




Abstract

Euclidean distance matrices (EDMs) are central players in many diverse �elds including
psychometrics, NMR spectroscopy, machine learning and sensor networks. However, they are
not often exploited in signal processing. In this thesis, we analyze attributes of EDMs and derive
new key properties of them. These analyses allow us to propose algorithms to approximate EDMs
and provide analytic bounds on the performance of our methods. We use these techniques to
suggest new solutions for several practical problems in signal processing. Together with these
properties, algorithms and applications, EDMs can thus be considered as a fundamental toolbox
to be used in signal processing.

In more detail, we start by introducing the structure and properties of EDMs. In particular,
we focus on their rank property; the rank of an EDM is at most the dimension of the set of points
generating it plus 2. Using this property, we introduce the use of low rank matrix completion
methods for approximating and completing noisy and partially revealed EDMs. We apply this
algorithm to the problem of sensor position calibration in ultrasound tomography devices. By
adapting the matrix completion framework, in addition to proposing a self calibration process
for these devices, we also provide analytic bounds for the calibration error.

We then study the problem of sensor localization using distance information by minimizing
a non-linear cost function known as the s-stress function in the multidimensional scaling (MDS)
community. We derive key properties of this cost function that can be used to reduce the
search domain for �nding its global minimum. We provide an e�cient, low cost and distributed
algorithm for minimizing this cost function for incomplete networks and noisy measurements. In
randomized experiments, the proposed method converges to the global minimum of the s-stress
in more than 99% of the cases. We also address the open problem of existence of non-global
minimizers of the s-stress and reduce this problem to a hypothesis. If the hypothesis is true then
the cost function has only global minimizers, otherwise, it has non-global minimizers.

Using the rank property of EDMs and the proposed minimization algorithm for approximating
them, we address an interesting and practical problem in acoustics. We show that using �ve
microphones and one loudspeaker, we can hear the shape of a room. We reformulate this problem
as �nding the locations of the image sources of the loudspeaker with respect to the walls. We
propose an algorithm to �nd these positions only using �rst-order echoes. We prove that the
reconstruction of the room is almost surely unique. We further introduce a new algorithm for
locating a microphone inside a known room using only one loudspeaker. Our experimental
evaluations conducted on the EPFL campus and also in the Lausanne cathedral, con�rm the
robustness and accuracy of the proposed methods.

By integrating further properties of EDMs into the matrix completion framework, we propose
a new method for calibrating microphone arrays in a di�use noise �eld. We use a speci�c char-
acterization of di�use noise �elds to relate the coherence of recorded signals by two microphones
to their mutual distance. As this model is not reliable for large distances between microphones,
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we use matrix completion coupled with other properties of EDMs to estimate these distances
and calibrate the microphone array. Evaluation of our algorithm using real data measurements
demonstrates, for the �rst time, the possibility of accurately calibrating large ad-hoc microphone
arrays in a di�use noise �eld.

The last part of the thesis addresses a central problem in signal processing; the design of
discrete-time �lters (equivalently window functions) that are compact both in time and fre-
quency. By properly adapting the de�nitions of compactness in the continuous time to discrete
time, we formulate the search for maximally compact sequences as solving a semi-de�nite pro-
gram. We show that the spectra of maximally compact sequences are a special class of Mathieu’s
cosine functions. Using the asymptotic behavior of these functions, we provide a tight bound for
the time-frequency spread of discrete-time sequences. Our analysis shows that the Heisenberg
uncertainty bound on the time-frequency spread of sequences is not tight and the lower bound
depends on the frequency spread, unlike in the continuous time case.

Keywords: Euclidean Distance Matrices, Calibration, Sensor Localization, S-stress, Multidi-
mensional Scaling, Acoustics, Heisenberg Uncertainty Principle, Maximally Compact Sequences



R�esum�e

Pi�eces mâ�tresses de nombreux domaines tel que la psychom�etrie, la spectroscopie RMN,
l’apprentissage automatique, et r�eseaux de senseurs, les matrices de distance Euclidiennes (EDMs)
se sont r�ev�el�ees utiles dans de nombreuses applications. N�eanmoins, elles n’ont pas �et�e souvent
exploit�ees en traitement des signaux. Dans cette th�ese, nous analysons les caract�eristiques des
EDMs et en d�eduisons d’importantes nouvelles propri�et�es. Ces analyses nous permettent de
proposer de nouveaux algorithmes pour approcher les EDMs, ainsi que de donner des bornes
analytiques sur la performance de ces m�ethodes. Ces techniques sont ensuite appliqu�ees pour
sugg�erer de nouvelles solutions �a plusieurs probl�emes pratiques en traitement des signaux. Mu-
nies de ces nouvelles propri�et�es, algorithmes et applications, les EDMs peuvent être consid�er�ees
un outil fondamental �a utiliser en traitement des signaux.

Plus en d�etail, nous commenons par pr�esenter la structure et les propri�et�es des EDMs. En
particulier, nous nous concentrons sur la propri�et�e du rang; le rang d’une EDM est au plus la
dimension de l’ensemble des points la g�en�erant plus 2. Cette propri�et�e nous permet d’appliquer
les m�ethodes de compl�etion de matrice de faible rang �a l’approximation et la compl�etion d’EDMs
seulement partiellement r�ev�el�ees. Nous appliquons cet algorithme au probl�eme de l’�etalonnage
de la position des senseurs dans les appareils de tomographie ultrasonique. Nous pr�esentons
�egalement non seulement une adaptation de cette m�ethode au processus d’auto-�etalonnage de
ces appareils, mais aussi des bornes analytiques sur l’erreur d’�etalonnage.

Nous �etudions ensuite le probl�eme de la localisation de senseur exploitant l’information de
distance par la minimisation d’une fonction de coût non-lin�eaire connue sous le nom de fonction
s-stress dans la communaut�e du positionnement multidimensionnel (MDS). Nous d�eduisons des
propri�et�es majeures de cette fonction de coût nous permettant de r�eduire le domaine de recherche
pour trouver son minimum global. Nous produisons un algorithme distribu�e, e�cace et peu
coûteux, pour minimiser la fonction de coût pour des r�eseaux incomplets ainsi que des mesures
bruit�ees. Nous montrons que dans des exp�eriences al�eatoires, la m�ethode propos�ee converge
vers le minimum global du s-stress dans 99% des cas. Nous abordons le probl�eme ouvert de
l’existence de minimiseurs non-globaux du s-stress et r�eduisons ce probl�eme �a une hypoth�ese,
dont la satisfaction ou non-satisfaction d�etermine l’existence ou l’absence, respectivement, de
minimiseurs non-globaux de la fonction de coût.

Nous mettons �a contribution la propri�et�e du rang des EDMs, ainsi que l’algorithme de
minimisation propos�e pour leur approximation, pour aborder un probl�eme d’acoustique aussi
int�eressant que pratique. Nous montrons qu’avec cinq microphones et un haut-parleur, il est
possible d’entendre la forme d’une pi�ece. Nous reformulons ce probl�eme en celui de trouver la
position des images de la source sonore, le haut-parleur, par rapport aux murs. Nous proposons
un algorithme pour trouver ces positions utilisant seulement les �echos d’ordre premier. Nous
prouvons que la reconstruction de la pi�ece est presque sûrement unique. Nous pr�esentons en
outre un nouvel algorithme pour la localisation d’un microphone �a l’int�erieur d’une pi�ece de
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forme connue utilisant seulement un haut-parleur. Notre �evaluation exp�erimentale, conduites
sur le campus de l’EPFL ainsi que dans la cath�edrale de Lausanne, con�rme la robustesse et la
pr�ecisions des m�ethodes propos�ees.

Par l’int�egration de propri�et�es suppl�ementaires des EDMs dans nos algorithmes de compl�etion
de matrice, nous proposons une nouvelle m�ethode pour l’�etalonnage de r�eseaux de microphones
dans un champ de bruit di�us. Nous utilisons une caract�eristique sp�eci�que des champs de
bruit di�us a�n de lier la coh�erence de signaux enregistr�es par deux microphones �a leur distance
mutuelle. Ce mod�ele n’�etant pas �able pour de longues distances entre les microphones, nous
utilisons la compl�etion de matrice coupl�ee �a d’autres propri�et�es des EDMs a�n d’�evaluer ces
distances et d’�etalonner le r�eseau de microphones. L’�evaluation de notre algorithmes avec des
donn�ees r�eelles d�emontre pour la premi�ere fois la possibilit�e d’�etalonner pr�ecis�ement de grands
r�eseaux de microphones dans un champs de bruit di�us.

La partie �nale de cette th�ese traite d’un probl�eme central en traitement des signaux; la
conception de �ltres �a temps discrets (ou �egalement fenêtre d’observation) �a la fois compact
en temps et en fr�equence. Une adaptation pertinente de la d�e�nition de compacit�e en temps
continu pour les �ltres �a temps discret nous permet de formuler la recherche de s�equences maxi-
malement compactes en un probl�eme d’optimisation semi-d�e�nie positive. Nous montrons que
les spectres des s�equences maximalement compactes sont une classe sp�eciale des fonctions en
cosinus de Mathieu. Exploitant le comportement asymptotique de ces fonctions, nous donnons
une borne inf�erieur atteignable pour l’�etalement temps-fr�equence des s�equences �a temps discret.
Notre analyse montre que le minorant donn�e par le principe d’incertitude d’Heisenberg pour
l’�etalement temps-fr�equence des s�equences n’est pas atteignable.

Mots-cl�es: Matrices de Distance Euclidiennes, �Etalonnage, Localisation de Senseur, S-stress,
Positionnement Multidimensionnel, Acoustiques, Principe d’Incertitude d’Heisenberg, S�equences
Maximalement Compactes
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Chapter 1

Introduction

It is tempting, if the only tool you have is a

hammer, to treat everything as if it were a

nail.

Abraham Harold Maslow

1.1 Motivation

Euclidean distance matrices (EDMs) are probably one of the most useful and at the same

time under-appreciated tools in signal processing. Studies on the properties of these objects do

not go back further than a century. In this thesis, by studying the properties of these objects

and introducing new algorithms and applications, we will try to convince the reader that EDMs

deserve more attention in the signal processing and communications communities.

Although the notions of metric spaces and distances were introduced long before by Fr�echet [40],

it was not until 1935 that Schoenberg in [114] studied the properties of Euclidean distance ma-

trices in detail. Further properties were developed by Young and Householder in 1938 [137].

In 1952, Togerson introduced the concept of multidimensional scaling (MDS) as the problem

(or the procedure) of �nding a set of points that produce a given inter-distance matrix [126] .

This distance matrix could be generated from a Euclidean geometry or a set of dissimilarities.

However, the relation between the used distances and the non-metric dissimilarities was de�ned

vaguely. Later in 1964, Kruskal suggested the notion of stress as a goodness of �t for non-metric

data [73]. The most signi�cant practical impact of EDMs until that time can be considered the

successful test of Transit, the �rst satellite navigation system used by the United States Navy in

1960. Later, in a series of papers [47, 48], Gower showed further properties of Euclidean geom-

etry and approaches for the approximations of EDMs. In his 1985 paper [48], Gower rigorously

presented the relation of the rank of EDMs to their embedding dimension.

1



2 Introduction

While the mathematicians were busy proving abstract properties of EDMs, biologists started

using them to estimate the shape of proteins. In early 1980s, Williamson, Havel and W�uthrich

developed the idea of using nuclear magnetic resonance (NMR) to extract inter-distances of

hydrogen atoms in proteins and use these distances to reconstruct the shape of the molecule

[53, 135] 1. In 1990, Glunt et al. in [42] and Hayden et al. in [54], provided some insights on

the structure of the cone of EDMs. It took the multidimensional scaling community a few more

years to come up with a solution for the molecular conformation through Trosset in 1998 [128].

Since 2000, the practical advantages of EMDs started to appear also in the machine learning

community; examples include papers by Tenenbaum et al. in 2000 [123] for image understanding

and handwriting recognition, Jain et al. in 2004 [59], for speech and music and Weinberger

et al. also in 2004 [134], for learning image manifolds. Also starting 1999, as the interest in

sensor networks increased, several approaches based on EDM properties were proposed for sensor

localization [3, 12, 29].

Let us give a short description of two of the EDM applications mentioned above. Many other

applications will be introduced throughout the thesis.

Protein Structure Prediction

Knowing the structure of proteins is crucial for understanding their physical and chemical

properties and interactions. It is also useful for drug design. One of the methods to estimate the

structure of a protein is nuclear magnetic resonance spectroscopy (usually abbreviated as protein

NMR). The process of determining the protein structure by NMR consists of measuring many

short inter-distances between hydrogen atoms and restraining the protein structure with these

distances. Large distance measurements (larger than 5
�

A [52]) are normally unreliable and thus

a network of short distances is available for reconstructing the structure of the protein. This

produces an incomplete and noisy EDM from which the location of the hydrogen atoms must be

estimated. Many approaches including distance matrix completion [17] and methods based on

molecular dynamics and simulated annealing [92] are proposed to solve this problem. In Figure

1.1 we show an example reconstruction of the protein 2E8O, SAM domain, with a method based

on semi-de�nite programming called SPROS [4]. The blue structure shows the estimated protein

structure using SPROS and the red one is the reference structure.

Dimensionality Reduction in Machine Learning

In many applications of machine learning (such as face recognition [130] or handwriting

recognition [58]) the high-dimensional measurements lie on a low-dimensional but non-linear

manifold. In order to be able to analyze these data e�ciently, we need to �nd a low dimensional

embedding of these data points. One of the approaches to this problem is called the isometric

feature mapping or Isomap [123]. Isomap �nds the paths between the neighboring nodes and

guesses larger distances by �nding the shortest paths between the corresponding nodes. Then,

using these geodesic distances and applying simple localization algorithms, the method estimates

the new node positions in the low-dimensional space. An example of the application of the

algorithm on the Swiss roll data-set is shown in Figure 1.2. Several nodes are lying on a 2-

dimensional manifold in 3D (see Figure 1.2(a)). We can observe that for two selected nodes on

1. W�uthrich received the Chemistry Nobel Prize in 2002 for \his development of nuclear magnetic resonance
spectroscopy for determining the three-dimensional structure of biological macromolecules in solution"
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Figure 1.1: Structure estimated by SPROS (red) and the reference structure (blue) for the protein

2E8O, SAM domain. Image taken from [4] with permission.

the non-linear manifold, their Euclidean distance in 3D (blue line) may not accurately show their

similarity, as measured by geodesic distance along the low-dimensional manifold (red curve).

Using Isomap, we can �nd a non-linear embedding of the data-set in 2D (Figure 1.2(b)). In

the low-dimensional embedding, the Euclidean distance between data points represents more

accurately their geodesic distance.

When we go through the history of EDMs and their applications, we unfortunately do not

witness many results from the signal processing community with an EDM 
avor 2. This lack

of appreciation, has also held the community back from developing e�cient algorithms that �t

speci�c applications. In these pages, we revisit some of the properties of EMDs, propose new

algorithms to approximate them and test them through several applications in signal processing.

Let us continue with introducing some basic properties of EDMs which will be used in this

thesis.

1.2 Euclidean Distance Matrices

Consider a list of points fxi; i = 1; � � � ; ng in the Euclidean space R� of dimension �. A

matrix D 2 R
n�n
+ is called a Euclidean distance matrix (EDM), when its entries, d2

i;j are the

2. Of course one might argue that we can call many things as \signal processing" and many of the mentioned
applications lie in signal processing!
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(a) (b)

Figure 1.2: The Swiss roll data-set in a 3-dimensional space (a), and its non-linear embedding

in 2D using Isomap (b). The images are reproduced from [123] and the data-set provided in

http://isomap.stanford.edu.

Euclidean distance-squares between pairs of xi and xj , i.e.,

D[i; j] = d2
i;j = kxi � xjk2 = hxi � xj ; xi � xji

= hxi ; xii+ hxj ; xji � 2 hxi ; xji :
(1.1)

As a result, any element of an EDM must satisfy the basic Euclidean metric properties [71]:

M1. Non-negativity

di;j � 0 :

M2. Self-distance

di;j = 0() xi = xj :

M3. Symmetry

di;j = dj;i :

M4. Triangle inequality

di;j � di;k + dk;j :

Note that these properties are necessary but not su�cient for a matrix to be an EDM.

http://isomap.stanford.edu
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Example 1.1

Consider the points x1 = [1; 1; 0]T , x2 = [5; 1; 0]T , x3 = [1; 4; 0]T and x4 = [1; 1; 1]T in R3.

We can �nd their corresponding distance matrix as D1,

D1 =

2
6666664

0 16 9 1

16 0 25 17

9 25 0 10

1 17 10 0

3
7777775
; D2 =

2
6666664

0 16 9 36

16 0 25 17

9 25 0 10

36 17 10 0

3
7777775
:

Clearly, by construction D1 is an EDM and satis�es all the metric properties. Consider now

D2 as a simple modi�cation of D1. The new matrix D2 satis�es all the metric properties

M1{M4. However, it is not an EDM (we will see shortly how to check if a matrix is an EDM).

Let us now describe the necessary and su�cient conditions for a matrix to be an EDM. In

this regard, we need to de�ne the following notions:

De�nition 1.1 (Symmetric hollow subspace)

Denoted by Snh , the symmetric hollow subspace is a proper subspace of symmetric matrices

Sn with a zero diagonal.

S
n
h

def
= fA 2 S

n j diag(A) = 0g ;
where diag(�) denotes a column vector with the diagonal entries of its input matrix.

De�nition 1.2 (Positive semi-de�nite cone)

Denoted by Sn+, the positive semi-de�nite cone is the set of all symmetric positive semi-de�nite

matrices of dimension n� n.

S
n
+

def
= fA 2 S

n j A � 0g :

Let us also de�ne the geometric centering matrix L as

L
def
= I � 1

n
11T ; (1.2)

where I is the n� n identity matrix and 1 is the all one column vector in Rn.

Theorem 1.1 (Schoenberg [114])

D is an EDM ()
(
�L DL 2 S

n
+

D 2 Snh

(1.3)

Theorem 1.1 is very important in the sense that it provides a necessary and su�cient condition

for a matrix to be an EDM, while the metric properties M1{M4 do not provide such functionality.

In the following we provide yet another important property of EDMs.
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1.2.1 Invariance Under Rigid Transformation

Let us collect the coordinates of the set of points in a matrix X as follows:

X =

2
66666664

xT1

xT2
...

xTn

3
77777775
2 R

n�� ;

with xi 2 R�. This, for example, can be the collection of n sensors thrown in a 3-dimensional

(� = 3) �eld.

An EDM D must be expressible as a function of some X. Let us call that function D. From

(1.1), we can write

D(X) = diag(XXT ) 1T + 1 diag(XXT )T � 2XXT : (1.4)

In words, for every set of points in R�, the function D(X) outputs the EDM corresponding to

that point set. Given an EDM D, there are in general in�nitely many position matrices X that

generate D. They are related with rigid transformations (also called isometric transformations):

translation, rotation and re
ection.

Translation Invariance

A translation in R� is represented by

Y = X � 1 tT ;

where t 2 R� is the translation vector. It is easy to see from (1.4) that for every t 2 R�,

D(X � 1 tT ) = D(X) :

Example 1.2 (Centering a set of points at the origin)

If a set of n points are listed in X 2 Rn��, their geometric center is calculated as [26]:

� =
1

n
XT 1 :

Centering the set of points at the origin is equivalent to

Xc = X � 1 �T

= X � 1(
1

n
1TX)

= (I � 1

n
1 1T ) X

= L X :

This is why we called the matrix L in (1.2) the geometric centering matrix.

It is easy to verify that

D(LX) = D(X) :
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Rotation and Re
ection Invariance

The rotation and/or re
ection of a set of points X around a point z 2 R� is achieved by

Xr = (X � 1 zT ) Q ;

where Q 2 R��� is an orthogonal matrix.

We can verify that

D(Xr) = D((X � 1 zT ) Q)

= D(XQ� 1 wT )

= D(XQ)

(a)
= D(X) ;

where (a) follows from (1.4) using QTQ = I.

1.2.2 Embedding Dimension and the Rank of an EDM

An important notion in the Euclidean distance geometry is called the embedding (or a�ne)

dimension of an EDM.

De�nition 1.3 (Embedding dimension [48])

If a matrix D 2 Rn�n is an EDM, its embedding or a�ne dimension is the rank of X with

the least rank that generates D.

In other words, the embedding dimension of an EDM is the dimension of the smallest a�ne set

in Rn containing X, the set of points that generate it.

Theorem 1.2 (EDM rank vs. embedding dimension [48])

For a Euclidean distance matrix D 2 Rn�n with embedding dimension r, we have

rank(D) � r + 2 : (1.5)

Further, rank(D) = r+ 1, if and only if the points generating D lie on the relative boundary

of an r-dimensional hypersphere.

Proof.

In order to prove the upper bound in (1.5), we use the formulation of D(X) in (1.4),

rank (D(X)) � rank
�
diag(XXT ) 1T

�
+ rank

�
1 diag(XXT )T

�
+ rank

�
2XXT

�

� 1 + 1 + r ;

where we used the fact that rank(A + B) � rank(A) + rank(B). The rest of the proof can be

found in [48].

Note that the rank of an EDM is independent of its dimensions (i.e. the number of points

generating that EDM). The result of Theorem 1.2 lies at the heart of this thesis and is very

central to the obtained results.
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An important question is how to �nd the embedding dimension of a distance matrix? The

answer is simple [48]; From (1.4), we can see that

�LDL = 2LXXTL ;

because L1 = 0. Now
r = rank(X)

= rank(LX)

(a)
= rank(LDL) :

(1.6)

For (a) we have used the fact that rank(ATA) = rank(A) = rank(AT ). Thus, in order to �nd

the embedding dimension of an EDM D, it is enough to compute rank(LDL).

1.2.3 The EDM Cone

Let EDM
n denote the set of all EDMs of dimension n � n. The set EDM

n forms a closed

convex cone; using (1.3), for any �1; �2 � 0:

LD1L � 0

D1 2 S
n
h

;
LD2L � 0

D2 2 S
n
h

=) �1LD1L + �2LD2L � 0

�1D1 + �2D2 2 S
n
h

Note that EDM
n contains all the EDMs in Snh with embedding dimensions ranging from 0

to n � 1 (since D(X) is invariant under translation, the maximum embedding dimension of an

n� n EDM is n� 1 as the dimension of the points can be reduced by at least one).

Now the question is which portion of this cone belongs to EDMs with certain embedding

dimensions. Recall from (1.6) that r = rank(LDL). We have the following lemma.

Lemma 1.1 (The EDM cone and the embedding dimension [26])

The EDM cone relative interior comprises

rel int EDMn = fD 2 EDM
n j rank(LDL) = n� 1g ;

which is a convex cone. Also the relative boundary of the EDM cone is

rel @ EDMn =

n�2[

r=0

fD 2 EDM
n j rank(LDL) = rg :

None of these sets are necessarily convex.

Lemma 1.1 states that all the interior of the EDM cone consists only of EDMs with embedding

dimension n � 1 and the rest of EDMs lie only on the relative boundary of the cone. This

lemma plays a crucial role in showing the hardness of problems that try to �nd the best EDM

approximations to a matrix with a certain embedding dimension. The set of such EDMs is not

convex anymore. Further, Hayden et al. in [54] show that for n > 3, EDMn is not a circular

cone anymore. These properties show why the approximation is not straight forward.

One particular problem of interest is completing a partially revealed EDM. This problem can

be formulated as

�nd Dest 2 EDM
n

s.t. Dest[i; j] = D[i; j] for (i; j) revealed indices:
(1.7)
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If D is a partial EDM in Rr with embedding dimension r, we are interested in completing

it so that the result has also an embedding dimension r. Then problem (1.7) can be further

restricted to

�nd Dest 2 EDM
n

s.t. Dest[i; j] = D[i; j] for (i; j) revealed indices

emb dim(Dest) = r:

This problem is NP-hard.

Theorem 1.3 ([72, 113])

The problem of one-embeddability of graphs 3with integer weights is NP-complete.

For this reason, all the solutions for Euclidean distance matrix completion or approximation

problems are relaxed in order to make the solutions tractable (e.g. [12, 60]). In Chapter 2 we see

a relaxed formulation for the completion problem. Also in Chapter 3 we provide an optimization

framework to tackle the problem locally.

One of the earliest implicit applications of EDMs is for data visualization [126]. This task of

down-scaling a set of high dimensional data, with a given distance matrix, into a lower dimension

(which might have multi dimensions) and visualizing them in the lower dimensional space is called

multidimensional scaling (MDS). This process is in essence the same as sensor localization from

mutual distances and similar results are developed in both �elds in parallel. In the following

section we brie
y introduce multidimensional scaling and some of the common tools for solving

related problems in this �eld.

1.3 Multidimensional Scaling

Multidimensional scaling (MDS) was originally proposed in psychometrics [73, 126] to visu-

alize the (dis-)similarities between objects (or stimuli, like colors). It is de�ned as the problem

of �nding n points (normally in a certain dimension) whose inter-point distances represent (dis-

)similarities between objects. The term \multidimensional scaling" is often used to refer to

methods for solving MDS (e.g. [14]). The following example is borrowed from [14] to showcase

one of the initial problems in MDS.

Example 1.3 (MDS and Color Similarities)

Ekman in 1954 [36] used 14 colors di�ering only in their wavelength. Di�erent pairs of colors

were projected on a screen and the average score of 31 subjects for their similarities were taken

(0: not similar, 1: identical). The measured similarities are shown in Table 1.1. With the

simplest algorithm called the classic MDS | which will be introduced in the following lines

| we can associate a set of points in two dimensions to these wavelengths. The reconstructed

locations are shown in Figure 1.3. The �gure suggests close correlation of the visualization

with the well-known color circle (or color wheel) [61].

Although the MDS problem originated for di�erent set of purposes and has been widely

used in a separate research community, it addresses the same fundamental question in sensor

3. One-embeddability of graphs is a special case of the k-embeddability problem which accounts for �nding an
embedding of a weighted graph in k dimensions that preserves the weights.
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� (nm) 434 445 465 472 490 504 537 555 584 600 610 628 651 674

434 1.0 .86 .42 .42 .18 .06 .07 .04 .02 .07 .09 .12 .13 .16

445 .86 1.0 .50 .44 .22 .09 .07 .07 .02 .04 .07 .11 .13 .14

465 .42 .50 1.0 .81 .47 .17 .10 .08 .02 .01 .02 .01 .05 .03

472 .42 .44 .81 1.0 .54 .25 .10 .09 .02 .01 .00 .01 .02 .04

490 .18 .22 .47 .54 1.0 .61 .31 .26 .07 .02 .02 .01 .02 .00

504 .06 .09 .17 .25 .61 1.0 .62 .45 .14 .08 .02 .02 .02 .01

537 .07 .07 .10 .10 .31 .62 1.0 .73 .22 .14 .05 .02 .02 .00

555 .04 .07 .08 .09 .26 .45 .73 1.0 .33 .19 .04 .03 .02 .02

584 .02 .02 .02 .02 .07 .14 .22 .33 1.0 .58 .37 .27 .20 .23

600 .07 .04 .01 .01 .02 .08 .14 .19 .58 1.0 .74 .50 .41 .28

610 .09 .07 .02 .00 .02 .02 .05 .04 .37 .74 1.0 .76 .62 .55

628 .12 .11 .01 .01 .01 .02 .02 .03 .27 .50 .76 1.0 .85 .68

651 .13 .13 .05 .02 .02 .02 .02 .02 .20 .41 .62 .85 1.0 .76

674 .16 .14 .03 .04 .00 .01 .00 .02 .23 .28 .55 .68 .76 1.0

Table 1.1: Average similarity scores of colors with wavelengths from 434 to 674 nm [36] used in

Example 1.3.

localization and signal processing: �nding a set of points with a certain dimension that generate

a given set of (possibly noisy) distances.

The MDS literature o�ers many formulations and algorithms to estimate the set of points

X from D. In the following lines we provide a brief description of three of the most famous

approaches to this problem.

1.3.1 Classic Multi-dimensional Scaling

If all the pairwise distances are measured without error, then a na��ve algorithm called classic

MDS exactly recovers the correct con�guration of points [34, 75, 115]. Let us now explain this

algorithm.

Let L be as in (1.2). Recall from (1.4), that

�LDL = 2LXXTL :

Then, given the singular value decomposition (SVD) of the symmetric and positive semi-

de�nite matrix (�1=2)LDL as (�1=2)LDL = U�UT , we have

MDS�(D) , U��1=2
� ;

where U� denotes the n � � left singular matrix corresponding to the � largest singular values

and �� denotes the � � � diagonal matrix with � largest singular values in the diagonal. Note

that as we showed in Example 1.2, the operation LX only shifts the center of the set of the

points to the origin. This is also known as the MDSLocalize algorithm in [34]. The algorithm

is summarized in Algorithm 1.1.

Although the algorithm provides exact solutions in noiseless cases, there is no guarantee for

optimality of the solution in the noisy case.
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Figure 1.3: The output of metric MDS on the color similarity data of [36] with embed-
ding dimension 2. The numbers on the plot represent the wavelength of each color. The
plot resembles the color wheel (also called the color circle) [61]. Image taken from Wikipedia
(http://en.wikipedia.org/wiki/Color_wheel ).

Algorithm 1.1 Classic MDS (MDSLocalize ) [115].
Input: Dimension � , estimated squared distance matrixD
Output: Estimated positions MDS� (D )
1. Compute (� 1=2)LDL ;
2. Compute the best rank-� approximation U � � � U T

� of (� 1=2)LDL ;

3. Return MDS� (D ) , U � � 1=2
� .

1.3.2 Stress Function Minimization

Another way to solve the MDS problem is to use optimization methods. From Lemma 1.1
we know that for a �xed embedding dimension, the target set is not convex. Thus, the existing
optimization methods are not only non-linear, but also non-convex.If we consider the distances
instead of the squared distances, the optimization problem is called the raw Stress [74]:

minimize
X 2 Rn � �

X

i;j

wi;j

� p
D(X )[i; j ] �

p
D [i; j ]

� 2
: (1.8)

The weights wi;j are zero if the measurement (i; j ) is not known and wi;j � 0 for the rest of
measurements. As this cost function is not globally di�erentiable, optimization methods for
solving it are more involved. There are several approaches for thisproblem such as iterative
majorization [27, 28], methods using convex analysis [86, 87] and steepest descent methods
[50, 74].

http://en.wikipedia.org/wiki/Color_wheel
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