
“This is an interesting application paper and I enjoyed reading it.”
— Meta Reviewer



Consumer Segmentation and Knowledge Extraction from
Smart Meter and Survey Data ∗

Tri Kurniawan Wijaya †‡ Tanuja Ganu § Dipanjan Chakraborty§ Karl Aberer†

Deva P. Seetharam§

Abstract
Many electricity suppliers around the world are deploying smart
meters to gather fine-grained spatiotemporal consumption data and
to effectively manage the collective demand of their consumer base.
In this paper, we introduce a structured framework and a discrim-
inative index that can be used to segment the consumption data
along multiple contextual dimensions such as locations, commu-
nities, seasons, weather patterns, holidays, etc. The generated seg-
ments can enable various higher-level applications such as usage-
specific tariff structures, theft detection, consumer-specific demand
response programs, etc. Our framework is also able to track con-
sumers’ behavioral changes, evaluate different temporal aggrega-
tions, and identify main characteristics which define a cluster.

1 Introduction
Many electricity suppliers around the world are deploying
smart meters to gather fine-grained spatiotemporal consump-
tion data [23]. These companies are interested in mining the
collected data to extract deep insights such as the set of con-
sumers to be selected for winter peak load reduction, the set
of consumers to be monitored for potential theft/anomaly, the
set of consumers who can be targeted for energy efficiency
programs, etc [4, 16, 17]. These insights are necessary for
multiple application sub-domains in the energy sector such
as billing, energy audit, etc. For all such advanced applica-
tions, consumer segmentation has been viewed as one of key
requirements [5, 10, 13, 15, 19].

However, segmenting consumers based on the smart
meter data is challenging due to three reasons. First, the
scale of smart meter data is humongous: high volume
(data from millions of consumers) and high velocity (meters
can report data at the rate of once every minutes to once
every 30 minutes). Second, since electricity consumption
is influenced by internal (family size, work hours, economic
status, etc) and external contextual factors (weather, holiday,
day of week, etc), the meter data must be correlated with
heterogenous data sources (weather sites, survey results
etc) that provide data at different time granularity and with
varying data quality. Third, for meaningful grouping of
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consumers, the segmentation may need to be performed
along disparate contextual dimensions.

To address these challenges, we propose a novel frame-
work for consumer segmentation. The key contributions of
this paper are:
• Design and implementation of a versatile framework

for consumer segmentation that tries to jointly derive
‘meaning’ from consumption data, context data and
user surveys. Previous works have primarily targeted a
specific problem (e.g. setting tariff [11, 21], predicting
consumer characteristics [3]) and do not consider this
task in a holistic manner.

• Design of a temporal aggregation method that varies the
level of aggregation based on application requirements
and data quality.

• Design of a novel clustering consistency index to track
the evolution of consumption behaviors (that helps spot-
ting fraudulent activities such as thefts and tampering).

• Design of a novel discriminative index and survey min-
ing approach to identify main consumer characteris-
tics that can be used to classify consumers into well-
demarcated clusters.
The rest of the paper is organized as follows. In

Section 2, we give a brief overview of the related work.
In Section 3, we explain our general purpose consumer
segmentation framework. In Section 4, we discuss our
clustering consistency index. In Section 5, we outline our
method to extract knowledge from survey data to obtain main
characteristics of a cluster. In Section 6, we describe the
dataset and experimental results, and conclude in Section 7.

2 Related Work
Since the rollout of first batch of smart meters, smart me-
ter data analytics has attracted immense interest. In par-
ticular, consumer segmentation has been considered to be
crucial for enabling various smart grid applications. Moss
et al. provided an overview of consumer segmentation in
the electricity sector, especially for demand-side manage-
ment [15]. Application-specific segmentations frameworks
have been developed in [5, 6, 7, 10, 11, 19, 21], mainly for
setting tariff or consumer classification, and predicting con-
sumer characteristics [3].

In their work, Albert and Rajagopal also correlated con-
sumers’ consumption profile with demographics and appli-
ance usages [3]. However, they did not attempt to iden-



tify relevant characteristics for clustering consumers. In-
stead, they started with a predefined set of characteristics
and determined whether those can be predicted from con-
sumer’s consumption profile. This approach is rather similar
with [12] where the authors used the same dataset as ours
to predict household demographics from consumption pro-
files. Regarding consumer behavior analysis, [18] presented
a psychographic consumer segmentation based on how con-
sumers feel, think, and act. However, their segmentation is
based solely on survey data about consumers’ behavior and
attitude toward electricity and energy conservation, and did
not involve processing of any consumption data.

Moreover, our clustering consistency index is related
to Rand index [20]. However, we generalize it further to
determine whether an individual is likely to change cluster
over time, i.e., individual to cluster consistency measure.

Though, the earlier works have taken initial steps in
deriving consumer segmentation based on smart meter data,
they primarily target specific challenges/applications and do
not present a ‘general-purpose’ framework. Moreover, none
of the prior works have incorporated additional context-
specific data for consumer segmentation. More importantly,
as we will explain in the next section, different features
and algorithms that are employed in the prior work, can be
expressed as part of the building blocks in our framework.

3 Context-Specific Consumer Segmentation
In this work, we developed a context-specific ‘general pur-
pose’ consumer segmentation framework which exhibits 5
design principles addressing bottom-up data federation chal-
lenges and top-down unifying solution requirements dis-
cussed earlier. This is a user-centric design which provides a
certain freedom to the framework users to respecify the data,
context, and feature spaces she is interested in based on the
specific consumer segmentation task at hand. The frame-
work enables the user to accomplish a number of consumer
segmentation tasks such as segmenting the consumers based
on the consumption magnitude, variability, or trend etc.
3.1 Design Principles We define the requirement specifi-
cation based on 5 design principles which can be used indi-
vidually or in combination by the framework user:
R1 (Customized Data Selection): to declare a) a period

she is interested in, such as from June to August 2013
b) a subset of consumers that satisfy certain criteria
(like average daily consumption greater than 5 kWh)
c) a specific time of day she is interested in, such as
afternoon peak hours 12:00 to 16:00

R2 (Customized Temporal Aggregation): to declare the
time granularity of consumers’ consumption profile
used for segmentation, such as hourly, every 3 hours,
daily, weekly, or monthly

R3 (Customized Context): to declare specific context such
as summer, winter, weekend, January, Tuesday, temper-
ature more than a certain threshold, etc.

R4 (Customized Features): to declare specific feature com-
putation such as mean, standard deviation, coefficient
of variation or median.

Unsupervised Learning Configuration Selection 

Context Sensors: 
weather, temperature, … 

holidays, seasons,  
special events, … 

Target Sensors:  
smart meters, … 

Data Selection 

Temporal Aggregation hourly, daily, weekly, monthly, … 

Context Filtering 

… 

Features Generator statistical functions: mean, median, 
standard deviation, IQR, … 

Figure 1: Architecture diagram of the framework.

R5 (Customized Algorithm) a) if the user has knowledge
about a specific clustering algorithm to be used (from
a predefined set) b) if supported by the algorithm, the
user should be able to declare the number of consumer
segments (or clusters) that she is interested in, or let
the framework determine the best number of clusters
(according to some cluster evaluation metrics).

3.2 General-purpose Framework Now, we define our
framework, as shown in Figure 1. This framework is based
on the design principles discussed above and supports the
operations for data selection, temporal aggregation, context
filtering, feature vector generation and clustering algorithm
selection. Let D = {d1, . . . , dn, dn+1, . . . , dn+m} be a set
of sensor devices available, where:
• {d1, . . . , dn} is the set of sensors that is the main

subject of our analytics task, or target sensors, and
• {dn+1, . . . , dn+m} is the set of additional context sen-

sors,
In our case, smart meter is an example of a target sensor,
whereas temperature, motion, or sound sensors are examples
of context sensors.

For a vector V, we write V(i) to address the i-th
element of V. Let γ?()̇ represents application of a specific
design principle ? (from R1 to R5) to the input set.
DEFINITION 3.1. (MEASUREMENTS) We define a
measurement-tuple as s = (ts,Vs), where:
• ts is a timestamp,
• Vs ∈ Rn+m is a vector of sensor values, i.e., Vs(i) is

the value of di at time ts.
A time series of measurement is defined as S =
{s1, . . . , s|S|}, where s ∈ S is a measurement-tuple and
whenever i < j, we have tsi < tsj ,∀1 ≤ i, j ≤ |S|.

3.2.1 Data Selection Let X be the set of consumers,
tsstart , tsend be the starting and the ending timestamp, and
td start , tdend be the starting and ending time of day that we
are interested in, as the selection criteria of R1. In addition,
let timeOfDay(t) denote the time of day of timestamp t, i.e.,
the hour, minute, second, and millisecond of t.

Let Sx denotes the time series of measurements from
consumer x’s premise. For a set of consumer X , we define



SX = {Sx | x ∈ X}. Let X+ ⊇ X . Then, data selection
over SX+ is γR1 (SX+ ,X , tsstart , tsend , td start , tdend) =
{S′x | x ∈ X}, where S′x = {si | si ∈ Sx, tsstart ≤ ti ≤
tsend , td start ≤ timeOfDay(ti) ≤ tdend}.
3.2.2 Temporal Aggregation Let T = [T , T ] be a time
interval, where T and T both are timestamps as the lower
and upper bounds of the interval, respectively. Let T =
{T1, . . . , T|T |} be a set of time intervals denoting the tempo-
ral aggregation that we are interested in R2. For a time series
of measurements S, temporal aggregation by T over S is de-
fined as γR2(S, T ) = {ŝ1, . . . , ŝ|T |}, where ŝi = (Tŝi ,Vŝi)
is an aggregated measurement, Tŝi = Ti and

(3.1) Vŝi =
∑

ts∈Ti

Vs,∀1 ≤ i ≤ |T |.

Note that in the Eq. (3.1) above we aggregate by summing
up the sensor values. Depending on the application scenario,
other aggregation function such as taking the average, maxi-
mum, or minimum values can also be used.

Example. For monthly aggregation over one year data (from
January to December), we have |T | = 12, where each
T ∈ T is a one month time interval. Thus, aggregation by
T over any time series S results in |γR2(S, T )| = 12, where
each element, i.e., an aggregated measurement, contains the
aggregation of sensor values over one month.

3.2.3 Context Filtering We define two context types that
can be defined by the user with respect to R3, namely
calendar context, and measured context. Calendar context is
defined on timestamps, such as summer, January, weekday,
or weekend. Measured context is defined on sensor values,
such as temperature between 30 and 35 degree, humidity
between 50% and 60%.
DEFINITION 3.2. (CALENDAR CONTEXT) We define a cal-
endar context u as a function fu : t → {0, 1}, where t is
a timestamp. We have fu(t) = 1, if t belongs to context
u, and 0 otherwise. Let U be a set of calendar contexts,
a time interval T = [T , T ] satisfies U iff fu(T ) = 1 and
fu(T ) = 1,∀u ∈ U .

Example. Let U = {summer ,weekend} be the set of
calendar contexts that we are interested in. We have:
• fsummer : t→ {0, 1}, which return 1 if t is in summer,

and 0 otherwise,
• fweekend : t→ {0, 1}, which return 1 if t is on weekend

days, and 0 otherwise.
That is, time intervals which satisfies U are intervals whose
lower and upper bounds are both in summer and on weekend
days.

DEFINITION 3.3. (MEASURED CONTEXT) We define
a measured context as a tuple w = (δw,Xw) where
δw ∈ {n+ 1, . . . , n+m} is a sensor index, dδw ∈ D is the
context sensor, and Xw is the accepted interval of the values
of context sensor dδw . A sensor values V ∈ Rn+m satisfies
a set of measured context W iff V(δw) ∈ Xw,∀w ∈W ,

DEFINITION 3.4. (CONTEXT FILTERING) Let Ŝ be a time
series of aggregated measurements, U be a set of calendar
contexts, and W be a set of measured contexts. Context
filtering over Ŝ by U and W is defined as γR3 (Ŝ, U,W ) =

{ŝ | ŝ ∈ Ŝ, Tŝ satisfies U, and Vŝ satisfies W}.

3.2.4 Feature Vector Generation In the context of energy
consumption sensing, or environmental sensing in general,
measurements from different time of day can be very differ-
ent and hence, it is considered as an important feature for
various data mining task. We take that knowledge into ac-
count by allowing the features to be built around different
time intervals.

Let Γ be a set of time interval sets, where each Ti ∈ Γ
is a time interval set. Let φ : 2R → R be a feature builder
function (or feature function) with respect to R4, which typ-
ically is a statistical function, such as mean, median, stan-
dard deviation or inter-quartile range. And, let Ŝ be time se-
ries of aggregated measurements, where ŝ = (Tŝ,Vŝ),∀ŝ ∈
Ŝ. A feature vectors computed from Ŝ using φ over Γ is
γR4(Ŝ, φ,Γ) = F ∈ R|Γ|·n, where:

(3.2) F(i · n+ j) = φ
(
{Vŝ(j) | Tŝ ∈ Ti, ŝ ∈ Ŝ}

)
,

i = 0, . . . , |Γ| − 1, j = 1, . . . , n.

The (i · n + j)-th element of feature vector F is computed
using function φ over the set of aggregated sensor values Vŝ

that belong the same time interval set Ti, and target sensor
dj ∈ {d1, . . . dn}.
Example. We give an example of hourly features generation.
Let us assume that for the data selection, the user is interested
in the data of year 2010. For the temporal aggregation, she is
interested in hourly temporal aggregation. And, to simplify
our example, let us assume that she is not interested in any
context filtering, i.e., U = {} and W = {}. Furthermore,
smart meter is our only target sensor, i.e., n = 1. Assume
that we have a time series of aggregated measurement, Ŝ, for
the whole year of 2010, where each ŝ ∈ Ŝ is an (hourly)
aggregated measurement for each hour in 2010. Let T =

{Tŝ | ŝ ∈ Ŝ} be a set of all time intervals in Ŝ, thus we have
|T | = 365 · 24 = 8760. Furthermore, let Γ = {T1, . . . , T24}
be a set of time interval set, where each time interval set
Ti ⊂ T contains the time intervals which accounts only for
hour i. Let φ be a function that calculates mean. Hence, the
result of γR4(Ŝ, φ,Γ) is F ∈ R24, where each F(i) is the
mean of hourly consumption of hour i throughout the year
2010.

Generation from a set of context sets and feature func-
tions. There could be a case where we would like to have
a feature vector which is a combined result of applying R3
using a set of context sets and R4 using a set of feature func-
tions. For example, instead of using mean as the only feature
function, we might want to use both mean and median to
have a more robust segmentation. Let Ŝ be the aggregated



measurement satisfying R1 and R2, Θ be the set of context
sets, and Φ be the set of feature functions. In addition, let
Γ be the set of time interval sets to build the features. For
each context set (Ui,Wi) ∈ Θ and feature function φj ∈ Φ,
we compute Fij = γR4 (γR3 (Ŝ, Ui,Wi), φj ,Γ). Finally, we
append Fij, one after the other to form the combined feature
vector, where 1 ≤ i ≤ |Θ| and 1 ≤ j ≤ Φ.
3.2.5 Clustering Algorithm Application Given the ex-
pert knowledge from the user to apply a specific algorithm,
A ∈ A, and its parameter setting ψ, then our framework
should be able to apply it to the consumers’ feature vector
(R5 principle).

Let X be a set of consumers, and FX = {Fx | x ∈ X}
be a set of feature vectors of all consumers in X . Then,
the application of clustering algorithm A with parameter
setting ψ over FX results in a set of clusters (or cluster
configuration, or configuration), i.e., γR5(A,ψ,FX ) =
{c1, . . . , ck}, where each cluster cj ⊆ X , ∀1 ≤ j ≤ k,
is a set of consumers.
Automatic Cluster Configuration Selection. Given
different parameter settings, we are often uncertain which
parameter setting delivers us the best cluster configuration
(according to some cluster evaluation metrics). This holds
even if the setting is simple and easy to understand, such as
the number of clusters to be created (in case of using k-means
algorithm). For instance, we are often uncertain in choosing
the value of k, the number of clusters. This motivates us
to include an automatic selection of cluster configuration in
our framework. Our selection mechanism is similar to the
mechanism in [14, 24], i.e., we attempt to select compact
and well separated clusters.

Given a clustering algorithm A, a set of parameter
settings Ψ = {ψ1, . . . , ψ|Ψ|}, and consumers’ feature vector
FX , we can have a set of cluster configuration C = {Ci |
γR5(A,ψi,FX ) = Ci}. Thus, our task is to select the best
cluster configuration C∗ ∈ C. In order to determine C∗, we
use three cluster evaluation metrics: Silhouette index [22],
Dunn index [9], and Davies-Bouldin index [8].1 We perform
a majority voting to the best configuration identified by each
metrics. Algorithm 3.1 describes the selection mechanism in
more details.

Functions sortSilhouette(C), sortDunn(C), and
sortDaviesBouldin(C) compute Silhouette, Dunn, and
Davies-Bouldin index respectively for each configuration in
C, and return an ordered list of the cluster configurations,
sorted by the configuration quality in descending order
(that is, sorted in decreasing order for Silhouette and Dunn
indices, and in increasing order for Davies-Bouldin index).
Let count(L, e) be the count of element e in the list L.
Function mostFrequent(L) returns an element e∗ in L,
where count(L, e∗) > count(L, e) for all e 6= e∗ in L. In
other words, mostFrequent(L) returns the element with the
largest count, e∗, and there is no other element in L which
has the same count as e∗. If there is no such element, this
function returns null.

1See more detailed description in [1].

Algorithm 3.1: Automatic Cluster Configuration Se-
lection

Input: a set of cluster configuration
C = {C1, . . . , C|C|}

Output: the best configuration C∗ ∈ C
1 silhList ← sortSilhouette(C)
2 dunnList ← sortDunn(C)
3 davbList ← sortDaviesBouldin(C)
4 countList ← [ ]
5 C∗ ← null
6 i← 1
7 repeat
8 countList .add(silhList [i])
9 countList .add(dunnList [i])

10 countList .add(davbList [i])
11 C∗ ← mostFrequent(countList)
12 i← i+ 1
13 until (i > |C|) ∨ (C∗ = null)
14 return C∗

4 Clustering Consistency
This section answers two important questions. First, is
there any consumer who changes their behavior over time?
For example, we would like to know whether there is a
consumer who is in the low consumption cluster in January,
but she changes to the medium/high consumption cluster in
February. This insight is important for devising personalized
feedback to the consumer. Second, how different is one
cluster configuration to another? For example, how different
is the cluster configuration using January data compared
to using February data, or March, April, etc. Answering
this question gives insight to the utility company on the
key contexts to consider when developing policies, such as
differential pricing or demand response signal. In the sequel,
we use the term individual and consumer interchangeably.

4.1 Individual to Cluster Consistency Given two cluster
configurations, we develop a measure to indicate whether
an individual has the same cluster membership on both of
them. Because cluster configuration is invariant to the cluster
labels, we require the measure to also be invariant to the
label sets. Thus, the idea is to define an individual to cluster
consistency index (i2c) which computes how consistent are
the fellow cluster members of an individual on the two
configurations.

Let C be a cluster configuration. We write C(x) to
denote the cluster of x, i.e., the cluster c ∈ C where x ∈ c.
We define an individual to cluster consistency of consumer
x ∈ X on two cluster configurations C1 and C2 as:

(4.3) i2c(x,C1, C2) =

|C1(x) ∩ C2(x)|+ |(X \ C1(x)) ∩ (X \ C2(x))| − 1

|X | − 1
.

Intuitively, if we denote the set of consumers in C(x) as the
friends of x, and the others as non-friends, then i2c measure



the number of friends in C1 who also friends of x in C2, and
the number of non-friends in C1 who also non-friends in C2

normalized by the number of all consumers excluding x. The
value of i2c ranges between 0 and 1. The closer it is to 1, the
more consistent is x’s cluster membership in C1 and C2.

4.2 Distance Rank Given individuals who change their
clusters, one might interested more to the ones located closer
the centroid of their new clusters. Thus, we define an
additional measure, distance rank, to denote the ranking of
individual’s distance to its cluster representative (such as
centroid) compared to the other cluster members. We use
distance rank instead of actual distance measure because it is
invariant to cluster size. Thus, it can be used for comparison
across different clusters.

Let C(x) be the cluster of x in configuration C, and
ζC(x) be the cluster representative of C(x). In addition, let
dist(x, ζC(x)) be the distance of x to its cluster representa-
tive. For an individual x, we define its distance rank as:

(4.4) dr(x,C(x)) =

|{x′ | dist(x, ζC(x)) < dist(x′, ζC(x)), x′ ∈ C(x)}|
|C(x)| .

Distance rank ranges between 0 and 1. The higher the value,
the closer the individual to its cluster representative.

4.3 Cluster Configuration Consistency In order to inves-
tigate community behavioral changes over different contexts,
we can measure the difference of the resulting cluster con-
figuration over those contexts. Let X be a set of consumers,
and C1 and C2 be two cluster configurations over X . We
compute the difference between C1 and C2, i.e., cluster con-
figuration consistency index, as the average of i2c of their
individuals:

(4.5) ccc(C1, C2,X ) =
1

|X |
∑

x∈X
i2c(x,C1, C2).

The ccc index ranges between 0 and 1. The higher the ccc
between C1 and C2, the more similar they are.

5 Knowledge Extraction from Survey Data
Consumer segments can be useful for implementing differ-
ent policies, such as: targeted demand responses, more per-
sonalized energy feedback, or differential pricing. However,
having consumer segmentation alone is not enough. We also
need to understand what are the characteristics that consti-
tute a consumer cluster? Only by developing this under-
standing, we can develop an effective and efficient policies
which tailored better for our consumers.

Consumer characteristics can be of form demographic
profiles, house types, appliance usages, or living styles. We
can obtain these through survey/questionnaire, using ques-
tions, such as: What best describes the people you live with
(single/adults/adults with children)? Do you have a dish-
washer (yes/no)? What is the approximate floor area of your

home?2 In this section, we focus on mining consumers char-
acteristics, which are the discriminative, i.e., characteristics
which make a cluster different from the others. We model
consumer characteristic as a pair of question and answer.
Next, we describe how to compute discriminative index.

5.1 Discriminative Index We define a measure to express
how discriminative a question-answer pair is in distinguish-
ing a cluster from the others. Let X be a set of consumers,
and C be a cluster configuration over X . For a cluster
c ∈ C, we denote ¬c as all individuals who are not in c,
i.e., ¬c = {x′ | x′ ∈ X \ c}. In addition, let q be a question,
ans(q) be the set of possible answers to q, ansx(q) ∈ ans(q)
be the answer of consumer x to question q, and Nc,q be the
set of consumers in cluster c who respond to question q.

We define Zc(q, a) as the fraction of individuals in
cluster c who answer a to question q, i.e.,

(5.6) Zc(q, a) =
|{x | ansx(q) = a, x ∈ c}|

|Nc,q|
,

where a ∈ ans(q). Then, discriminative index of question q
and answer a to cluster c is defined as:

(5.7) DI c(q, a) =
Zc(q, a)− Z¬c(q, a)

max
(
Zc(q, a), Z¬c(q, a)

) .

Discriminative index ranges between −1 and +1. It is
discriminative positive (or negative) if it is positive (or
negative). Both discriminative positive and negative explain
how a cluster differs from the others. Discriminative index
close to +1 means that most of the individuals in cluster c
answer a to question q, whereas individuals in other clusters
do not. In contrast, discriminative index close to −1 means
that most of individuals in other clusters answer a to question
q, whereas individuals in cluster c do not. Discriminative
index close to 0, means that answer a to question q does not
differentiate cluster c from the others, i.e., it has little or no
discriminative power for cluster c.

5.2 Dealing with Ordinal and Quantitative Data In a
survey, there are some answers which are ordinals or quanti-
tatives. For example, in our survey data, answers to the ques-
tion whether a consumer would like to do more to reduce
electricity usage, are ordinals, i.e., five criteria from strongly
agree to strongly disagree. Another example: answers to a
question of the approximate floor area of the house, are quan-
titative, i.e, the number which represent the floor area.

In the previous section, we determine whether a specific
pair of question and answer is a key characteristic of a
cluster. However in ordinal and quantitative answers, we are
interested on insights more than that. For example, instead of
“most of the consumers in cluster c have X sq ft. floor area ”,
we are more interested on more general insight, if any, such
as: “most of the consumers in cluster c have less than X sq ft.

2These example questions are taken from our dataset (explained in
Section 6).



floor area”, or “between X and Y”, or “greater than X”. One
way to do this is by introducing some splitting points which
divide the answers into groups, or ranges. But then, it leads
us into a combinatorial problem, such as: how many points
do we need for the best splitting, and where should we put
the splitting points.

Let q be a question, and ans(q) be a set of consumers’
answers to q. To solve this problem, we sort the answers
in ascending order and put them into a list. We add −∞
and +∞ to the beginning and the end of the list. Let
l = |ans(q)| + 2 be the length of the list. We take all
possible n-grams from the list, where n varies from l − 1 to
1. Next, we create a set of ranges Rans(q) by taking the first
and the last element of each n-grams as the lower and upper
bounds (inclusive). Finally, we remove ranges [−∞,−∞]
and [∞,∞] from Rans(q). This takes polynomial time on
the size of ans(q).
Example. Let ans(q) = {1, 2, 5}. The set of ranges cre-
ated from all possible n-grams from length 4 to 1, without
[−∞,−∞] and [∞,∞], is Rans(q) = { [−∞, 5], [1,∞],
[−∞, 2], [1, 5], [2,∞], [−∞, 1], [1, 2], [2, 5], [5,∞], [1, 1],
[2, 2], [5, 5] }.

Then, for ordinal and quantitative questions/answers,
instead of computing discriminative indices based on a ∈
ans(q), we now compute them based on ar ∈ Rans(q):

(5.8) Zc(q, a
r) =

|{x | ansx(q) ∈ ar, x ∈ c}|
|Nc,q|

,

(5.9) DI c(q, a
r) =

Zc(q, a
r)− Z¬c(q, ar)

max
(
Zc(q, ar), Z¬c(q, ar)

) .

6 Experimental Evaluations
In this section, we describe our experiment details. We use
Irish CER dataset, which contains energy consumption mea-
surements of around 5,000 consumers over 1.5 years [2]. The
measurements started in July 2009 and ended in December
2010, and recorded energy consumption in kWh every 30
minutes. We choose residential consumers that belong to the
control group and have no missing values. This results in the
selection of 782 consumers. Smart meter is the only target
sensor, n = 1, and there is no context sensor, m = 0. In
addition, the dataset also contains survey results, which in-
cludes consumers’ demographics (occupation, family type,
etc.), house information (ownership, age, floor area, etc.),
and appliance usages (dishwasher, TV, water pump etc.).3

6.1 Consumer Segmentation First, we demonstrate the
result of our selection mechanism (described in Sec-
tion 3.2.5). Second, we show the result of our framework to
accomplish different consumer segmentation tasks, i.e., con-
sumer segmentation by consumption trends, absolute con-
sumption, and consumption variability. We also show that
applying the same task on different contexts yield different
results. We visualize each cluster by its centroids.

3http://www.ucd.ie/issda/static/documentation/cer/smartmeter/cer-
residential-pre-trial-survey.pdf

6.1.1 Automatic Cluster Configuration Selection Our
automatic selection mechanism aims to select compact clus-
ters which far from each other (well separated). We perform
a consumer segmentation task based on their consumption
trends. We select all data (R1). We use hourly temporal ag-
gregation (R2). Our features is a combined feature vector,
from a set of context sets (R3) and feature functions (R4).
We use calendar context only (without measured context),
i.e., the set of context sets {(U,W )} is

{(
{January, week-

day}, {}
)
,
(
{January, weekend}, {}

)}
. To obtain the con-

sumption trends, we use {normalized mean, normalized me-
dian} as the set of feature functions. Normalized here means
that we apply standard normalization on the measurement
tuple, such that its mean is 0 and its standard deviation is 1.
We use k-means algorithm, for k = 2, . . . , 10 (R5). As a
consequence, we obtained 9 different cluster configurations.

Cluster configuration resulting from k = 2 is deter-
mined as the best configuration by our automatic selection
mechanism. Figure 2 illustrates the result using k = 2,
k = 3, and k = 4. We can see that centroids of clusters
using k = 2 are better separated than the others. In addition,
the configuration separates the consumers who have high and
low peak consumption in the evening.

6.1.2 Various Segmentation Tasks In this section, we
show the generality of our framework to accomplish different
consumer segmentation tasks. Furthermore, we show that
applying consumer segmentation in different contexts pro-
duce different results.

We perform consumer segmentation by consumption
trends, absolute consumption, and consumption variability.
The setting are similar as in Section 6.1.1, except for the set
of context sets and feature functions. We use the set of fea-
ture functions {normalized mean, normalized median} for
consumption trends, {mean, median} for absolute consump-
tion, and {standard deviation, IQR} for consumption vari-
ability. We perform the task in three different contexts: Jan-
uary, July, and all months, and separate weekend consump-
tion from weekdays. Thus, we use the set of context sets:{(
{January, weekday}, {}

)
,
(
{January, weekend}, {}

)}
for

January,
{(
{July, weekday}, {}

)
,
(
{July, weekend}, {}

)}

for July, and
{(
{weekday},{}

)
,
(
{weekend}, {}

)}
for all

months.
Figure 3 shows that for segmentation by consumption

trends, we successfully divide the consumers into high peak
and low peak consumers. For the next tasks, segmentation
by absolute consumption and consumption variability, we
are also able to produce clusters with high and low abso-
lute consumption and consumption variability, respectively.
Furthermore, comparing the results on January, July, and all
months, shows that applying the segmentation tasks in dif-
ferent contexts yields different results. This validates our
approach to perform context-based consumer segmentation.

6.2 Clustering Consistency Using our clustering consis-
tency index (described in Section 4), we can quantify the
difference between cluster configurations. Figure 4a shows
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Figure 2: Centroids of clusters using January data, and hourly temporal aggregation. For the features, we use normalized mean of weekday
(ID 1-24), normalized mean of weekend (ID 25-48), normalized median of weekday (ID 49-72), and normalized median of weekend (ID
73-96) consumption. We use k-means algorithm with k = 2, k = 3, and k = 4.

the difference between cluster configurations, resulting from
consumer segmentation by absolute consumption for a spe-
cific month compared to 1, 3, and 6 months previously. We
use k-means algorithm, with k=2. This results in two con-
sumer segments: high and low consumption clusters.

The result shows that the consistency between clusters
resulting from the segmentation of the current month and 1
month ago is higher than the consistency between clusters
from the current month and 3 months or 6 months ago.
Especially, the lowest consistency is between July 2010 and
6 months previously, January 2010 (cluster configuration
consistency = 0.67). One of the reason is seasonal changes
in the energy consumption behavior between summer and
winter, i.e., July and January is in the middle of summer and
and winter in Ireland, respectively. However the implication
of our result could be bigger than that. It indicates that,
there are a number of consumers who behave differently
(compared to their fellow cluster members), which in turn
change their cluster memberships.

To elaborate this, in Figure 4b and 4c, we show the con-
sumption profile (mean and median of weekday and week-
end consumption) of the centroid of the low consumption
cluster, and two individuals: ID 1301 and ID 7381, in Jan-
uary and July 2010. These two consumers are in the low
consumption clusters in January 2010. Both of them have
the highest distance rank among individuals with low con-
sistency index (ID 1301) and high consistency index (ID
7381) between January and July 2010. Consumer ID 1301
changes her cluster membership from low consumption clus-
ter in January 2010 to the high consumption cluster in July
2010 (we use centroid as the cluster representative). The
typical consumption of the low consumption cluster in July
2010 is lower than January 2010, which shows the seasonal
changes in the electricity consumption between winter and
summer. Consumer ID 7381, who stays in the low consump-
tion cluster, lower her consumption level, in line with the
behavior of her cluster. However, the consumption of con-
sumer ID 1301 in July 2010 is approximately the same as her
consumption in January 2010. This causes her to change her
cluster membership to the high consumption cluster in July
2010. Then, given this results, we could devise a person-
alized energy feedback for consumer ID 1301 to lower her
energy consumption (for example, using self-comparison).
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Figure 3: Consumer segmentation on consumption trends (a)-(c),
absolute consumption (d)-(f), and consumption variability (g)-(i),
in different contexts: January, July, and all months. For trends, we
used the same features as in Figure 2. Feature ID 1-24 and 49-72
are weekdays consumption, whereas 25-48 and 73-96 are weekend
consumption. We use mean (ID 1-48) and median (ID 49-96) for
absolute, and standard deviation and IQR for variability.

In addition, our cluster configuration consistency index
is useful to quantify the difference between results obtained
by various temporal aggregations. Since smart meter data
has high velocity and high volume, determining the right
aggregation is imperative. We compare the segmentation
results by absolute consumption, consumption variability,
and trends, performed using different temporal aggregations,
against hourly temporal aggregation.

Figure 4d shows that, for consumer segmentation by ab-
solute consumption, we have only a little difference between
cluster configurations resulting from various temporal aggre-
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Figure 4: (a) cluster configuration consistency over time (monthly), consumption profile using (b) January 2010 data, (c) July 2010 data,
and (d) cluster configuration consistency over different temporal aggregations.

Table 1: Consumer characteristics based on their absolute con-
sumption. A minus (-) sign denotes discriminative negative.

Cluster Question Answer DI

low
family type single 0.86
floor area (sq ft.) 805-1073 0.86
#bedrooms ≤ 2 0.85

medium
electric shower (-) ≥ 20 mins -0.76
family type (-) single -0.61
floor area (sq ft.) 2300-2750 0.56

high
#children ≥ 4 0.93
family type (-) single -0.90
floor area (sq ft.) (-) ≤ 1200 -0.87

gations and hourly aggregation. This is a good news because
storing and processing monthly aggregated data, for exam-
ple, is far more desirable than hourly data. Unfortunately,
for consumer segmentation by consumption variability and
trends, this is not the case. The consistency index decreases
as the temporal aggregation become coarser, i.e., the coarser
the temporal aggregation, the higher the difference with the
hourly aggregation. This can be understood since as we
move to coarser temporal aggregation we lose the variation
in the consumption profiles, which is needed to distinguish
different consumption variability or trends.

6.3 Knowledge Extraction from Survey Data Our
dataset contains not only smart meter measurement, but also
consumer survey data (questions/answers). From this survey
data, using our discriminative index (described in Section 5)
we are able to extract knowledge about main characteristics
of a cluster. This step is imperative for applying the right
business decision or policy to a specific consumer segment.

In Table 1 and 2, we show the top 3 characteristics of
consumer segments, formed by absolute consumption and
consumption variability, respectively. We use the same fea-
tures and setting as in Figure 3f and 3i, with k=3 (number
of clusters). The characteristics (expressed by questions and
answers) are ordered by the absolute value of their discrimi-
native index (DI). Recall that DI < 0 denotes discriminative
negative, i.e., the answer is associated more likely to other
clusters.

Consumer segments by absolute consumption is deter-
mined more by consumer’s demographics (such as family
type, the number of children) and housing condition (floor
area, the number of bedrooms). Low consumption cluster
is dominated by single, whereas medium/high consumption
clusters are dominated by non-single family, either adults

Table 2: Consumer characteristics based on their consumption
variability. A minus (-) sign denotes discriminative negative.

Cluster Question Answer DI

low
water pump (-) 1-2hrs -0.88
family type single 0.80
washing machine (-) ≥ 2-3 loads -0.76

medium
electric shower 10-20 mins 0.59
family type (-) single -0.55
#children (-) ≥ 3 -0.54

high
tumble dryer ≥ 2 to 3 loads 0.90
#children ≥ 4 0.88
floor area (sq ft.) ≥ 2800 0.79

only or adults with children. Floor area is also relevant, with
low consumption clusters having the smaller area.4

There are more insights which are based on appliance
usages in Table 2. It can be understood since consumption
variability comes from intermittent appliance usages. Con-
sumers with low consumption variability use big appliances,
such as water pump and washing machine, in a shorter dura-
tion.5 Furthermore, consumers with high consumption vari-
ability use tumble dryers for the longest duration.

Often opinion about house’s energy consumption is built
around its floor area or the year it was built.6 While Table 1
and 2 shows insights about the floor area, there is none about
the year it was built. To investigate this further, we plot the
cumulative distribution of consumers’ floor area (Figure 5a)
and the year their houses was built (Figure 5b). Figure 5a
shows that, indeed floor area is a relevant characteristics, i.e.,
we can distinguish clearly the cumulative distribution of the
floor area among different clusters, where consumers in the
lower consumption cluster typically associated with smaller
floor area. Figure 5b, however, shows that this is not the case
with the year the houses was built, where the cumulative
distribution for the three clusters are similar (coincide) to
each other.

7 Conclusion
In this paper, we presented a generic consumer segmentation
framework that can be used to classify smart meter data into
clusters using multiple distinguishing characteristics such

4Maximum consumers’ floor area is around 5000 sq ft.
5Water pump usages are ranges from <30 minutes to >2 hours. Washing

machine usages are ranges from <1 load to >3 loads a day.
6In [1], we also investigate whether ownership of a certain appliance is

discriminative to the consumer clusters.
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Figure 5: Cumulative distribution of (a) floor area, and (b) the year
consumers’ houses was built. Consumers are clustered by their
absolute consumption: low, medium, and high.

as time of consumption, levels of consumption, associated
contexts, etc. We also presented a clustering consistency
index, which can be used to track evolving consumption
behaviors and to compare consumer segments resulting from
different temporal aggregations.

We evaluated the framework and index using real world
smart meter data and survey results. Our experiments
showed that consumer segmentation results are different
from one context to another. Moreover, different temporal
aggregations have only a little effect on segmentation by ab-
solute consumption. But, this does not hold for segmenta-
tion by consumption variability or trends. Furthermore, con-
sumer’s floor area is relevant to her consumption. In addi-
tion, big appliances’ usage patterns also play a role in con-
sumer’s consumption variability.

In the future, we plan to define consumer segments
based on their responses to DR signals. We aim to quantify
and understand consumer characteristics which are relevant
to the responses. This enables us to develop DR design rec-
ommendation framework, which allows us to draw relation-
ships between consumers’ consumption profile, demograph-
ics, and appliance usage patterns to estimate the impact of
future (planned) DR signals. The existence of this frame-
work is crucial for delivering effective DR signals. In addi-
tion, we also plan to explore applications of our framework
in anomaly, theft, and fraud detection.
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1 Supplement for Automatic Cluster Configuration
Selection in Section 3.2.5

We give a brief description about the Silhouette [3],
Dunn [2], and Davies-Bouldin [1] indices. They provide us a
way to compare a cluster configuration from one to another.
However, there are some differences.

Let x be a consumer, C be a cluster configuration (set of
clusters), and C(x) ∈ C be the cluster of x. In addition, let
dist(x, x′) be the distance between two consumers x and x′.

The Silhouette index This index determines how well an ob-
ject is clustered, based on the difference in the dissimilarity
of the object to its cluster and to the other clusters.

Let dist(x, c) be the average distance between x and all
consumers in c, i.e.,

dist(x, c) =
1

|c|
∑

x′∈c

dist(x, x′).

Let a(x) be the average dissimilarity of consumer x to
all other fellow cluster members in C(x), i.e,

a(x) =
1

|C(x)| − 1

∑

x′∈C(x)
x′ 6=x

dist(x, x′).

Assuming that dist(x, x) = 0, then we can also rewrite the
equation above into:

a(x) =
dist(x,C(x))

|C(x)| − 1
.

Let b(x) be the minimum average dissimilarity between
x and other clusters, i.e.,

b(x) = min
c6=C(x)

dist(x, c)

|c| .
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Then, we define the Silhouette value of x as:

silh(x) =
b(x)− a(x)

max{a(x), b(x)}

The Silhouette index of a cluster configuration is the average
of the Silhouette index of all consumers (in the configura-
tion):

silh(C) =
1

|C|
∑

c∈C

( 1

|c|
∑

x∈c

silh(x)
)

Silhouette index range from -1 to +1. The closer it is to 1,
the better.

The Dunn index This index seeks the largest inter-cluster
distance and the lowest intra-cluster distance. The Dunn
index is computed based on the ratio between the mini-
mum inter-cluster distance and the maximum intra-cluster
distance.

Let us define the inter-cluster distance between two
clusters, c1 and c2, as the minimum distance between any
two points in c1 and c2, i.e.,

interdst(c1, c2) = min
x1∈c1
x2∈c2

dist(x1, x2),

In addition, we define the intra-cluster distance (or diameter)
of a cluster c, as the maximum distance between any two
points in c, i.e.,

dia(c) = max
x1,x2∈c

dist(x1, x2).

Then, we define the Dunn index of a configuration C as:

dunn(C) =

min
c1,c2∈C
c1 6=c2

interdst(c1, c2)

max
c∈C

dia(c)
.

The larger the Dunn index, the better.

The Davies-Bouldin index This index is similar to the Dunn
index, i.e., it aims to indentify a cluster configuration which
has the largest inter-cluster distance and the lowest intra-
cluster distance. The Davies-Bouldin index is computed
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Figure 1: Feature f1 is discriminative positive for cluster c1,
whereas f2 is discriminative negative for c1. While entropy
measure is able to recognize only discriminative positive features,
our discriminative index is able to recognize both, discriminative
positive and negative features.

based on the sum of diameter between two clusters divided
by their inter-cluster distance:

daviesBouldin(C) =
1

|C|
∑

c1∈C

max
c2∈C
c2 6=c1

dia(c1) + dia(c2)

interdst(c1, c2)

In this case, we define the intra-cluster distance of a cluster c
as the average distance of the cluster members to its centroid,
i.e.,

dia(c) =
1

|c|
∑

x∈c

dist(x, ζc),

where ζc is the centroid of cluster c. We define the inter-
cluster distance to be similar with the one used for computing
the Dunn index. Note that we define the Davies-Bouldin
index here a little bit different compared to its original
version [1]. However, as long as dist is a proper distance
metric, our definition satisfies Definition 1 to 5 in [1]. The
lower the Davies-Bouldin index, the better.

2 Supplement for Section 5
An alternative to discriminative index Entropy can be
used as an alternative to our discriminative index for de-
termining whether a certain consumer characteristics is dis-
criminative or not, using the same idea as in the decision tree
learning. However, there is a subtle difference.

Using entropy, a feature is said to be discriminative
for a particular class (or cluster, in our case) when it has
low entropy. In Figure 1, f1 has low entropy, and hence
it is discriminative. That is, f1 is an appropriate feature
to distinguish cluster c1 from others. Moreover, f1 as
an example of what we called as a discriminative positive
feature. Feature f2 in Figure 1, has high entropy. Thus,
according to the entropy measure, f2 is not discriminative.
However, we can see that f2 is actually also a discriminative
feature, i.e., it characterizes an individual which does not

belong to c1 (might belong to any other clusters). Feature f2
is an example of what we called as a discriminative negative
feature.

While entropy is useful measure to recognize discrim-
inative positive feature, it does not recognize discrimina-
tive negative feature. Our discriminative index, on the other
hand, is able to distinguish both, discriminative positive and
negative features.

3 Supplement for Section 6.3
Compared to appliance usage, information about appliance
ownership is simpler and cheaper to obtain. Using ques-
tionnaire is enough to obtain the information whether a con-
sumer own a certain appliance. Detailed appliance usage
information, however, is more expensive to obtain because
it involves sensor measurement.1 Thus, knowing whether
ownership of a particular appliance determines consumer’s
energy consumption is a valuable insight.

In our dataset, we have a set of question/answer whether
a consumer own these appliances:

• washing machine,

• tumble dryer,

• dishwasher,

• electric shower,

• electric cooker,

• stand alone freezer,

• water pump,

• immersion,

• TV less than 21 inch,

• TV greater than 21 inch,

• desktop computer,

• laptop computer, and

• games consoles.

In Table 1 and 2, we show customer characteristics which re-
lated to appliance ownership only. Both shows how discrim-
inative is an ownership of a particular appliance for different
clusters, based on absolute consumption and consumption
variability. Let support be Zc in case of discriminative pos-
itive and Z¬c in case of discriminative negative. We show
only characteristics with DI ≥ 0.6 (highly discriminative)
and support ≥ 0.4 (highly evident).

1Typical appliance usage, however, as in our dataset, can be obtained
through questionnaire.



Table 1: Discriminative appliances’ ownership for different clusters
based on their absolute consumption. We show only for DI ≥
0.60 and support ≥ 0.40. A minus (-) sign denotes discriminative
negative.

# Appliance Cluster Ownership DI
1 dishwasher high (-) no -0.76
2 games consoles low (-) yes -0.70
3 tumble dryer low no 0.68
4 dishwasher low no 0.67
5 games consoles high yes 0.61

Table 2: Discriminative appliances’ ownership for different clusters
based on their consumption variability. We show only for DI ≥
0.60 and support ≥ 0.40. A minus (-) sign denotes discriminative
negative.

# Appliance Cluster Ownership DI
1 dishwasher high (-) no -0.72
2 tumble dryer high (-) no -0.72
3 tumble dryer low no 0.71
4 games consoles low (-) yes -0.69
5 dishwasher low no 0.67
6 games consoles high yes 0.60

Over all appliances, we found that, only the ownership
of big (power consuming) appliances (dishwasher and tum-
ble dryer), which are highly discriminative. That is, the
owner of these appliances are more likely to consume more
energy and have higher consumption variability. The owner-
ship of other appliances, which are not shown in Table 1 and
2, are less discriminative.2

The consistent presence of games consoles in both ta-
bles, however, is rather interesting since they are not big ap-
pliances (their power consumption is comparable to other
electronic devices such as TV or desktop computer). We
conjecture that the ownership of games consoles is highly
correlated with family type, e.g., families with children are
more likely to have games consoles at home compared to sin-
gles. Because family type is a highly discriminative charac-
teristics for households’ energy consumption behavior (see
Table 1 and 2 in the main paper), then its correlation with
games consoles ownership explains why games consoles
ownership is also discriminative. Our conjecture is then con-
firmed in Figure 2, where it shows that, indeed, families with
children are the most likely to own games consoles, followed
by adults only families, and then by singles, who are the least
likely to own games consoles.

2However, their usage pattern might be highly discriminative (such as
washing machine, electric shower, water pump – see Table 1 and 2 in the
main paper).
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Figure 2: Fraction of households which own games consoles for
different family types.
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“The cluster consistency and the discriminative index measures are novel
and useful for analyzing such data types that can be adopted and expanded
by other data mining practitioners.” — Anonymous Reviewer


