5.00
Rp (%)[a] 3.83 3.83
RBr ag g (%)[a] 3.02 2.00
GoF 2.03 2.03

[a] as defined in TOPAS.

Table C.2: Atomic positions and isotropic thermal parameters of Kawazulite phase (I).

Atom Wyck. x y z rel. occ. U (eq) (Å2)

Bi 6 f 0 0 0.41125(4) 1 0.70(4)
S/Se 3c 0 0 0 0.70(4)/0.30(4) 0.70(4)

Te/Se 6 f 0 0 0.19787(9) 0.61(1)/0.39(1) 0.70(4)

Table C.3: Atomic positions and isotropic thermal parameters of Kawazulite phase (II).

Atom Wyck. x y z rel. occ. U (eq) (Å2)

Bi 6 f 0 0 0.4083(4) 1 0.70(4)
Te/Se 3c 0 0 0 0.4(2)/0.6(2) 0.70(4)

Te 6 f 0 0 0.1994(8) 1 0.70(4)
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