Reduced order modelling numerical homogenization

A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately ‘interpolated’ in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method.

Published in:
Philosophical Transactions of the Royal Society A, 372, 2021 20130388
London, Royal Soc

 Record created 2014-01-31, last modified 2018-03-17

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)