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A B S T R A C T

Domain adaptation is a major challenge for future remote sensing
applications. Both financial and temporal constraints of data acquisi-
tion lead to the developing of new techniques able to use knowledge
from alternative sources. Different approaches have been developed
by considering the statistical properties of images or by modifying
already existing classifiers. We propose a intermediary approach
of these two kinds of methods by using a manifold alignment tech-
nique constrained by similarity between two images. The two im-
ages are mapped in a high dimensional latent space which maxi-
mizes the proximity of similar elements, thus allowing classification
of the images suffering from label scarcity by using the knowledge
of the other image. Such a classification offers improvement com-
pared to various used processes.

R É S U M É

L’adaptation de domaine est un challenge important pour les fu-
tures applications de remote sensing. Les contraintes tant finan-
cières que temporelles relative à l’aquisition de données labelisées in-
citent à mettre au point de nouvelles techniques permettant l’utilisation
d’information provenant de différentes sources. Différentes approches
ont vu le jour, considérant les caractéristiqurs statistiques des im-
ages ou l’adaptation de classifieur préalablement développés. Dans
ce travail, une approche jointe de ces deux types de techniques est
considérée en utilisant une méthode d’alignement de manifold, sous
contraintes de similarité entre deux images. Les deux images sont
projetés dans un espace latent maximisant la proximité des éléments
similaires, permettant ainsi une classification de l’image souffrant
d’un manque d’éléments labelisés en utilisant celle du domaine de
source. Une telle classification offre une possibilité d’amélioration
par rapport à différents procédés utilisés.
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1
I N T R O D U C T I O N

In remote sensing, the availability of labeled data is a common
problem for land cover/use survey. The reliability of classification
methods often depends on both the amount and the quality of these
data. Along with technological developments, the mass of data col-
lected from satellites or airborne sensors has seen an important in-
crease in the past years. New techniques and algorithm have thus
to take into account this quantity of available data. However, im-
agery comes without the labeled data and a significant part of the
work is thus to provide it. This procedure represent an expensive
task which might hinder the proper development of analysis . When
dealing with multiple sources for a single application, it is then es-
sential to think of techniques able to reduce the cost of such labelling
processes.

The present work deals with the concept of domain adaptation,
also known as transfer learning. The substantial idea is to allow the
use of available data in a source domain into a target domain thus re-
ducing the cost of multiple in field data acquisition campaigns. The
proposed approach consists in aligning the manifolds of two images
from a multi-angular dataset and is based on the work of Chang
Wang (2004), of the Department of Computer Science, University of
Massachusetts.

This Thesis is organized as follows. In the second section, the
theme of domain adaptation is presented with a review of previ-
ous work in this field. The third section deals with the concept of
manifold alignment and presents the algorithm used. Section four
presents the data and classifiers used in this work. In the same sec-
tion, we announce the used hypotheses and tests made to evaluate
the approach. Finally, section five presents the obtained results.
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2
A D A P TAT I O N P R O B L E M

Traditionally, image classification techniques have been performed
on a single data set in a supervised way. The availability of more
images over a same area has modified the situation by bringing a
temporal dimension to the problem of land cover analysis. Many ap-
plications such as change detection have therefore been developed
considering this dimension. Other applications have considered the
possibility to use different angular scenes to study certain phenom-
ena. These real applications thus deal with multiple sets of imagery.
It is then necessary to find a way to combine the knowledge from
these different sources, to be able to define efficient models able
to acknowledge many images in a single algorithm. Those mod-
els raise the question of domain adaptation (DA). The goal of DA or
transfer learning consists in the transfer of knowledge from a source
domain X

s, into a target one X

t.
When dealing with multiple sources, classification methods are

usually based on the assumption that instances from both source
and target data are drown from a similar probability distribution,
considering an ideal common distribution. In real applications, the
different data sets may be highly related, but the assumption of shar-
ing the exact same probability density function (PDF) is unrealistic.

In the field of remote sensing image processing (RSIP), domain
adaptation represents a very important challenge. The amount of
data collected by satellites grows exponentially as technological im-
provements are made. Nowadays, data have been gathered for a
large part of the globe over the past decades, increasing the tempo-
ral dimension greatly. Moreover, the new generation satellites such
as WorldView2 allow multi-angle image acquisition during a sin-
gle flight which permits reduction of the variations in reflectance
between to images of a multi-angular set needing multiple satellite
flights.

To perform supervised classification methods, labeled informa-
tion is needed for each image. In most cases, the source domain
comes from intensive campaign of data acquisition in field and there-
fore holds a large amount of labeled data. On the other hand, the
target domain often lacks such data.

This lack of labelling usually comes from economical reasons. One
wants to reduce time and money spent in another big campaign of
data acquisition to acquire usable data for analysis. Therefore, the
amount of labeled data in such new acquisitions has to be sufficient
for models to achieve good results, but also have to be the smallest

3



4 adaptation problem

in order to reduce the costs. Domain adaptation thus represents a
possibility to reduce costs by developing algorithms able to counter
this scarcity in the target domain by improving knowledge.

The results of the field campaign leads to the computation of the
ground-truth (GT) consisting in the labeling of representative data.
This process needs to be the most representative for the analysed
phenomenon or problem for it is determinant for the classification
efficiency. For multiple acquisitions, it is not realistic to provide a
complete GT for each image. Using a single GT for a series of ac-
quisitions, even if tempting, represents a dangerous short-cut. As
the PDFs of images in multi-angle or multi-temporal set show dif-
ferences, this simplification of data use is most surely bound to lead
to disastrous results. Applied to RSIP, one of the domain adapta-
tion approaches is therefore based on the study of the probability
distribution functions (PDF) of the images, their similarities and dis-
similarities. The goal is to be able to match them in a way that
comparison and learning is possible. Another possible approach
consists of modifying the classifiers used to make them efficient for
multiple domain analysis.

2.1 adaptation applied to remote sensing

2.1.1 Multi Temporal Images

Temporal survey of the earth’s surface is an important part of
remote sensing applications at local, regional and global scales. Im-
ages taken in the past can be compared to those from the present
to asses over time variation of environmental elements, human ac-
tivities and their impacts. Various algorithms have been developed
for this purpose. [6] makes a review of those algorithms and tech-
niques.

Multi-temporal techniques can be separated into two main groups:

1. bi-temporal change detection

2. temporal trajectory analysis

The former compares the data between two acquisition periods
and is the most represented type of analysis. The latter considers
their changes based on a continuous time-scale making it possible
to study the progress or the rate of change. This type of analysis
has become feasible with the archives of imagery collected over the
years.

Considering two acquisitions of imagery, the physical parameters
are most likely to differ greatly between them. Radiometric condi-
tions are influenced by many factors such as the season at which
images are taken, solar altitude, meteorological conditions (clouds,
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rain, etc.) making it impossible to consider using the same distribu-
tion function for the different images to be analysed. In this case,
domain adaptation represents an important challenge to achieve
more precise results, especially as change detection analysis is in-
creasingly used as a political decision tool for land use survey.

2.1.2 Multi Angular Images

Satellites like WorldView2 and CHRIS/PROBA make it possible
to acquire a certain number of images of an area during a single
flight. This property comes from the ability to re-target the area
rapidly with very high resolution. As mentioned before, the use
of the data for supervised classification needs a GT. The question
of how to deal with this necessity is discussed in [7]. In this situ-
ation users have to make a decision between the time-consuming
approach of computing a GT for each image or the development
of single GT model able to take into account large datasets based
on multi-angle imagery. In this work we choose an intermediate
option which will be discussed in Chap. 3. New approaches con-
sidering multi-angular datasets allow us to consider morphological
properties of scenes. Multi-angular reflectance (MAR) shows differ-
ent ways adding more the information to the classification problem
[7] :

1. The MAR contains a partial bidirectional reflectance distribu-
tion function (BRDF) over a single satellite track at a single sun
angle.

2. The morphology of objects can be taken into account as the
object will show a different aspect of itself at each angle, par-
ticularly for pitched elements like buildings or vegetation.

3. The difference in reflectance between two images can be mea-
sured for surfaces showing spectral variations, thus adding
knowledge on the surface properties.

4. The use of MAR minimizes the effect of sun glint. At a given
angle, a surface might be obscured due to the geometry of
the surrounding landcover. The use of different angles on the
same surface can thus make it available for classification.

For similar reasons, multi-angular remote sensing also represents
a new approach of biophysical and geophysical parameters assess-
ment. The classical 2-dimensional representation of the image is in-
creased, allowing the retrieval of physical scene characteristics such
as cloud morphology and height or vegetation studies by adding
vertical information. The ability to measure off nadir radiance pro-
vides improved albedo accuracies, allowing a whole new approach
for environmental and ecological issues [8],[9]. In [10], these proper-
ties are specifically used for classification of vegetation.
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Another approach proposed in [11] uses a step by step fusion of
CHRIS/PROBA images with a multi-temporal component. Starting
from a single multispectral image, other images are progressively
added to a Neural Network model, increasing the dimensionality
but also resulting in an increase in the classification efficiency for
certain classes (mostly on urban structures).

Finally some methods combine information of the nadir image
with the heterogeneity of the angular domain in order to generate
new information about forest cover [12], [13].

2.2 peculiarity of vhr images

VHR stands for Very High Resolution. Over the last decades, the
spatial resolution of satellite imagery has been greatly increased. For
change detection, the introduction of VHR imagery has seen a series
of problems arise. Algorithms usually work on a pixel based scale
which, at low dimensionality allows good results [14] when observ-
ing relatively big objects. With higher resolution, the variance within
a single object is no longer melted in a single pixel. Classification
techniques have therefore to be modified to take this into account.
In the following, we detail the main sources of problems that occur
with VHR use.

2.2.1 Shadows

At a given sun angle, it is inevitable to have shaded parts in an
image. The shadowed part of the image represents a bias for the
learning method as the reflectance acquired by the sensor is not
representative of the considered surface. VHR images, being more
precise, will therefore consider the shadows more precisely thus in-
creasing the bias. In this situation, dealing with multiple images
of the same location might reduce the bias as the shaded part of
one image might be overlapped by a its corresponding location on
a second images for which there is no (or less) shadow.

2.2.2 Intra-class variance

Most frequently, the classification discriminability between differ-
ent land cover classes is determined simultaneously by the spatial
resolution and the spectral resolution. With a higher spatial reso-
lution, objects that were not detected previously can no longer be
ignored. Different filters can be applied to the images to prevent
such missclassifications but have to keep the new interesting infor-
mation. At lower resolution, the classifications were less sensitive to
small variations on a given surface. The heterogeneity of given sur-
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face was captured in a single pixel and could therefore be clustered
without major incidence. The arrival of VHR changed the situation.
The heterogeneity might more easily lead to missclassification in a
surface composed of different pixels such as forest containing dif-
ferent kind of trees. Another good example for this problem is the
detection of elements on roofs such as chimney or windows. With
a resolution of several meters, those elements were not detectable
and the pixels encoding the roofs were biased in an affordable way.
With a resolution of the meter scale or less, the objects are fully rep-
resented, thus leading the learning algorithm to miss the "usual"
clustering (a chimney is still part of a roof but may not have the the
same radiance at all) leading to missclassification.

2.2.3 Moving objects

At lower resolution, classification is mostly used for land cover
analysis and thus for static objects. VHR allows identification of el-
ements likely to be moving, such as cars or for airborne imagery,
people. Different approaches have been developed in order to al-
low the recognition of such objects, as well as velocity and direction
estimation [15].

2.3 literature review

In this section a review of domain adaptation techniques pro-
posed in remote sensing is presented. Different approaches have
been explored. While some focus on adapting the classifier, oth-
ers try to modify the intrinsic properties of the images such as his-
togram matching or PDF matching. The method used in this work
belongs to the latter and uses manifolds alignment (described in
Chap. 3) as a PDF matching method with constraints.

2.3.1 Adaptation of images’ statistical properties

Different approaches to modify the images’ properties have been
used, such as linear regression, image normalization or non linear
histogram shape matching. These methods can usually be used on
a band-scale, meaning that for a multi spectral images, the meth-
ods are done band by band thus ignoring the correlation existing
between different bands. To account for these dependencies, [16]
proposes using Gaussian Mixture of the band-histogram,[17] and
[18] consider matching the cumulative distributions of the differ-
ent images by properly taking the correlations into account. The
algorithms take advantages of the similarity between the statistical
properties of the considered multitemporal images. Different learn-
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ing algorithms are tested to assess the improvement of the trans-
fer techniques such as expectation maximization (EM) or maximum
likelihood (ML).

2.3.1.1 Graph Matching

The consideration of comparing image manifolds has been re-
cently studied to assess the PDF differences. In [19] an approach
based on graph matching is proposed for multiple application re-
quiring transfer learning. The method considers maximizing the
similarity of two graphs to match them. The application proposes
transformation on the source, the target or both domains depending
on the desired goal. It looks at specific centroids in both images in
sufficient number in order to determine the nonlinear shape of the
manifolds. The centroids are to be matched to allow the adaptation.

2.3.2 Classifier Adaptation

We hereby present different techiques of classifier adaptation to
show the plurality of the possible approaches.

2.3.2.1 Binary Hierarchical Classifier

The binary hierarchical classifier (BHC) was first developed for hy-
perspectral data classification. For a given data set with classes C

i

,
BHC first divides the classes in two meta-groups based on inter-class
affinity. Each meta-group is then treated the same way, constituting
a binary tree until there is only one class in the last meta-group
level. One of the hypotheses proposed in [20] for transfer learning,
is that the class hierarchy might be the same between the source
and the target domain meaning that the correlation between classes
in X

t should show a similar behaviour as in X

s. In this work BHC
is first run on the training data. To consider the change in statis-
tics between the two domains considered, the BHC is modified with
the Fisher feature extractor, also known as the Fisher Kernel. This
technique is presented in [21] and [22] and consists of a vector of
parameter derivatives of loglikelihood of a probabilistic model. It
is used to project the data of both X

s and X

t in a reduced dimen-
sional space to assess the shift in distributions. For each node of the
BHC tree, a Gaussian mixture model is made to evaluate the initial
parameters for expectation maximisation (EM) algorithm. At each
iteration of the algorithm, the posterior probability for X

t is deter-
mined, allowing to correct the initial Gaussian parameters. As for
every optimisation iterative algorithm, the process goes on until a
certain threshold is reached. To increase overall accuracies, random-
ization of the tree structure can be made. However, this randomiza-
tion has a purpose only if there exists labeled data for Xt; otherwise
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it would be impossible to know which random BHC tree bests suits
the target domain.

A semi-supervised approach is also presented by weighting the
different BHC trees. The algorithm starts with weights !

i

= 1, with
i = 1 : n. At each iteration weights corresponding to a tree leading
to missclassification are reduced by half. The resulting classifier is
therefore a combination of the weighted BHC.

2.3.2.2 Unsupervised Retraining of ML Classifier

When applied to a single image, ML classifier allows estimation of
the statistical properties acting as supervised learning. As explained,
using the trained classifier on a new image is not suitable and has to
be modified in order to take into account the properties of the new
image. The proposal of [23] is to retrain the classifier to estimate the
new image a priori probability and density function for each class.
The first step is to use the parameters of ML previously computed.
Then a EM algorithm is used for the estimation of the parameters
allowing ML to efficiently work on the new image.

2.3.2.3 Kernel Adaptation

In [24], the transfer learning considers a synergistic use of both la-
beled and unlabeled data. The approach proposes the modification
of the prior kernel constructed over labeled data by considering the
information contained in the unlabeled data of X

t. The structure
of the core kernel is therefore deformed by the unlabeled samples.
Samples undergo a first clustering algorithm and EM gives the max-
imum likelihood estimation of the PDF of a Gaussian mixture of
samples. Once the samples are assigned to the clusters, the similar-
ity between clusters is computed by considering the mass centres of
clusters. Note that the authors leaves the choice of doing this in the
feature space or in the original input space to the user.

2.3.2.4 Active Learning Strategy

In [25], an active learning (AL) approach is presented. During
AL, the algorithm is iteratively choosing the best set of samples (the
more informative ones) for constituting the training set. This pro-
cess is well defined for a single image classification problem. The
proposed transfer learning approach is based on two query func-
tions. In the first query, q

+, the minimum number of the most
informative elements of the target domain are taken iteratively the
same way that AL algorithms usually do. They are then labeled and
added to the training set, thus reducing the costly step of labeling of
a new domain. In the second query, q-, samples from X

s which are
not representative are being removed from the training set. These
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elements do not fit the distribution of the classes in X

t and could
lead to missclassification. For both queries, the user defines a pa-
rameter, respectively h

+, the total number of elements taken in the
target domain, and h

-, the number of elements to be removed at
each iteration. These two parameters define the ratio ↵ = h

+
/h

- to
be optimized. ↵ depends on both the size of the original training set
and the correlation between X

s and X

t.

The aforementioned unsupervised techniques (2.3.1) allow inter-
esting ways to modify the data in a blindfolded way. The choice of
the classifier can be left to the user, as only the statistical properties
of the data are changed. However, the performance of such tech-
niques often require the two PDFs to be close enough. Depending
on the analysis, this choice of adaptation might be questioned.

The semisupervised learning methods(2.3.2) show that using few
labeled points, with unlabeled points greatly improves the classifiers
performances. This conclusion leads to the question of the number
of samples to be taken in target sets susceptible to increase the re-
sults, but at an affordable cost.

In this work, we propose a mixed approached by adding con-
straints to the PDF matching in order to asses both topology preser-
vation and matching instances. The following chapter presents the
concepts used for this approach.
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D O M A I N A D A P TAT I O N W I T H M A N I F O L D
A L I G N M E N T

3.1 manifolds

To understand the concepts used in this work, one has to under-
stand the notion of manifold. Mathematically speaking, a manifold
M is a topological space that is locally Euclidean. We say that the
n-dimensional manifold is homeomorphic to the Euclidean space
of the same dimension n meaning they share the same topological
properties [26]. Practically speaking, a manifold M is the low di-
mensional embedding of an object defined in a higher dimensional
space. A typical example is shown in fig. 1.

In real life problems, it is generally impossible to have access to
the true underlying manifold of a data set. The user has to ap-
proximate it from a point cloud [27]. To do so, an adjacency graph
associated with the point cloud is constructed and will act as an em-
pirical proxy for the researched manifold. The manifold of an image
allows to consider its intrinsic structure. The comparison of images’
manifolds for multi-angular or multi-temporal data sets can then be
used for domain adaptation. In this adaptation problem, we speak
of manifold alignment.

Figure 1: (A) The “Swiss roll” data used in [1] to illustrate their algorithm. (B)
The two-dimensional representation, nearby points in the 2D embed-
ding are also nearby points in the 3D manifold, as desired. (C) "False"
representation of data. Neither the metric nor the topological structure
is preserved. (B) is unrolled while (C) is a projection. Image taken
from [1]

3.2 manifolds alignment

Alignment of manifolds was presented in [28] for semi-supervised
methods as a dimensionality reduction purpose for very high di-
mensional data sets, sensitive to computational demand. In this
field, non linear thechniques have recently been developed, such as

11



12 domain adaptation with manifold alignment

ISOMAP [1] and Laplacian eigenmaps [29]. [2] states that the use of
such non linear techniques, when studying the manifold, are more
effective than linear ones such as PCA.

In order to be able to achieve transfer learning between X

s and X

t,
the two manifolds have to correspond. Rather than forcing one (or
both) to match the other by deforming and loosing information, [2]
approaches the problem by unifying the representation of the data
sets by aligning the different domains’ manifolds on a joint mani-
fold. To do so, these methods search for a common embedding in a
joint latent space. One of the main assumption for this to be done
is that the initial manifolds must share a similar structure, as if they
were samples of a same unique manifold. This unique manifold
underwent different deformations by several external factors such
as the acquisition conditions or angle, resulting in the observed do-
mains. The author defines alignment as dimensionality reduction with
constraints induced by the correspondences among the data sets. Formally,
we need to find the mapping function which will project both X

s

and X

t into the shared latent space (called the Hilbert space) H in
which we want the corresponding instances across data sets to be
the closest. The Laplacian eigenmap [29] is a representation of the
data similarity within a single dataset. In this approach, it is neces-
sary to consider multiple data sets. This is achieved by joining the
single Laplacians into a joint graph holding the information of the
multiple domain set.

Figure 2: From [2], the figure illustrates to problem of manifold alignment.
The twos sets are embedded in a common space, preserving the
similarity of both sets

3.2.1 How to match domains

We first need to compute the similarity graph, by defining a sim-
ilarity matrix W for each data set. In this graph, the vertices cor-
respond to the data points xi. If the similarity w

ij

between two
data points is greater or equal to a user-defined threshold, the cor-
responding vertices are connected, creating an edge. The edges is
then weighted by w

ij

. In [30] different commonly-used similarity
graphs are presented. The user has to chose the one which will suit
the problem. The most-used graphs are the ✏-neighborhood graph,
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the k-nearest neighbour (knn) graph and the Gaussian graph, also
known as the fully connected graph.

In the case of the knn graph, the similarity is not symmetric and
results in a directed graph meaning that for two elements x

i

and x

j

,
if x

j

is considered a neighbour of x
i

, the reciprocity is not assured.
A way to symmetrize it is to consider the mutual knn graph in

which the vertices are connected if and only if they are mutual neigh-
bours. Another way to do this is to allow the connection of the ver-
tices if one of them is considered neighbour by the knn method. In
this work, we use this last version.

Considering the weight w
ij

, we have the weight matrix W where
w

i,j

= w

j,i

> 0. This holds for the similarity within a single domain
W

(a). To align the manifolds, we also need to consider correspon-
dences between the different domains, encoded in other matrices
W

a,b, with a and b : indexes of two different input sets. The re-
sulting overall geometrical similarity matrix for k domains is then
:

W =

0

BB@

⌫W

(1)
µW

(1,2) ... µW

(1,K)

... ... ... ...
µW

(K,1)
µW

(K,2) ... ⌫W

(K)

1

CCA (3.1)

Here the two factors ⌫ and µ are scalars weighting the two princi-
ples of the alignment: local similarity and correspondence informa-
tion. When the two of them are of equivalent importance they can
be considered equal to one. In this case, W(a,b) and W

K share the
same kind of similarity. However, this work deals with two differ-
ent kinds of similarity: the geometrical (or local) similarity, being the
spectral similarity within a single domain, and the class correspon-
dence similarity. Knowing this, a new approach for the definition of
the similarity matrix has to be defined. The geometrical similarity is
taken individually for each image because of shifts existing between
different images. The matrix holding the geometrical similarity is
then :

W =

0

BB@

W

(1)
0 ... 0

... ... ... ...
0 ... 0 W

(K)

1

CCA (3.2)
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This gives us a joint graph representation of the multiple sets and
is the basis to construct the joint Laplacian. The first step is to com-
pute the degree matrix :

d

i

=
nX

j=1

w

ij

(3.3)

and the degree matrix D is defined as the diagonal matrix with
degrees d

i

on its diagonal.
The unormalized graph Laplacian can then be computed as:

L = D-W =

0

BB@

L

1

0 ... 0

... ... ... ...
0 ... 0 L

K

1

CCA (3.4)

L is symmetric and positive semi-definite.

The next step is to propose a cost function to be minimized. Con-
sidering the unified representation of the data, Z (the joint embed-
ding of the data), we can write the cost function:

C(Z) =
X

ij

kZ(i, ·)-Z(j, ·)k2W(i, j) (3.5)

[2] shows that this formulation is equivalent to :

C(Z) = Tr(ZT

LZ) (3.6)

This equation says that if two instances are similar, their location
in the latent space should be close. Therefore minimizing this cost
function is the same as mapping the similar instances closer. Con-
sidering Z = [z

1

, ..., z
N

] with N the total number of samples, the
optimal solution is given by :

arg min
Z:Z 0

DZ=1

C(Z) = arg min
z

1

,...z
d

X

i

z

0
i

Lz

i

+ �(1- z

0
i

Lz

i

) (3.7)

The solution of optimisation is the d eigenvectors correspond-
ing to the d smallest eigenvalue of the generalized decomposition
Z

T

LZv = �Z

T

DZv.
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3.2.2 How to force proximity

With the geometrical similarity being defined, we need to consider
the class-similarity between two sets. In order to assess this corre-
spondence, we consider the labels available in the different domains
as proposed in [3]. Two graph Laplacians are constructed over the
labeled data of both sets. Therefore we have to compute two new
Laplacians: one for the similarity between labeled features of the
different sets, and one for their dissimilarity. In this work we only
consider two data sets, but the methods is valid for K different data
sets.

1. Similarity matrix for labeled data :

W

s

=

0

BB@

W

1,1

s

... W

1,K

s

... ... ...
W

K,1

s

... W

K,K

s

1

CCA (3.8)

W

a,b

s

(i, j) =

8
<

:
1 if xi

a

and x

j

b

are from the same class,

0 otherwise

2. Dissimilarity matrix for labeled data :

W

d

=

0

BB@

W

1,1

d

... W

1,K

d

... ... ...
W

K,1

d

... W

K,K

d

1

CCA (3.9)

W

a,b

d

(i, j) =

8
<

:
1 if xi

a

and x

j

b

are from different classes,

0 otherwise

For both matrices, the case of W
s,d

(i, j) = 0 includes the case of an
unlabeled feature. The associated degree matrices and Laplacians
are computed the same way as in eq. (3.4) and (3.3).

With the correspondences between data sets being changed, the
joint adjacency matrix (3.1) has to be modified. The element of the
diagonal being the similarity within a same set, we only need to
keep the diagonal elements. The similarity graph can thus be eval-
uated for each data set and the resulting joint Laplacian is a bloc
diagonal matrix.

L =

0

BB@

L

1

0 ... 0

... ... ... ...
0 ... 0 ...L

K

1

CCA (3.10)
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Note that, since similarity is computed for each domain separately,
there is no obligations for the domains to have the same dimension-
ality. We then have three different Laplacians : L, L

s

and L

d

respec-
tively for the spectral similarity, the class similarity and the class
dissimilarity. We need to define a new cost function which will con-
sider those three elements. The intuition leading to the formulation
is that elements of the same original data set should be embedded
closely; elements from different data sets, but sharing same labels
should also be as close as possible, and, on the contrary, dissimilar
ones should be far.

Figure 3: From [3], the figure illustrates the principle of manifold align-
ment using the labels. The case shows two different classes, blue
and red

First let us consider the notation used, according to [3]. We have
K different input data sets X

k

= p

k

⇥m

k

with p

k

, the number of
features (here the number of spectral bands), and m

k

the number of
elements for data set X

k

. We want to find the k mapping function
f

k

to map the input data in H 2 Rd, the latent space. The mapping
functions are gathered in � = (fT

1

, ..., fT
K

) which is a p

1

+ ... + p

K

⇥ d

matrix. Let us define Z as :

Z =

0

BB@

X

1

0 ... 0

... ... ... ...
0 ... 0 ...X

K

1

CCA (3.11)

Then let us formalize the intuition we had for the cost function.
For the similarity of classes between different input sets, [3] gives :

A = 0.5
KX

a=1

KX

b=1

m

aX

i=1

m

bX

j=1

kfT
a

x

i

a

- f

T

b

x

j

b

k2Wa,b

s

(i, j) (3.12)
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A represents how far points of the same class are mapped and
thus has to be minimized. A will constrain two similar instances x

i

a

and x

j

b

to be projected to a close location in H.

B = 0.5
KX

a=1

KX

b=1

m

aX

i=1

m

bX

j=1

kfT
a

x

i

a

- f

T

b

x

j

b

k2Wa,b

d

(i, j) (3.13)

B is the opposite of A, meaning that we want the two dissimilar
instances x

i

a

and x

j

b

to be projected far from each other. Therefore B
has to be maximised.

C = 0.5µ
KX

k=1

m

aX

i=1

m

bX

j=1

kfT
a

x

i

k

- f

T

b

x

j

k

k2W
k

(i, j) (3.14)

C is the geometrical constraint. Here, for the same input space, if
x

i

k

and x

j

k

are geometrically similar in their input space, they must
be mapped close to each other, meaning we need to minimize C.
The µ factor acts as a weight parameter. It has to be adapted to
treat the preservation of topology and matching instances as equally
important. Note that C is the cost function of Laplacian eigenmaps
for each domain respectively.

The three elements are then assembled in a unique cost function
for the algorithm to achieve the optimisation on those three ele-
ments. Since A and C must be minimized and B must be maximized,
the cost function to minimize can thus be formulated as :

C(fk
i=1

) =
A+C

B

(3.15)

Yet this formulation is pretty cumbersome. [29] shows a way to
make it more usable. Remembering D

i,i

=
P

j

W

i,j

and L = D-W,
for a given Laplacian equation we have :

X

i,j

(f
i

- f

j

)2Wi, j =
X

i,j

(f2
i

+ f

2

j

- 2f

i

f

j

)Wi, j

=
X

i

f

2

i

D

i,i

+
X

j

f

2

j

Di, i- 2

X

i,j

f

i

f

j

W

i,j

= 2f

T

Lf

(3.16)

The factor 2 can be removed as we placed a 0.5 in front of A,B

and C.
We can rewrite the three terms as :

1. A = Tr(�T

ZL

s

Z

T

�)

2. B = Tr(�T

ZL

d

Z

T

�)
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3. C = Tr(�T

ZLZ

T

�)

For two matrices G and Q, the eigenvalue decomposition allows
to solve :

G

-1

Qv = �v (3.17)

However if G is not invertible, we can use the generalized eigen-
value decomposition. The formulation is then :

Qv = �Gv (3.18)

v is an eigenvector of both G and Q corresponding to the eigen-
value �.

The solution of the optimization of the cost function is provided
by the eigenvector corresponding to the lowest eigenvalues of the
generalized eigenvalue decomposition equation :

Z(µL+ L

s

)ZT

v = �ZL

d

Z

T

v (3.19)

� being the eigenvalue and v its associated eigenvector.
The eigenvectors found this way correspond to the desired map-

ping functions. As the dimensionality of the latent space is not de-
fined, the algorithm gives an appreciation of its maximum dimen-
sion :

d

max

=
KX

i=1

p

k

(3.20)

3.2.2.1 Choice of similarity graph

To compute the graph Laplacian we need to chose an adequate
similarity function. [3] proposes a variant of the Gaussian similarity
with � = 1. However the choice of � is an important factor to obtain
good results. A to big � would result in over-estimate the similarity.
Figs. 4 and 5 shows the differences between the graphs. Two cases of
Gaussian graphs are shown, illustrating the problem of � estimation.
In the k-nn graph, a black dot means neighbourhood between two
elements.

However, the Gaussian similarity graph attributes a similarity value
for each pair of samples which resulted in an important computa-
tional cost. Moreover the appreciation of � could be tricky.

Therefore a k nearest neighbour graph was chosen with k = 4 and
forced the symmetry by having two samples be set as similar if at
least one of them was recognized neighbour.
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a) b)

Figure 4: The figures show the difference between two Gaussian similarity
graphs. a)shows the case where a to big � is considered.

Figure 5: Illustration of the K-nn graphs.

3.2.2.2 Latent space optimal dimension

To apply manifold alignment (MA), the choice of the dimension
of the latent space had to be evaluated in order to assess the con-
tribution of each dimension. As the projection functions found are
given by eigenvectors, the question of the direction of the projection
also arose. The result of the generalized eigenvalue decomposition
is shown in Fig. 6.

Figure 6: Representation of the matrix �.
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A single eigenvector holds the projection functions for all do-
mains. � is thus the concatenation of the different domains’ pro-
jection functions. The eigenvectors give a match but can point in
opposite directions. This results in an axial reflection of one domain
in the latent space. Fig 7 and 8 illustrate this.

The three first dimensions gave a suitable result as the two do-
mains seem to match each other. The visualisation of dimensions
6-8 showed the problem of reflection. This kind of geometrical mis-
match could most likely decrease the performance of the classifica-
tion. As the direction of the eigenvectors can cause such errors, we
investigated the relation between different parts of the eigenvectors
e.g the one containing the projection for X

t (in blue in Fig. 6) and
the one for X

s (in green). In such situation the different parts of the
eigenvectors correspond to the p

k

lines corresponding to the K sets.
The angle between to vectors is given by the relation :

cos✓ =
hx,yi

kxk · kyk (3.21)

a) b)

c)

Figure 7: Visualisation of two different dimensional projections. a) the first
three dimensions, b) dimensions 6- 8, c) 6- 8 with correction
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The direction of the vector can be considered using the trigono-
metric circle. For a given vector, the direction will not impact the
value of the cosine of the angle it makes with the axis, but only its
sign. Eq. (3.2.2.2) tells us that the sign of the cosine is given by the
dot product as the denominator is strictly positive.

In order to correct this, we consider the sign of the vector cosine
for each dimension. For a given projection function f

(n) 2 � (e.g
for a given dimension) we apply the dot product to the two parts
of the eigenvector corresponding to the two domains. If the result
is negative, a correction can be made by multiplying f

(n)
2

by -1. By
doing so, one must be sure to always apply the modification to the
same part of the vector. In order to assess the amelioration we can
build the Bhattacharyya’s distance over the two sets.
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a) b)

c)

Figure 8: Visualisation of two different dimensional projections of three
classes. a) the first three dimensions, b) dimensions 6- 8, c) 6- 8

with correction.
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The Bhattacharyya’s distance is a similarity measurement between
two distributions and is an approximate measurement of the amount
of overlap between two statistical samples [31]. We compute de
Bhattacharyya’s distant measurement (BDM) for each class before
and after the correction 1. Practically speaking, the BDM gives the
distance between two samples’ centroid. In our case, we want the
centroids of projected samples for a same class to be the closest.

Figure 9: Bhattacharyya’s distance for each class between the two sets. For
color significance, please refer to Tab. 1.

As we see on Fig. 9, the correction brought by the "dot product cor-
rection" (DPC) seems to improve the projections. All classes show a
similar behaviour with a very low BDM until the 12

th dimension of
the latent space after correction. We can assume that the alignment
gets more noisy from this dimension on.

1. Here we use the matlab function proposed by Yi Cao based on [32]





4
A P P L I C AT I O N

4.1 data

The imagery used in this work was collected over Rio de Janeiro
(Brazil) with DigitalGlobe’s WorldView-2. This satellite was launched
in 2009 and provides 46 centimeters panchromatic and 8 spectral
bands at 1.85 meters resolution. In this study, we used two acqui-
sitions from the multiangular dataset of [4]. The first image used
is the most nadir one of the set with an angle of 6.09 degrees. The
other one is one of the two most off-nadir image with an angle of
47.29 degrees, in order to have the maximum differences between
the two sets.

For both data, a ground truth was computed using the software
ERDAS IMAGINE. The ground truths hold twelve different classes
presented in Fig. 1. A problem was encountered when using the
labeled data. Class 3 : Maintained Water was under represented
and did not have enough instances to allow the proper use of an
interesting amount of element per class. Moreover, the pixels in
this class were swimming pools and so were not representative of a
particular scene observed in landcover. Therefore class 3 was fused
in class one : Natural Deep Water. The classes and the number of
elements available in the GT for each image are shown in Tab. 1

a) b)

Figure 10: a) spectral domain for the most nadiral acquisition. Image taken
from [4], b)azimuth and elevation of the multi angular acquisi-
tion. The green dots are the scenes used in this work and red
ones are other scene acquires during the same flight.

25
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a) b)

Figure 11: a) part of most nadir image used, b) part of the off-nadir image
used

Num Class Name color Num El X
1

Num El X
2

1 Natural Deep Water ⌅ 66307 92317

2 Grass ⌅ 8127 8127

3 Trees ⌅ 13066 4278

4 Concrete ⌅ 719 707

5 Soil ⌅ 790 818

6 Asphalt ⌅ 2949 2780

7 Building Grey ⌅ 5936 7194

8 Building Red ⌅ 1070 1205

9 Building White ⌅ 1571 1742

10 Shadows ⌅ 705 2172

11 Plane Ground ⌅ 5179 5179

Table 1: Legend used in this work and number of labeled elements avail-
able per image

4.2 classifiers

In this work, we aim at assessing the feasibility of transferring
a classification model with the manifold alignment technique pro-
posed. Since the technique requires labeled samples in both do-
mains, we test it on supervised classification scenarios. In super-
vised techniques, the learning algorithm is fed with a set of “true”
data to learn the model. This means that for a subset of the data,
there are labels available constituting {x

i

, y

i

}n
i=1

pairs which con-
straint the output. This work is only using supervised techniques
like the support vector machine (SVM) or the naïve Bayes classifier.
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4.2.1 Naive Bayes

Classification with a Bayesian framework has been vastly used be-
cause of its ease of use and relatively good results [33], [34]. Naive
bayes (NB) is a linear classifier with strong independent assump-
tions from which the naive terms comes. It is based on the Bayes’
Theorem which finds the probability of an event occurring given the
probability of another event that has already occurred. The classifi-
cation is based on the probability of a sample x to belong to a class
c

i

. The sample will be classified in the class showing the biggest a-
posteriory probability p(c

i

|x) for i = 1 : C, the total number of classes.
The probability functions of the different classes are computed with
the training set (xi, yi

)N
i=1

and allows to evaluate the optimal class
for the new unseen samples.

4.2.2 Support Vector Machine Classifiers

The Support Vector Machine (SVM) is a binary linear classifier
based on the statistical learning theory (SLT) proposed by Vapnik
and Chervonenkis in the 70’s. In a non linear classification prob-
lem, SVM is able to use methods allowing it to project the data in
a higher dimensional space where the data are linearly separable.
For those reasons, SVM is often considered one of the bests super-
vised classifiers [5],[35], [36]. As for all supervised methods, SVM
needs labeled data to train a model that will then be able to predict
unlabeled data.

For a given set of data X, we want to learn a mapping function
x

i

7�! y

i

. To achieve this, we consider a set of functions F(x,✓) with
weight ✓ able to approximate the output ŷ for a new unseen data.
In this family of functions, we search the optimal f(x,✓) according
to a given cost function L which measure the performance of the
functions f 2 F.

As the SVM is a supervised learning method, the data set is
composed of N pairs (xi, yi

)N
i=1

of independent and identically dis-
tributed (iid) observations with y

i

the labels. This means that the
data follow an unknown joint distribution P(x, y) with a probability
density of p(x, y). The main idea in SVM is to find a (hyper)plan
that achieve a binary classification of data by maximizing the dis-
tance between itself and the data.

4.2.2.1 The Linear Case

For better understanding of SVM’s mechanisms, let us consider a
linear functional model :

f(x) = w ·x+ b (4.1)
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where x 2 Rd is the d-dimensional input vector, w 2 Rd is the
parameter vector of the hyperplane to be optimized and b is a scalar.
By stating a binary problem, we mean that the labels consist in y

i

2
{-1; 1}.

Figure 12: A margin classifier. Image taken from [5]

By considering its position to the hyperplane, and thus the results
of w · x- b, a data point will be attributed to either class "1" ou "-
1". The job of SVM will specifically to find the one hyperplane (and
thus the decision function) that maximizes the distance between it-
self and the data points. This distance is called the margin and
corresponds to the perpendicular distance between the hyperplan
and the nearest point of each class. AS shown in Fig. 12 the dis-
tance must be equal for both classes, thus the margin is symetrical.
Since then, the decision function can be written as :

y

i

= (w ·x
i

+ b) > 1 (4.2)

We must then maximize the width of the margin d. We compute
the euclidean distance between the hyperplan and the closest point
of each class which is equal to twice the margin’s width. The two
closest points considered lie on the margin and are called the sup-
port vectors. For each point x

1

and x

2

the distance is respectively
w · x

1

+ b = 1 and w · x
2

+ b = -1. By rearranging in terms of x,
and knowing the distance is kx

1

-x

2

k we have :

x

1

=
1- b

w

x

2

=
-1- b

w

(4.3)

d =

����
1- b+ 1+ b

w

���� =
2

kwk (4.4)
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Therefore, to maximize d we need to minimize w.

However, the formulation of the term to minimize does not give
a convex problem to solve meaning there is no global minimum to
reach. Therefore we put a quadratic term tokwk. For computational
reason, it is also necessary to add a 1

2

coefficient. The term to mini-
mize thus becomes 1

2

kwk2.
As the optimization problem to solve is now a strictly convex case,

Lagrangian multipliers ↵

i

can be used as linear constraints for the
resolution. Therefore we have :

L

p

(w, b,↵) =
1

2

kw2k-
nX

i=1

↵

i

[y
i

((w ·x
i

) + b)- 1] (4.5)

L

P

needs to be minimized with respect to w and b and maximized
with respect to ↵. This is achieved by the resolution of the partial
differential equations. We can rewrite L

P

as :

L

P

(w, b,↵) =
1

2

kw2k-
nX

i=1

↵

i

y

i

(w ·xi)-b

nX

i=1

↵

i

y

i

+
nX

i=1

↵

i

(4.6)

and the partial differential equations gives the results :

NX

i=1

↵

i

y

i

= 0 and
NX

i=1

↵

i

y

i

x

i

= w (4.7)

By substitution, we have a new formulation which only is in terms
of ↵ :

L

D

(↵) =
NX

i=1

↵

i

-
1

2

NX

j=1

↵

i

↵

j

y

i

y

j

(xi ·xj) (4.8)

with the constraint on ↵ :
NX

i=1

↵

i

y

i

= 0 and ↵

i

> 0 (4.9)

This solution depends only on the dot product between points
associated with a non-zero ↵. Those specific points are called the
support vectors and are located on the margin. All other points
have an associated ↵ = 0. The equation for a new unseen data can
then be formulated, constituting the linear support vector machine
classifier :

ŷ = f(x) =
NX

i=1

↵

i

y

i

(x
i

·x) + b (4.10)
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4.2.2.2 Soft margin

In real application though, linearly separable data are seldom
seen. Overlapping between classes and noise make it impossible
for SVM to achieve this complete linear classification. The margin
has to take in count singularities to allow misclassification by soft-
ening the constraint. In such a case, the SVM is said to be a soft
margin classifier. The softening is performed by adding a penalty
element ⇠ in Eq (4.2) representing the tolerance of the hyperplane to
missclassification.

y

i

= (w ·xi + b) > 1- ⇠ (4.11)

The minimization is no more on

1

2

kwk2 but on
1

2

kwk2 +C

nX

i=1

⇠

i

(4.12)

with C > 0 a parameter controlling the generalization capabilities
of the classifier. C allows to give more or less importance to the miss-
classification distances ⇠

i

, the greater C, the more strict the model
is.

4.2.2.3 Non linear case : the Kernel based SVM

For real life application, linear separation is difficult to achieve,
even with the soft margin. The introduction of the kernel function
will make it possible to overcome this limitation. If, for a dataset
X 2 Rd, linear classification is not possible, it is possible to map
the data into a higher dimensional Hilbert space H. According to
Cover’s theorem stating that a complexe pattern-classification prob-
lem is more likely to be linearly separable in a higher dimensional
space [37][38], the mapping of the data set in H gives the possibility
to run a now linear classification.

However it not easy to compute explicitly the mapping, since it
is unknown a priori and is high dimensional (possible infinite). To
overcome this, we use a property of SVM that it only depends on
the dot protuct. In Eq (4.10), ŷ depends on the dot product between
x and xi more than on their real value. The dot product can be
appreciated as the similarity of two elements. The kernel function
represent this similarity in H, and we have :

K(x,xi) = h�(x),�(xi)i (4.13)

with � : X ! H the mapping function.



4.3 setup 31

Therefore, Eq (4.13) can be substituted in Eq (4.10) to obtain the
SVM classification decision function :

ŷ = f(x) =
nX

i=1

↵

i

y

i

K(x,xi) + b (4.14)

Many kernels are known. For a classification problem, one has to
find the appropriate one which will define the right type of feature
space, with the right parameters. In this work, we consider two
kernel functions, the linear one and the Gaussian one, also known
as the Radial Basis Function kernel (RBF).

Using a linear kernel reduces to the case discussed for a linear
SVM, the kernel function being the dot product :

K(x,xi) = hx,xii (4.15)

The RBF kernel has the form :

K(x,xi) = exp

✓
-
kx-xik

2�

2

◆
(4.16)

where � parameter is the standard deviation of the Gaussian bell.
This kernel is known to give good results and allows the results
to be interpreted as similarity between points. For a classification
problem, one has to evaluate the best � to avoid over or under fitting.

For this work, the LibSVM library written by Chih-Jen Li, and
modified by Jordi Muñioz to run on Matlab 1.

4.3 setup

The data were computed according to Chap.3. From now on we
will refer to the nadir and off-nadir as X

1 and X

2 respectively. In
order to have comparable values of pixels and to allow LibSVM to
run well, all pixels from both images were rescaled by dividing by
the maximum value of the two images maxvalue = max(X

1

, X

2

). In
order to work within a controlled framework to run the algorithms,
all the data used were taken from the GTs.

Both sets X

1

and X

2

were split in two subsets, a training set
X

n

train, and a test set X

n

test, n = [1, 2]. The training sets rep-
resent the pool of data for the algorithm to compute the manifold
alignment and to train the models. The test sets were used to assess
the algorithm performance.

1. available at : http://gpds.uv.es/ jordi/soft.htm.
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Figure 13: Workflow process of data preparation.

A problem arose on the consistency of the labeled data. The differ-
ence in the amount of pixels per class was of very high with varying
orders of magnitude of 10

2 between the minimum and the maxi-
mum number of elements per class. If one were to use the data
in this state, the algorithms would most certainly suffer from over-
representation of the water class,leading to erroneous results. The
proposed method was thus modified to account this fact. Consider-
ing the number of labeled samples per class, we consider the median
number of elements med

N

and impose the algorithm to randomly
choose at most med

N

per class to create our training set.

4.3.1 Hypothesis

As explained in Chap. 3.2.2, the MA technique used is a semisu-
pervised method and thus needs both labeled and unlabeled ele-
ments from both domains. Remembering Chap.2, we know that the
availability of labeled samples for multiple images set is a costly step
in domain adaptation. The proposed approach of [3] does not pay
any particular attention to the amount of labeled elements per do-
main to be taken to achieve a reasonable classification accuracy. In
this work, we dispose of a fully computed GT for each image. To as-
sess this dependency, we need to set the number of labeled element
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per class in X

2

as a parameter of the global performance. A total
of 150 points sample per class was taken for X

1

and the algorithm
iterates over the number of labeled element per class in X

2

. We call
m this parameter to test.

m 2 [10; 150] (4.17)

In the same way, no information on the ratio between labeled and
unlabeled element for each image was proposed. The relation is
indirectly held in the cost function (eq. 3.15). The way the graph
W

s

and W

d

were computed stated to assign a 0 value if one or both
of instances’ labels were unknown. Note that unlabeled samples
only play a role in the geometrical similarity graph W. In order to
evaluate the impact of the amount of unlabeled elements taken, we
define it as an other parameter of performance analysis and call it U.
As we only use data from the GT, the actual labels are known. The
labeles corresponding to the U elements were set to 0.

U 2 [500, 3000] (4.18)

As said in Chap. 3.2.2, the µ parameter in the cost function acts
as a weight parameter between topology preservation and matching
instances. [3] holds that it should be equal to 1 in the case were
both properties are equally important. Therefore, an attention is
given to the variation of the parameter. During the computation
of the cost function elements, we considered the magnitude of the
different graph Laplacian computed 2.

We observed that the the magnitude of both L

s

and L

d

was way
greater than the one of L. Remembering the derivation of the dif-
ferent Laplacians in Chap. 3.2.2, the Laplacian representing the ge-
ometrical similarity with a k-nn graph will have small values on its
diagonal. On the other hand, as we choose 150 samples per class in
X

1

and varying numbers for X

2

, L
s

will have values of the range of
10

2. L

d

considering the unlabeled samples will have a magnitude
of 103. Therefore, two cases are considered : µ = 1 and µ = 100 to
evaluate the impact of this gaps of magnitude. As said, µ is a weight
parameter and will not modify L in itself, but rescale its magnitude
regarding L

d

and L

s

.

4.3.2 Scenarios

Four different scenarios were considered to evaluate the perfor-
mance of the domain adaptation. We first consider ordinary super-
vised classification for both domain. Then we use the case of a single

2. L, L
s

and L

d



34 application

ground truth computed over X
1

samples without adaptation to clas-
sify X

2

. A supervised approach is then made by creating a model
with labeled element from both domains. Finally we assess the per-
formance of the manifold alignment method with regards to m and
U.

For notation purpose and understandability, let’s call model

1

the
model built on X

1

elements, model

2

the model built on X

2

elements,
model

1,2

the model built over elements of the two domains, and
model

p

1,2

, the model computed after the manifold alignment pro-
cess. The different scenarios are :

A : Classification of X
1

with model

1

B : Classification of X
2

with model

2

C : Classification of X
2

with model

1,2

D : Classification of the projected data of X
2

with model

p

1,2

The four scenarios are tested on the different classifiers presented
in Chap. 4.2 : the Naive Bayes classifier and the SVM using an RBF
kernel. To Evaluate the performance, two measures are done; the
overall accuracy (OA) of the classification and the Cohen’s Kappa
presented in [39] which measures the agreement of the estimation
and the observation.
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R E S U LT S

5.1 matrices involved

The geometrical similarity graphs were presented in Chap. 3. In
Fig. 14, we present the similarity and dissimilarity graphs built on
the labeled data. The graphs illustrates the symmetrical property
of the similarity. The upper left part corresponds to the similarity
within X

1

, and the lower right the one for X

2

. The two other blocs
are the similarity between the two domains. Note that the size cor-
responding to X

2

grows with the increase of parameter m and U.

(a) (b)

Figure 14: Instance matching similarity graphs

In this figure, the white part means a value of 1 and the black a
value of 0.

5.2 numerical performances

The performance for the two classifiers is shown as a function of
parameter m in Fig. 15. The non-continuous lines are the results for
the projected results for three different U : 1000, 2000 and 3000. The
red line corresponds to scenario C, where no unlabeled elements
are used. This scenario is the combination of the two GT without
projection and is therefore the goal to overtake. The green line is
the results for the classification of X

2

with its own ground truth. It
is a best case scenario that we also want to overtake. In both cases,
the results between OA and Kappa are very similar. As scenario A
corresponds to the the case of scenario C with m = 150 for X

1

, the
result could not represented as function of m. The results coincided

35
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with the the specific case of the scenario C, being the upper right
point on the full red lines. We can see that the NB gives poor results
for the use of two GT without manifold alignment. Its sensibility
to the variation in PDF between two images does not allow it to ap-
preciate the input of both images. The added labeled element from
X

2

allow to increase its performance but at a low rate. Compared
to the SMV method, the amount of sample from the second image
needs to be greater in order to show an increase of accuracy. When
using the manifold alignment, NB is able to reach the performance
of a classification preformed on the single GT case with both a µ of
1 and 100. It also interesting to note that there is no increasing trend
for scenario B with this classifier.

Figure 15: Performance for the two classifiers.
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The RBF SVM shows better results for every scenarios showing its
ability to adapt itself to the data’s complexity, which is a clear ad-
vantage in comparison to NB. The gap between B and the different
set for D is also smaller than what is seen for NB at small m. The
main advantage of this classifier, when using MA, is that it is able
to overpass scenario B with both µ parameters.

The DPC performance is shown in Fig. 16. The plots show the
results for both corrected and uncorrected projection functions for
the two µ analysed. In this case, the dimension of the latent space is
set to d

max

. Surprisingly, the assumption of increasing the perfor-
mance by correcting the geometrical error in the projections is not
validated for any classifier. The residual differences is of the order
of 10-6 which clearly refutes the hypothesis.

Figure 16: Sensibility of the different classifiers to the DPC

Remembering Fig. 9, the BDM was showing mismatched projec-
tions for the 8

th dimension forth in the uncorrected case. [3] did not
give much information on the optimal dimension of H. In the case
of using d

max

as the dimension of the latent space, we assumed to
bestow the maximum variance of data for the classification. How-
ever, if one makes the parallel between the MA technique and a
principal component analysis (PCA), we can assume that the first
dimension of H should inherit the maximum of the variance ex-
plaining common information among the domains, both in geomet-
rical and correspondences. This way, each new dimension should
add knowledge but with a decreasing amount as the dimension of
H increases, the last dimension should therefore contain the noise,
e.g. the difference among domains. To assess this, we computed the
performance of the classifiers for each single dimension of the latent
space. This is shown in Fig. 17. This analysis gives very interesting
results as the aforementioned hypthesis of the last dimensions hold
noise is refuted. Indeed, the figures shows that the different dimen-
sion are not ordered in decreasingly manner regarding their single
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performance. Further analysis should allow to better understand
this property.

Figure 17: performance of classifiers for each dimension of H separaly

Beyond assessing the performance of each dimension one its own,
we also considered the case of increasing the dimension of H. This
is represented Fig.18. The accuracy grows very fast until the 4

th

dimension where it reaches a near maximum state for all three clas-
sifiers. Interestingly enough, the dimension where the performance
reaches this asymptotic behaviour is smaller than the initial dimen-
sion of each domain. The source of this might be the initial property
of manifold alignment being a dimensionality reduction problem.
Anyhow, the BDM was still showing a possibility to improve the
projection and might be more useful as a measure of the residual
noise in the data found in the highest dimensions of the latent space.

5.3 parameters sensibility

5.3.1 To parameter µ

Fig. 15 also showed the role of µ in MA. For both classifiers at low
m, the case when µ is scaled to the Laplacians magnitudes shows
better results than the unscaled case. It is particularly interesting
for the SVM as the results in this case are always overpassing the
scenario B. In the case of very few labeled data available for X

2

, this
parameter could therefore play an valuable role.

In Fig. 19 µ shows once more some interesting results. For NB,
increasing the value of µ seems to introduce noise in the results, but
also shows better performance at low m. The graph is more chaotic
and does not show a homogeneous evolution of the performance.
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Figure 18: performance as function of the latent space’s dimension

However, RBF does not suffer this heterogeneity. The rescaling step
must therefore be made with precaution, with good consideration
on the classifier used.

5.3.2 To m and U

The study of the performance as a function of m and U is pre-
sented in Fig.19. For each classifier, the dependency over the num-
ber of labeled sample from X

2

is clear. The increase is relatively fast
for the first addition of samples but rapidly reaches a flatter state
around m = 50 elements per class taken for X

2

. From there on the
progression of performance is relatively stable for NB. In the case of
RBF SVM, it keeps getting a little higher. The ability of RBF to fit
more complex data might be the explanation. Indeed, in the point of
view of PDF matching, the more m increases, the more the system
is constraint in order to fit the two images together. As the amount
of samples increases, so does the size of both W

s

and W

d

and thus
the complexity of the algorithm, which might explain why the RBF
shows this light progression for bigger m.

The number of unlabeled samples show a different results. It
seems only relevant for the NB at very low m. The SVMs seem to
be relatively unaffected by this parameter. The spectral information
needed for the preservation of topology has to be sufficiently repre-
sented by the labeled data used.
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Figure 19: performance for the three classifiers Kappas on the left and
Overall Accuracy (OA) on the right.

5.4 classification maps

The results of classification are shown in Fig. 20. The previous
observations are confirmed with respect to the classifiers’ accuracy.
The RBF offers more precise classified maps than the NB for each
scenario. Indeed, NB seems to assign to much pixels to the class
"Shadows" which is also sometimes mixed with water. The use of
feature recognition algorithm might increase the results, as we can
see that some of the missclassified pixels lie inside bigger structures.
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NB RBF

Figure 20: Classified maps of X
2

. In a descending way we have scenarios
B, C and D, all runned with m = 50.

5.5 discussion

The topological preservation with respect to matching instances
seems to be well respected. However, further analysis should be
made to be sure of this. We could think of taking less labeled points
in X

1

, or having varying amount of labeled data for both domains.
One should also remember that the two images were taken from the
same satellite at a very short time shift, making the spectral variance
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between the two images somehow the smallest possible. Further
analysis such as a multi temporal problem or matching images from
different sensors are ought to show different results by using the
MA technique. In such analysis the dimension of the latent space at
which the performance becomes asymptotic might also change.

The link between the p

k

input dimensionalities and the optimal
d cannot be shown on a two images dataset, and opens the door
to an important quantity of further analysis on the proposed MA
technique.



6
C O N C L U S I O N

The approach considered in this work proposed to use manifold
alignment for domain adaptation between two images from a multi-
angular dataset one considered as the source domain, and the sec-
ond as the target domain. The algorithm allowed to project both
domain in a common high dimensional latent space were two clas-
sifiers were trained, a Naive Bayes and a support vector machine.
The results were compared to corresponding analysis in the initial
domains. Different parameters were tested to determine the key el-
ements of the method : the amount of labeled data available for
the target domain, the amount of unlabeled data taken in both im-
ages and a parameter acting as a weight between the preservation
of topology and the matching of instances.

For both classifiers the method allowed to improve classification
accuracy with regards to conventional approaches. The use of few
labeled samples from the target domain was sufficient to achieve this
improvement. The amount of unlabeled data used was mostly inter-
esting for few labeled data. However, unlabeled data only holds
spectral information whereas labeled data contains both spectral
and correspondence information. As the two images were acquired
by the same sensor in a very small time shift, the sensitivity of the
approach with respect to these two kind of information could not
be properly evaluated. This opens the field to further analysis, such
as multi-temporal approach or the use of multi-sensor datasets. The
approach also showed an appreciation of the latent space’s dimen-
sion. However, results could not define an optimal case and this
element still needs to be studied for a better understanding of man-
ifold alignment performance in domain adaptation.
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a.1 dot product correction graphs

Figure 21: Projection of the two domains on the dimension 6-8 without
correction

45
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Figure 22: Projection of the two domains on the dimension 6-8 with correc-
tion
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Figure 23: Classification of whole X

2

with NB, scenario D

a.2 classification of the two images
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Figure 24: Classification of whole X

2

with RBF, scenario D
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