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Comprehensive kinetic model for the dissolution,
reaction, and crystallization processes involved
in the synthesis of aspirin

David E. Joiner?, Julien Billeter®, Mary Ellen P. McNally®, Ron M. Hoffman®
and Paul J. Gemperline®*

Kinetic modeling of batch reactions monitored by in situ spectroscopy has been shown to be a helpful method for
developing a complete understanding of reaction systems. Much work has been carried out to demonstrate the
ability to model dissolution, reaction, and crystallization processes separately; however, little has been performed
in terms of combining all of these into one comprehensive kinetic model. This paper demonstrates the integration
of models of dissolution, temperature-dependent solubility, and unseeded crystallization driven by cooling into a
comprehensive kinetic model describing the evolution of a slurry reaction monitored by in situ attenuated total
reflectance ultraviolet-visible spectroscopy. The model estimates changes in the volume of the dissolved fraction
of the slurry by use of the partial molar volume of the dissolved species that change during the course of reagent
addition, dissolution, reaction, and crystallization. The comprehensive model accurately estimates concentration
profiles of dissolved and undissolved components of the slurry and, thereby, the degree of undersaturation and
supersaturation necessary for estimation of the rates of dissolution and crystallization. Results were validated across
two subsequent batches via offline high-performance liquid chromatography measurements. Copyright © 2014 John

Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of kinetic models for use in modeling and
monitoring of batch reaction processes has been an active area
of research in the last decade [1-4]. Modeling of reaction systems
is helpful for acquiring a complete understanding of a production
process and has demonstrated its usefulness for monitoring large-
scale batch reactions [5,6]. Monitoring of reactions in this manner
has both safety and financial benefits. For instance, in the event
that a fault is detected because of the inability to fit the data within
acceptable limits, corrections may be made in order to save the
batch and prevent wasting materials and time.

Much work has been carried out in order to model reactions and
reaction processes. Modeling of reactions, dissolutions, and crystal-
lization processes has been a frequent area of study [7-10], and
each has become a well-understood process. However, the
number of real applications has been rather limited because of
the little work that has been performed so far to combine these
methods into one cohesive model. Although models for each of
these processes separately provide valuable information, a
combined model that incorporates all these processes simulta-
neously would be more desirable for the complete understanding
of a slurry-based reaction system because it could be readily
applied to the corresponding industrial manufacturing process.

Recently, we demonstrated the ability to apply a kinetic model
to a system that includes both dissolution and crystallization
processes [11]. This work extends this idea by modeling simulta-
neously the dissolution, reaction, and crystallization processes
and by incorporating the changes in volume of the dissolved

fraction of the solution calculated from the partial molar volume of
each individual component of the solution. Also, a temperature-
dependent solubility curve is included in the comprehensive model
to account for the effect of temperature on the crystallization rates.
These additions render this combined model robust and make it
possible to explain with a high level of accuracy the temporal
changes of all the component concentrations throughout the
course of the reaction.

2. THEORY

Under certain assumptions described hereafter, kinetic models
have the ability to accurately predict absorbance and concentra-
tion profiles for all components of a reaction system. In order to
do so, a mathematical model is fitted to a set of measured
spectra and is used to estimate pure component spectra without
the use of any calibration. The interested reader is referred to
Puxty et al. [12] and Billeter et al. [13] for a comprehensive under-
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standing of this technique applicable to both full-rank and rank-
deficient spectroscopic data.

2.1. Beer’s law

Calculation of the predicted time and wavelength-resolved
absorbance profiles relies on Beer's law and relates the concentra-
tions to the molar spectra of the pure components as follows:

Y=CA+R (1)

where Y is a nt X nw matrix containing the measured spectra at nt
times and nw wavelengths, C is a ntxns matrix containing the
concentration profiles of all the ns absorbing (or spectroscopically
active) species (or pure components), A is a nsXxnw matrix
containing the pure component spectra (molar absorptivites times
the pathlength), and R is a nt x nw matrix of residuals that contains
the lack of model fit and the random measurement errors.

The product of the matrices C and A, which provides an
estimate of the absorbance spectra, is used to identify a kinetic
model and adjust model parameters. Hence, the quality of the
model fit can be assessed via the sum of the squares of the
elements of the residual matrix R.

2.2, Concentration profiles

The construction of accurate concentration profiles is the
foundation for an accurate kinetic model. The concentration
profiles are produced by numerical integration of a differential
model that can be described as a system of ordinary differential
equations (ODEs), which explains at any time the changes in
concentration for each species present in the system. For most
multistep reaction systems, it is often impossible to integrate
analytically the corresponding set of ODEs, and thus, a numer-
ical integration must be performed. The classical Runge-Kutta
method [14] of numerical integration was used for this purpose.
The differential equation of each component is written in terms
of rate-law equations corresponding to each postulated reac-
tion step taking place in the system. A detailed description of
this construction procedure can be found in Puxty et al. [12]
and Gemperline et al. [15]. The remaining information to
provide to the differential model is the inlet and dilution terms
of each dosed species, the initial concentrations of each
species, and the reaction rate constants of each reaction. The
result of the numerical integration is a set of computed concen-
tration profiles for each of the components of the reaction
mixture, which depend on the postulated rate laws (model
structure), on the values of rate constants (parameter
estimation), and on the initial and dosing conditions of the
experiment. In this work, the initial and dosing conditions were
presumed to be known accurately, and the rate constants were
adjusted. In order to estimate the values of the rate constants, a
nonlinear optimization (fitting) problem had to be solved.

2.3. Newton-Gauss-Levenberg-Marquardt algorithm

The Newton-Gauss-Levenberg—Marquardt (NGLM) algorithm [16,17]
is a gradient-based optimization method that is used to adjust the
values of unknown nonlinear parameters, here the rate constants.
The values of these constants vary according to certain intensive
properties of the system, such as the temperature and the
pressure. An optimization method based on the NGLM algorithm
is able to find accurate estimations of unknown parameters, so as
to best describe the measured data.

In order to initiate the calculation of the concentration profiles,
initial guesses for all adjustable parameters are to be specified.
Using successive estimates of the concentration profiles C, the

corresponding estimated pure component spectra A are
calculated as follows:

A=cC'Y (2)

The difference between the measured and modeled absor-
bance spectra corresponds to the residual matrix R that is used
to calculate the sum of squares ssq.

R=Y-CA=Y-CC'Y ?3)

ssq = vec(R) "vec(R) 4)

where vec(-) denotes the operation of vectorization that converts
a matrix into a vector.

The optimization algorithm proceeds iteratively, calculating
shifts in the adjustable parameters that result in a decrease in
the sum of squared residuals. The first term in a truncated Tay-
lor series expansion [12,18] is used to calculate a shift toward
the minimum of the residuals for each of the nonlinear param-
eters, coinciding with a set of modeled absorbance spectra that
better represent the original measurements. This recursive pro-
cedure of minimizing the residuals by computing a shift vector
continues until ssq converges to a minimum value, defined here
as the relative difference between two successive sums of
squares. For the purpose of this work, the relative convergence
was set to 107

3. EXPERIMENTS

The chemical system chosen in this work was the synthesis of
aspirin (acetylsalicylic acid), which involves the dissolution of
the solid salicylic acid (SA), the reaction of SA in solution with
acetic anhydride (AA) under acid catalysis to form acetylsalicylic
acid (ASA), and the subsequent crystallization of ASA. This sys-
tem was chosen because it has well-understood dissolution, re-
action, and crystallization processes that take place in a
relatively short time period.

3.1. Equipment

All experiments were run in a custom 50mL computer-
controlled reactor made in-house at East Carolina University
including a heated oil jacket. This reactor works on both the
principles of heat flow and power compensation [19].
Thermostated heated silicone oil is pumped through the jacket
(heat flow principle), and a 20 W hastelloy immersed heating
coil with a Proportional-Integral-Derivative (PID) controller was
used to maintain the set temperature inside the reactor vessel
(power compensation). All of these were controlled by an H.E.
L. Inc. automate system operating under the H.E.L. WinISO
software package (Lawrenceville, NJ). The custom reactor
lid was designed in-house and contained openings for an
ultraviolet-visible (UV/Vis) submersible attenuated total reflec-
tance (ATR) probe, an immersed heating coil, a thermocouple
made of hastelloy, and an inlet tubing connected to an auto-
matic syringe pump, controlled by the Winlso software. This re-
actor setup was described in more details in [11].
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All UV/Vis measurements were taken using a tec5USA
multichannel spectrophotometer (Plainview, NY) with a resolution
of 3nm in the 190-1100 nm region connected to a fiber-optic
ATR probe (Hellma 661.821 model, 205 mm, 125 mm outside
diameter (o0.d.) sapphire crystal Plainview, NY). UV/Vis absorbance
spectra were measured at a rate of 1 spectrum/s and
averaged at 30s intervals using MultiSpec Pro Process software
(tec5USA). Dark current spectra were acquired before the
start of each experiment and were used for correcting the
measured spectra. A mixture containing AA and phosphoric
acid as a catalyst was used to acquire a reference spectrum
before each run.

Validation of the spectroscopic results was performed using an
offline high-performance liquid chromatography (HPLC) system.
The chromatograms were obtained with an Agilent (Santa Clara,
CA) Zorbax (Norcross, GA) Eclipse (Waltham, MA) C-18 (25cm x 4.6
mm, 5 um) column at 40 °C, with an injection volume of 15 uL and
a flow rate of 1 mL/min. The mobile phase was a 60:40 water
(adjusted with 1% v/v acetic acid) and methanol mixture. A
ConstaMetric 4100 gradient pump (Milton-Roy, Ivyland, PA), an
Alcott (Norcross, GA) 728 autosampler, an Eppendorf column
heater (Hamburg, Germany), a Spectraflow 757 UV/Vis detector
(Applied Biosystems, Foster City, CA) set at 254 nm, and PC/Chrom
data acquisition software (H&A Scientific Inc, Greenville NC) were
used for all HPLC measurements.

3.2. Method

A 20 mL aliquot of AA (Fisher Scientific, Waltham, MA) and a 0.2 mL
aliquot of phosphoric acid catalyst (Fisher Scientific, Waltham, MA)
were added to the reactor and were then heated to 55 °C. The oil
jacket was maintained at 55°C by a Julabo F25-HD heater/chiller
(Allentown, PA). A 9.5 g of solid SA (Fisher Scientific, Waltham, MA)
was then added to the solution and allowed to dissolve. During this
period, both dissolution and reaction took place simultaneously, and
the reaction mixture was continuously stirred at a rate sufficiently
high to keep the solid SA suspended in the reaction mixture.
Because of the large excess of AA present in solution, the desired
product, ASA, underwent a second reaction and formed a side
product, the acetylsalicylic anhydride (ASAA) [20-22]. After 60 min,
an aliquot of 4 mL of deionized water was delivered by the syringe
pump at a rate of 1 mL/min to eliminate the anhydrous side product
and the remaining AA. The side product reacted with water to
reform the desired product ASA along with acetic acid HA. At this
point, the solution was supersaturated with ASA, and unseeded
nucleation and crystallization occurred spontaneously after a short
stochastic delay. The slurry of precipitated ASA and its reaction
mixture was allowed to reach equilibrium for a period of 10 min,
after which the reactor was cooled at a rate of 1.5°C/min until the
reactor reached 5°C to complete the precipitation. The computer-
controlled system maintained a constant temperature difference
of 1.5°C between the jacket and the reaction mixture during the
cooling ramp. This portion of the experiment was added to demon-
strate the robustness of the comprehensive kinetic model across
varying temperatures and its ability to predict a temperature-
induced crystallization. Representative examples of measured
spectra are provided in Figures 1 and 2.

3.3. Reaction rate laws

Building a kinetic model, as previously mentioned, requires
postulating a set of ODEs expressing the change of concentrations

for each of the species involved in the reaction. Such a
construction assumes that the reaction mechanism is known or
can be postulated and consequently that a correct set of rate-
law equations can be established. Four reaction steps were
considered in this work. In the first part of the experiment, SA
was added in large excess of AA and formed the main product
ASA as well as the side product ASAA.

SA + AA 25 ASA + HA (5)
ASA + AA “3 ASAA -+ HA ©)

After the addition of water, the system underwent another set
of reactions that converted the side product ASAA to the main
product ASA and consumed the excess of AA.

ASAA + H,0 % ASA + HA %
AA + H,0 5 2HA ®)

Chemical equations (5-8) can be translated into series of rate-
law equations (9-12), which can then be used to construct the
set of ODEs describing the evolution of the concentration profiles.

r1 = kq csa(t) caa(t) (9)
ry = ko Casa(t) can(t) (10)
rs = ks casaa(t) Cuyo(t) an
r4 = kg Caa(t) Chyo(t) (12)

In Equations (9-12), c(t) represents the concentration of
species s at time t, namely an element of the concentration
matrix C where s is an absorbing species. In order to construct
a comprehensive model, rate-law equations for the dissolution
and crystallization processes must also be included.

3.4. Dissolution and crystallization rate laws

Modeling physical transformations such as dissolution and
crystallization (crystal growth) processes is different than model-
ing chemical transformations. Detailed models have been
proposed in the literature and provide accurate descriptions of
the dissolution and crystallization rates.

3.4.1.  Crystal growth

The rate of crystal growth [23,24] for a solute s, denoted r, ;, can
be described as follows:

DMk,

I’g‘s :Wﬂr(cs(t) 7C§at(T))g (13)

where @, and ®, are the surface and volumetric shape factors,
respectively; M; is the molecular weight; d; is the density, 7, is
the effectiveness factor [25]; and k_ is the crystallization rate
constant. The term ¢$%(T) represents the saturation concentra-
tion of the solute s at the temperature T. In this work, the surface
and volumetric shape factors were assumed to be constant
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Figure 1. Attenuated total reflectance ultraviolet-visible absorbance as a function of time and wavelength with selected kinetic traces at 260 (blue),

283 (green), and 317 nm (red).
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Figure 2. Kinetic traces at 260 (blue), 283 (green), and 317 nm (red), and
main operating steps of the reactor (addition and reactive dissolution of SA,
then addition of water, unseeded crystallization, and temperature cooling).

during the course of the experiments so that the rate law could
be expressed in a simpler form, which depends on a
macroscopic rate constant k. representing the corresponding
accumulated terms. Another assumption was that there was no
agglomeration of crystal particles or breakage of large crystals
from shear forces during stirring. All these assumptions allow
expressing the rate of crystal growth in a simpler form [26], as
follows:

rgs = kes(cs(t) — &™(T))" (14)

where r, ; represents a macroscopic rate of crystal growth, whose
driving force is determined by a rate constant k. representing
the accumulated terms of Equation (13) and by the degree of
supersaturation (c(t) — ¢ (T)) raised to a power c.

Replacing the name of the solute s by the name of the only
species undergoing crystallization during this synthesis, that is,
aspirin ASA, one obtains the following rate-law expression:

C

rg = ke(casa(t) — casa(T)) (15)

3.4.2. Dissolution

The rate of dissolution [26,27] for a solute s, defined as r4, can be
expressed in a similar way to the formulation of the rate of crys-
tal growth presented in Equation (13):

Fas = % (&(T) - (1)) (16)
s

where k;,TS is the dissolution rate constant. Unlike the rate of crystal

growth, however, the rate of dissolution depends on the degree of

undersaturation (c:(T) — c(t)). Similarly to the simplifications

made for rewriting Equation (13) in (14), Equation (16) can be

rearranged into a macroscopic dissolution rate:

ras = kas(S(T) — ¢s(1))° 17)

where kg is a macroscopic dissolution rate constant representing
the accumulated terms of Equation (16) and d is an exponent intro-
duced to provide a higher degree of freedom to the dissolution
rate expression, similarly to the exponent ¢ defined in the crystalli-
zation rate expression (Equation (14)). When the name of the sol-
ute s is replaced by the name of the only species undergoing
dissolution during the synthesis of aspirin, that is, the reactant
SA, one obtains the following rate-law expression:

ra = ka(c(T) — csalt))* (18)

3.5. Ordinary differential equations for the concentration
profiles

When rate-law equations are known or postulated, one can formu-
late the system of ODEs describing the change of concentration
and mass for each liquid and solid component of the reaction system.

J. Chemometrics 2014; 28: 420-428
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Msp = —MsaVryg

Csp=1rq — I _VCSA

. v
Caa = —h *Q*M*VCAA

. 1%
CHA = I +f2+f3+"4*VCHA
. (19)
Masa = MasaVrc

. vV

Casp = I —I’z—f3—'c—VCA5A

Casan =12 — % CASAA

. fin %
CH,0 = —I3 — I +;CHZO —V CH,0

Each of the terms r represent the rates previously established
in Equations (9-18). The sign and number (only ones for this
reaction system) in front of each rate indicates the
stoichiometric coefficients (denoted y’s in the following) of each
species in the corresponding kinetic step. The term fis the flow
rate of water into the system, and V is the total volume of
solution. Note that time derivatives are written using Newton's
dot notation.

3.6. Ordinary differential equation for the total volume of
solution

The term V represents the change in the total volume of
solution as a function of time. We assumed that volumes were
additive and included terms to account for volume changes
due to the dissolution of SA, change of composition during
the reaction, addition of water, and crystallization of ASA. To
account for these changes, the total volume of the solution
can be modeled by an algebraic expression corresponding
to the sum of the partial molar volumes of each component
in the solution [28].

V= ; Vi(t) = ;n;(t) vi (20)

where n; is the number of moles of the ith species and v; is the
partial molar volume of that species.

After replacement in Equation (20) of the numbers of
moles with the product of the corresponding concentrations
as defined in Equation (19) and the total volume of solution,
and subsequent derivation, one obtains the following
expression for the change in the individual volume V; of
the ith species:

4
: f
Vi=v; V( > "t Vaifd + Veite + & VC’ﬁzo) 1)
=1

where ;i 74, and y.; represent the stoichiometric coeffi-
cients of the ith species in the jth reaction in the
dissolution process and in the crystallization process
respectively, and ¢ =0 for all species except for water for
which this variable takes the value 1.

When the changes of all individual volumes are summed, one
obtains an expression for the total volume of the solution:

. ns .
Vv = Z Vi
i=1
ns

4
f .
=V>» v (Z Vijli t Vidld + Vicle + 8iVCﬁzo> (22)
i=1 j=1

3.7. Effect of temperature on the experimental and model
parameters

In order to properly model the crystallization of ASA a separate
calibration experiment was performed and the temperature
dependence of the solubility curve of ASA, which represents
the main effect of temperature on the model, was determined.
The solubility of the reactive slurry mixture was estimated for
various temperature intervals as follows. At the end of the
cooling step that led to precipitation of ASA at 5°C, the mixture
was allowed to equilibrate for 10 min. Then the temperature was
raised in seven intervals of 5°C with a 10 min equilibrium period
per interval until a final temperature of 50°C was reached. The
establishment of equilibrium at each interval was verified by
observing a constant absorbance at 283 nm, the wavelength
corresponding to the maximum absorption of ASA. At each
equilibrium interval, the concentration of ASA in solution was
estimated using UV/Vis ATR measurements at 283 nm and the
absorptivity coefficient of ASA at this same wavelength. The
temperature dependence of the ATR probe was estimated using
a mixture of ASA in HA measured over a temperature range of 5
to 50°C, and was found to be less than 2%, which was deemed
negligible for the purpose of this modeling study. The measured
and modeled solubility ¢;%,(T) as a function of the temperature
is shown in Figure 3. The calibration curve that was used to
model the solubility as a function of the temperature (in Kelvin)
was the following:

& = 4041074 T2 — 223107 T431.2 (23)

The kinetic model describing the synthesis of aspirin thus
consists of a system of eight differential equations for the
concentration profiles (Equation (19)) and one differential

1.4 T T T T
1.3
12
1.1
1.0
0.9
0.8

sat

ASA (mol L7

Cc

0.7
0.6
0.5

0.4

280 285 290 295 300 305 310 315 320
Temperature (K)

Figure 3. Measured (e) and modeled (-, Equation (23)) solubility curve
of acetylsalicylic acid (ASA) as a function of temperature.
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expression for the total volume of solution (Equation (22)), which
depend on the rate laws (Equations (9-12), (15), and (18)) and on
the solubility of ASA as a function of temperature (Equation (23)),
with all equations to be solved simultaneously.

The system of ODEs formed by Equations (19) and (22) also
formally depends on the temperature through the temperature
dependence of the rate laws (Equations (9-12), (15), and (18))
and of the partial molar volumes (Equation (20)). However, as
the first step of reactive dissolution was carried out at a constant
temperature and because the excess AA, which could have
potentially reacted afterward, was hydrolyzed prior to the
cooling step, temperature-dependent parameters were not
needed for these rate laws. Regarding the crystallization step
enhanced by the cooling ramp, the assumption of quasi-
stationary dynamic equilibrium was made to simplify the model
description. Indeed, the rate of cooling was slower than the rate
of crystallization, and hence, at any time during the cooling
phase, the slurry mixture was in a situation of pseudo-
equilibrium, which prevented observation of the temperature
dependence of the crystallization rate constant. Additionally,
the effect of the temperature drop on the partial molar volumes
was neglected because the main source of volume change was
the massive precipitation of ASA (see Section 4).

4. RESULTS

The NGLM algorithm adjusted the rate constants of dissolution,
reaction, and crystallization to minimize the sum of squared
residuals between the measured and modeled absorbance data,
subject to the integration of the differential equations describing
the kinetic model and subject to the estimation of the pure spec-
tra for the absorbing species present in the slurry, that is, SA,
ASA, and ASAA.

4.1. Estimated concentration profiles

The concentration profiles of the absorbing species after fitting
are shown in Figure 4. Only the spectroscopically active species
can be modeled directly from absorbance spectra using the
method described in Equations (2-4). Attempting to directly

2.5r 16

species(molL™")

Concentration of absorbing
spec1es(molL'1)
Concentration of non-absorbing

80 100 120 140 160 180 200

Time (min)

Figure 4. Concentration profiles of all species after the fitting of absor-
bance data by the Newton-Gauss-Levenberg-Marquardt algorithm. On
the left axis, the modeled absorbing species (SA: red dash-dot line,
ASA: green solid line, and ASAA: blue dashed line) are shown, and on
the right axis, the reconstructed non-absorbing species (AA: violet
dash-dot line, HA: yellow solid line, and H,0: light blue dashed line).

model more than these species results in a rank-deficient
matrix inverse problem during the model fitting process [29]
(see Equation (2)). In this experiment, the rank of the concentra-
tion matrix C and of the pure component spectral matrix A (see
Equation (1)) is three for the two following reasons: the mass
balance for such a kinetic model only allows three spectroscop-
ically active species to change in a linearly independent
manner (rank condition on C); among these three possible
spectroscopically active species, there are actually three
absorbing species in this UV/Vis range (rank condition on A).
In this particular case, the spectroscopically active species coin-
cide with the absorbing species. From this information, the
concentration profiles of the remaining non-absorbing species
(AA, HA, and H,0) can be indirectly reconstructed from the
principles of mass balance, resulting in the concentration
profiles shown in Figure 4.

The concentration profiles of each species follow a predict-
able trend (Figure 4). Solid SA, which is added at the onset of
the experiment, simultaneously dissolves and reacts at 55°C
with AA and results in the main product ASA, the side product
ASAA, and HA. At 60 min, water is added to eliminate ASAA and
the excess AA, and regenerates ASA and HA in situ. This
explains the small peak observed in the concentration profiles
of HA and ASA at 62min. However, to ensure a complete
consumption of AA and ASAA, an excess of water is added by
the syringe pump. This results in the dilution effect observed
from 62 to 64 min, as the volume of the solution increases while
the number of moles of each species remains constant. This
decrease in concentration stops when the pump is turned off
at 64 min.

4.2, Estimated absorbance profiles

Using the concentration profiles of the absorbing species at the
optimum, an estimate of the absorbance spectra can be directly
computed by use of the pseudo-inverse of the concentration
matrix, €, in Equation (2). Computed spectra compared well
with measured pure component spectra (not shown here) con-
sidering that the solvent composition changes significantly dur-
ing the course of the reaction, from almost pure AA at the
beginning to pure HA at the end. The comparison in Figure 5
of the measured and estimated UV/Vis kinetic traces at selected
wavelengths shows the relevance of the fitting process.

The modeled absorbance profiles show good agreement with
the measured ones (Figure 5), with an ssq value of 0.95 and a

0.5F T T T T T T T T T

0.4

0.3

Absorbance

0.2

0.1

Time (min)

Figure 5. Measured (o) and modeled (-, Equations (1-4)) kinetic traces
at 260 (blue), 283 (green), and 317 nm (red).
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root mean square error of 4.29-10 >. However a more careful
look reveals some discrepancies. In particular, there is a small
but noticeable increasing drift in absorbance between 20 and
60 min and again on the plateau between 65 and 67 min. We
believe that this phenomenon is due to the weak adsorption of
analyte on the surface of the ATR crystal, because it only takes
place during periods of supersaturation. This type of phenome-
non has regularly been observed in this work and has also been
reported by others using UV/Vis ATR spectroscopic techniques
similar to the one used here under supersaturated conditions [9].
Figure 5 shows in particular the kinetic trace isolated at
283 nm, the location of the peak maximum for the spectral band
of the desired product ASA and near the maximum of the side
product ASAA. At this wavelength, the estimated absorbance
profile closely approximates the measured one, the main
deviations being attributed to the aforementioned adsorption
phenomena occurring under supersaturated conditions.

4.3. Estimated model parameters

The results of the nonlinear optimization are shown in Table I. In
this work, the seven adjustable model parameters consisted
primarily of reaction rate constants. In addition to the four reac-
tion rate constants, kj, k», k3 and k, defined in Equations (9-12),
and the two lumped rate constants, ky; and k., describing the
dissolution and crystallization processes in Equations (15) and
(18), the saturation concentration of SA, ¢, at 55°C was also
adjusted, because the solvent AA, in which this quantity should
be estimated, also reacts with SA.

4.4. Comparison between two replicate batches

Two replicate batches were conducted for comparison purposes,
as shown in Table I. Once a stable set of model parameters were
found for each experiment, the nonlinear optimization process
was repeated with small random perturbations of the initial
values of k, to assess the stability of the model parameters and
reproducibility of the fitting process. Optimization runs that
converged to within 3% of the lowest ssq were included in the
averages and standard deviations reported in Table | (N=9 and
5, respectively, for Experiments 1 and 2). The results in Table |
demonstrate the relative consistency of the model fitting

process, although some noticeable differences can be observed
in two of the model parameters estimated for these two datasets.
In particular, the differences in the values of ks between the two
batches are large. This can be explained by the fact that the reac-
tion between water and ASAA (Equation (11)) is very fast and exo-
thermic (the values of k3 are 2 to 3 orders of magnitude larger
than all the other kinetic parameters in the model); consequently,
its effect can only be observed between 60 and 62 min (Figure 4).
During this time, water is consumed almost as fast as it is added
and stirred into solution. As a result, the parameter ks is poorly
defined on the time scale of the measurements made in this work.

The value of k,, which models the dissolution of SA, has poor
reproducibility between the two batches because it is dependent
on the rate at which powder SA is manually introduced into the re-
actor. Manual introduction of powdered SA was difficult to achieve
in one instantaneous step, because a small amount would invari-
ably adhere to the side of the reactor, which was subsequently
rinsed into the reaction mixture with a plastic pipet and a small
amount of the reaction mixture. Second-order global analysis
[30] was not appropriate for these two experiments because of
the conditions described in the previous two paragraphs.

In the modeling of dissolution and crystallization properties
(Equations (15) and (18)), the exponents d and ¢ were set to
1.90 and 1.34, respectively, for both datasets. It was manually
determined that the values of the two exponents had little effect
on the sum of squares of the residuals overall. A range of 0.20 to
4.60 was tested for the value of d, resulting in a minimum value
of ssq for Experiment 1 at 1.90, but little or no change in the
value of ssq in Experiment 2. The same test was performed to
test the effect of changes in c. The values of ssq for Experiments
1 and 2 reached minimums at different values, but changes in
the ssq value due to the increase in ¢ became minimal at
approximately 1.3, supporting tests that were performed in the
beginning stages of this work to obtain the value of 1.34 that
was used throughout.

Because of the simplifying assumptions made in this model,
the estimated reaction rates do not hold much physical
significance; however, it is important to note that the structure
of the model produces accurate concentration profiles over a
range of different experimental conditions. It is also important
to note that the flexibility of the model to accommodate differ-
ent experimental conditions is manifested as differences in fitted

Table I.
for two replicate batches

Optimized values of model parameters with associated uncertainties (one standard deviation) found by nonlinear optimization

equilibrium with temperature.

Units Equation Experiment 1 Experiment 2

kq L2/mol?/min 9) 3.40 (+0.02)-10 2 3.33 (+0.05)-10 2
k, L2/mol?/min (10) 0.49 (£0.12) 0.37 (+£0.24)

ks L%/mol?/min (11) 950 (+240) 21 oo (+1200)

Kk, L2/mol?/min (12) 4 (+32) 6 (+31)

ky L%°/mol®?°/min (18) 7. 25 (+0.19) 1 56 (+0.30)

k. L%3*/mol®>**/min (15) 1.20 (+0.15) 0.98 (+0.29)

St at 55°C mol/L (18) 2.06 (+0.01) 232 (+0.01)

s5q (4 0.948 (+0.002) 1.27 (£0.02)

The values of the exponents ¢ (Equation (15)) and d (Equation (18)) were set to 1.34 and 1.90, respectively. The ssq values that were
used to establish the goodness of fit are also given. The rate constant, k, is obtained under the assumption of a quasi-stationary
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Figure 6. Measured (e and o) and modeled (—- and - -) kinetic traces at
283 nm for two batch experiments (in blue and red).

parameters. Thus, the most significant benefit of this modeling
approach is the calibration-free estimation of concentration
profiles.

The similarities between the fitted absorbances at 283 nm for
the two batches are shown in Figure 6, which displays an overlay
of the results similar to those shown in Figure 5 but for the two
datasets referred to in Table I. The overall shapes of the kinetic
traces are very similar for the measured absorbance of the two
batches as well as for the modeled and measured absorbance of
each individual batch. This demonstrates the robustness both of
the model and of the measurements. The differences between
the two measured datasets can be attributed to slight differences
in the experimental conditions of each reaction mixture.

4.5. Validation with offline high-performance liquid chro-
matography measurements

In order to confirm these findings, validation of the concentra-
tion profiles was performed via offline HPLC measurements.
Adjustments were made to the initial experimental protocol
mentioned in Section 3.2 in order to facilitate sampling for
offline analysis. The cooling portion of the experimental protocol
was altered as follows: the temperature was reduced by
increments of 10°C instead of being lowered at a constant rate.
After equilibration at each temperature level, the stirrer was
momentarily turned off, allowing the solid particles to settle to
the bottom of the reactor. Because ATR spectroscopy only
measures the dissolved components immediately surrounding
the ATR crystal, only the solution phase was withdrawn from the
reaction mixture and analyzed by HPLC. A series of three 50 uL
replicate samples were taken before crystallization at 55°C and
during crystallization at 45, 35, 15, and 5°C. After dilution to
10 mL with mobile phase in a volumetric flask, a single injection
of each sample was run through the HPLC system.

Three standard solutions of known concentrations were injected
through the HPLC system in order to build a calibration curve and
calculate the concentration of the unknown samples. One of the
three standard solutions was injected in triplicate, thereby, the rel-
ative error in the method was estimated at approximately 1%. Fig-
ure 7 shows the comparison between the concentration of ASA in
the samples determined by HPLC and the concentration profile of
this species predicted by the kinetic model.
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Figure 7. Measured (e, offline high-performance liquid chromatography)
and modeled (--) concentration profiles of ASA.

The concentration profile of ASA predicted by the model falls
within the majority of the error bars, suggesting that the
estimates from the kinetic model are reasonable for the experi-
mental conditions described in Section 3. There is variability be-
tween the individual sample concentrations taken from the
reaction mixture. Observations of the reaction mixture showed
that despite the time allowed for the solid particles to settle to
the bottom of the reactor, the solution was still slightly turbid.
This indicated that some ASA solid particles may have remained
suspended in the reaction mixture when the aliquot was taken,
which explains the variability between the samples, especially
at 90 min. It was not practical to filter the aliquots taken from
the reaction mixture, because dissolved ASA would rapidly pre-
cipitate from the warm saturated solution on the colder filter.

Validation with offline HPLC measurements confirmed the
proof of concept of this project, which consisted in the develop-
ment of a comprehensive empirical model that accurately
estimated the concentration profiles of the reactive species
involved in the synthesis of aspirin, their corresponding pure
component spectra, and the spectra of the reaction mixture as
the process evolved over time.

5. CONCLUSION

This work established a comprehensive kinetic model that has the
ability to accurately predict changes in concentration and
measured absorbance of a reaction system that included dissolu-
tion, reaction, and crystallization steps. ATR UV/Vis spectroscopy
was used to measure the absorbance of the solution phase of a
complex reaction mixture, and a robust model was identified using
an NGLM nonlinear optimization technique with numerical inte-
gration of a set of ODEs describing the concentration changes as
a function of time for all species involved in the model. Incorpora-
tion of a calculation to estimate the change in reaction volume
from the partial molar volumes for each species and incorporation
of a temperature-dependent solubility curve to estimate the satu-
ration concentration of the precipitated product further enhanced
the precision of the proposed model. This modeling resulted in
accurate predictions for the absorbance spectra, as demonstrated
by the goodness of fit, as well as for the concentration profiles, as
confirmed by offline HPLC measurements.
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The modeling method presented here is very flexible and
could be applied to other spectroscopic techniques where the
relationship between absorbance and concentration is linear.
The robustness of the method and its ease of implementation
demonstrate the potential of this modeling technique for more
complex applications encountered in chemical and pharmaceu-
tical manufacturing.
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